// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
-void RAMFUNC SnoopIso14443a(uint8_t param) {
+void RAMFUNC SniffIso14443a(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
-void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
+void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data)
{
+
+ //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
+ // This can be used in a reader-only attack.
+ // (it can also be retrieved via 'hf 14a list', but hey...
+ uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
+ uint8_t ar_nr_collected = 0;
+
uint8_t sak;
// The first response contains the ATQA (note: bytes are transmitted in reverse order).
response1[0] = 0x01;
response1[1] = 0x0f;
sak = 0x01;
- } break;
+ } break;
+ case 6: { // MIFARE Mini
+ // Says: I am a Mifare Mini, 320b
+ response1[0] = 0x44;
+ response1[1] = 0x00;
+ sak = 0x09;
+ } break;
default: {
Dbprintf("Error: unkown tagtype (%d)",tagType);
return;
// Check if the uid uses the (optional) part
uint8_t response2a[5] = {0x00};
- if (uid_2nd) {
+ if (flags & FLAG_7B_UID_IN_DATA) {
response2[0] = 0x88;
- num_to_bytes(uid_1st,3,response2+1);
- num_to_bytes(uid_2nd,4,response2a);
+ response2[1] = data[0];
+ response2[2] = data[1];
+ response2[3] = data[2];
+
+ response2a[0] = data[3];
+ response2a[1] = data[4];
+ response2a[2] = data[5];
+ response2a[3] = data[7];
response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3];
// Configure the ATQA and SAK accordingly
response1[0] |= 0x40;
sak |= 0x04;
} else {
- num_to_bytes(uid_1st,4,response2);
+ memcpy(response2, data, 4);
+ //num_to_bytes(uid_1st,4,response2);
// Configure the ATQA and SAK accordingly
response1[0] &= 0xBF;
sak &= 0xFB;
if (tracing) {
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
}
+ uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4);
- Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar);
+ //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar);
+
+ if(flags & FLAG_NR_AR_ATTACK )
+ {
+ if(ar_nr_collected < 2){
+ // Avoid duplicates... probably not necessary, nr should vary.
+ //if(ar_nr_responses[3] != nr){
+ ar_nr_responses[ar_nr_collected*5] = 0;
+ ar_nr_responses[ar_nr_collected*5+1] = 0;
+ ar_nr_responses[ar_nr_collected*5+2] = nonce;
+ ar_nr_responses[ar_nr_collected*5+3] = nr;
+ ar_nr_responses[ar_nr_collected*5+4] = ar;
+ ar_nr_collected++;
+ //}
+ }
+
+ if(ar_nr_collected > 1 ) {
+
+ if (MF_DBGLEVEL >= 2) {
+ Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
+ Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x",
+ ar_nr_responses[0], // UID1
+ ar_nr_responses[1], // UID2
+ ar_nr_responses[2], // NT
+ ar_nr_responses[3], // AR1
+ ar_nr_responses[4], // NR1
+ ar_nr_responses[8], // AR2
+ ar_nr_responses[9] // NR2
+ );
+ }
+ uint8_t len = ar_nr_collected*5*4;
+ cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len);
+ ar_nr_collected = 0;
+ memset(ar_nr_responses, 0x00, len);
+ Dbprintf("ICE");
+ }
+ }
} else {
// Check for ISO 14443A-4 compliant commands, look at left nibble
switch (receivedCmd[0]) {
}
}
+ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
+
Dbprintf("%x %x %x", happened, happened2, cmdsRecvd);
LED_A_OFF();
BigBuf_free_keep_EM();
if(param & ISO14A_TOPAZMODE) {
AppendCrc14443b(cmd,len);
} else {
- AppendCrc14443a(cmd,len);
+ AppendCrc14443a(cmd,len);
}
len += 2;
if (lenbits) lenbits += 16;
// Therefore try in alternating directions.
int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
- uint16_t i;
- uint32_t nttmp1, nttmp2;
-
if (nt1 == nt2) return 0;
- nttmp1 = nt1;
- nttmp2 = nt2;
+ uint16_t i;
+ uint32_t nttmp1 = nt1;
+ uint32_t nttmp2 = nt2;
for (i = 1; i < 32768; i++) {
nttmp1 = prng_successor(nttmp1, 1);
// Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime"
// (article by Nicolas T. Courtois, 2009)
//-----------------------------------------------------------------------------
-void ReaderMifare(bool first_try)
-{
- // Mifare AUTH
- uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
- uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
- static uint8_t mf_nr_ar3;
-
- uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE];
- uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE];
-
+void ReaderMifare(bool first_try) {
// free eventually allocated BigBuf memory. We want all for tracing.
BigBuf_free();
clear_trace();
set_tracing(TRUE);
+ // Mifare AUTH
+ uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b };
+ uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 };
+ static uint8_t mf_nr_ar3 = 0;
+
+ uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 };
+ uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 };
+
byte_t nt_diff = 0;
uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough
static byte_t par_low = 0;
bool led_on = TRUE;
- uint8_t uid[10] ={0};
- uint32_t cuid;
+ uint8_t uid[10] = {0x00};
+ //uint32_t cuid = 0x00;
uint32_t nt = 0;
uint32_t previous_nt = 0;
byte_t par_list[8] = {0x00};
byte_t ks_list[8] = {0x00};
- static uint32_t sync_time;
- static uint32_t sync_cycles;
+ static uint32_t sync_time = 0;
+ static uint32_t sync_cycles = 0;
int catch_up_cycles = 0;
int last_catch_up = 0;
uint16_t consecutive_resyncs = 0;
int isOK = 0;
+ int numWrongDistance = 0;
+
if (first_try) {
mf_nr_ar3 = 0;
iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
-
+ LED_C_ON();
for(uint16_t i = 0; TRUE; i++) {
WDT_HIT();
// Test if the action was cancelled
- if(BUTTON_PRESS()) {
+ if(BUTTON_PRESS()) break;
+
+ if (numWrongDistance > 1000) {
+ isOK = 0;
break;
}
- LED_C_ON();
-
- if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ //if(!iso14443a_select_card(uid, NULL, &cuid)) {
+ if(!iso14443a_select_card(uid, NULL, NULL)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
nt_attacked = nt;
}
else {
- if (nt_distance == -99999) { // invalid nonce received, try again
+
+ // invalid nonce received, try again
+ if (nt_distance == -99999) {
+ numWrongDistance++;
+ if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n");
continue;
}
+
sync_cycles = (sync_cycles - nt_distance);
if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
continue;
if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again...
catch_up_cycles = -dist_nt(nt_attacked, nt);
- if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one.
+ if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one.
catch_up_cycles = 0;
continue;
}
}
}
-
mf_nr_ar[3] &= 0x1F;
- byte_t buf[28];
+ byte_t buf[28] = {0x00};
+
memcpy(buf + 0, uid, 4);
num_to_bytes(nt, 4, buf + 4);
memcpy(buf + 8, par_list, 8);
cmd_send(CMD_ACK,isOK,0,0,buf,28);
- // Thats it...
+ set_tracing(FALSE);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
-
- set_tracing(FALSE);
}
-/**
+
+ /*
*MIFARE 1K simulate.
*
*@param flags :
if (_7BUID) {
rATQA[0] = 0x44;
rUIDBCC1[0] = 0x88;
+ rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
}
if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2)
{
finished = true;
- }
+ }
}
// --- crypto
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3], //NR1
- ar_nr_responses[6], //AR2
- ar_nr_responses[7] //NR2
+ ar_nr_responses[1], // NT
+ ar_nr_responses[2], // AR1
+ ar_nr_responses[3], // NR1
+ ar_nr_responses[6], // AR2
+ ar_nr_responses[7] // NR2
);
} else {
Dbprintf("Failed to obtain two AR/NR pairs!");
if(ar_nr_collected > 0 ) {
Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x",
ar_nr_responses[0], // UID
- ar_nr_responses[1], //NT
- ar_nr_responses[2], //AR1
- ar_nr_responses[3] //NR1
+ ar_nr_responses[1], // NT
+ ar_nr_responses[2], // AR1
+ ar_nr_responses[3] // NR1
);
}
}
}
-
//-----------------------------------------------------------------------------
// MIFARE sniffer.
//
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
+ // free eventually allocated BigBuf memory
+ BigBuf_free();
+
// C(red) A(yellow) B(green)
LEDsoff();
// init trace buffer
uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE];
uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE];
- // As we receive stuff, we copy it from receivedCmd or receivedResponse
- // into trace, along with its length and other annotations.
- //uint8_t *trace = (uint8_t *)BigBuf;
-
- // free eventually allocated BigBuf memory
- BigBuf_free();
// allocate the DMA buffer, used to stream samples from the FPGA
uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE);
uint8_t *data = dmaBuf;
Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
LEDsoff();
-}
+}
\ No newline at end of file