X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/7e67e42f7ed1034940be77dfd80ee19ecda9d3fe..0ac47a5a22887dcd7679e0ca85c2cac31494dbe1:/armsrc/iclass.c?ds=inline diff --git a/armsrc/iclass.c b/armsrc/iclass.c index 5b6dcc58..f9aedc95 100644 --- a/armsrc/iclass.c +++ b/armsrc/iclass.c @@ -2,6 +2,7 @@ // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Gerhard de Koning Gans - May 2011 +// Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of @@ -15,11 +16,6 @@ // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // -// TODO: -// ===== -// - iClass emulation -// - reader emulation -// // FIX: // ==== // We still have sometimes a demodulation error when snooping iClass communication. @@ -45,55 +41,21 @@ #include "util.h" #include "string.h" #include "common.h" +#include "cmd.h" +#include "iso14443a.h" +// Needed for CRC in emulation mode; +// same construction as in ISO 14443; +// different initial value (CRC_ICLASS) +#include "iso14443crc.h" +#include "iso15693tools.h" +#include "protocols.h" +#include "optimized_cipher.h" +#include "usb_cdc.h" // for usb_poll_validate_length + +static int timeout = 4096; -static uint8_t *trace = (uint8_t *) BigBuf; -static int traceLen = 0; -static int rsamples = 0; - -// CARD TO READER -// Sequence D: 11110000 modulation with subcarrier during first half -// Sequence E: 00001111 modulation with subcarrier during second half -// Sequence F: 00000000 no modulation with subcarrier -// READER TO CARD -// Sequence X: 00001100 drop after half a period -// Sequence Y: 00000000 no drop -// Sequence Z: 11000000 drop at start -#define SEC_D 0xf0 -#define SEC_E 0x0f -#define SEC_F 0x00 -#define SEC_X 0x0c -#define SEC_Y 0x00 -#define SEC_Z 0xc0 - -static const uint8_t OddByteParity[256] = { - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 -}; - -//static const uint8_t MajorityNibble[16] = { 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1 }; -//static const uint8_t MajorityNibble[16] = { 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; - -// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT -#define RECV_CMD_OFFSET 3032 -#define RECV_RES_OFFSET 3096 -#define DMA_BUFFER_OFFSET 3160 -#define DMA_BUFFER_SIZE 4096 -#define TRACE_LENGTH 3000 +static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state @@ -113,19 +75,18 @@ static struct { int nOutOfCnt; int OutOfCnt; int syncBit; - int parityBits; - int samples; + int samples; int highCnt; int swapper; int counter; int bitBuffer; int dropPosition; - uint8_t *output; + uint8_t *output; } Uart; -static RAMFUNC int MillerDecoding(int bit) +static RAMFUNC int OutOfNDecoding(int bit) { - int error = 0; + //int error = 0; int bitright; if(!Uart.bitBuffer) { @@ -179,11 +140,8 @@ static RAMFUNC int MillerDecoding(int bit) if(Uart.byteCnt == 0) { // Its not straightforward to show single EOFs // So just leave it and do not return TRUE - Uart.output[Uart.byteCnt] = 0xf0; + Uart.output[0] = 0xf0; Uart.byteCnt++; - - // Calculate the parity bit for the client... - Uart.parityBits = 1; } else { return TRUE; @@ -193,7 +151,7 @@ static RAMFUNC int MillerDecoding(int bit) // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; - error = 4; + //error = 4; } } } @@ -205,10 +163,10 @@ static RAMFUNC int MillerDecoding(int bit) if(!bit) { if(Uart.dropPosition) { if(Uart.state == STATE_START_OF_COMMUNICATION) { - error = 1; + //error = 1; } else { - error = 7; + //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; @@ -248,7 +206,7 @@ static RAMFUNC int MillerDecoding(int bit) if(!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; - error = 9; + //error = 9; } else { Uart.shiftReg >>= 2; @@ -265,11 +223,6 @@ static RAMFUNC int MillerDecoding(int bit) if(Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; - - // Calculate the parity bit for the client... - Uart.parityBits <<= 1; - Uart.parityBits ^= OddByteParity[(Uart.shiftReg & 0xff)]; - Uart.bitCnt = 0; Uart.shiftReg = 0; } @@ -282,17 +235,12 @@ static RAMFUNC int MillerDecoding(int bit) if(!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; - error = 3; + //error = 3; } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; - - // Calculate the parity bit for the client... - Uart.parityBits <<= 1; - Uart.parityBits ^= OddByteParity[(Uart.dropPosition & 0xff)]; - Uart.bitCnt = 0; Uart.shiftReg = 0; Uart.nOutOfCnt = 0; @@ -353,12 +301,11 @@ static RAMFUNC int MillerDecoding(int bit) Uart.state = STATE_START_OF_COMMUNICATION; Uart.bitCnt = 0; Uart.byteCnt = 0; - Uart.parityBits = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 Uart.dropPosition = 0; Uart.shiftReg = 0; - error = 0; + //error = 0; } else { Uart.highCnt = 0; @@ -375,7 +322,7 @@ static RAMFUNC int MillerDecoding(int bit) } //============================================================================= -// ISO 14443 Type A - Manchester +// Manchester //============================================================================= static struct { @@ -395,7 +342,6 @@ static struct { int bitCount; int posCount; int syncBit; - int parityBits; uint16_t shiftReg; int buffer; int buffer2; @@ -409,7 +355,7 @@ static struct { SUB_SECOND_HALF, SUB_BOTH } sub; - uint8_t *output; + uint8_t *output; } Demod; static RAMFUNC int ManchesterDecoding(int v) @@ -433,28 +379,6 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.syncBit = 0; //Demod.samples = 0; Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part - /* if(bit & 0x08) { Demod.syncBit = 0x08; } - if(!Demod.syncBit) { - if(bit & 0x04) { Demod.syncBit = 0x04; } - } - else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } - if(!Demod.syncBit) { - if(bit & 0x02) { Demod.syncBit = 0x02; } - } - else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } - if(!Demod.syncBit) { - if(bit & 0x01) { Demod.syncBit = 0x01; } - - if(Demod.syncBit && (Demod.buffer & 0x08)) { - Demod.syncBit = 0x08; - - // The first half bitperiod is expected in next sample - Demod.posCount = 0; - Demod.output[Demod.len] = 0xfb; - } - } - else if(bit & 0x01) { Demod.syncBit = 0x01; } - */ if(bit & 0x08) { Demod.syncBit = 0x08; @@ -484,7 +408,6 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; - Demod.parityBits = 0; Demod.samples = 0; if(Demod.posCount) { //if(trigger) LED_A_OFF(); // Not useful in this case... @@ -514,7 +437,6 @@ static RAMFUNC int ManchesterDecoding(int v) else { modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; - //modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; @@ -549,8 +471,6 @@ static RAMFUNC int ManchesterDecoding(int v) if(Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; - Demod.parityBits <<= 1; - Demod.parityBits ^= OddByteParity[0x0f]; Demod.state = DEMOD_UNSYNCD; // error = 0x0f; return TRUE; @@ -631,11 +551,9 @@ static RAMFUNC int ManchesterDecoding(int v) // Tag response does not need to be a complete byte! if(Demod.len > 0 || Demod.bitCount > 0) { if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF - Demod.shiftReg >>= (9 - Demod.bitCount); + Demod.shiftReg >>= (9 - Demod.bitCount); // right align data Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; } Demod.state = DEMOD_UNSYNCD; @@ -672,11 +590,6 @@ static RAMFUNC int ManchesterDecoding(int v) Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; - - // FOR ISO15639 PARITY NOT SEND OTA, JUST CALCULATE IT FOR THE CLIENT - Demod.parityBits <<= 1; - Demod.parityBits ^= OddByteParity[(Demod.shiftReg & 0xff)]; - Demod.bitCount = 0; Demod.shiftReg = 0; } @@ -710,7 +623,7 @@ static RAMFUNC int ManchesterDecoding(int v) } //============================================================================= -// Finally, a `sniffer' for ISO 14443 Type A +// Finally, a `sniffer' for iClass communication // Both sides of communication! //============================================================================= @@ -721,34 +634,34 @@ static RAMFUNC int ManchesterDecoding(int v) //----------------------------------------------------------------------------- void RAMFUNC SnoopIClass(void) { -// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values -// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values -// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values -// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values -// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values + // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a // response from the tag. - int triggered = FALSE; // FALSE to wait first for card + //int triggered = FALSE; // FALSE to wait first for card // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! - uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + #define ICLASS_BUFFER_SIZE 32 + uint8_t readerToTagCmd[ICLASS_BUFFER_SIZE]; // The response (tag -> reader) that we're receiving. - uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); - - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //uint8_t *trace = (uint8_t *)BigBuf; - - traceLen = 0; // uncommented to fix ISSUE 15 - gerhard - jan2011 - + uint8_t tagToReaderResponse[ICLASS_BUFFER_SIZE]; + + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + + // free all BigBuf memory + BigBuf_free(); // The DMA buffer, used to stream samples from the FPGA - int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; - int lastRxCounter; - int8_t *upTo; + uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); + + set_tracing(TRUE); + clear_trace(); + iso14a_set_trigger(FALSE); + + int lastRxCounter; + uint8_t *upTo; int smpl; int maxBehindBy = 0; @@ -757,10 +670,8 @@ void RAMFUNC SnoopIClass(void) int samples = 0; rsamples = 0; - memset(trace, 0x44, RECV_CMD_OFFSET); - // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; + Demod.output = tagToReaderResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; @@ -772,7 +683,7 @@ void RAMFUNC SnoopIClass(void) // And the reader -> tag commands memset(&Uart, 0, sizeof(Uart)); - Uart.output = receivedCmd; + Uart.output = readerToTagCmd; Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// Uart.state = STATE_UNSYNCD; @@ -782,6 +693,10 @@ void RAMFUNC SnoopIClass(void) FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + uint32_t time_0 = GetCountSspClk(); + uint32_t time_start = 0; + uint32_t time_stop = 0; + int div = 0; //int div2 = 0; int decbyte = 0; @@ -795,7 +710,7 @@ void RAMFUNC SnoopIClass(void) (DMA_BUFFER_SIZE-1); if(behindBy > maxBehindBy) { maxBehindBy = behindBy; - if(behindBy > 400) { + if(behindBy > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); goto done; } @@ -815,20 +730,13 @@ void RAMFUNC SnoopIClass(void) //samples += 4; samples += 1; - //div2++; - //if(div2 > 3) { - //div2 = 0; - //decbyte ^= ((smpl & 0x01) << (3 - div)); - //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1)) << (3 - div)); // better already... - //decbyte ^= (((smpl & 0x01) | ((smpl & 0x02) >> 1) | ((smpl & 0x04) >> 2)) << (3 - div)); // even better... if(smpl & 0xF) { decbyte ^= (1 << (3 - div)); } - //decbyte ^= (MajorityNibble[(smpl & 0x0F)] << (3 - div)); // FOR READER SIDE COMMUMICATION... - //decbyte ^= ((smpl & 0x10) << (3 - div)); + decbyter <<= 2; decbyter ^= (smpl & 0x30); @@ -836,30 +744,29 @@ void RAMFUNC SnoopIClass(void) if((div + 1) % 2 == 0) { smpl = decbyter; - if(MillerDecoding((smpl & 0xF0) >> 4)) { + if(OutOfNDecoding((smpl & 0xF0) >> 4)) { rsamples = samples - Uart.samples; + time_stop = (GetCountSspClk()-time_0) << 4; LED_C_ON(); - //if(triggered) { - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); - trace[traceLen++] = Uart.byteCnt; - memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); - traceLen += Uart.byteCnt; - if(traceLen > TRACE_LENGTH) break; - //} - /* And ready to receive another command. */ + + //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; + //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; + if(tracing) { + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(Uart.output, Uart.byteCnt, parity); + LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE); + } + + + /* And ready to receive another command. */ Uart.state = STATE_UNSYNCD; /* And also reset the demod code, which might have been */ /* false-triggered by the commands from the reader. */ Demod.state = DEMOD_UNSYNCD; LED_B_OFF(); Uart.byteCnt = 0; + }else{ + time_start = (GetCountSspClk()-time_0) << 4; } decbyter = 0; } @@ -867,31 +774,24 @@ void RAMFUNC SnoopIClass(void) if(div > 3) { smpl = decbyte; if(ManchesterDecoding(smpl & 0x0F)) { - rsamples = samples - Demod.samples; + time_stop = (GetCountSspClk()-time_0) << 4; + + rsamples = samples - Demod.samples; LED_B_ON(); - // timestamp, as a count of samples - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - // length - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedResponse, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) break; - - triggered = TRUE; + if(tracing) { + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(Demod.output, Demod.len, parity); + LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE); + } // And ready to receive another response. memset(&Demod, 0, sizeof(Demod)); - Demod.output = receivedResponse; + Demod.output = tagToReaderResponse; Demod.state = DEMOD_UNSYNCD; LED_C_OFF(); + }else{ + time_start = (GetCountSspClk()-time_0) << 4; } div = 0; @@ -908,15 +808,1258 @@ void RAMFUNC SnoopIClass(void) DbpString("COMMAND FINISHED"); Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); - Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); done: AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); - Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + Dbprintf("%x %x %x", Uart.byteCntMax, BigBuf_get_traceLen(), (int)Uart.output[0]); LED_A_OFF(); LED_B_OFF(); + LED_C_OFF(); + LED_D_OFF(); +} + +void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { + int i; + for(i = 0; i < 8; i++) { + rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); + } +} + +//----------------------------------------------------------------------------- +// Wait for commands from reader +// Stop when button is pressed +// Or return TRUE when command is captured +//----------------------------------------------------------------------------- +static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) +{ + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // Now run a `software UART' on the stream of incoming samples. + Uart.output = received; + Uart.byteCntMax = maxLen; + Uart.state = STATE_UNSYNCD; + + for(;;) { + WDT_HIT(); + + if(BUTTON_PRESS()) return FALSE; + + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + + if(OutOfNDecoding(b & 0x0f)) { + *len = Uart.byteCnt; + return TRUE; + } + } + } +} + +static uint8_t encode4Bits(const uint8_t b) +{ + uint8_t c = b & 0xF; + // OTA, the least significant bits first + // The columns are + // 1 - Bit value to send + // 2 - Reversed (big-endian) + // 3 - Encoded + // 4 - Hex values + + switch(c){ + // 1 2 3 4 + case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 + case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 + case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 + case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 + case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 + case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 + case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 + case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 + case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 + case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 + case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 + case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 + case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a + case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a + case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a + default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa + + } +} + +//----------------------------------------------------------------------------- +// Prepare tag messages +//----------------------------------------------------------------------------- +static void CodeIClassTagAnswer(const uint8_t *cmd, int len) +{ + + /* + * SOF comprises 3 parts; + * * An unmodulated time of 56.64 us + * * 24 pulses of 423.75 KHz (fc/32) + * * A logic 1, which starts with an unmodulated time of 18.88us + * followed by 8 pulses of 423.75kHz (fc/32) + * + * + * EOF comprises 3 parts: + * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated + * time of 18.88us. + * - 24 pulses of fc/32 + * - An unmodulated time of 56.64 us + * + * + * A logic 0 starts with 8 pulses of fc/32 + * followed by an unmodulated time of 256/fc (~18,88us). + * + * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by + * 8 pulses of fc/32 (also 18.88us) + * + * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, + * works like this. + * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). + * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us + * + * In this mode the SOF can be written as 00011101 = 0x1D + * The EOF can be written as 10111000 = 0xb8 + * A logic 1 is 01 + * A logic 0 is 10 + * + * */ + + int i; + + ToSendReset(); + + // Send SOF + ToSend[++ToSendMax] = 0x1D; + + for(i = 0; i < len; i++) { + uint8_t b = cmd[i]; + ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half + ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half + } + + // Send EOF + ToSend[++ToSendMax] = 0xB8; + //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end + // Convert from last byte pos to length + ToSendMax++; +} + +// Only SOF +static void CodeIClassTagSOF() +{ + //So far a dummy implementation, not used + //int lastProxToAirDuration =0; + + ToSendReset(); + // Send SOF + ToSend[++ToSendMax] = 0x1D; +// lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning + + // Convert from last byte pos to length + ToSendMax++; +} +#define MODE_SIM_CSN 0 +#define MODE_EXIT_AFTER_MAC 1 +#define MODE_FULLSIM 2 + +int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf); +/** + * @brief SimulateIClass simulates an iClass card. + * @param arg0 type of simulation + * - 0 uses the first 8 bytes in usb data as CSN + * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified + * in the usb data. This mode collects MAC from the reader, in order to do an offline + * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. + * - Other : Uses the default CSN (031fec8af7ff12e0) + * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) + * @param arg2 + * @param datain + */ +void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) +{ + uint32_t simType = arg0; + uint32_t numberOfCSNS = arg1; + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + + // Enable and clear the trace + set_tracing(TRUE); + clear_trace(); + //Use the emulator memory for SIM + uint8_t *emulator = BigBuf_get_EM_addr(); + + if(simType == 0) { + // Use the CSN from commandline + memcpy(emulator, datain, 8); + doIClassSimulation(MODE_SIM_CSN,NULL); + }else if(simType == 1) + { + //Default CSN + uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; + // Use the CSN from commandline + memcpy(emulator, csn_crc, 8); + doIClassSimulation(MODE_SIM_CSN,NULL); + } + else if(simType == 2) + { + + uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; + Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); + // In this mode, a number of csns are within datain. We'll simulate each one, one at a time + // in order to collect MAC's from the reader. This can later be used in an offlne-attack + // in order to obtain the keys, as in the "dismantling iclass"-paper. + int i = 0; + for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) + { + // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. + + memcpy(emulator, datain+(i*8), 8); + if(doIClassSimulation(MODE_EXIT_AFTER_MAC,mac_responses+i*8)) + { + cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); + return; // Button pressed + } + } + cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); + + }else if(simType == 3){ + //This is 'full sim' mode, where we use the emulator storage for data. + doIClassSimulation(MODE_FULLSIM, NULL); + } + else{ + // We may want a mode here where we hardcode the csns to use (from proxclone). + // That will speed things up a little, but not required just yet. + Dbprintf("The mode is not implemented, reserved for future use"); + } + Dbprintf("Done..."); + +} +void AppendCrc(uint8_t* data, int len) +{ + ComputeCrc14443(CRC_ICLASS,data,len,data+len,data+len+1); +} + +/** + * @brief Does the actual simulation + * @param csn - csn to use + * @param breakAfterMacReceived if true, returns after reader MAC has been received. + */ +int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) +{ + // free eventually allocated BigBuf memory + BigBuf_free_keep_EM(); + + State cipher_state; +// State cipher_state_reserve; + uint8_t *csn = BigBuf_get_EM_addr(); + uint8_t *emulator = csn; + uint8_t sof_data[] = { 0x0F} ; + // CSN followed by two CRC bytes + uint8_t anticoll_data[10] = { 0 }; + uint8_t csn_data[10] = { 0 }; + memcpy(csn_data,csn,sizeof(csn_data)); + Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); + + // Construct anticollision-CSN + rotateCSN(csn_data,anticoll_data); + + // Compute CRC on both CSNs + ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); + ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]); + + uint8_t diversified_key[8] = { 0 }; + // e-Purse + uint8_t card_challenge_data[8] = { 0x00 }; + if(simulationMode == MODE_FULLSIM) + { + //The diversified key should be stored on block 3 + //Get the diversified key from emulator memory + memcpy(diversified_key, emulator+(8*3),8); + + //Card challenge, a.k.a e-purse is on block 2 + memcpy(card_challenge_data,emulator + (8 * 2) , 8); + //Precalculate the cipher state, feeding it the CC + cipher_state = opt_doTagMAC_1(card_challenge_data,diversified_key); + + } + + int exitLoop = 0; + // Reader 0a + // Tag 0f + // Reader 0c + // Tag anticoll. CSN + // Reader 81 anticoll. CSN + // Tag CSN + + uint8_t *modulated_response; + int modulated_response_size = 0; + uint8_t* trace_data = NULL; + int trace_data_size = 0; + + + // Respond SOF -- takes 1 bytes + uint8_t *resp_sof = BigBuf_malloc(2); + int resp_sof_Len; + + // Anticollision CSN (rotated CSN) + // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) + uint8_t *resp_anticoll = BigBuf_malloc(28); + int resp_anticoll_len; + + // CSN + // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) + uint8_t *resp_csn = BigBuf_malloc(30); + int resp_csn_len; + + // e-Purse + // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) + uint8_t *resp_cc = BigBuf_malloc(20); + int resp_cc_len; + + uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); + int len; + + // Prepare card messages + ToSendMax = 0; + + // First card answer: SOF + CodeIClassTagSOF(); + memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; + + // Anticollision CSN + CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); + memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; + + // CSN + CodeIClassTagAnswer(csn_data, sizeof(csn_data)); + memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; + + // e-Purse + CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); + memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; + + //This is used for responding to READ-block commands or other data which is dynamically generated + //First the 'trace'-data, not encoded for FPGA + uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer + //Then storage for the modulated data + //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) + uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2); + + // Start from off (no field generated) + //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + //SpinDelay(200); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + SpinDelay(100); + StartCountSspClk(); + // We need to listen to the high-frequency, peak-detected path. + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaSetupSsc(); + + // To control where we are in the protocol + int cmdsRecvd = 0; + uint32_t time_0 = GetCountSspClk(); + uint32_t t2r_time =0; + uint32_t r2t_time =0; + + LED_A_ON(); + bool buttonPressed = false; + uint8_t response_delay = 1; + while(!exitLoop) { + response_delay = 1; + LED_B_OFF(); + //Signal tracer + // Can be used to get a trigger for an oscilloscope.. + LED_C_OFF(); + + if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { + buttonPressed = true; + break; + } + r2t_time = GetCountSspClk(); + //Signal tracer + LED_C_ON(); + + // Okay, look at the command now. + if(receivedCmd[0] == ICLASS_CMD_ACTALL ) { + // Reader in anticollission phase + modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1; + trace_data = sof_data; + trace_data_size = sizeof(sof_data); + } else if(receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { + // Reader asks for anticollission CSN + modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2; + trace_data = anticoll_data; + trace_data_size = sizeof(anticoll_data); + //DbpString("Reader requests anticollission CSN:"); + } else if(receivedCmd[0] == ICLASS_CMD_SELECT) { + // Reader selects anticollission CSN. + // Tag sends the corresponding real CSN + modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3; + trace_data = csn_data; + trace_data_size = sizeof(csn_data); + //DbpString("Reader selects anticollission CSN:"); + } else if(receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { + // Read e-purse (88 02) + modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; + trace_data = card_challenge_data; + trace_data_size = sizeof(card_challenge_data); + LED_B_ON(); + } else if(receivedCmd[0] == ICLASS_CMD_CHECK) { + // Reader random and reader MAC!!! + if(simulationMode == MODE_FULLSIM) + { + //NR, from reader, is in receivedCmd +1 + opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key); + + trace_data = data_generic_trace; + trace_data_size = 4; + CodeIClassTagAnswer(trace_data , trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + response_delay = 0;//We need to hurry here... + //exitLoop = true; + }else + { //Not fullsim, we don't respond + // We do not know what to answer, so lets keep quiet + modulated_response = resp_sof; modulated_response_size = 0; + trace_data = NULL; + trace_data_size = 0; + if (simulationMode == MODE_EXIT_AFTER_MAC){ + // dbprintf:ing ... + Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" + ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); + Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, + receivedCmd[0], receivedCmd[1], receivedCmd[2], + receivedCmd[3], receivedCmd[4], receivedCmd[5], + receivedCmd[6], receivedCmd[7], receivedCmd[8]); + if (reader_mac_buf != NULL) + { + memcpy(reader_mac_buf,receivedCmd+1,8); + } + exitLoop = true; + } + } + + } else if(receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { + // Reader ends the session + modulated_response = resp_sof; modulated_response_size = 0; //order = 0; + trace_data = NULL; + trace_data_size = 0; + } else if(simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){ + //Read block + uint16_t blk = receivedCmd[1]; + //Take the data... + memcpy(data_generic_trace, emulator+(blk << 3),8); + //Add crc + AppendCrc(data_generic_trace, 8); + trace_data = data_generic_trace; + trace_data_size = 10; + CodeIClassTagAnswer(trace_data , trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + }else if(receivedCmd[0] == ICLASS_CMD_UPDATE && simulationMode == MODE_FULLSIM) + {//Probably the reader wants to update the nonce. Let's just ignore that for now. + // OBS! If this is implemented, don't forget to regenerate the cipher_state + //We're expected to respond with the data+crc, exactly what's already in the receivedcmd + //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| + + //Take the data... + memcpy(data_generic_trace, receivedCmd+2,8); + //Add crc + AppendCrc(data_generic_trace, 8); + trace_data = data_generic_trace; + trace_data_size = 10; + CodeIClassTagAnswer(trace_data , trace_data_size); + memcpy(data_response, ToSend, ToSendMax); + modulated_response = data_response; + modulated_response_size = ToSendMax; + } + else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) + {//Pagesel + //Pagesel enables to select a page in the selected chip memory and return its configuration block + //Chips with a single page will not answer to this command + // It appears we're fine ignoring this. + //Otherwise, we should answer 8bytes (block) + 2bytes CRC + } + else { + //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 + // Never seen this command before + Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", + len, + receivedCmd[0], receivedCmd[1], receivedCmd[2], + receivedCmd[3], receivedCmd[4], receivedCmd[5], + receivedCmd[6], receivedCmd[7], receivedCmd[8]); + // Do not respond + modulated_response = resp_sof; modulated_response_size = 0; //order = 0; + trace_data = NULL; + trace_data_size = 0; + } + + if(cmdsRecvd > 100) { + //DbpString("100 commands later..."); + //break; + } + else { + cmdsRecvd++; + } + /** + A legit tag has about 380us delay between reader EOT and tag SOF. + **/ + if(modulated_response_size > 0) { + SendIClassAnswer(modulated_response, modulated_response_size, response_delay); + t2r_time = GetCountSspClk(); + } + + if (tracing) { + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(receivedCmd, len, parity); + LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE); + + if (trace_data != NULL) { + GetParity(trace_data, trace_data_size, parity); + LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE); + } + if(!tracing) { + DbpString("Trace full"); + //break; + } + + } + } + + //Dbprintf("%x", cmdsRecvd); + LED_A_OFF(); + LED_B_OFF(); LED_C_OFF(); - LED_D_OFF(); + + if(buttonPressed) + { + DbpString("Button pressed"); + } + return buttonPressed; } +static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) +{ + int i = 0, d=0;//, u = 0, d = 0; + uint8_t b = 0; + + //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); + + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(); + while(!BUTTON_PRESS()) { + if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ + b = AT91C_BASE_SSC->SSC_RHR; (void) b; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ + b = 0x00; + if(d < delay) { + d++; + } + else { + if( i < respLen){ + b = resp[i]; + //Hack + //b = 0xAC; + } + i++; + } + AT91C_BASE_SSC->SSC_THR = b; + } + +// if (i > respLen +4) break; + if (i > respLen +1) break; + } + + return 0; +} + +/// THE READER CODE + +//----------------------------------------------------------------------------- +// Transmit the command (to the tag) that was placed in ToSend[]. +//----------------------------------------------------------------------------- +static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) +{ + int c; + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(); + + if (wait) + { + if(*wait < 10) *wait = 10; + + for(c = 0; c < *wait;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! + c++; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + + } + + + uint8_t sendbyte; + bool firstpart = TRUE; + c = 0; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + + // DOUBLE THE SAMPLES! + if(firstpart) { + sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); + } + else { + sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); + c++; + } + if(sendbyte == 0xff) { + sendbyte = 0xfe; + } + AT91C_BASE_SSC->SSC_THR = sendbyte; + firstpart = !firstpart; + + if(c >= len) { + break; + } + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + if (samples && wait) *samples = (c + *wait) << 3; +} + + +//----------------------------------------------------------------------------- +// Prepare iClass reader command to send to FPGA +//----------------------------------------------------------------------------- +void CodeIClassCommand(const uint8_t * cmd, int len) +{ + int i, j, k; + uint8_t b; + + ToSendReset(); + + // Start of Communication: 1 out of 4 + ToSend[++ToSendMax] = 0xf0; + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0x0f; + ToSend[++ToSendMax] = 0x00; + + // Modulate the bytes + for (i = 0; i < len; i++) { + b = cmd[i]; + for(j = 0; j < 4; j++) { + for(k = 0; k < 4; k++) { + if(k == (b & 3)) { + ToSend[++ToSendMax] = 0xf0; + } + else { + ToSend[++ToSendMax] = 0x00; + } + } + b >>= 2; + } + } + + // End of Communication + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0x00; + ToSend[++ToSendMax] = 0xf0; + ToSend[++ToSendMax] = 0x00; + + // Convert from last character reference to length + ToSendMax++; +} + +void ReaderTransmitIClass(uint8_t* frame, int len) +{ + int wait = 0; + int samples = 0; + + // This is tied to other size changes + CodeIClassCommand(frame,len); + + // Select the card + TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); + if(trigger) + LED_A_ON(); + + // Store reader command in buffer + if (tracing) { + uint8_t par[MAX_PARITY_SIZE]; + GetParity(frame, len, par); + LogTrace(frame, len, rsamples, rsamples, par, TRUE); + } +} + +//----------------------------------------------------------------------------- +// Wait a certain time for tag response +// If a response is captured return TRUE +// If it takes too long return FALSE +//----------------------------------------------------------------------------- +static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer +{ + // buffer needs to be 512 bytes + int c; + + // Set FPGA mode to "reader listen mode", no modulation (listen + // only, since we are receiving, not transmitting). + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); + + // Now get the answer from the card + Demod.output = receivedResponse; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; + + uint8_t b; + if (elapsed) *elapsed = 0; + + bool skip = FALSE; + + c = 0; + for(;;) { + WDT_HIT(); + + if(BUTTON_PRESS()) return FALSE; + + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! + if (elapsed) (*elapsed)++; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + if(c < timeout) { c++; } else { return FALSE; } + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + skip = !skip; + if(skip) continue; + + if(ManchesterDecoding(b & 0x0f)) { + *samples = c << 3; + return TRUE; + } + } + } +} + +int ReaderReceiveIClass(uint8_t* receivedAnswer) +{ + int samples = 0; + if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; + rsamples += samples; + if (tracing) { + uint8_t parity[MAX_PARITY_SIZE]; + GetParity(receivedAnswer, Demod.len, parity); + LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE); + } + if(samples == 0) return FALSE; + return Demod.len; +} + +void setupIclassReader() +{ + FpgaDownloadAndGo(FPGA_BITSTREAM_HF); + // Reset trace buffer + set_tracing(TRUE); + clear_trace(); + + // Setup SSC + FpgaSetupSsc(); + // Start from off (no field generated) + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + + // Now give it time to spin up. + // Signal field is on with the appropriate LED + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + SpinDelay(200); + LED_A_ON(); + +} + +bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) +{ + while(retries-- > 0) + { + ReaderTransmitIClass(command, cmdsize); + if(expected_size == ReaderReceiveIClass(resp)){ + return true; + } + } + return false;//Error +} + +/** + * @brief Talks to an iclass tag, sends the commands to get CSN and CC. + * @param card_data where the CSN and CC are stored for return + * @return 0 = fail + * 1 = Got CSN + * 2 = Got CSN and CC + */ +uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) +{ + static uint8_t act_all[] = { 0x0a }; + //static uint8_t identify[] = { 0x0c }; + static uint8_t identify[] = { 0x0c, 0x00, 0x73, 0x33 }; + static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + static uint8_t readcheck_cc[]= { 0x88, 0x02 }; + if (use_credit_key) + readcheck_cc[0] = 0x18; + else + readcheck_cc[0] = 0x88; + + uint8_t resp[ICLASS_BUFFER_SIZE]; + + uint8_t read_status = 0; + + // Send act_all + ReaderTransmitIClass(act_all, 1); + // Card present? + if(!ReaderReceiveIClass(resp)) return read_status;//Fail + //Send Identify + ReaderTransmitIClass(identify, 1); + //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC + uint8_t len = ReaderReceiveIClass(resp); + if(len != 10) return read_status;//Fail + + //Copy the Anti-collision CSN to our select-packet + memcpy(&select[1],resp,8); + //Select the card + ReaderTransmitIClass(select, sizeof(select)); + //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC + len = ReaderReceiveIClass(resp); + if(len != 10) return read_status;//Fail + + //Success - level 1, we got CSN + //Save CSN in response data + memcpy(card_data,resp,8); + + //Flag that we got to at least stage 1, read CSN + read_status = 1; + + // Card selected, now read e-purse (cc) (only 8 bytes no CRC) + ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); + if(ReaderReceiveIClass(resp) == 8) { + //Save CC (e-purse) in response data + memcpy(card_data+8,resp,8); + read_status++; + } + + return read_status; +} +uint8_t handshakeIclassTag(uint8_t *card_data) { + return handshakeIclassTag_ext(card_data, false); +} + + +// Reader iClass Anticollission +void ReaderIClass(uint8_t arg0) { + + uint8_t card_data[6 * 8]={0}; + memset(card_data, 0xFF, sizeof(card_data)); + uint8_t last_csn[8]={0,0,0,0,0,0,0,0}; + uint8_t resp[ICLASS_BUFFER_SIZE]; + memset(resp, 0xFF, sizeof(resp)); + //Read conf block CRC(0x01) => 0xfa 0x22 + uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x01, 0xfa, 0x22}; + //Read App Issuer Area block CRC(0x05) => 0xde 0x64 + uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY,0x05, 0xde, 0x64}; + + int read_status= 0; + uint8_t result_status = 0; + // flag to read until one tag is found successfully + bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; + // flag to only try 5 times to find one tag then return + bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; + // if neither abort_after_read nor try_once then continue reading until button pressed. + + bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY; + // test flags for what blocks to be sure to read + uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; + uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC; + uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA; + + set_tracing(true); + setupIclassReader(); + + uint16_t tryCnt=0; + bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); + while(!userCancelled) + { + // if only looking for one card try 2 times if we missed it the first time + if (try_once && tryCnt > 2) break; + tryCnt++; + if(!tracing) { + DbpString("Trace full"); + break; + } + WDT_HIT(); + + read_status = handshakeIclassTag_ext(card_data, use_credit_key); + + if(read_status == 0) continue; + if(read_status == 1) result_status = FLAG_ICLASS_READER_CSN; + if(read_status == 2) result_status = FLAG_ICLASS_READER_CSN|FLAG_ICLASS_READER_CC; + + // handshakeIclass returns CSN|CC, but the actual block + // layout is CSN|CONFIG|CC, so here we reorder the data, + // moving CC forward 8 bytes + memcpy(card_data+16,card_data+8, 8); + //Read block 1, config + if(flagReadConfig) { + if(sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) + { + result_status |= FLAG_ICLASS_READER_CONF; + memcpy(card_data+8, resp, 8); + } else { + Dbprintf("Failed to dump config block"); + } + } + + //Read block 5, AA + if(flagReadAA) { + if(sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) + { + result_status |= FLAG_ICLASS_READER_AA; + memcpy(card_data+(8*5), resp, 8); + } else { + //Dbprintf("Failed to dump AA block"); + } + } + + // 0 : CSN + // 1 : Configuration + // 2 : e-purse + // (3,4 write-only, kc and kd) + // 5 Application issuer area + // + //Then we can 'ship' back the 8 * 6 bytes of data, + // with 0xFF:s in block 3 and 4. + + LED_B_ON(); + //Send back to client, but don't bother if we already sent this - + // only useful if looping in arm (not try_once && not abort_after_read) + if(memcmp(last_csn, card_data, 8) != 0) + { + // If caller requires that we get Conf, CC, AA, continue until we got it + if( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) { + cmd_send(CMD_ACK,result_status,0,0,card_data,sizeof(card_data)); + if(abort_after_read) { + LED_A_OFF(); + LED_B_OFF(); + return; + } + //Save that we already sent this.... + memcpy(last_csn, card_data, 8); + } + + } + LED_B_OFF(); + userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); + } + if (userCancelled) { + cmd_send(CMD_ACK,0xFF,0,0,card_data, 0); + } else { + cmd_send(CMD_ACK,0,0,0,card_data, 0); + } + LED_A_OFF(); +} + +void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { + + uint8_t card_data[USB_CMD_DATA_SIZE]={0}; + uint16_t block_crc_LUT[255] = {0}; + + {//Generate a lookup table for block crc + for(int block = 0; block < 255; block++){ + char bl = block; + block_crc_LUT[block] = iclass_crc16(&bl ,1); + } + } + //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); + + uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; + + uint16_t crc = 0; + uint8_t cardsize=0; + uint8_t mem=0; + + static struct memory_t{ + int k16; + int book; + int k2; + int lockauth; + int keyaccess; + } memory; + + uint8_t resp[ICLASS_BUFFER_SIZE]; + + setupIclassReader(); + set_tracing(TRUE); + + while(!BUTTON_PRESS()) { + + WDT_HIT(); + + if(!tracing) { + DbpString("Trace full"); + break; + } + + uint8_t read_status = handshakeIclassTag(card_data); + if(read_status < 2) continue; + + //for now replay captured auth (as cc not updated) + memcpy(check+5,MAC,4); + + if(!sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5)) + { + Dbprintf("Error: Authentication Fail!"); + continue; + } + + //first get configuration block (block 1) + crc = block_crc_LUT[1]; + read[1]=1; + read[2] = crc >> 8; + read[3] = crc & 0xff; + + if(!sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) + { + Dbprintf("Dump config (block 1) failed"); + continue; + } + + mem=resp[5]; + memory.k16= (mem & 0x80); + memory.book= (mem & 0x20); + memory.k2= (mem & 0x8); + memory.lockauth= (mem & 0x2); + memory.keyaccess= (mem & 0x1); + + cardsize = memory.k16 ? 255 : 32; + WDT_HIT(); + //Set card_data to all zeroes, we'll fill it with data + memset(card_data,0x0,USB_CMD_DATA_SIZE); + uint8_t failedRead =0; + uint32_t stored_data_length =0; + //then loop around remaining blocks + for(int block=0; block < cardsize; block++){ + + read[1]= block; + crc = block_crc_LUT[block]; + read[2] = crc >> 8; + read[3] = crc & 0xff; + + if(sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) + { + Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", + block, resp[0], resp[1], resp[2], + resp[3], resp[4], resp[5], + resp[6], resp[7]); + + //Fill up the buffer + memcpy(card_data+stored_data_length,resp,8); + stored_data_length += 8; + if(stored_data_length +8 > USB_CMD_DATA_SIZE) + {//Time to send this off and start afresh + cmd_send(CMD_ACK, + stored_data_length,//data length + failedRead,//Failed blocks? + 0,//Not used ATM + card_data, stored_data_length); + //reset + stored_data_length = 0; + failedRead = 0; + } + + }else{ + failedRead = 1; + stored_data_length +=8;//Otherwise, data becomes misaligned + Dbprintf("Failed to dump block %d", block); + } + } + + //Send off any remaining data + if(stored_data_length > 0) + { + cmd_send(CMD_ACK, + stored_data_length,//data length + failedRead,//Failed blocks? + 0,//Not used ATM + card_data, stored_data_length); + } + //If we got here, let's break + break; + } + //Signal end of transmission + cmd_send(CMD_ACK, + 0,//data length + 0,//Failed blocks? + 0,//Not used ATM + card_data, 0); + + LED_A_OFF(); +} + +void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) { + uint8_t readcheck[] = { keyType, blockNo }; + uint8_t resp[] = {0,0,0,0,0,0,0,0}; + size_t isOK = 0; + isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6); + cmd_send(CMD_ACK,isOK,0,0,0,0); +} + +void iClass_Authentication(uint8_t *MAC) { + uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + uint8_t resp[ICLASS_BUFFER_SIZE]; + memcpy(check+5,MAC,4); + bool isOK; + isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); + cmd_send(CMD_ACK,isOK,0,0,0,0); +} +bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { + uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? + char bl = blockNo; + uint16_t rdCrc = iclass_crc16(&bl, 1); + readcmd[2] = rdCrc >> 8; + readcmd[3] = rdCrc & 0xff; + uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + + //readcmd[1] = blockNo; + isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10); + memcpy(readdata, resp, sizeof(resp)); + + return isOK; +} + +void iClass_ReadBlk(uint8_t blockno) { + uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + isOK = iClass_ReadBlock(blockno, readblockdata); + cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); +} + +void iClass_Dump(uint8_t blockno, uint8_t numblks) { + uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + uint8_t blkCnt = 0; + + BigBuf_free(); + uint8_t *dataout = BigBuf_malloc(255*8); + if (dataout == NULL){ + Dbprintf("out of memory"); + OnError(1); + return; + } + memset(dataout,0xFF,255*8); + + for (;blkCnt < numblks; blkCnt++) { + isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); + if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again + isOK = iClass_ReadBlock(blockno+blkCnt, readblockdata); + if (!isOK) { + Dbprintf("Block %02X failed to read", blkCnt+blockno); + break; + } + } + memcpy(dataout+(blkCnt*8),readblockdata,8); + } + //return pointer to dump memory in arg3 + cmd_send(CMD_ACK,isOK,blkCnt,BigBuf_max_traceLen(),0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); + BigBuf_free(); +} + +bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { + uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; + //uint8_t readblockdata[10]; + //write[1] = blockNo; + memcpy(write+2, data, 12); // data + mac + char *wrCmd = (char *)(write+1); + uint16_t wrCrc = iclass_crc16(wrCmd, 13); + write[14] = wrCrc >> 8; + write[15] = wrCrc & 0xff; + uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; + bool isOK = false; + + isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); + if (isOK) { //if reader responded correctly + //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); + if (memcmp(write+2,resp,8)) { //if response is not equal to write values + if (blockNo != 3 && blockNo != 4) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) + //error try again + isOK = sendCmdGetResponseWithRetries(write,sizeof(write),resp,sizeof(resp),10); + } + + } + } + return isOK; +} + +void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { + bool isOK = iClass_WriteBlock_ext(blockNo, data); + if (isOK){ + Dbprintf("Write block [%02x] successful",blockNo); + } else { + Dbprintf("Write block [%02x] failed",blockNo); + } + cmd_send(CMD_ACK,isOK,0,0,0,0); +} + +void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { + int i; + int written = 0; + int total_block = (endblock - startblock) + 1; + for (i = 0; i < total_block;i++){ + // block number + if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ + Dbprintf("Write block [%02x] successful",i + startblock); + written++; + } else { + if (iClass_WriteBlock_ext(i+startblock, data+(i*12))){ + Dbprintf("Write block [%02x] successful",i + startblock); + written++; + } else { + Dbprintf("Write block [%02x] failed",i + startblock); + } + } + } + if (written == total_block) + Dbprintf("Clone complete"); + else + Dbprintf("Clone incomplete"); + + cmd_send(CMD_ACK,1,0,0,0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); +}