X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/293de1bad7bbea39eb285b2297760d51cccf07b3..35aa230ee467d8d603aa49415f43239fe014d9ac:/client/cmdlfem4x.c diff --git a/client/cmdlfem4x.c b/client/cmdlfem4x.c index f6671bcd..12300955 100644 --- a/client/cmdlfem4x.c +++ b/client/cmdlfem4x.c @@ -14,23 +14,123 @@ #include "proxmark3.h" #include "ui.h" #include "util.h" +#include "data.h" #include "graph.h" #include "cmdparser.h" #include "cmddata.h" #include "cmdlf.h" -#include "cmdlfem4x.h" -char *global_em410xId; +#include "cmdmain.h" +#include "lfdemod.h" + +uint64_t g_em410xId=0; static int CmdHelp(const char *Cmd); int CmdEMdemodASK(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); - int findone = (cmdp == '1') ? 1 : 0; - UsbCommand c={CMD_EM410X_DEMOD}; - c.arg[0]=findone; - SendCommand(&c); - return 0; + int findone = (cmdp == '1') ? 1 : 0; + UsbCommand c={CMD_EM410X_DEMOD}; + c.arg[0]=findone; + SendCommand(&c); + return 0; +} + +//by marshmellow +//print 64 bit EM410x ID in multiple formats +void printEM410x(uint32_t hi, uint64_t id) +{ + if (id || hi){ + uint64_t iii=1; + uint64_t id2lo=0; + uint32_t ii=0; + uint32_t i=0; + for (ii=5; ii>0;ii--){ + for (i=0;i<8;i++){ + id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8))); + } + } + if (hi){ + //output 88 bit em id + PrintAndLog("\nEM TAG ID : %06X%016" PRIX64, hi, id); + } else{ + //output 40 bit em id + PrintAndLog("\nEM TAG ID : %010" PRIX64, id); + PrintAndLog("\nPossible de-scramble patterns"); + PrintAndLog("Unique TAG ID : %010" PRIX64, id2lo); + PrintAndLog("HoneyWell IdentKey {"); + PrintAndLog("DEZ 8 : %08" PRIu64,id & 0xFFFFFF); + PrintAndLog("DEZ 10 : %010" PRIu64,id & 0xFFFFFFFF); + PrintAndLog("DEZ 5.5 : %05lld.%05" PRIu64,(id>>16LL) & 0xFFFF,(id & 0xFFFF)); + PrintAndLog("DEZ 3.5A : %03lld.%05" PRIu64,(id>>32ll),(id & 0xFFFF)); + PrintAndLog("DEZ 3.5B : %03lld.%05" PRIu64,(id & 0xFF000000) >> 24,(id & 0xFFFF)); + PrintAndLog("DEZ 3.5C : %03lld.%05" PRIu64,(id & 0xFF0000) >> 16,(id & 0xFFFF)); + PrintAndLog("DEZ 14/IK2 : %014" PRIu64,id); + PrintAndLog("DEZ 15/IK3 : %015" PRIu64,id2lo); + PrintAndLog("DEZ 20/ZK : %02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64 "%02" PRIu64, + (id2lo & 0xf000000000) >> 36, + (id2lo & 0x0f00000000) >> 32, + (id2lo & 0x00f0000000) >> 28, + (id2lo & 0x000f000000) >> 24, + (id2lo & 0x0000f00000) >> 20, + (id2lo & 0x00000f0000) >> 16, + (id2lo & 0x000000f000) >> 12, + (id2lo & 0x0000000f00) >> 8, + (id2lo & 0x00000000f0) >> 4, + (id2lo & 0x000000000f) + ); + uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00; + PrintAndLog("}\nOther : %05" PRIu64 "_%03" PRIu64 "_%08" PRIu64 "",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF)); + PrintAndLog("Pattern Paxton : %" PRIu64 " [0x%" PRIX64 "]", paxton, paxton); + + uint32_t p1id = (id & 0xFFFFFF); + uint8_t arr[32] = {0x00}; + int i =0; + int j = 23; + for (; i < 24; ++i, --j ){ + arr[i] = (p1id >> i) & 1; + } + + uint32_t p1 = 0; + + p1 |= arr[23] << 21; + p1 |= arr[22] << 23; + p1 |= arr[21] << 20; + p1 |= arr[20] << 22; + + p1 |= arr[19] << 18; + p1 |= arr[18] << 16; + p1 |= arr[17] << 19; + p1 |= arr[16] << 17; + + p1 |= arr[15] << 13; + p1 |= arr[14] << 15; + p1 |= arr[13] << 12; + p1 |= arr[12] << 14; + + p1 |= arr[11] << 6; + p1 |= arr[10] << 2; + p1 |= arr[9] << 7; + p1 |= arr[8] << 1; + + p1 |= arr[7] << 0; + p1 |= arr[6] << 8; + p1 |= arr[5] << 11; + p1 |= arr[4] << 3; + + p1 |= arr[3] << 10; + p1 |= arr[2] << 4; + p1 |= arr[1] << 5; + p1 |= arr[0] << 9; + PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1); + + uint16_t sebury1 = id & 0xFFFF; + uint8_t sebury2 = (id >> 16) & 0x7F; + uint32_t sebury3 = id & 0x7FFFFF; + PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3); + } + } + return; } /* Read the ID of an EM410x tag. @@ -41,165 +141,77 @@ int CmdEMdemodASK(const char *Cmd) * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ -int CmdEM410xRead(const char *Cmd) +int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo ) { - int i, j, clock, header, rows, bit, hithigh, hitlow, first, bit2idx, high, low; - int parity[4]; - char id[11] = {0x00}; - char id2[11] = {0x00}; - int retested = 0; - uint8_t BitStream[MAX_GRAPH_TRACE_LEN]; - high = low = 0; - - /* Detect high and lows and clock */ - for (i = 0; i < GraphTraceLen; i++) - { - if (GraphBuffer[i] > high) - high = GraphBuffer[i]; - else if (GraphBuffer[i] < low) - low = GraphBuffer[i]; - } - - /* get clock */ - clock = GetAskClock(Cmd, false, false); - - /* parity for our 4 columns */ - parity[0] = parity[1] = parity[2] = parity[3] = 0; - header = rows = 0; - - // manchester demodulate - bit = bit2idx = 0; - for (i = 0; i < (int)(GraphTraceLen / clock); i++) - { - hithigh = 0; - hitlow = 0; - first = 1; - - /* Find out if we hit both high and low peaks */ - for (j = 0; j < clock; j++) - { - if (GraphBuffer[(i * clock) + j] >= high) - hithigh = 1; - else if (GraphBuffer[(i * clock) + j] <= low) - hitlow = 1; - - /* it doesn't count if it's the first part of our read - because it's really just trailing from the last sequence */ - if (first && (hithigh || hitlow)) - hithigh = hitlow = 0; - else - first = 0; - - if (hithigh && hitlow) - break; - } - - /* If we didn't hit both high and low peaks, we had a bit transition */ - if (!hithigh || !hitlow) - bit ^= 1; - - BitStream[bit2idx++] = bit; - } - -retest: - /* We go till 5 before the graph ends because we'll get that far below */ - for (i = 1; i < bit2idx - 5; i++) - { - /* Step 2: We have our header but need our tag ID */ - if (header == 9 && rows < 10) - { - /* Confirm parity is correct */ - if ((BitStream[i] ^ BitStream[i+1] ^ BitStream[i+2] ^ BitStream[i+3]) == BitStream[i+4]) - { - /* Read another byte! */ - sprintf(id+rows, "%x", (8 * BitStream[i]) + (4 * BitStream[i+1]) + (2 * BitStream[i+2]) + (1 * BitStream[i+3])); - sprintf(id2+rows, "%x", (8 * BitStream[i+3]) + (4 * BitStream[i+2]) + (2 * BitStream[i+1]) + (1 * BitStream[i])); - rows++; - - /* Keep parity info */ - parity[0] ^= BitStream[i]; - parity[1] ^= BitStream[i+1]; - parity[2] ^= BitStream[i+2]; - parity[3] ^= BitStream[i+3]; - - /* Move 4 bits ahead */ - i += 4; - } - - /* Damn, something wrong! reset */ - else - { - PrintAndLog("Thought we had a valid tag but failed at word %d (i=%d)", rows + 1, i); - - /* Start back rows * 5 + 9 header bits, -1 to not start at same place */ - i -= 9 + (5 * rows) - 5; - - rows = header = 0; - } - } - - /* Step 3: Got our 40 bits! confirm column parity */ - else if (rows == 10) - { - /* We need to make sure our 4 bits of parity are correct and we have a stop bit */ - if (BitStream[i] == parity[0] && BitStream[i+1] == parity[1] && - BitStream[i+2] == parity[2] && BitStream[i+3] == parity[3] && - BitStream[i+4] == 0) - { - /* Sweet! */ - PrintAndLog("EM410x Tag ID: %s", id); - PrintAndLog("Unique Tag ID: %s", id2); - - global_em410xId = id; - - /* Stop any loops */ - return 1; - } - - /* Crap! Incorrect parity or no stop bit, start all over */ - else - { - rows = header = 0; - - /* Go back 59 bits (9 header bits + 10 rows at 4+1 parity) */ - i -= 59; - } - } - - /* Step 1: get our header */ - else if (header < 9) - { - /* Need 9 consecutive 1's */ - if (BitStream[i] == 1) - header++; + size_t idx = 0; + size_t BitLen = DemodBufferLen; + uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; + memcpy(BitStream, DemodBuffer, BitLen); + if (Em410xDecode(BitStream, &BitLen, &idx, hi, lo)){ + //set GraphBuffer for clone or sim command + setDemodBuf(BitStream, BitLen, idx); + if (g_debugMode){ + PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen); + printDemodBuff(); + } + if (verbose){ + PrintAndLog("EM410x pattern found: "); + printEM410x(*hi, *lo); + g_em410xId = *lo; + } + return 1; + } + return 0; +} - /* We don't have a header, not enough consecutive 1 bits */ - else - header = 0; - } - } +//askdemod then call Em410xdecode +int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) +{ + bool st = true; + if (!ASKDemod_ext(Cmd, false, false, 1, &st)) return 0; + return AskEm410xDecode(verbose, hi, lo); +} - /* if we've already retested after flipping bits, return */ - if (retested++){ - PrintAndLog("Failed to decode"); - return 0; +//by marshmellow +//takes 3 arguments - clock, invert and maxErr as integers +//attempts to demodulate ask while decoding manchester +//prints binary found and saves in graphbuffer for further commands +int CmdAskEM410xDemod(const char *Cmd) +{ + char cmdp = param_getchar(Cmd, 0); + if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') { + PrintAndLog("Usage: lf em 410xdemod [clock] <0|1> [maxError]"); + PrintAndLog(" [set clock as integer] optional, if not set, autodetect."); + PrintAndLog(" , 1 for invert output"); + PrintAndLog(" [set maximum allowed errors], default = 100."); + PrintAndLog(""); + PrintAndLog(" sample: lf em 410xdemod = demod an EM410x Tag ID from GraphBuffer"); + PrintAndLog(" : lf em 410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32"); + PrintAndLog(" : lf em 410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data"); + PrintAndLog(" : lf em 410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data"); + PrintAndLog(" : lf em 410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors"); + return 0; } + uint64_t lo = 0; + uint32_t hi = 0; + return AskEm410xDemod(Cmd, &hi, &lo, true); +} - /* if this didn't work, try flipping bits */ - for (i = 0; i < bit2idx; i++) - BitStream[i] ^= 1; - - goto retest; +int usage_lf_em410x_sim(void) { + PrintAndLog("Simulating EM410x tag"); + PrintAndLog(""); + PrintAndLog("Usage: lf em 410xsim [h] "); + PrintAndLog("Options:"); + PrintAndLog(" h - this help"); + PrintAndLog(" uid - uid (10 HEX symbols)"); + PrintAndLog(" clock - clock (32|64) (optional)"); + PrintAndLog("samples:"); + PrintAndLog(" lf em 410xsim 0F0368568B"); + PrintAndLog(" lf em 410xsim 0F0368568B 32"); + return 0; } -/* emulate an EM410X tag - * Format: - * 1111 1111 1 <-- standard non-repeatable header - * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID - * .... - * CCCC <-- each bit here is parity for the 10 bits above in corresponding column - * 0 <-- stop bit, end of tag - */ +// emulate an EM410X tag int CmdEM410xSim(const char *Cmd) { int i, n, j, binary[4], parity[4]; @@ -207,67 +219,63 @@ int CmdEM410xSim(const char *Cmd) char cmdp = param_getchar(Cmd, 0); uint8_t uid[5] = {0x00}; - if (cmdp == 'h' || cmdp == 'H') { - PrintAndLog("Usage: lf em4x 410xsim "); - PrintAndLog(""); - PrintAndLog(" sample: lf em4x 410xsim 0F0368568B"); - return 0; - } + if (cmdp == 'h' || cmdp == 'H') return usage_lf_em410x_sim(); + /* clock is 64 in EM410x tags */ + uint8_t clock = 64; if (param_gethex(Cmd, 0, uid, 10)) { PrintAndLog("UID must include 10 HEX symbols"); return 0; } - - PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X", uid[0],uid[1],uid[2],uid[3],uid[4]); + param_getdec(Cmd,1, &clock); + + PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X clock: %d", uid[0],uid[1],uid[2],uid[3],uid[4],clock); PrintAndLog("Press pm3-button to about simulation"); - /* clock is 64 in EM410x tags */ - int clock = 64; - - /* clear our graph */ - ClearGraph(0); - - /* write 9 start bits */ - for (i = 0; i < 9; i++) - AppendGraph(0, clock, 1); - - /* for each hex char */ - parity[0] = parity[1] = parity[2] = parity[3] = 0; - for (i = 0; i < 10; i++) - { - /* read each hex char */ - sscanf(&Cmd[i], "%1x", &n); - for (j = 3; j >= 0; j--, n/= 2) - binary[j] = n % 2; - - /* append each bit */ - AppendGraph(0, clock, binary[0]); - AppendGraph(0, clock, binary[1]); - AppendGraph(0, clock, binary[2]); - AppendGraph(0, clock, binary[3]); - - /* append parity bit */ - AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); - - /* keep track of column parity */ - parity[0] ^= binary[0]; - parity[1] ^= binary[1]; - parity[2] ^= binary[2]; - parity[3] ^= binary[3]; - } - - /* parity columns */ - AppendGraph(0, clock, parity[0]); - AppendGraph(0, clock, parity[1]); - AppendGraph(0, clock, parity[2]); - AppendGraph(0, clock, parity[3]); - - /* stop bit */ - AppendGraph(1, clock, 0); + + /* clear our graph */ + ClearGraph(0); + + /* write 9 start bits */ + for (i = 0; i < 9; i++) + AppendGraph(0, clock, 1); + + /* for each hex char */ + parity[0] = parity[1] = parity[2] = parity[3] = 0; + for (i = 0; i < 10; i++) + { + /* read each hex char */ + sscanf(&Cmd[i], "%1x", &n); + for (j = 3; j >= 0; j--, n/= 2) + binary[j] = n % 2; + + /* append each bit */ + AppendGraph(0, clock, binary[0]); + AppendGraph(0, clock, binary[1]); + AppendGraph(0, clock, binary[2]); + AppendGraph(0, clock, binary[3]); + + /* append parity bit */ + AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); + + /* keep track of column parity */ + parity[0] ^= binary[0]; + parity[1] ^= binary[1]; + parity[2] ^= binary[2]; + parity[3] ^= binary[3]; + } + + /* parity columns */ + AppendGraph(0, clock, parity[0]); + AppendGraph(0, clock, parity[1]); + AppendGraph(0, clock, parity[2]); + AppendGraph(0, clock, parity[3]); + + /* stop bit */ + AppendGraph(1, clock, 0); - CmdLFSim("0"); //240 start_gap. - return 0; + CmdLFSim("0"); //240 start_gap. + return 0; } /* Function is equivalent of lf read + data samples + em410xread @@ -278,185 +286,40 @@ int CmdEM410xSim(const char *Cmd) * rate gets lower, then grow the number of samples * Changed by martin, 4000 x 4 = 16000, * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 - + * + * EDIT -- capture enough to get 2 complete preambles at the slowest data rate known to be used (rf/64) (64*64*2+9 = 8201) marshmellow */ int CmdEM410xWatch(const char *Cmd) { - char cmdp = param_getchar(Cmd, 0); - int read_h = (cmdp == 'h'); do { if (ukbhit()) { printf("\naborted via keyboard!\n"); break; } - CmdLFRead(read_h ? "h" : ""); - CmdSamples("6000"); - } while ( - !CmdEM410xRead("") - ); + CmdLFRead("s"); + getSamples("8201",true); + } while (!CmdAskEM410xDemod("")); + return 0; } +//currently only supports manchester modulations int CmdEM410xWatchnSpoof(const char *Cmd) { CmdEM410xWatch(Cmd); - PrintAndLog("# Replaying : %s",global_em410xId); - CmdEM410xSim(global_em410xId); - return 0; -} - -/* Read the transmitted data of an EM4x50 tag - * Format: - * - * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity - * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity - * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity - * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity - * CCCCCCCC <- column parity bits - * 0 <- stop bit - * LW <- Listen Window - * - * This pattern repeats for every block of data being transmitted. - * Transmission starts with two Listen Windows (LW - a modulated - * pattern of 320 cycles each (32/32/128/64/64)). - * - * Note that this data may or may not be the UID. It is whatever data - * is stored in the blocks defined in the control word First and Last - * Word Read values. UID is stored in block 32. - */ -int CmdEM4x50Read(const char *Cmd) -{ - int i, j, startblock, skip, block, start, end, low, high; - bool complete= false; - int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; - char tmp[6]; - - high= low= 0; - memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); - - /* first get high and low values */ - for (i = 0; i < GraphTraceLen; i++) - { - if (GraphBuffer[i] > high) - high = GraphBuffer[i]; - else if (GraphBuffer[i] < low) - low = GraphBuffer[i]; - } - - /* populate a buffer with pulse lengths */ - i= 0; - j= 0; - while (i < GraphTraceLen) - { - // measure from low to low - while ((GraphBuffer[i] > low) && (i low) && (i=(MAX_GRAPH_TRACE_LEN/64)) { - break; - } - tmpbuff[j++]= i - start; - } - - /* look for data start - should be 2 pairs of LW (pulses of 192,128) */ - start= -1; - skip= 0; - for (i= 0; i < j - 4 ; ++i) - { - skip += tmpbuff[i]; - if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) - if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) - if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194) - if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130) - { - start= i + 3; - break; - } - } - startblock= i + 3; - - /* skip over the remainder of the LW */ - skip += tmpbuff[i+1]+tmpbuff[i+2]; - while (skip < MAX_GRAPH_TRACE_LEN && GraphBuffer[skip] > low) - ++skip; - skip += 8; - - /* now do it again to find the end */ - end= start; - for (i += 3; i < j - 4 ; ++i) - { - end += tmpbuff[i]; - if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) - if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) - if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194) - if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130) - { - complete= true; - break; - } - } - - if (start >= 0) - PrintAndLog("Found data at sample: %i",skip); - else - { - PrintAndLog("No data found!"); - PrintAndLog("Try again with more samples."); - return 0; - } - - if (!complete) - { - PrintAndLog("*** Warning!"); - PrintAndLog("Partial data - no end found!"); - PrintAndLog("Try again with more samples."); - } - - /* get rid of leading crap */ - sprintf(tmp,"%i",skip); - CmdLtrim(tmp); - - /* now work through remaining buffer printing out data blocks */ - block= 0; - i= startblock; - while (block < 6) - { - PrintAndLog("Block %i:", block); - // mandemod routine needs to be split so we can call it for data - // just print for now for debugging - CmdManchesterDemod("i 64"); - skip= 0; - /* look for LW before start of next block */ - for ( ; i < j - 4 ; ++i) - { - skip += tmpbuff[i]; - if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) - if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) - break; - } - while (GraphBuffer[skip] > low) - ++skip; - skip += 8; - sprintf(tmp,"%i",skip); - CmdLtrim(tmp); - start += skip; - block++; - } - return 0; + PrintAndLog("# Replaying captured ID: %010"PRIx64, g_em410xId); + CmdLFaskSim(""); + return 0; } int CmdEM410xWrite(const char *Cmd) { - uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value - int card = 0xFF; // invalid card value + uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value + int card = 0xFF; // invalid card value unsigned int clock = 0; // invalid clock value - sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock); + sscanf(Cmd, "%" SCNx64 " %d %d", &id, &card, &clock); // Check ID if (id == 0xFFFFFFFFFFFFFFFF) { @@ -479,21 +342,13 @@ int CmdEM410xWrite(const char *Cmd) } // Check Clock - if (card == 1) - { - // Default: 64 - if (clock == 0) - clock = 64; - - // Allowed clock rates: 16, 32 and 64 - if ((clock != 16) && (clock != 32) && (clock != 64)) { - PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32 and 64.\n", clock); - return 0; - } - } - else if (clock != 0) - { - PrintAndLog("Error! Clock rate is only supported on T55x7 tags.\n"); + // Default: 64 + if (clock == 0) + clock = 64; + + // Allowed clock rates: 16, 32, 40 and 64 + if ((clock != 16) && (clock != 32) && (clock != 64) && (clock != 40)) { + PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32, 40 and 64.\n", clock); return 0; } @@ -503,142 +358,801 @@ int CmdEM410xWrite(const char *Cmd) // provide for backwards-compatibility for older firmware, and to avoid // having to add another argument to CMD_EM410X_WRITE_TAG, we just store // the clock rate in bits 8-15 of the card value - card = (card & 0xFF) | (((uint64_t)clock << 8) & 0xFF00); - } - else if (card == 0) + card = (card & 0xFF) | ((clock << 8) & 0xFF00); + } else if (card == 0) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); - else { + card = (card & 0xFF) | ((clock << 8) & 0xFF00); + } else { PrintAndLog("Error! Bad card type selected.\n"); return 0; } - UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; - SendCommand(&c); + UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; + SendCommand(&c); - return 0; + return 0; } -int CmdReadWord(const char *Cmd) +//**************** Start of EM4x50 Code ************************ +bool EM_EndParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { - int Word = -1; //default to invalid word - UsbCommand c; - - sscanf(Cmd, "%d", &Word); - - if ( (Word > 15) | (Word < 0) ) { - PrintAndLog("Word must be between 0 and 15"); - return 1; - } - - PrintAndLog("Reading word %d", Word); - - c.cmd = CMD_EM4X_READ_WORD; - c.d.asBytes[0] = 0x0; //Normal mode - c.arg[0] = 0; - c.arg[1] = Word; - c.arg[2] = 0; - SendCommand(&c); - return 0; -} - -int CmdReadWordPWD(const char *Cmd) + if (rows*cols>size) return false; + uint8_t colP=0; + //assume last col is a parity and do not test + for (uint8_t colNum = 0; colNum < cols-1; colNum++) { + for (uint8_t rowNum = 0; rowNum < rows; rowNum++) { + colP ^= BitStream[(rowNum*cols)+colNum]; + } + if (colP != pType) return false; + } + return true; +} + +bool EM_ByteParityTest(uint8_t *BitStream, size_t size, uint8_t rows, uint8_t cols, uint8_t pType) { - int Word = -1; //default to invalid word - int Password = 0xFFFFFFFF; //default to blank password - UsbCommand c; - - sscanf(Cmd, "%d %x", &Word, &Password); - - if ( (Word > 15) | (Word < 0) ) { - PrintAndLog("Word must be between 0 and 15"); - return 1; - } - - PrintAndLog("Reading word %d with password %08X", Word, Password); - - c.cmd = CMD_EM4X_READ_WORD; - c.d.asBytes[0] = 0x1; //Password mode - c.arg[0] = 0; - c.arg[1] = Word; - c.arg[2] = Password; - SendCommand(&c); - return 0; -} - -int CmdWriteWord(const char *Cmd) + if (rows*cols>size) return false; + uint8_t rowP=0; + //assume last row is a parity row and do not test + for (uint8_t rowNum = 0; rowNum < rows-1; rowNum++) { + for (uint8_t colNum = 0; colNum < cols; colNum++) { + rowP ^= BitStream[(rowNum*cols)+colNum]; + } + if (rowP != pType) return false; + } + return true; +} + +uint32_t OutputEM4x50_Block(uint8_t *BitStream, size_t size, bool verbose, bool pTest) { - int Word = 16; //default to invalid block - int Data = 0xFFFFFFFF; //default to blank data - UsbCommand c; - - sscanf(Cmd, "%x %d", &Data, &Word); - - if (Word > 15) { - PrintAndLog("Word must be between 0 and 15"); - return 1; - } - - PrintAndLog("Writing word %d with data %08X", Word, Data); - - c.cmd = CMD_EM4X_WRITE_WORD; - c.d.asBytes[0] = 0x0; //Normal mode - c.arg[0] = Data; - c.arg[1] = Word; - c.arg[2] = 0; - SendCommand(&c); - return 0; -} - -int CmdWriteWordPWD(const char *Cmd) + if (size<45) return 0; + uint32_t code = bytebits_to_byte(BitStream,8); + code = code<<8 | bytebits_to_byte(BitStream+9,8); + code = code<<8 | bytebits_to_byte(BitStream+18,8); + code = code<<8 | bytebits_to_byte(BitStream+27,8); + if (verbose || g_debugMode){ + for (uint8_t i = 0; i<5; i++){ + if (i == 4) PrintAndLog(""); //parity byte spacer + PrintAndLog("%d%d%d%d%d%d%d%d %d -> 0x%02x", + BitStream[i*9], + BitStream[i*9+1], + BitStream[i*9+2], + BitStream[i*9+3], + BitStream[i*9+4], + BitStream[i*9+5], + BitStream[i*9+6], + BitStream[i*9+7], + BitStream[i*9+8], + bytebits_to_byte(BitStream+i*9,8) + ); + } + if (pTest) + PrintAndLog("Parity Passed"); + else + PrintAndLog("Parity Failed"); + } + return code; +} +/* Read the transmitted data of an EM4x50 tag from the graphbuffer + * Format: + * + * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity + * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity + * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity + * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity + * CCCCCCCC <- column parity bits + * 0 <- stop bit + * LW <- Listen Window + * + * This pattern repeats for every block of data being transmitted. + * Transmission starts with two Listen Windows (LW - a modulated + * pattern of 320 cycles each (32/32/128/64/64)). + * + * Note that this data may or may not be the UID. It is whatever data + * is stored in the blocks defined in the control word First and Last + * Word Read values. UID is stored in block 32. + */ + //completed by Marshmellow +int EM4x50Read(const char *Cmd, bool verbose) { - int Word = 16; //default to invalid word - int Data = 0xFFFFFFFF; //default to blank data - int Password = 0xFFFFFFFF; //default to blank password - UsbCommand c; - - sscanf(Cmd, "%x %d %x", &Data, &Word, &Password); - - if (Word > 15) { - PrintAndLog("Word must be between 0 and 15"); - return 1; - } - - PrintAndLog("Writing word %d with data %08X and password %08X", Word, Data, Password); - - c.cmd = CMD_EM4X_WRITE_WORD; - c.d.asBytes[0] = 0x1; //Password mode - c.arg[0] = Data; - c.arg[1] = Word; - c.arg[2] = Password; - SendCommand(&c); - return 0; + uint8_t fndClk[] = {8,16,32,40,50,64,128}; + int clk = 0; + int invert = 0; + int tol = 0; + int i, j, startblock, skip, block, start, end, low, high, minClk; + bool complete = false; + int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; + uint32_t Code[6]; + char tmp[6]; + char tmp2[20]; + int phaseoff; + high = low = 0; + memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); + + // get user entry if any + sscanf(Cmd, "%i %i", &clk, &invert); + + // save GraphBuffer - to restore it later + save_restoreGB(1); + + // first get high and low values + for (i = 0; i < GraphTraceLen; i++) { + if (GraphBuffer[i] > high) + high = GraphBuffer[i]; + else if (GraphBuffer[i] < low) + low = GraphBuffer[i]; + } + + i = 0; + j = 0; + minClk = 255; + // get to first full low to prime loop and skip incomplete first pulse + while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) + ++i; + while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) + ++i; + skip = i; + + // populate tmpbuff buffer with pulse lengths + while (i < GraphTraceLen) { + // measure from low to low + while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) + ++i; + start= i; + while ((GraphBuffer[i] < high) && (i < GraphTraceLen)) + ++i; + while ((GraphBuffer[i] > low) && (i < GraphTraceLen)) + ++i; + if (j>=(MAX_GRAPH_TRACE_LEN/64)) { + break; + } + tmpbuff[j++]= i - start; + if (i-start < minClk && i < GraphTraceLen) { + minClk = i - start; + } + } + // set clock + if (!clk) { + for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { + tol = fndClk[clkCnt]/8; + if (minClk >= fndClk[clkCnt]-tol && minClk <= fndClk[clkCnt]+1) { + clk=fndClk[clkCnt]; + break; + } + } + if (!clk) return 0; + } else tol = clk/8; + + // look for data start - should be 2 pairs of LW (pulses of clk*3,clk*2) + start = -1; + for (i= 0; i < j - 4 ; ++i) { + skip += tmpbuff[i]; + if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks + if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks + if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks + if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following + { + start= i + 4; + break; + } + } + startblock = i + 4; + + // skip over the remainder of LW + skip += tmpbuff[i+1] + tmpbuff[i+2] + clk; + if (tmpbuff[i+3]>clk) + phaseoff = tmpbuff[i+3]-clk; + else + phaseoff = 0; + // now do it again to find the end + end = skip; + for (i += 3; i < j - 4 ; ++i) { + end += tmpbuff[i]; + if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) //3 clocks + if (tmpbuff[i+1] >= clk*2-tol && tmpbuff[i+1] <= clk*2+tol) //2 clocks + if (tmpbuff[i+2] >= clk*3-tol && tmpbuff[i+2] <= clk*3+tol) //3 clocks + if (tmpbuff[i+3] >= clk-tol) //1.5 to 2 clocks - depends on bit following + { + complete= true; + break; + } + } + end = i; + // report back + if (verbose || g_debugMode) { + if (start >= 0) { + PrintAndLog("\nNote: one block = 50 bits (32 data, 12 parity, 6 marker)"); + } else { + PrintAndLog("No data found!, clock tried:%d",clk); + PrintAndLog("Try again with more samples."); + PrintAndLog(" or after a 'data askedge' command to clean up the read"); + return 0; + } + } else if (start < 0) return 0; + start = skip; + snprintf(tmp2, sizeof(tmp2),"%d %d 1000 %d", clk, invert, clk*47); + // get rid of leading crap + snprintf(tmp, sizeof(tmp), "%i", skip); + CmdLtrim(tmp); + bool pTest; + bool AllPTest = true; + // now work through remaining buffer printing out data blocks + block = 0; + i = startblock; + while (block < 6) { + if (verbose || g_debugMode) PrintAndLog("\nBlock %i:", block); + skip = phaseoff; + + // look for LW before start of next block + for ( ; i < j - 4 ; ++i) { + skip += tmpbuff[i]; + if (tmpbuff[i] >= clk*3-tol && tmpbuff[i] <= clk*3+tol) + if (tmpbuff[i+1] >= clk-tol) + break; + } + if (i >= j-4) break; //next LW not found + skip += clk; + if (tmpbuff[i+1]>clk) + phaseoff = tmpbuff[i+1]-clk; + else + phaseoff = 0; + i += 2; + if (ASKDemod(tmp2, false, false, 1) < 1) { + save_restoreGB(0); + return 0; + } + //set DemodBufferLen to just one block + DemodBufferLen = skip/clk; + //test parities + pTest = EM_ByteParityTest(DemodBuffer,DemodBufferLen,5,9,0); + pTest &= EM_EndParityTest(DemodBuffer,DemodBufferLen,5,9,0); + AllPTest &= pTest; + //get output + Code[block] = OutputEM4x50_Block(DemodBuffer,DemodBufferLen,verbose, pTest); + if (g_debugMode) PrintAndLog("\nskipping %d samples, bits:%d", skip, skip/clk); + //skip to start of next block + snprintf(tmp,sizeof(tmp),"%i",skip); + CmdLtrim(tmp); + block++; + if (i >= end) break; //in case chip doesn't output 6 blocks + } + //print full code: + if (verbose || g_debugMode || AllPTest){ + if (!complete) { + PrintAndLog("*** Warning!"); + PrintAndLog("Partial data - no end found!"); + PrintAndLog("Try again with more samples."); + } + PrintAndLog("Found data at sample: %i - using clock: %i", start, clk); + end = block; + for (block=0; block < end; block++){ + PrintAndLog("Block %d: %08x",block,Code[block]); + } + if (AllPTest) { + PrintAndLog("Parities Passed"); + } else { + PrintAndLog("Parities Failed"); + PrintAndLog("Try cleaning the read samples with 'data askedge'"); + } + } + + //restore GraphBuffer + save_restoreGB(0); + return (int)AllPTest; +} + +int CmdEM4x50Read(const char *Cmd) +{ + return EM4x50Read(Cmd, true); +} + +//**************** Start of EM4x05/EM4x69 Code ************************ +int usage_lf_em_read(void) { + PrintAndLog("Read EM4x05/EM4x69. Tag must be on antenna. "); + PrintAndLog(""); + PrintAndLog("Usage: lf em 4x05readword [h]
"); + PrintAndLog("Options:"); + PrintAndLog(" h - this help"); + PrintAndLog(" address - memory address to read. (0-15)"); + PrintAndLog(" pwd - password (hex) (optional)"); + PrintAndLog("samples:"); + PrintAndLog(" lf em 4x05readword 1"); + PrintAndLog(" lf em 4x05readword 1 11223344"); + return 0; +} + +// for command responses from em4x05 or em4x69 +// download samples from device and copy them to the Graphbuffer +bool downloadSamplesEM() { + // 8 bit preamble + 32 bit word response (max clock (128) * 40bits = 5120 samples) + uint8_t got[6000]; + GetFromBigBuf(got, sizeof(got), 0); + if ( !WaitForResponseTimeout(CMD_ACK, NULL, 4000) ) { + PrintAndLog("command execution time out"); + return false; + } + setGraphBuf(got, sizeof(got)); + return true; +} + +bool EM4x05testDemodReadData(uint32_t *word, bool readCmd) { + // em4x05/em4x69 command response preamble is 00001010 + // skip first two 0 bits as they might have been missed in the demod + uint8_t preamble[] = {0,0,1,0,1,0}; + size_t startIdx = 0; + + // set size to 20 to only test first 14 positions for the preamble or less if not a read command + size_t size = (readCmd) ? 20 : 11; + // sanity check + size = (size > DemodBufferLen) ? DemodBufferLen : size; + // test preamble + if ( !preambleSearchEx(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx, true) ) { + if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305 preamble not found :: %d", startIdx); + return false; + } + // if this is a readword command, get the read bytes and test the parities + if (readCmd) { + if (!EM_EndParityTest(DemodBuffer + startIdx + sizeof(preamble), 45, 5, 9, 0)) { + if (g_debugMode) PrintAndLog("DEBUG: Error - End Parity check failed"); + return false; + } + // test for even parity bits and remove them. (leave out the end row of parities so 36 bits) + if ( removeParity(DemodBuffer, startIdx + sizeof(preamble),9,0,36) == 0 ) { + if (g_debugMode) PrintAndLog("DEBUG: Error - Parity not detected"); + return false; + } + + setDemodBuf(DemodBuffer, 32, 0); + *word = bytebits_to_byteLSBF(DemodBuffer, 32); + } + return true; } +// FSK, PSK, ASK/MANCHESTER, ASK/BIPHASE, ASK/DIPHASE +// should cover 90% of known used configs +// the rest will need to be manually demoded for now... +int demodEM4x05resp(uint32_t *word, bool readCmd) { + int ans = 0; + + // test for FSK wave (easiest to 99% ID) + if (GetFskClock("", false, false)) { + //valid fsk clocks found + ans = FSKrawDemod("0 0", false); + if (!ans) { + if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: FSK Demod failed, ans: %d", ans); + } else { + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } + } + } + // PSK clocks should be easy to detect ( but difficult to demod a non-repeating pattern... ) + ans = GetPskClock("", false, false); + if (ans>0) { + //try psk1 + ans = PSKDemod("0 0 6", false); + if (!ans) { + if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); + } else { + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } else { + //try psk2 + psk1TOpsk2(DemodBuffer, DemodBufferLen); + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } + } + //try psk1 inverted + ans = PSKDemod("0 1 6", false); + if (!ans) { + if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: PSK1 Demod failed, ans: %d", ans); + } else { + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } else { + //try psk2 + psk1TOpsk2(DemodBuffer, DemodBufferLen); + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } + } + } + } + } + + // manchester is more common than biphase... try first + bool stcheck = false; + // try manchester - NOTE: ST only applies to T55x7 tags. + ans = ASKDemod_ext("0,0,1", false, false, 1, &stcheck); + if (!ans) { + if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/Manchester Demod failed, ans: %d", ans); + } else { + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } + } + + //try biphase + ans = ASKbiphaseDemod("0 0 1", false); + if (!ans) { + if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); + } else { + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } + } + + //try diphase (differential biphase or inverted) + ans = ASKbiphaseDemod("0 1 1", false); + if (!ans) { + if (g_debugMode) PrintAndLog("DEBUG: Error - EM4305: ASK/biphase Demod failed, ans: %d", ans); + } else { + if (EM4x05testDemodReadData(word, readCmd)) { + return 1; + } + } + + return -1; +} + +int EM4x05ReadWord_ext(uint8_t addr, uint32_t pwd, bool usePwd, uint32_t *wordData) { + UsbCommand c = {CMD_EM4X_READ_WORD, {addr, pwd, usePwd}}; + clearCommandBuffer(); + SendCommand(&c); + UsbCommand resp; + if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)){ + PrintAndLog("Command timed out"); + return -1; + } + if ( !downloadSamplesEM() ) { + return -1; + } + int testLen = (GraphTraceLen < 1000) ? GraphTraceLen : 1000; + if (graphJustNoise(GraphBuffer, testLen)) { + PrintAndLog("no tag not found"); + return -1; + } + //attempt demod: + return demodEM4x05resp(wordData, true); +} + +int EM4x05ReadWord(uint8_t addr, uint32_t pwd, bool usePwd) { + uint32_t wordData = 0; + int success = EM4x05ReadWord_ext(addr, pwd, usePwd, &wordData); + if (success == 1) + PrintAndLog("%s Address %02d | %08X", (addr>13) ? "Lock":" Got",addr,wordData); + else + PrintAndLog("Read Address %02d | failed",addr); + + return success; +} + +int CmdEM4x05ReadWord(const char *Cmd) { + uint8_t addr; + uint32_t pwd; + bool usePwd = false; + uint8_t ctmp = param_getchar(Cmd, 0); + if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_read(); + + addr = param_get8ex(Cmd, 0, 50, 10); + // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) + pwd = param_get32ex(Cmd, 1, 1, 16); + + if ( (addr > 15) ) { + PrintAndLog("Address must be between 0 and 15"); + return 1; + } + if ( pwd == 1 ) { + PrintAndLog("Reading address %02u", addr); + } else { + usePwd = true; + PrintAndLog("Reading address %02u | password %08X", addr, pwd); + } + + return EM4x05ReadWord(addr, pwd, usePwd); +} + +int usage_lf_em_dump(void) { + PrintAndLog("Dump EM4x05/EM4x69. Tag must be on antenna. "); + PrintAndLog(""); + PrintAndLog("Usage: lf em 4x05dump [h] "); + PrintAndLog("Options:"); + PrintAndLog(" h - this help"); + PrintAndLog(" pwd - password (hex) (optional)"); + PrintAndLog("samples:"); + PrintAndLog(" lf em 4x05dump"); + PrintAndLog(" lf em 4x05dump 11223344"); + return 0; +} + +int CmdEM4x05dump(const char *Cmd) { + uint8_t addr = 0; + uint32_t pwd; + bool usePwd = false; + uint8_t ctmp = param_getchar(Cmd, 0); + if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); + + // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) + pwd = param_get32ex(Cmd, 0, 1, 16); + + if ( pwd != 1 ) { + usePwd = true; + } + int success = 1; + for (; addr < 16; addr++) { + if (addr == 2) { + if (usePwd) { + PrintAndLog(" PWD Address %02u | %08X",addr,pwd); + } else { + PrintAndLog(" PWD Address 02 | cannot read"); + } + } else { + success &= EM4x05ReadWord(addr, pwd, usePwd); + } + } + + return success; +} + + +int usage_lf_em_write(void) { + PrintAndLog("Write EM4x05/EM4x69. Tag must be on antenna. "); + PrintAndLog(""); + PrintAndLog("Usage: lf em 4x05writeword [h] [s]
"); + PrintAndLog("Options:"); + PrintAndLog(" h - this help"); + PrintAndLog(" s - swap data bit order before write"); + PrintAndLog(" address - memory address to write to. (0-15)"); + PrintAndLog(" data - data to write (hex)"); + PrintAndLog(" pwd - password (hex) (optional)"); + PrintAndLog("samples:"); + PrintAndLog(" lf em 4x05writeword 1"); + PrintAndLog(" lf em 4x05writeword 1 deadc0de 11223344"); + return 0; +} + +int CmdEM4x05WriteWord(const char *Cmd) { + uint8_t ctmp = param_getchar(Cmd, 0); + if ( strlen(Cmd) == 0 || ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_write(); + + bool usePwd = false; + + uint8_t addr = 16; // default to invalid address + uint32_t data = 0xFFFFFFFF; // default to blank data + uint32_t pwd = 0xFFFFFFFF; // default to blank password + char swap = 0; + + int p = 0; + swap = param_getchar(Cmd, 0); + if (swap == 's' || swap=='S') p++; + addr = param_get8ex(Cmd, p++, 16, 10); + data = param_get32ex(Cmd, p++, 0, 16); + pwd = param_get32ex(Cmd, p++, 1, 16); + + if (swap == 's' || swap=='S') data = SwapBits(data, 32); + + if ( (addr > 15) ) { + PrintAndLog("Address must be between 0 and 15"); + return 1; + } + if ( pwd == 1 ) + PrintAndLog("Writing address %d data %08X", addr, data); + else { + usePwd = true; + PrintAndLog("Writing address %d data %08X using password %08X", addr, data, pwd); + } + + uint16_t flag = (addr << 8 ) | usePwd; + + UsbCommand c = {CMD_EM4X_WRITE_WORD, {flag, data, pwd}}; + clearCommandBuffer(); + SendCommand(&c); + UsbCommand resp; + if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)){ + PrintAndLog("Error occurred, device did not respond during write operation."); + return -1; + } + if ( !downloadSamplesEM() ) { + return -1; + } + //check response for 00001010 for write confirmation! + //attempt demod: + uint32_t dummy = 0; + int result = demodEM4x05resp(&dummy,false); + if (result == 1) { + PrintAndLog("Write Verified"); + } else { + PrintAndLog("Write could not be verified"); + } + return result; +} + +void printEM4x05config(uint32_t wordData) { + uint16_t datarate = (((wordData & 0x3F)+1)*2); + uint8_t encoder = ((wordData >> 6) & 0xF); + char enc[14]; + memset(enc,0,sizeof(enc)); + + uint8_t PSKcf = (wordData >> 10) & 0x3; + char cf[10]; + memset(cf,0,sizeof(cf)); + uint8_t delay = (wordData >> 12) & 0x3; + char cdelay[33]; + memset(cdelay,0,sizeof(cdelay)); + uint8_t LWR = (wordData >> 14) & 0xF; //last word read + + switch (encoder) { + case 0: snprintf(enc,sizeof(enc),"NRZ"); break; + case 1: snprintf(enc,sizeof(enc),"Manchester"); break; + case 2: snprintf(enc,sizeof(enc),"Biphase"); break; + case 3: snprintf(enc,sizeof(enc),"Miller"); break; + case 4: snprintf(enc,sizeof(enc),"PSK1"); break; + case 5: snprintf(enc,sizeof(enc),"PSK2"); break; + case 6: snprintf(enc,sizeof(enc),"PSK3"); break; + case 7: snprintf(enc,sizeof(enc),"Unknown"); break; + case 8: snprintf(enc,sizeof(enc),"FSK1"); break; + case 9: snprintf(enc,sizeof(enc),"FSK2"); break; + default: snprintf(enc,sizeof(enc),"Unknown"); break; + } + + switch (PSKcf) { + case 0: snprintf(cf,sizeof(cf),"RF/2"); break; + case 1: snprintf(cf,sizeof(cf),"RF/8"); break; + case 2: snprintf(cf,sizeof(cf),"RF/4"); break; + case 3: snprintf(cf,sizeof(cf),"unknown"); break; + } + + switch (delay) { + case 0: snprintf(cdelay, sizeof(cdelay),"no delay"); break; + case 1: snprintf(cdelay, sizeof(cdelay),"BP/8 or 1/8th bit period delay"); break; + case 2: snprintf(cdelay, sizeof(cdelay),"BP/4 or 1/4th bit period delay"); break; + case 3: snprintf(cdelay, sizeof(cdelay),"no delay"); break; + } + PrintAndLog("ConfigWord: %08X (Word 4)\n", wordData); + PrintAndLog("Config Breakdown:", wordData); + PrintAndLog(" Data Rate: %02u | RF/%u", wordData & 0x3F, datarate); + PrintAndLog(" Encoder: %u | %s", encoder, enc); + PrintAndLog(" PSK CF: %u | %s", PSKcf, cf); + PrintAndLog(" Delay: %u | %s", delay, cdelay); + PrintAndLog(" LastWordR: %02u | Address of last word for default read", LWR); + PrintAndLog(" ReadLogin: %u | Read Login is %s", (wordData & 0x40000)>>18, (wordData & 0x40000) ? "Required" : "Not Required"); + PrintAndLog(" ReadHKL: %u | Read Housekeeping Words Login is %s", (wordData & 0x80000)>>19, (wordData & 0x80000) ? "Required" : "Not Required"); + PrintAndLog("WriteLogin: %u | Write Login is %s", (wordData & 0x100000)>>20, (wordData & 0x100000) ? "Required" : "Not Required"); + PrintAndLog(" WriteHKL: %u | Write Housekeeping Words Login is %s", (wordData & 0x200000)>>21, (wordData & 0x200000) ? "Required" : "Not Required"); + PrintAndLog(" R.A.W.: %u | Read After Write is %s", (wordData & 0x400000)>>22, (wordData & 0x400000) ? "On" : "Off"); + PrintAndLog(" Disable: %u | Disable Command is %s", (wordData & 0x800000)>>23, (wordData & 0x800000) ? "Accepted" : "Not Accepted"); + PrintAndLog(" R.T.F.: %u | Reader Talk First is %s", (wordData & 0x1000000)>>24, (wordData & 0x1000000) ? "Enabled" : "Disabled"); + PrintAndLog(" Pigeon: %u | Pigeon Mode is %s\n", (wordData & 0x4000000)>>26, (wordData & 0x4000000) ? "Enabled" : "Disabled"); +} + +void printEM4x05info(uint8_t chipType, uint8_t cap, uint16_t custCode, uint32_t serial) { + switch (chipType) { + case 9: PrintAndLog("\n Chip Type: %u | EM4305", chipType); break; + case 4: PrintAndLog(" Chip Type: %u | Unknown", chipType); break; + case 2: PrintAndLog(" Chip Type: %u | EM4469", chipType); break; + //add more here when known + default: PrintAndLog(" Chip Type: %u Unknown", chipType); break; + } + + switch (cap) { + case 3: PrintAndLog(" Cap Type: %u | 330pF",cap); break; + case 2: PrintAndLog(" Cap Type: %u | %spF",cap, (chipType==2)? "75":"210"); break; + case 1: PrintAndLog(" Cap Type: %u | 250pF",cap); break; + case 0: PrintAndLog(" Cap Type: %u | no resonant capacitor",cap); break; + default: PrintAndLog(" Cap Type: %u | unknown",cap); break; + } + + PrintAndLog(" Cust Code: %03u | %s", custCode, (custCode == 0x200) ? "Default": "Unknown"); + if (serial != 0) { + PrintAndLog("\n Serial #: %08X\n", serial); + } +} + +void printEM4x05ProtectionBits(uint32_t wordData) { + for (uint8_t i = 0; i < 15; i++) { + PrintAndLog(" Word: %02u | %s", i, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); + if (i==14) { + PrintAndLog(" Word: %02u | %s", i+1, (((1 << i) & wordData ) || i < 2) ? "Is Write Locked" : "Is Not Write Locked"); + } + } +} + +//quick test for EM4x05/EM4x69 tag +bool EM4x05Block0Test(uint32_t *wordData) { + if (EM4x05ReadWord_ext(0,0,false,wordData) == 1) { + return true; + } + return false; +} + +int CmdEM4x05info(const char *Cmd) { + //uint8_t addr = 0; + uint32_t pwd; + uint32_t wordData = 0; + bool usePwd = false; + uint8_t ctmp = param_getchar(Cmd, 0); + if ( ctmp == 'H' || ctmp == 'h' ) return usage_lf_em_dump(); + + // for now use default input of 1 as invalid (unlikely 1 will be a valid password...) + pwd = param_get32ex(Cmd, 0, 1, 16); + + if ( pwd != 1 ) { + usePwd = true; + } + + // read word 0 (chip info) + // block 0 can be read even without a password. + if ( !EM4x05Block0Test(&wordData) ) + return -1; + + uint8_t chipType = (wordData >> 1) & 0xF; + uint8_t cap = (wordData >> 5) & 3; + uint16_t custCode = (wordData >> 9) & 0x3FF; + + // read word 1 (serial #) doesn't need pwd + wordData = 0; + if (EM4x05ReadWord_ext(1, 0, false, &wordData) != 1) { + //failed, but continue anyway... + } + printEM4x05info(chipType, cap, custCode, wordData); + + // read word 4 (config block) + // needs password if one is set + wordData = 0; + if ( EM4x05ReadWord_ext(4, pwd, usePwd, &wordData) != 1 ) { + //failed + return 0; + } + printEM4x05config(wordData); + + // read word 14 and 15 to see which is being used for the protection bits + wordData = 0; + if ( EM4x05ReadWord_ext(14, pwd, usePwd, &wordData) != 1 ) { + //failed + return 0; + } + // if status bit says this is not the used protection word + if (!(wordData & 0x8000)) { + if ( EM4x05ReadWord_ext(15, pwd, usePwd, &wordData) != 1 ) { + //failed + return 0; + } + } + if (!(wordData & 0x8000)) { + //something went wrong + return 0; + } + printEM4x05ProtectionBits(wordData); + + return 1; +} + + static command_t CommandTable[] = { - {"help", CmdHelp, 1, "This help"}, - {"em410xdemod", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, - {"em410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag"}, - {"em410xsim", CmdEM410xSim, 0, " -- Simulate EM410x tag"}, - {"em410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, - {"em410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, - {"em410xwrite", CmdEM410xWrite, 1, " <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, - {"em4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"}, - {"readword", CmdReadWord, 1, " -- Read EM4xxx word data"}, - {"readwordPWD", CmdReadWordPWD, 1, " -- Read EM4xxx word data in password mode"}, - {"writeword", CmdWriteWord, 1, " -- Write EM4xxx word data"}, - {"writewordPWD", CmdWriteWordPWD, 1, " -- Write EM4xxx word data in password mode"}, - {NULL, NULL, 0, NULL} + {"help", CmdHelp, 1, "This help"}, + {"410xread", CmdEMdemodASK, 0, "[findone] -- Extract ID from EM410x tag (option 0 for continuous loop, 1 for only 1 tag)"}, + {"410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"}, + {"410xsim", CmdEM410xSim, 0, " [clock rate] -- Simulate EM410x tag"}, + {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, + {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, + {"410xwrite", CmdEM410xWrite, 0, " <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, + {"4x05dump", CmdEM4x05dump, 0, "(pwd) -- Read EM4x05/EM4x69 all word data"}, + {"4x05info", CmdEM4x05info, 0, "(pwd) -- Get info from EM4x05/EM4x69 tag"}, + {"4x05readword", CmdEM4x05ReadWord, 0, " (pwd) -- Read EM4x05/EM4x69 word data"}, + {"4x05writeword", CmdEM4x05WriteWord, 0, " (pwd) -- Write EM4x05/EM4x69 word data"}, + {"4x50read", CmdEM4x50Read, 1, "demod data from EM4x50 tag from the graph buffer"}, + {NULL, NULL, 0, NULL} }; int CmdLFEM4X(const char *Cmd) { - CmdsParse(CommandTable, Cmd); - return 0; + CmdsParse(CommandTable, Cmd); + return 0; } int CmdHelp(const char *Cmd) { - CmdsHelp(CommandTable); - return 0; + CmdsHelp(CommandTable); + return 0; }