X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/0c2ed92d876c32abce11daf86eea4bcece6fa6fa..8e99ec25edb501c00d1d0a9fc57709ff88f56495:/armsrc/appmain.c diff --git a/armsrc/appmain.c b/armsrc/appmain.c index f35a82fa..bbb062c0 100644 --- a/armsrc/appmain.c +++ b/armsrc/appmain.c @@ -1,23 +1,42 @@ //----------------------------------------------------------------------------- -// The main application code. This is the first thing called after start.c -// executes. // Jonathan Westhues, Mar 2006 // Edits by Gerhard de Koning Gans, Sep 2007 (##) +// +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- +// The main application code. This is the first thing called after start.c +// executes. //----------------------------------------------------------------------------- +#include "usb_cdc.h" +#include "cmd.h" -#include -#include +#include "proxmark3.h" #include "apps.h" +#include "util.h" +#include "printf.h" +#include "string.h" + +#include + +#include "legicrf.h" +#include +#include "lfsampling.h" +#include "BigBuf.h" +#include "mifareutil.h" +#include "pcf7931.h" #ifdef WITH_LCD -#include "fonts.h" -#include "LCD.h" + #include "LCD.h" +#endif + +// Craig Young - 14a stand-alone code +#ifdef WITH_ISO14443a_StandAlone + #include "iso14443a.h" #endif -// The large multi-purpose buffer, typically used to hold A/D samples, -// maybe pre-processed in some way. -DWORD BigBuf[16000]; -int usbattached = 0; +#define abs(x) ( ((x)<0) ? -(x) : (x) ) //============================================================================= // A buffer where we can queue things up to be sent through the FPGA, for @@ -25,16 +44,11 @@ int usbattached = 0; // is the order in which they go out on the wire. //============================================================================= -BYTE ToSend[256]; +#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits +uint8_t ToSend[TOSEND_BUFFER_SIZE]; int ToSendMax; static int ToSendBit; - - -void BufferClear(void) -{ - memset(BigBuf,0,sizeof(BigBuf)); - DbpString("Buffer cleared"); -} +struct common_area common_area __attribute__((section(".commonarea"))); void ToSendReset(void) { @@ -56,7 +70,7 @@ void ToSendStuffBit(int b) ToSendBit++; - if(ToSendBit >= sizeof(ToSend)) { + if(ToSendMax >= sizeof(ToSend)) { ToSendBit = 0; DbpString("ToSendStuffBit overflowed!"); } @@ -68,214 +82,54 @@ void ToSendStuffBit(int b) void DbpString(char *str) { - /* this holds up stuff unless we're connected to usb */ -// if (!usbattached) -// return; - - UsbCommand c; - c.cmd = CMD_DEBUG_PRINT_STRING; - c.ext1 = strlen(str); - memcpy(c.d.asBytes, str, c.ext1); - - UsbSendPacket((BYTE *)&c, sizeof(c)); - // TODO fix USB so stupid things like this aren't req'd - SpinDelay(50); + byte_t len = strlen(str); + cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len); } +#if 0 void DbpIntegers(int x1, int x2, int x3) { - /* this holds up stuff unless we're connected to usb */ -// if (!usbattached) -// return; - - UsbCommand c; - c.cmd = CMD_DEBUG_PRINT_INTEGERS; - c.ext1 = x1; - c.ext2 = x2; - c.ext3 = x3; - - UsbSendPacket((BYTE *)&c, sizeof(c)); - // XXX - SpinDelay(50); + cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0); } +#endif -void AcquireRawAdcSamples125k(BOOL at134khz) -{ - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } - - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - // Now call the acquisition routine - DoAcquisition125k(at134khz); -} +void Dbprintf(const char *fmt, ...) { +// should probably limit size here; oh well, let's just use a big buffer + char output_string[128]; + va_list ap; -// split into two routines so we can avoid timing issues after sending commands // -void DoAcquisition125k(BOOL at134khz) -{ - BYTE *dest = (BYTE *)BigBuf; - int n = sizeof(BigBuf); - int i; + va_start(ap, fmt); + kvsprintf(fmt, output_string, 10, ap); + va_end(ap); - memset(dest,0,n); - i = 0; - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x43; - LED_D_ON(); - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - dest[i] = (BYTE)SSC_RECEIVE_HOLDING; - i++; - LED_D_OFF(); - if(i >= n) { - break; - } - } - } - DbpIntegers(dest[0], dest[1], at134khz); + DbpString(output_string); } -void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command) -{ - BOOL at134khz; - - // see if 'h' was specified - if(command[strlen((char *) command) - 1] == 'h') - at134khz= TRUE; - else - at134khz= FALSE; - - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } - - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - // now modulate the reader field - while(*command != '\0' && *command != ' ') - { - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); +// prints HEX & ASCII +void Dbhexdump(int len, uint8_t *d, bool bAsci) { + int l=0,i; + char ascii[9]; + + while (len>0) { + if (len>8) l=8; + else l=len; + + memcpy(ascii,d,l); + ascii[l]=0; + + // filter safe ascii + for (i=0;i126) ascii[i]='.'; + + if (bAsci) { + Dbprintf("%-8s %*D",ascii,l,d," "); } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + Dbprintf("%*D",l,d," "); } - LED_D_ON(); - if(*(command++) == '0') - SpinDelayUs(period_0); - else - SpinDelayUs(period_1); - } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LED_D_OFF(); - SpinDelayUs(delay_off); - if(at134khz) { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } else { - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - } - - // now do the read - DoAcquisition125k(at134khz); -} - -void AcquireTiType(void) -{ - int i; - int n = 5000; - - // clear buffer - memset(BigBuf,0,sizeof(BigBuf)); - - // Set up the synchronous serial port - PIO_DISABLE = (1<= n) return; - } - WDT_HIT(); + + len-=8; + d+=8; } - - // return stolen pin to SSP - PIO_DISABLE = (1<ADC_CR = AT91C_ADC_SWRST; + AT91C_BASE_ADC->ADC_MR = + ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz + ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us + ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us + + // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value. + // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant + // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged. + // + // The maths are: + // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be + // + // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%) + // + // Note: with the "historic" values in the comments above, the error was 34% !!! + + AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch); + + AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; + + while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ; - d = ADC_CHANNEL_DATA(ch); + d = AT91C_BASE_ADC->ADC_CDR[ch]; return d; } -static int AvgAdc(int ch) +int AvgAdc(int ch) // was static - merlok { int i; int a = 0; @@ -314,14 +183,11 @@ static int AvgAdc(int ch) void MeasureAntennaTuning(void) { - BYTE *dest = (BYTE *)BigBuf; - int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; + uint8_t LF_Results[256]; + int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV - UsbCommand c; - - DbpString("Measuring antenna characteristics, please wait."); - memset(BigBuf,0,sizeof(BigBuf)); + LED_B_ON(); /* * Sweeps the useful LF range of the proxmark from @@ -331,511 +197,1025 @@ void MeasureAntennaTuning(void) * the resonating frequency of your LF antenna * ( hopefully around 95 if it is tuned to 125kHz!) */ - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - for (i=255; i>19; i--) { + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + for (i=255; i>=19; i--) { + WDT_HIT(); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); SpinDelay(20); - // Vref = 3.3V, and a 10000:240 voltage divider on the input - // can measure voltages up to 137500 mV - adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); + adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); if (i==95) vLf125 = adcval; // voltage at 125Khz if (i==89) vLf134 = adcval; // voltage at 134Khz - dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes - if(dest[i] > peak) { + LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes + if(LF_Results[i] > peak) { peakv = adcval; - peak = dest[i]; + peak = LF_Results[i]; peakf = i; - ptr = i; + //ptr = i; } } + for (i=18; i >= 0; i--) LF_Results[i] = 0; + + LED_A_ON(); // Let the FPGA drive the high-frequency antenna around 13.56 MHz. + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(20); - // Vref = 3300mV, and an 10:1 voltage divider on the input - // can measure voltages up to 33000 mV - vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; - - c.cmd = CMD_MEASURED_ANTENNA_TUNING; - c.ext1 = (vLf125 << 0) | (vLf134 << 16); - c.ext2 = vHf; - c.ext3 = peakf | (peakv << 16); - UsbSendPacket((BYTE *)&c, sizeof(c)); + vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; + + cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LED_A_OFF(); + LED_B_OFF(); + return; } -void SimulateTagLowFrequency(int period, int ledcontrol) +void MeasureAntennaTuningHf(void) { - int i; - BYTE *tab = (BYTE *)BigBuf; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); + int vHf = 0; // in mV - PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); + DbpString("Measuring HF antenna, press button to exit"); - PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); - PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); + // Let the FPGA drive the high-frequency antenna around 13.56 MHz. + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); -#define SHORT_COIL() LOW(GPIO_SSC_DOUT) -#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) + for (;;) { + SpinDelay(20); + vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; - i = 0; - for(;;) { - while(!(PIO_PIN_DATA_STATUS & (1<= &_flash_end ) { + strcat(VersionString, "bootrom version information appears invalid\n"); + } else { + FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version); + strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); } - // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples - if(c==10) { - for (idx=0; idx<5; idx++) { - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=1; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - dest[((*n)++)]=0; - } - } + FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information); + strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); + + FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp)); + strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); + FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp)); + strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1); + + // Send Chip ID and used flash memory + uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start; + uint32_t compressed_data_section_size = common_area.arg1; + cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString)); } -// prepare a waveform pattern in the buffer based on the ID given then -// simulate a HID tag until the button is pressed -static void CmdHIDsimTAG(int hi, int lo, int ledcontrol) +// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time. +// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included. +void printUSBSpeed(void) { - int n=0, i=0; - /* - HID tag bitstream format - The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits - A 1 bit is represented as 6 fc8 and 5 fc10 patterns - A 0 bit is represented as 5 fc10 and 6 fc8 patterns - A fc8 is inserted before every 4 bits - A special start of frame pattern is used consisting a0b0 where a and b are neither 0 - nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) - */ - - if (hi>0xFFF) { - DbpString("Tags can only have 44 bits."); - return; - } - fc(0,&n); - // special start of frame marker containing invalid bit sequences - fc(8, &n); fc(8, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - fc(10, &n); fc(10, &n); // invalid - fc(8, &n); fc(10, &n); // logical 0 - - WDT_HIT(); - // manchester encode bits 43 to 32 - for (i=11; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((hi>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } - } - - WDT_HIT(); - // manchester encode bits 31 to 0 - for (i=31; i>=0; i--) { - if ((i%4)==3) fc(0,&n); - if ((lo>>i)&1) { - fc(10, &n); fc(8, &n); // low-high transition - } else { - fc(8, &n); fc(10, &n); // high-low transition - } + Dbprintf("USB Speed:"); + Dbprintf(" Sending USB packets to client..."); + + #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds + uint8_t *test_data = BigBuf_get_addr(); + uint32_t end_time; + + uint32_t start_time = end_time = GetTickCount(); + uint32_t bytes_transferred = 0; + + LED_B_ON(); + while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) { + cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE); + end_time = GetTickCount(); + bytes_transferred += USB_CMD_DATA_SIZE; } + LED_B_OFF(); - if (ledcontrol) - LED_A_ON(); - SimulateTagLowFrequency(n, ledcontrol); + Dbprintf(" Time elapsed: %dms", end_time - start_time); + Dbprintf(" Bytes transferred: %d", bytes_transferred); + Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s", + 1000 * bytes_transferred / (end_time - start_time)); - if (ledcontrol) - LED_A_OFF(); +} + +/** + * Prints runtime information about the PM3. +**/ +void SendStatus(void) +{ + BigBuf_print_status(); + Fpga_print_status(); + printConfig(); //LF Sampling config + printUSBSpeed(); + Dbprintf("Various"); + Dbprintf(" MF_DBGLEVEL......%d", MF_DBGLEVEL); + Dbprintf(" ToSendMax........%d",ToSendMax); + Dbprintf(" ToSendBit........%d",ToSendBit); + + cmd_send(CMD_ACK,1,0,0,0,0); } -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -static void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF) + +#define OPTS 2 + +void StandAloneMode() { - BYTE *dest = (BYTE *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - DWORD hi=0, lo=0; + DbpString("Stand-alone mode! No PC necessary."); + // Oooh pretty -- notify user we're in elite samy mode now + LED(LED_RED, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_RED, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_RED, 200); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); +} - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); +#endif - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - for(;;) { - WDT_HIT(); - if (ledcontrol) - LED_A_ON(); - if(BUTTON_PRESS()) { - DbpString("Stopped"); - if (ledcontrol) - LED_A_OFF(); - return; - } +#ifdef WITH_ISO14443a_StandAlone +void StandAloneMode14a() +{ + StandAloneMode(); + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0x43; - if (ledcontrol) - LED_D_ON(); - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - dest[i] = (BYTE)SSC_RECEIVE_HOLDING; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (ledcontrol) - LED_D_OFF(); - if(i >= m) { - break; - } - } - } + int selected = 0; + int playing = 0, iGotoRecord = 0, iGotoClone = 0; + int cardRead[OPTS] = {0}; + uint8_t readUID[10] = {0}; + uint32_t uid_1st[OPTS]={0}; + uint32_t uid_2nd[OPTS]={0}; + uint32_t uid_tmp1 = 0; + uint32_t uid_tmp2 = 0; + iso14a_card_select_t hi14a_card[OPTS]; - // FSK demodulator + LED(selected + 1, 0); - // sync to first lo-hi transition - for( idx=1; idx>8; + uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8); + } + else { + Dbprintf("Bank[%d] received a 4-byte UID",selected); + uid_1st[selected] = uid_tmp1; + uid_2nd[selected] = uid_tmp2; + } break; + } } - n=0; - lastval=dest[idx]; } + Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]); + Dbprintf("SAK = %02X",hi14a_card[selected].sak); + LEDsoff(); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + LED(LED_GREEN, 200); + LED(LED_ORANGE, 200); + + LEDsoff(); + LED(selected + 1, 0); + + // Next state is replay: + playing = 1; + + cardRead[selected] = 1; } - m=i; - WDT_HIT(); + /* MF Classic UID clone */ + else if (iGotoClone==1) + { + iGotoClone=0; + LEDsoff(); + LED(selected + 1, 0); + LED(LED_ORANGE, 250); + + + // record + Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]); - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - for( idx=0; idx>1)&0xffff); - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi=0; - lo=0; - found=0; - } + // Delay cloning until card is in place + WDT_HIT(); } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi=0; - lo=0; + Dbprintf("Starting clone. [Bank: %u]", selected); + // need this delay to prevent catching some weird data + SpinDelay(500); + // Begin clone function here: + /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards: + UsbCommand c = {CMD_MIFARE_CSETBLOCK, {wantWipe, params & (0xFE | (uid == NULL ? 0:1)), blockNo}}; + memcpy(c.d.asBytes, data, 16); + SendCommand(&c); + + Block read is similar: + UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, 0, blockNo}}; + We need to imitate that call with blockNo 0 to set a uid. + + The get and set commands are handled in this file: + // Work with "magic Chinese" card + case CMD_MIFARE_CSETBLOCK: + MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CGETBLOCK: + MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + + mfCSetUID provides example logic for UID set workflow: + -Read block0 from card in field with MifareCGetBlock() + -Configure new values without replacing reserved bytes + memcpy(block0, uid, 4); // Copy UID bytes from byte array + // Mifare UID BCC + block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5 + Bytes 5-7 are reserved SAK and ATQA for mifare classic + -Use mfCSetBlock(0, block0, oldUID, wantWipe, CSETBLOCK_SINGLE_OPER) to write it + */ + uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0}; + // arg0 = Flags == CSETBLOCK_SINGLE_OPER=0x1F, arg1=returnSlot, arg2=blockNo + MifareCGetBlock(0x3F, 1, 0, oldBlock0); + if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) { + Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected); + playing = 1; + } + else { + Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]); + memcpy(newBlock0,oldBlock0,16); + // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic) + + newBlock0[0] = uid_1st[selected]>>24; + newBlock0[1] = 0xFF & (uid_1st[selected]>>16); + newBlock0[2] = 0xFF & (uid_1st[selected]>>8); + newBlock0[3] = 0xFF & (uid_1st[selected]); + newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3]; + // arg0 = needWipe, arg1 = workFlags, arg2 = blockNo, datain + MifareCSetBlock(0, 0xFF,0, newBlock0); + MifareCGetBlock(0x3F, 1, 0, testBlock0); + if (memcmp(testBlock0,newBlock0,16)==0) + { + DbpString("Cloned successfull!"); + cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it + playing = 0; + iGotoRecord = 1; + selected = (selected+1) % OPTS; + } + else { + Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected); + playing = 1; } - idx++; } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) + LEDsoff(); + LED(selected + 1, 0); + + } + // Change where to record (or begin playing) + else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected]) + { + LEDsoff(); + LED(selected + 1, 0); + + // Begin transmitting + if (playing) { - found=1; - idx+=6; - if (found && (hi|lo)) { - DbpString("TAG ID"); - DbpIntegers(hi, lo, (lo>>1)&0xffff); - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; + LED(LED_GREEN, 0); + DbpString("Playing"); + for ( ; ; ) { + WDT_HIT(); + int button_action = BUTTON_HELD(1000); + if (button_action == 0) { // No button action, proceed with sim + uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break + Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected); + if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) { + DbpString("Mifare Classic"); + SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); // Mifare Classic + } + else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) { + DbpString("Mifare Ultralight"); + SimulateIso14443aTag(2,uid_1st[selected],uid_2nd[selected],data); // Mifare Ultralight + } + else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) { + DbpString("Mifare DESFire"); + SimulateIso14443aTag(3,uid_1st[selected],uid_2nd[selected],data); // Mifare DESFire + } + else { + Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation"); + SimulateIso14443aTag(1,uid_1st[selected], uid_2nd[selected], data); + } } - hi=0; - lo=0; - found=0; + else if (button_action == BUTTON_SINGLE_CLICK) { + selected = (selected + 1) % OPTS; + Dbprintf("Done playing. Switching to record mode on bank %d",selected); + iGotoRecord = 1; + break; + } + else if (button_action == BUTTON_HOLD) { + Dbprintf("Playtime over. Begin cloning..."); + iGotoClone = 1; + break; + } + WDT_HIT(); } + + /* We pressed a button so ignore it here with a delay */ + SpinDelay(300); + LEDsoff(); + LED(selected + 1, 0); } + else + while(BUTTON_PRESS()) + WDT_HIT(); } - WDT_HIT(); } } - -void SimulateTagHfListen(void) +#elif WITH_LF +// samy's sniff and repeat routine +void SamyRun() { - BYTE *dest = (BYTE *)BigBuf; - int n = sizeof(BigBuf); - BYTE v = 0; - int i; - int p = 0; + StandAloneMode(); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); - // We're using this mode just so that I can test it out; the simulated - // tag mode would work just as well and be simpler. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); + int high[OPTS], low[OPTS]; + int selected = 0; + int playing = 0; + int cardRead = 0; - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + // Turn on selected LED + LED(selected + 1, 0); - FpgaSetupSsc(); + for (;;) + { + usb_poll(); + WDT_HIT(); - i = 0; - for(;;) { - if(SSC_STATUS & (SSC_STATUS_TX_READY)) { - SSC_TRANSMIT_HOLDING = 0xff; - } - if(SSC_STATUS & (SSC_STATUS_RX_READY)) { - BYTE r = (BYTE)SSC_RECEIVE_HOLDING; + // Was our button held down or pressed? + int button_pressed = BUTTON_HELD(1000); + SpinDelay(300); - v <<= 1; - if(r & 1) { - v |= 1; - } - p++; + // Button was held for a second, begin recording + if (button_pressed > 0 && cardRead == 0) + { + LEDsoff(); + LED(selected + 1, 0); + LED(LED_RED2, 0); - if(p >= 8) { - dest[i] = v; - v = 0; - p = 0; - i++; + // record + DbpString("Starting recording"); - if(i >= n) { - break; - } - } - } - } - DbpString("simulate tag (now type bitsamples)"); -} + // wait for button to be released + while(BUTTON_PRESS()) + WDT_HIT(); -void UsbPacketReceived(BYTE *packet, int len) + /* need this delay to prevent catching some weird data */ + SpinDelay(500); + + CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); + Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]); + + LEDsoff(); + LED(selected + 1, 0); + // Finished recording + + // If we were previously playing, set playing off + // so next button push begins playing what we recorded + playing = 0; + + cardRead = 1; + + } + + else if (button_pressed > 0 && cardRead == 1) + { + LEDsoff(); + LED(selected + 1, 0); + LED(LED_ORANGE, 0); + + // record + Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]); + + // wait for button to be released + while(BUTTON_PRESS()) + WDT_HIT(); + + /* need this delay to prevent catching some weird data */ + SpinDelay(500); + + CopyHIDtoT55x7(high[selected], low[selected], 0, 0); + Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]); + + LEDsoff(); + LED(selected + 1, 0); + // Finished recording + + // If we were previously playing, set playing off + // so next button push begins playing what we recorded + playing = 0; + + cardRead = 0; + + } + + // Change where to record (or begin playing) + else if (button_pressed) + { + // Next option if we were previously playing + if (playing) + selected = (selected + 1) % OPTS; + playing = !playing; + + LEDsoff(); + LED(selected + 1, 0); + + // Begin transmitting + if (playing) + { + LED(LED_GREEN, 0); + DbpString("Playing"); + // wait for button to be released + while(BUTTON_PRESS()) + WDT_HIT(); + Dbprintf("%x %x %x", selected, high[selected], low[selected]); + CmdHIDsimTAG(high[selected], low[selected], 0); + DbpString("Done playing"); + if (BUTTON_HELD(1000) > 0) + { + DbpString("Exiting"); + LEDsoff(); + return; + } + + /* We pressed a button so ignore it here with a delay */ + SpinDelay(300); + + // when done, we're done playing, move to next option + selected = (selected + 1) % OPTS; + playing = !playing; + LEDsoff(); + LED(selected + 1, 0); + } + else + while(BUTTON_PRESS()) + WDT_HIT(); + } + } +} + +#endif +/* +OBJECTIVE +Listen and detect an external reader. Determine the best location +for the antenna. + +INSTRUCTIONS: +Inside the ListenReaderField() function, there is two mode. +By default, when you call the function, you will enter mode 1. +If you press the PM3 button one time, you will enter mode 2. +If you press the PM3 button a second time, you will exit the function. + +DESCRIPTION OF MODE 1: +This mode just listens for an external reader field and lights up green +for HF and/or red for LF. This is the original mode of the detectreader +function. + +DESCRIPTION OF MODE 2: +This mode will visually represent, using the LEDs, the actual strength of the +current compared to the maximum current detected. Basically, once you know +what kind of external reader is present, it will help you spot the best location to place +your antenna. You will probably not get some good results if there is a LF and a HF reader +at the same place! :-) + +LIGHT SCHEME USED: +*/ +static const char LIGHT_SCHEME[] = { + 0x0, /* ---- | No field detected */ + 0x1, /* X--- | 14% of maximum current detected */ + 0x2, /* -X-- | 29% of maximum current detected */ + 0x4, /* --X- | 43% of maximum current detected */ + 0x8, /* ---X | 57% of maximum current detected */ + 0xC, /* --XX | 71% of maximum current detected */ + 0xE, /* -XXX | 86% of maximum current detected */ + 0xF, /* XXXX | 100% of maximum current detected */ +}; +static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]); + +void ListenReaderField(int limit) +{ + int lf_av, lf_av_new, lf_baseline= 0, lf_max; + int hf_av, hf_av_new, hf_baseline= 0, hf_max; + int mode=1, display_val, display_max, i; + +#define LF_ONLY 1 +#define HF_ONLY 2 +#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE + + + // switch off FPGA - we don't want to measure our own signal + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + + LEDsoff(); + + lf_av = lf_max = AvgAdc(ADC_CHAN_LF); + + if(limit != HF_ONLY) { + Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10); + lf_baseline = lf_av; + } + + hf_av = hf_max = AvgAdc(ADC_CHAN_HF); + + if (limit != LF_ONLY) { + Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10); + hf_baseline = hf_av; + } + + for(;;) { + if (BUTTON_PRESS()) { + SpinDelay(500); + switch (mode) { + case 1: + mode=2; + DbpString("Signal Strength Mode"); + break; + case 2: + default: + DbpString("Stopped"); + LEDsoff(); + return; + break; + } + } + WDT_HIT(); + + if (limit != HF_ONLY) { + if(mode == 1) { + if (abs(lf_av - lf_baseline) > REPORT_CHANGE) + LED_D_ON(); + else + LED_D_OFF(); + } + + lf_av_new = AvgAdc(ADC_CHAN_LF); + // see if there's a significant change + if(abs(lf_av - lf_av_new) > REPORT_CHANGE) { + Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10); + lf_av = lf_av_new; + if (lf_av > lf_max) + lf_max = lf_av; + } + } + + if (limit != LF_ONLY) { + if (mode == 1){ + if (abs(hf_av - hf_baseline) > REPORT_CHANGE) + LED_B_ON(); + else + LED_B_OFF(); + } + + hf_av_new = AvgAdc(ADC_CHAN_HF); + // see if there's a significant change + if(abs(hf_av - hf_av_new) > REPORT_CHANGE) { + Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10); + hf_av = hf_av_new; + if (hf_av > hf_max) + hf_max = hf_av; + } + } + + if(mode == 2) { + if (limit == LF_ONLY) { + display_val = lf_av; + display_max = lf_max; + } else if (limit == HF_ONLY) { + display_val = hf_av; + display_max = hf_max; + } else { /* Pick one at random */ + if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) { + display_val = hf_av; + display_max = hf_max; + } else { + display_val = lf_av; + display_max = lf_max; + } + } + for (i=0; i= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) { + if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF(); + if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF(); + if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF(); + if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF(); + break; + } + } + } + } +} + +void UsbPacketReceived(uint8_t *packet, int len) { UsbCommand *c = (UsbCommand *)packet; +// Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]); + switch(c->cmd) { +#ifdef WITH_LF + case CMD_SET_LF_SAMPLING_CONFIG: + setSamplingConfig((sample_config *) c->d.asBytes); + break; case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: - AcquireRawAdcSamples125k(c->ext1); + cmd_send(CMD_ACK,SampleLF(c->arg[0]),0,0,0,0); break; - case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: - ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes); + ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); + break; + case CMD_LF_SNOOP_RAW_ADC_SAMPLES: + cmd_send(CMD_ACK,SnoopLF(),0,0,0,0); + break; + case CMD_HID_DEMOD_FSK: + CmdHIDdemodFSK(c->arg[0], 0, 0, 1); + break; + case CMD_HID_SIM_TAG: + CmdHIDsimTAG(c->arg[0], c->arg[1], 1); + break; + case CMD_FSK_SIM_TAG: + CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_ASK_SIM_TAG: + CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_PSK_SIM_TAG: + CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_HID_CLONE_TAG: + CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + break; + case CMD_IO_DEMOD_FSK: + CmdIOdemodFSK(c->arg[0], 0, 0, 1); + break; + case CMD_IO_CLONE_TAG: + CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]); + break; + case CMD_EM410X_DEMOD: + CmdEM410xdemod(c->arg[0], 0, 0, 1); + break; + case CMD_EM410X_WRITE_TAG: + WriteEM410x(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_READ_TI_TYPE: + ReadTItag(); + break; + case CMD_WRITE_TI_TYPE: + WriteTItag(c->arg[0],c->arg[1],c->arg[2]); + break; + case CMD_SIMULATE_TAG_125K: + LED_A_ON(); + SimulateTagLowFrequency(c->arg[0], c->arg[1], 1); + LED_A_OFF(); + break; + case CMD_LF_SIMULATE_BIDIR: + SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]); break; + case CMD_INDALA_CLONE_TAG: + CopyIndala64toT55x7(c->arg[0], c->arg[1]); + break; + case CMD_INDALA_CLONE_TAG_L: + CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]); + break; + case CMD_T55XX_READ_BLOCK: + T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_T55XX_WRITE_BLOCK: + T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + break; + case CMD_T55XX_READ_TRACE: + T55xxReadTrace(); + break; + case CMD_PCF7931_READ: + ReadPCF7931(); + break; + case CMD_PCF7931_WRITE: + WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]); + break; + case CMD_EM4X_READ_WORD: + EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]); + break; + case CMD_EM4X_WRITE_WORD: + EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]); + break; + case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation + CmdAWIDdemodFSK(c->arg[0], 0, 0, 1); + break; +#endif - case CMD_ACQUIRE_RAW_BITS_TI_TYPE: - AcquireRawBitsTI(); +#ifdef WITH_HITAG + case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type + SnoopHitag(c->arg[0]); + break; + case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content + SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes); break; + case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function + ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes); + break; +#endif +#ifdef WITH_ISO15693 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: AcquireRawAdcSamplesIso15693(); break; - - case CMD_BUFF_CLEAR: - BufferClear(); + case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693: + RecordRawAdcSamplesIso15693(); + break; + + case CMD_ISO_15693_COMMAND: + DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); + break; + + case CMD_ISO_15693_FIND_AFI: + BruteforceIso15693Afi(c->arg[0]); + break; + + case CMD_ISO_15693_DEBUG: + SetDebugIso15693(c->arg[0]); break; case CMD_READER_ISO_15693: - ReaderIso15693(c->ext1); + ReaderIso15693(c->arg[0]); break; - case CMD_SIMTAG_ISO_15693: - SimTagIso15693(c->ext1); + SimTagIso15693(c->arg[0], c->d.asBytes); break; +#endif - case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: - AcquireRawAdcSamplesIso14443(c->ext1); +#ifdef WITH_LEGICRF + case CMD_SIMULATE_TAG_LEGIC_RF: + LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]); break; - case CMD_READ_SRI512_TAG: - ReadSRI512Iso14443(c->ext1); + case CMD_WRITER_LEGIC_RF: + LegicRfWriter(c->arg[1], c->arg[0]); break; - case CMD_READER_ISO_14443a: - ReaderIso14443a(c->ext1); + case CMD_READER_LEGIC_RF: + LegicRfReader(c->arg[0], c->arg[1]); break; +#endif - case CMD_SNOOP_ISO_14443: - SnoopIso14443(); +#ifdef WITH_ISO14443b + case CMD_READ_SRI512_TAG: + ReadSTMemoryIso14443b(0x0F); + break; + case CMD_READ_SRIX4K_TAG: + ReadSTMemoryIso14443b(0x7F); + break; + case CMD_SNOOP_ISO_14443B: + SnoopIso14443b(); break; + case CMD_SIMULATE_TAG_ISO_14443B: + SimulateIso14443bTag(); + break; + case CMD_ISO_14443B_COMMAND: + SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes); + break; +#endif +#ifdef WITH_ISO14443a case CMD_SNOOP_ISO_14443a: - SnoopIso14443a(); + SnoopIso14443a(c->arg[0]); break; - - case CMD_SIMULATE_TAG_HF_LISTEN: - SimulateTagHfListen(); + case CMD_READER_ISO_14443a: + ReaderIso14443a(c); + break; + case CMD_SIMULATE_TAG_ISO_14443a: + SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID + break; + + case CMD_EPA_PACE_COLLECT_NONCE: + EPA_PACE_Collect_Nonce(c); + break; + case CMD_EPA_PACE_REPLAY: + EPA_PACE_Replay(c); + break; + + case CMD_READER_MIFARE: + ReaderMifare(c->arg[0]); + break; + case CMD_MIFARE_READBL: + MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFAREU_READBL: + MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes); + break; + case CMD_MIFAREUC_AUTH: + MifareUC_Auth(c->arg[0],c->d.asBytes); + break; + case CMD_MIFAREU_READCARD: + MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFAREUC_SETPWD: + MifareUSetPwd(c->arg[0], c->d.asBytes); + break; + case CMD_MIFARE_READSC: + MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_WRITEBL: + MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + //case CMD_MIFAREU_WRITEBL_COMPAT: + //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes); + //break; + case CMD_MIFAREU_WRITEBL: + MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes); + break; + case CMD_MIFARE_NESTED: + MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CHKKEYS: + MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); break; + case CMD_SIMULATE_MIFARE_CARD: + Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + + // emulator + case CMD_MIFARE_SET_DBGMODE: + MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMCLR: + MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMSET: + MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_MEMGET: + MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_EML_CARDLOAD: + MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + + // Work with "magic Chinese" card + case CMD_MIFARE_CSETBLOCK: + MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CGETBLOCK: + MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_MIFARE_CIDENT: + MifareCIdent(); + break; + + // mifare sniffer + case CMD_MIFARE_SNIFFER: + SniffMifare(c->arg[0]); + break; + +#endif - case CMD_SIMULATE_TAG_ISO_14443: - SimulateIso14443Tag(); +#ifdef WITH_ICLASS + // Makes use of ISO14443a FPGA Firmware + case CMD_SNOOP_ICLASS: + SnoopIClass(); break; + case CMD_SIMULATE_TAG_ICLASS: + SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); + break; + case CMD_READER_ICLASS: + ReaderIClass(c->arg[0]); + break; + case CMD_READER_ICLASS_REPLAY: + ReaderIClass_Replay(c->arg[0], c->d.asBytes); + break; + case CMD_ICLASS_EML_MEMSET: + emlSet(c->d.asBytes,c->arg[0], c->arg[1]); + break; + case CMD_ICLASS_WRITEBLOCK: + iClass_WriteBlock(c->arg[0], c->d.asBytes); + break; + case CMD_ICLASS_READCHECK: // auth step 1 + iClass_ReadCheck(c->arg[0], c->arg[1]); + break; + case CMD_ICLASS_READBLOCK: + iClass_ReadBlk(c->arg[0]); + break; + case CMD_ICLASS_AUTHENTICATION: //check + iClass_Authentication(c->d.asBytes); + break; + case CMD_ICLASS_DUMP: + iClass_Dump(c->arg[0], c->arg[1]); + break; + case CMD_ICLASS_CLONE: + iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes); + break; +#endif - case CMD_SIMULATE_TAG_ISO_14443a: - SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID + case CMD_BUFF_CLEAR: + BigBuf_Clear(); break; case CMD_MEASURE_ANTENNA_TUNING: MeasureAntennaTuning(); break; - case CMD_LISTEN_READER_FIELD: - ListenReaderField(c->ext1); - break; - - case CMD_HID_DEMOD_FSK: - CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag + case CMD_MEASURE_ANTENNA_TUNING_HF: + MeasureAntennaTuningHf(); break; - case CMD_HID_SIM_TAG: - CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID + case CMD_LISTEN_READER_FIELD: + ListenReaderField(c->arg[0]); break; case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control @@ -845,413 +1225,159 @@ void UsbPacketReceived(BYTE *packet, int len) break; case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: - case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { - UsbCommand n; - if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { - n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; - } else { - n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; + + LED_B_ON(); + uint8_t *BigBuf = BigBuf_get_addr(); + for(size_t i=0; iarg[1]; i += USB_CMD_DATA_SIZE) { + size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE); + cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len); } - n.ext1 = c->ext1; - memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); - UsbSendPacket((BYTE *)&n, sizeof(n)); + // Trigger a finish downloading signal with an ACK frame + cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config)); + LED_B_OFF(); break; - } + case CMD_DOWNLOADED_SIM_SAMPLES_125K: { - BYTE *b = (BYTE *)BigBuf; - memcpy(b+c->ext1, c->d.asBytes, 48); + uint8_t *b = BigBuf_get_addr(); + memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE); + cmd_send(CMD_ACK,0,0,0,0,0); break; - } - case CMD_SIMULATE_TAG_125K: - LED_A_ON(); - SimulateTagLowFrequency(c->ext1, 1); - LED_A_OFF(); - break; -#ifdef WITH_LCD - case CMD_LCD_RESET: - LCDReset(); - break; -#endif + } case CMD_READ_MEM: - ReadMem(c->ext1); + ReadMem(c->arg[0]); break; + case CMD_SET_LF_DIVISOR: - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]); + break; + + case CMD_SET_ADC_MUX: + switch(c->arg[0]) { + case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break; + case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break; + case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break; + case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break; + } + break; + + case CMD_VERSION: + SendVersion(); + break; + case CMD_STATUS: + SendStatus(); + break; + case CMD_PING: + cmd_send(CMD_ACK,0,0,0,0,0); break; #ifdef WITH_LCD + case CMD_LCD_RESET: + LCDReset(); + break; case CMD_LCD: - LCDSend(c->ext1); + LCDSend(c->arg[0]); break; #endif - case CMD_SETUP_WRITE: + case CMD_SETUP_WRITE: case CMD_FINISH_WRITE: case CMD_HARDWARE_RESET: - USB_D_PLUS_PULLUP_OFF(); + usb_disable(); SpinDelay(1000); SpinDelay(1000); - RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; + AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; for(;;) { // We're going to reset, and the bootrom will take control. } break; + case CMD_START_FLASH: + if(common_area.flags.bootrom_present) { + common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE; + } + usb_disable(); + AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; + for(;;); + break; + case CMD_DEVICE_INFO: { + uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS; + if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT; + cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0); + break; + } default: - DbpString("unknown command"); + Dbprintf("%s: 0x%04x","unknown command:",c->cmd); break; } } -void ReadMem(int addr) +void __attribute__((noreturn)) AppMain(void) { - const DWORD *data = ((DWORD *)addr); - int i; - - DbpString("Reading memory at address"); - DbpIntegers(0, 0, addr); - for (i = 0; i < 8; i+= 2) - DbpIntegers(0, data[i], data[i+1]); -} - -void AppMain(void) -{ - memset(BigBuf,0,sizeof(BigBuf)); SpinDelay(100); + clear_trace(); + if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) { + /* Initialize common area */ + memset(&common_area, 0, sizeof(common_area)); + common_area.magic = COMMON_AREA_MAGIC; + common_area.version = 1; + } + common_area.flags.osimage_present = 1; LED_D_OFF(); LED_C_OFF(); LED_B_OFF(); LED_A_OFF(); - UsbStart(); + // Init USB device + usb_enable(); // The FPGA gets its clock from us from PCK0 output, so set that up. - PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); - PIO_DISABLE = (1 << GPIO_PCK0); - PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; + AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0; + AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0; + AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0; // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz - PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | - PMC_CLK_PRESCALE_DIV_4; - PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); + AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | + AT91C_PMC_PRES_CLK_4; + AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0; // Reset SPI - SPI_CONTROL = SPI_CONTROL_RESET; + AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST; // Reset SSC - SSC_CONTROL = SSC_CONTROL_RESET; + AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; // Load the FPGA image, which we have stored in our flash. - FpgaDownloadAndGo(); + // (the HF version by default) + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + StartTickCount(); + #ifdef WITH_LCD - LCDInit(); - - // test text on different colored backgrounds - LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); - LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); - LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); - LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); - LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); - LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); - LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); - LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); - - // color bands - LCDFill(0, 1+8* 8, 132, 8, BLACK); - LCDFill(0, 1+8* 9, 132, 8, WHITE); - LCDFill(0, 1+8*10, 132, 8, RED); - LCDFill(0, 1+8*11, 132, 8, GREEN); - LCDFill(0, 1+8*12, 132, 8, BLUE); - LCDFill(0, 1+8*13, 132, 8, YELLOW); - LCDFill(0, 1+8*14, 132, 8, CYAN); - LCDFill(0, 1+8*15, 132, 8, MAGENTA); - #endif + byte_t rx[sizeof(UsbCommand)]; + size_t rx_len; + for(;;) { - usbattached = UsbPoll(FALSE); + if (usb_poll()) { + rx_len = usb_read(rx,sizeof(UsbCommand)); + if (rx_len) { + UsbPacketReceived(rx,rx_len); + } + } WDT_HIT(); +#ifdef WITH_LF +#ifndef WITH_ISO14443a_StandAlone if (BUTTON_HELD(1000) > 0) SamyRun(); +#endif +#endif +#ifdef WITH_ISO14443a +#ifdef WITH_ISO14443a_StandAlone + if (BUTTON_HELD(1000) > 0) + StandAloneMode14a(); +#endif +#endif } } - - -// samy's sniff and repeat routine -void SamyRun() -{ - DbpString("Stand-alone mode! No PC necessary."); - - // 3 possible options? no just 2 for now -#define OPTS 2 - - int high[OPTS], low[OPTS]; - - // Oooh pretty -- notify user we're in elite samy mode now - LED(LED_RED, 200); - LED(LED_ORANGE, 200); - LED(LED_GREEN, 200); - LED(LED_ORANGE, 200); - LED(LED_RED, 200); - LED(LED_ORANGE, 200); - LED(LED_GREEN, 200); - LED(LED_ORANGE, 200); - LED(LED_RED, 200); - - int selected = 0; - int playing = 0; - - // Turn on selected LED - LED(selected + 1, 0); - - for (;;) - { - usbattached = UsbPoll(FALSE); - WDT_HIT(); - - // Was our button held down or pressed? - int button_pressed = BUTTON_HELD(1000); - SpinDelay(300); - - // Button was held for a second, begin recording - if (button_pressed > 0) - { - LEDsoff(); - LED(selected + 1, 0); - LED(LED_RED2, 0); - - // record - DbpString("Starting recording"); - - // wait for button to be released - while(BUTTON_PRESS()) - WDT_HIT(); - - /* need this delay to prevent catching some weird data */ - SpinDelay(500); - - CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); - DbpString("Recorded"); - DbpIntegers(selected, high[selected], low[selected]); - - LEDsoff(); - LED(selected + 1, 0); - // Finished recording - - // If we were previously playing, set playing off - // so next button push begins playing what we recorded - playing = 0; - } - - // Change where to record (or begin playing) - else if (button_pressed) - { - // Next option if we were previously playing - if (playing) - selected = (selected + 1) % OPTS; - playing = !playing; - - LEDsoff(); - LED(selected + 1, 0); - - // Begin transmitting - if (playing) - { - LED(LED_GREEN, 0); - DbpString("Playing"); - // wait for button to be released - while(BUTTON_PRESS()) - WDT_HIT(); - DbpIntegers(selected, high[selected], low[selected]); - CmdHIDsimTAG(high[selected], low[selected], 0); - DbpString("Done playing"); - if (BUTTON_HELD(1000) > 0) - { - DbpString("Exiting"); - LEDsoff(); - return; - } - - /* We pressed a button so ignore it here with a delay */ - SpinDelay(300); - - // when done, we're done playing, move to next option - selected = (selected + 1) % OPTS; - playing = !playing; - LEDsoff(); - LED(selected + 1, 0); - } - else - while(BUTTON_PRESS()) - WDT_HIT(); - } - } -} - - -/* -OBJECTIVE -Listen and detect an external reader. Determine the best location -for the antenna. - -INSTRUCTIONS: -Inside the ListenReaderField() function, there is two mode. -By default, when you call the function, you will enter mode 1. -If you press the PM3 button one time, you will enter mode 2. -If you press the PM3 button a second time, you will exit the function. - -DESCRIPTION OF MODE 1: -This mode just listens for an external reader field and lights up green -for HF and/or red for LF. This is the original mode of the detectreader -function. - -DESCRIPTION OF MODE 2: -This mode will visually represent, using the LEDs, the actual strength of the -current compared to the maximum current detected. Basically, once you know -what kind of external reader is present, it will help you spot the best location to place -your antenna. You will probably not get some good results if there is a LF and a HF reader -at the same place! :-) - -LIGHT SCHEME USED: - -Light scheme | Descriptiong ----------------------------------------------------- - ---- | No field detected - X--- | 14% of maximum current detected - -X-- | 29% of maximum current detected - --X- | 43% of maximum current detected - ---X | 57% of maximum current detected - --XX | 71% of maximum current detected - -XXX | 86% of maximum current detected - XXXX | 100% of maximum current detected - -TODO: -Add the LF part for MODE 2 - -*/ -void ListenReaderField(int limit) -{ - int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0; - int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max; - int mode=1; - -#define LF_ONLY 1 -#define HF_ONLY 2 - - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - LED_D_OFF(); - - lf_av= ReadAdc(ADC_CHAN_LF); - - if(limit != HF_ONLY) - { - DbpString("LF 125/134 Baseline:"); - DbpIntegers(lf_av,0,0); - lf_baseline= lf_av; - } - - hf_av=hf_max=ReadAdc(ADC_CHAN_HF); - - if (limit != LF_ONLY) - { - DbpString("HF 13.56 Baseline:"); - DbpIntegers(hf_av,0,0); - hf_baseline= hf_av; - } - - for(;;) - { - if (BUTTON_PRESS()) { - SpinDelay(500); - switch (mode) { - case 1: - mode=2; - DbpString("Signal Strength Mode"); - break; - case 2: - default: - DbpString("Stopped"); - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - LED_D_OFF(); - return; - break; - } - } - WDT_HIT(); - - if (limit != HF_ONLY) - { - if (abs(lf_av - lf_baseline) > 10) - LED_D_ON(); - else - LED_D_OFF(); - ++lf_count; - lf_av_new= ReadAdc(ADC_CHAN_LF); - // see if there's a significant change - if(abs(lf_av - lf_av_new) > 10) - { - DbpString("LF 125/134 Field Change:"); - DbpIntegers(lf_av,lf_av_new,lf_count); - lf_av= lf_av_new; - lf_count= 0; - } - } - - if (limit != LF_ONLY) - { - if (abs(hf_av - hf_baseline) > 10) { - if (mode == 1) - LED_B_ON(); - if (mode == 2) { - if ( hf_av>(hf_max/7)*6) { - LED_A_ON(); LED_B_ON(); LED_C_ON(); LED_D_ON(); - } - if ( (hf_av>(hf_max/7)*5) && (hf_av<=(hf_max/7)*6) ) { - LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_ON(); - } - if ( (hf_av>(hf_max/7)*4) && (hf_av<=(hf_max/7)*5) ) { - LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_ON(); - } - if ( (hf_av>(hf_max/7)*3) && (hf_av<=(hf_max/7)*4) ) { - LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_ON(); - } - if ( (hf_av>(hf_max/7)*2) && (hf_av<=(hf_max/7)*3) ) { - LED_A_OFF(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); - } - if ( (hf_av>(hf_max/7)*1) && (hf_av<=(hf_max/7)*2) ) { - LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); - } - if ( (hf_av>(hf_max/7)*0) && (hf_av<=(hf_max/7)*1) ) { - LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF(); - } - } - } else { - if (mode == 1) { - LED_B_OFF(); - } - if (mode == 2) { - LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); - } - } - - ++hf_count; - hf_av_new= ReadAdc(ADC_CHAN_HF); - // see if there's a significant change - if(abs(hf_av - hf_av_new) > 10) - { - DbpString("HF 13.56 Field Change:"); - DbpIntegers(hf_av,hf_av_new,hf_count); - hf_av= hf_av_new; - if (hf_av > hf_max) - hf_max = hf_av; - hf_count= 0; - } - } - } -} -