X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/2b90e3e670393990a243e1791dccd84acb9526eb..46cd801c5ad5d5f60b2526b4a1e6700a2a008f7b:/armsrc/iso14443a.c?ds=inline diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index 64bbcbf5..8e547147 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -15,7 +15,6 @@ #include "util.h" #include "string.h" #include "cmd.h" - #include "iso14443crc.h" #include "iso14443a.h" #include "crapto1.h" @@ -213,6 +212,12 @@ void AppendCrc14443a(uint8_t* data, int len) ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); } +void AppendCrc14443b(uint8_t* data, int len) +{ + ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); +} + + //============================================================================= // ISO 14443 Type A - Miller decoder //============================================================================= @@ -232,13 +237,17 @@ void AppendCrc14443a(uint8_t* data, int len) static tUart Uart; // Lookup-Table to decide if 4 raw bits are a modulation. -// We accept two or three consecutive "0" in any position with the rest "1" +// We accept the following: +// 0001 - a 3 tick wide pause +// 0011 - a 2 tick wide pause, or a three tick wide pause shifted left +// 0111 - a 2 tick wide pause shifted left +// 1001 - a 2 tick wide pause shifted right const bool Mod_Miller_LUT[] = { - TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, - TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE + FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, + FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE }; -#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4]) -#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)]) +#define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) +#define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) void UartReset() { @@ -248,16 +257,19 @@ void UartReset() Uart.parityLen = 0; // number of decoded parity bytes Uart.shiftReg = 0; // shiftreg to hold decoded data bits Uart.parityBits = 0; // holds 8 parity bits - Uart.twoBits = 0x0000; // buffer for 2 Bits - Uart.highCnt = 0; Uart.startTime = 0; Uart.endTime = 0; + + Uart.byteCntMax = 0; + Uart.posCnt = 0; + Uart.syncBit = 9999; } void UartInit(uint8_t *data, uint8_t *parity) { Uart.output = data; Uart.parity = parity; + Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits UartReset(); } @@ -265,40 +277,44 @@ void UartInit(uint8_t *data, uint8_t *parity) static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) { - Uart.twoBits = (Uart.twoBits << 8) | bit; + Uart.fourBits = (Uart.fourBits << 8) | bit; if (Uart.state == STATE_UNSYNCD) { // not yet synced - if (Uart.highCnt < 2) { // wait for a stable unmodulated signal - if (Uart.twoBits == 0xffff) { - Uart.highCnt++; - } else { - Uart.highCnt = 0; - } - } else { - Uart.syncBit = 0xFFFF; // not set - // we look for a ...1111111100x11111xxxxxx pattern (the start bit) - if ((Uart.twoBits & 0xDF00) == 0x1F00) Uart.syncBit = 8; // mask is 11x11111 xxxxxxxx, - // check for 00x11111 xxxxxxxx - else if ((Uart.twoBits & 0xEF80) == 0x8F80) Uart.syncBit = 7; // both masks shifted right one bit, left padded with '1' - else if ((Uart.twoBits & 0xF7C0) == 0xC7C0) Uart.syncBit = 6; // ... - else if ((Uart.twoBits & 0xFBE0) == 0xE3E0) Uart.syncBit = 5; - else if ((Uart.twoBits & 0xFDF0) == 0xF1F0) Uart.syncBit = 4; - else if ((Uart.twoBits & 0xFEF8) == 0xF8F8) Uart.syncBit = 3; - else if ((Uart.twoBits & 0xFF7C) == 0xFC7C) Uart.syncBit = 2; - else if ((Uart.twoBits & 0xFFBE) == 0xFE3E) Uart.syncBit = 1; - if (Uart.syncBit != 0xFFFF) { // found a sync bit + Uart.syncBit = 9999; // not set + + // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication") + // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information") + // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1") + + // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from + // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) + // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern + // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) + // +#define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000 +#define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000 + + if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1; + else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0; + + if (Uart.syncBit != 9999) { // found a sync bit Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); Uart.startTime -= Uart.syncBit; Uart.endTime = Uart.startTime; Uart.state = STATE_START_OF_COMMUNICATION; } - } } else { - if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { - if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error + if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { + if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error UartReset(); } else { // Modulation in first half = Sequence Z = logic "0" if (Uart.state == STATE_MILLER_X) { // error - must not follow after X @@ -322,7 +338,7 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) } } } else { - if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" + if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg Uart.state = STATE_MILLER_X; @@ -358,12 +374,10 @@ static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) return TRUE; // we are finished with decoding the raw data sequence } else { UartReset(); // Nothing received - start over - Uart.highCnt = 1; } } if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC UartReset(); - Uart.highCnt = 1; } else { // a logic "0" Uart.bitCount++; Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg @@ -430,6 +444,11 @@ void DemodReset() Demod.highCnt = 0; Demod.startTime = 0; Demod.endTime = 0; + + // + Demod.bitCount = 0; + Demod.syncBit = 0xFFFF; + Demod.samples = 0; } void DemodInit(uint8_t *data, uint8_t *parity) @@ -528,9 +547,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non } } } - } - return FALSE; // not finished yet, need more data } @@ -544,7 +561,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- -void RAMFUNC SnoopIso14443a(uint8_t param) { +void RAMFUNC SniffIso14443a(uint8_t param) { // param: // bit 0 - trigger from first card answer // bit 1 - trigger from first reader 7-bit request @@ -680,6 +697,9 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // And ready to receive another response. DemodReset(); + // And reset the Miller decoder including itS (now outdated) input buffer + UartInit(receivedCmd, receivedCmdPar); + LED_C_OFF(); } TagIsActive = (Demod.state != DEMOD_UNSYNCD); @@ -915,8 +935,15 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { // Main loop of simulated tag: receive commands from reader, decide what // response to send, and send it. //----------------------------------------------------------------------------- -void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) +void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) { + + //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 + // This can be used in a reader-only attack. + // (it can also be retrieved via 'hf 14a list', but hey... + uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t ar_nr_collected = 0; + uint8_t sak; // The first response contains the ATQA (note: bytes are transmitted in reverse order). @@ -952,7 +979,13 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) response1[0] = 0x01; response1[1] = 0x0f; sak = 0x01; - } break; + } break; + case 6: { // MIFARE Mini + // Says: I am a Mifare Mini, 320b + response1[0] = 0x44; + response1[1] = 0x00; + sak = 0x09; + } break; default: { Dbprintf("Error: unkown tagtype (%d)",tagType); return; @@ -965,17 +998,24 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // Check if the uid uses the (optional) part uint8_t response2a[5] = {0x00}; - if (uid_2nd) { + if (flags & FLAG_7B_UID_IN_DATA) { response2[0] = 0x88; - num_to_bytes(uid_1st,3,response2+1); - num_to_bytes(uid_2nd,4,response2a); + response2[1] = data[0]; + response2[2] = data[1]; + response2[3] = data[2]; + + response2a[0] = data[3]; + response2a[1] = data[4]; + response2a[2] = data[5]; + response2a[3] = data[7]; response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; // Configure the ATQA and SAK accordingly response1[0] |= 0x40; sak |= 0x04; } else { - num_to_bytes(uid_1st,4,response2); + memcpy(response2, data, 4); + //num_to_bytes(uid_1st,4,response2); // Configure the ATQA and SAK accordingly response1[0] &= 0xBF; sak &= 0xFB; @@ -1109,9 +1149,45 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) if (tracing) { LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); } + uint32_t nonce = bytes_to_num(response5,4); uint32_t nr = bytes_to_num(receivedCmd,4); uint32_t ar = bytes_to_num(receivedCmd+4,4); - Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); + //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar); + + if(flags & FLAG_NR_AR_ATTACK ) + { + if(ar_nr_collected < 2){ + // Avoid duplicates... probably not necessary, nr should vary. + //if(ar_nr_responses[3] != nr){ + ar_nr_responses[ar_nr_collected*5] = 0; + ar_nr_responses[ar_nr_collected*5+1] = 0; + ar_nr_responses[ar_nr_collected*5+2] = nonce; + ar_nr_responses[ar_nr_collected*5+3] = nr; + ar_nr_responses[ar_nr_collected*5+4] = ar; + ar_nr_collected++; + //} + } + + if(ar_nr_collected > 1 ) { + + if (MF_DBGLEVEL >= 2) { + Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); + Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x", + ar_nr_responses[0], // UID1 + ar_nr_responses[1], // UID2 + ar_nr_responses[2], // NT + ar_nr_responses[3], // AR1 + ar_nr_responses[4], // NR1 + ar_nr_responses[8], // AR2 + ar_nr_responses[9] // NR2 + ); + } + uint8_t len = ar_nr_collected*5*4; + cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len); + ar_nr_collected = 0; + memset(ar_nr_responses, 0x00, len); + } + } } else { // Check for ISO 14443A-4 compliant commands, look at left nibble switch (receivedCmd[0]) { @@ -1215,6 +1291,8 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) } } + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); LED_A_OFF(); BigBuf_free_keep_EM(); @@ -1337,7 +1415,7 @@ void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8 } // Only transmit parity bit if we transmitted a complete byte - if (j == 8) { + if (j == 8 && parity != NULL) { // Get the parity bit if (parity[i>>3] & (0x80 >> (i&0x0007))) { // Sequence X @@ -1601,7 +1679,7 @@ bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_Start //----------------------------------------------------------------------------- static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) { - uint32_t c; + uint32_t c = 0x00; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). @@ -1615,7 +1693,6 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - c = 0; for(;;) { WDT_HIT(); @@ -1631,6 +1708,7 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receive } } + void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) { CodeIso14443aBitsAsReaderPar(frame, bits, par); @@ -1646,11 +1724,13 @@ void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t } } + void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) { ReaderTransmitBitsPar(frame, len*8, par, timing); } + void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect @@ -1659,6 +1739,7 @@ void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) ReaderTransmitBitsPar(frame, len, par, timing); } + void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) { // Generate parity and redirect @@ -1719,6 +1800,11 @@ int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, u memset(uid_ptr,0,10); } + // check for proprietary anticollision: + if ((resp[0] & 0x1F) == 0) { + return 3; + } + // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in // which case we need to make a cascade 2 request and select - this is a long UID // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. @@ -1851,7 +1937,7 @@ void iso14443a_setup(uint8_t fpga_minor_mode) { DemodReset(); UartReset(); NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; - iso14a_set_timeout(1050); // 10ms default + iso14a_set_timeout(10*106); // 10ms default } int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { @@ -1927,15 +2013,38 @@ void ReaderIso14443a(UsbCommand *c) if(param & ISO14A_RAW) { if(param & ISO14A_APPEND_CRC) { - AppendCrc14443a(cmd,len); + if(param & ISO14A_TOPAZMODE) { + AppendCrc14443b(cmd,len); + } else { + AppendCrc14443a(cmd,len); + } len += 2; if (lenbits) lenbits += 16; } - if(lenbits>0) { + if(lenbits>0) { // want to send a specific number of bits (e.g. short commands) + if(param & ISO14A_TOPAZMODE) { + int bits_to_send = lenbits; + uint16_t i = 0; + ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity + bits_to_send -= 7; + while (bits_to_send > 0) { + ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity + bits_to_send -= 8; + } + } else { GetParity(cmd, lenbits/8, par); - ReaderTransmitBitsPar(cmd, lenbits, par, NULL); + ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity + } + } else { // want to send complete bytes only + if(param & ISO14A_TOPAZMODE) { + uint16_t i = 0; + ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy + while (i < len) { + ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy + } } else { - ReaderTransmit(cmd,len, NULL); + ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity + } } arg0 = ReaderReceive(buf, par); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); @@ -1959,13 +2068,11 @@ void ReaderIso14443a(UsbCommand *c) // Therefore try in alternating directions. int32_t dist_nt(uint32_t nt1, uint32_t nt2) { - uint16_t i; - uint32_t nttmp1, nttmp2; - if (nt1 == nt2) return 0; - nttmp1 = nt1; - nttmp2 = nt2; + uint16_t i; + uint32_t nttmp1 = nt1; + uint32_t nttmp2 = nt2; for (i = 1; i < 32768; i++) { nttmp1 = prng_successor(nttmp1, 1); @@ -1984,28 +2091,27 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) { // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" // (article by Nicolas T. Courtois, 2009) //----------------------------------------------------------------------------- -void ReaderMifare(bool first_try) -{ - // Mifare AUTH - uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; - uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; - static uint8_t mf_nr_ar3; - - uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; - uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; - +void ReaderMifare(bool first_try) { // free eventually allocated BigBuf memory. We want all for tracing. BigBuf_free(); clear_trace(); set_tracing(TRUE); + // Mifare AUTH + uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; + uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 }; + static uint8_t mf_nr_ar3 = 0; + + uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 }; + uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 }; + byte_t nt_diff = 0; uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough static byte_t par_low = 0; bool led_on = TRUE; - uint8_t uid[10] ={0}; - uint32_t cuid; + uint8_t uid[10] = {0x00}; + //uint32_t cuid = 0x00; uint32_t nt = 0; uint32_t previous_nt = 0; @@ -2013,13 +2119,15 @@ void ReaderMifare(bool first_try) byte_t par_list[8] = {0x00}; byte_t ks_list[8] = {0x00}; - static uint32_t sync_time; - static uint32_t sync_cycles; + static uint32_t sync_time = 0; + static uint32_t sync_cycles = 0; int catch_up_cycles = 0; int last_catch_up = 0; uint16_t consecutive_resyncs = 0; int isOK = 0; + int numWrongDistance = 0; + if (first_try) { mf_nr_ar3 = 0; iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); @@ -2039,20 +2147,22 @@ void ReaderMifare(bool first_try) LED_A_ON(); LED_B_OFF(); LED_C_OFF(); - + LED_C_ON(); for(uint16_t i = 0; TRUE; i++) { WDT_HIT(); // Test if the action was cancelled - if(BUTTON_PRESS()) { + if(BUTTON_PRESS()) break; + + if (numWrongDistance > 1000) { + isOK = 0; break; } - LED_C_ON(); - - if(!iso14443a_select_card(uid, NULL, &cuid)) { + //if(!iso14443a_select_card(uid, NULL, &cuid)) { + if(!iso14443a_select_card(uid, NULL, NULL)) { if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); continue; } @@ -2086,9 +2196,14 @@ void ReaderMifare(bool first_try) nt_attacked = nt; } else { - if (nt_distance == -99999) { // invalid nonce received, try again + + // invalid nonce received, try again + if (nt_distance == -99999) { + numWrongDistance++; + if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n"); continue; } + sync_cycles = (sync_cycles - nt_distance); if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); continue; @@ -2097,7 +2212,7 @@ void ReaderMifare(bool first_try) if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... catch_up_cycles = -dist_nt(nt_attacked, nt); - if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. + if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one. catch_up_cycles = 0; continue; } @@ -2155,10 +2270,10 @@ void ReaderMifare(bool first_try) } } - mf_nr_ar[3] &= 0x1F; - byte_t buf[28]; + byte_t buf[28] = {0x00}; + memcpy(buf + 0, uid, 4); num_to_bytes(nt, 4, buf + 4); memcpy(buf + 8, par_list, 8); @@ -2167,14 +2282,13 @@ void ReaderMifare(bool first_try) cmd_send(CMD_ACK,isOK,0,0,buf,28); - // Thats it... + set_tracing(FALSE); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - - set_tracing(FALSE); } -/** + + /* *MIFARE 1K simulate. * *@param flags : @@ -2375,6 +2489,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * uint32_t nr = bytes_to_num(&receivedCmd[4], 4); //Collect AR/NR + //if(ar_nr_collected < 2 && cardAUTHSC == 2){ if(ar_nr_collected < 2){ if(ar_nr_responses[2] != ar) {// Avoid duplicates... probably not necessary, ar should vary. @@ -2383,6 +2498,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * ar_nr_responses[ar_nr_collected*4+2] = ar; ar_nr_responses[ar_nr_collected*4+3] = nr; ar_nr_collected++; + } + // Interactive mode flag, means we need to send ACK + if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2) + { + finished = true; } } @@ -2530,7 +2650,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * mf_crypto1_encrypt(pcs, response, 18, response_par); EmSendCmdPar(response, 18, response_par); numReads++; - if(exitAfterNReads > 0 && numReads == exitAfterNReads) { + if(exitAfterNReads > 0 && numReads >= exitAfterNReads) { Dbprintf("%d reads done, exiting", numReads); finished = true; } @@ -2650,29 +2770,29 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK { //May just aswell send the collected ar_nr in the response aswell - cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4); + cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,1,0,&ar_nr_responses,ar_nr_collected*4*4); } - if(flags & FLAG_NR_AR_ATTACK) + if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) { - if(ar_nr_collected > 1) { + if(ar_nr_collected > 1 ) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", ar_nr_responses[0], // UID - ar_nr_responses[1], //NT - ar_nr_responses[2], //AR1 - ar_nr_responses[3], //NR1 - ar_nr_responses[6], //AR2 - ar_nr_responses[7] //NR2 + ar_nr_responses[1], // NT + ar_nr_responses[2], // AR1 + ar_nr_responses[3], // NR1 + ar_nr_responses[6], // AR2 + ar_nr_responses[7] // NR2 ); } else { Dbprintf("Failed to obtain two AR/NR pairs!"); - if(ar_nr_collected >0) { + if(ar_nr_collected > 0 ) { Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x", ar_nr_responses[0], // UID - ar_nr_responses[1], //NT - ar_nr_responses[2], //AR1 - ar_nr_responses[3] //NR1 + ar_nr_responses[1], // NT + ar_nr_responses[2], // AR1 + ar_nr_responses[3] // NR1 ); } } @@ -2682,7 +2802,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } - //----------------------------------------------------------------------------- // MIFARE sniffer. // @@ -2692,6 +2811,9 @@ void RAMFUNC SniffMifare(uint8_t param) { // bit 0 - trigger from first card answer // bit 1 - trigger from first reader 7-bit request + // free eventually allocated BigBuf memory + BigBuf_free(); + // C(red) A(yellow) B(green) LEDsoff(); // init trace buffer @@ -2707,12 +2829,6 @@ void RAMFUNC SniffMifare(uint8_t param) { uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; - - // free eventually allocated BigBuf memory - BigBuf_free(); // allocate the DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); uint8_t *data = dmaBuf; @@ -2803,7 +2919,7 @@ void RAMFUNC SniffMifare(uint8_t param) { if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; /* And ready to receive another command. */ - UartReset(); + UartInit(receivedCmd, receivedCmdPar); /* And also reset the demod code */ DemodReset(); @@ -2820,6 +2936,9 @@ void RAMFUNC SniffMifare(uint8_t param) { // And ready to receive another response. DemodReset(); + + // And reset the Miller decoder including its (now outdated) input buffer + UartInit(receivedCmd, receivedCmdPar); } TagIsActive = (Demod.state != DEMOD_UNSYNCD); }