X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/84c02e97e0925a44daece47ce19c265e22d5c772..2f2002ad52e288ffcb79ea2a3bc652cd61e302e5:/armsrc/iso14443a.c?ds=inline diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index d39fbdd4..c0bdb742 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -1,1694 +1,1860 @@ -//----------------------------------------------------------------------------- -// Routines to support ISO 14443 type A. -// -// Gerhard de Koning Gans - May 2008 -//----------------------------------------------------------------------------- -#include -#include "apps.h" -#include "../common/iso14443_crc.c" - -static BYTE *trace = (BYTE *) BigBuf; -static int traceLen = 0; -static int rsamples = 0; - -typedef enum { - SEC_D = 1, - SEC_E = 2, - SEC_F = 3, - SEC_X = 4, - SEC_Y = 5, - SEC_Z = 6 -} SecType; - -static const BYTE OddByteParity[256] = { - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 -}; - -// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT -#define RECV_CMD_OFFSET 3032 -#define RECV_RES_OFFSET 3096 -#define DMA_BUFFER_OFFSET 3160 -#define DMA_BUFFER_SIZE 4096 -#define TRACE_LENGTH 3000 - -//----------------------------------------------------------------------------- -// Generate the parity value for a byte sequence -// -//----------------------------------------------------------------------------- -DWORD GetParity(const BYTE * pbtCmd, int iLen) -{ - int i; - DWORD dwPar = 0; - - // Generate the encrypted data - for (i = 0; i < iLen; i++) { - // Save the encrypted parity bit - dwPar |= ((OddByteParity[pbtCmd[i]]) << i); - } - return dwPar; -} - -static void AppendCrc14443a(BYTE* data, int len) -{ - ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); -} - -BOOL LogTrace(const BYTE * btBytes, int iLen, int iSamples, DWORD dwParity, BOOL bReader) -{ - // Return when trace is full - if (traceLen >= TRACE_LENGTH) return FALSE; - - // Trace the random, i'm curious - rsamples += iSamples; - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = ((rsamples >> 24) & 0xff); - if (!bReader) { - trace[traceLen - 1] |= 0x80; - } - trace[traceLen++] = ((dwParity >> 0) & 0xff); - trace[traceLen++] = ((dwParity >> 8) & 0xff); - trace[traceLen++] = ((dwParity >> 16) & 0xff); - trace[traceLen++] = ((dwParity >> 24) & 0xff); - trace[traceLen++] = iLen; - memcpy(trace + traceLen, btBytes, iLen); - traceLen += iLen; - return TRUE; -} - -//----------------------------------------------------------------------------- -// The software UART that receives commands from the reader, and its state -// variables. -//----------------------------------------------------------------------------- -static struct { - enum { - STATE_UNSYNCD, - STATE_START_OF_COMMUNICATION, - STATE_MILLER_X, - STATE_MILLER_Y, - STATE_MILLER_Z, - STATE_ERROR_WAIT - } state; - WORD shiftReg; - int bitCnt; - int byteCnt; - int byteCntMax; - int posCnt; - int syncBit; - int parityBits; - int samples; - int highCnt; - int bitBuffer; - enum { - DROP_NONE, - DROP_FIRST_HALF, - DROP_SECOND_HALF - } drop; - BYTE *output; -} Uart; - -static BOOL MillerDecoding(int bit) -{ - int error = 0; - int bitright; - - if(!Uart.bitBuffer) { - Uart.bitBuffer = bit ^ 0xFF0; - return FALSE; - } - else { - Uart.bitBuffer <<= 4; - Uart.bitBuffer ^= bit; - } - - BOOL EOC = FALSE; - - if(Uart.state != STATE_UNSYNCD) { - Uart.posCnt++; - - if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { - bit = 0x00; - } - else { - bit = 0x01; - } - if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { - bitright = 0x00; - } - else { - bitright = 0x01; - } - if(bit != bitright) { bit = bitright; } - - if(Uart.posCnt == 1) { - // measurement first half bitperiod - if(!bit) { - Uart.drop = DROP_FIRST_HALF; - } - } - else { - // measurement second half bitperiod - if(!bit & (Uart.drop == DROP_NONE)) { - Uart.drop = DROP_SECOND_HALF; - } - else if(!bit) { - // measured a drop in first and second half - // which should not be possible - Uart.state = STATE_ERROR_WAIT; - error = 0x01; - } - - Uart.posCnt = 0; - - switch(Uart.state) { - case STATE_START_OF_COMMUNICATION: - Uart.shiftReg = 0; - if(Uart.drop == DROP_SECOND_HALF) { - // error, should not happen in SOC - Uart.state = STATE_ERROR_WAIT; - error = 0x02; - } - else { - // correct SOC - Uart.state = STATE_MILLER_Z; - } - break; - - case STATE_MILLER_Z: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; - } - // if(Uart.drop == DROP_FIRST_HALF) { - // Uart.state = STATE_MILLER_Z; stay the same - // we see a logic '0' } - if(Uart.drop == DROP_SECOND_HALF) { - // we see a logic '1' - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; - } - break; - - case STATE_MILLER_X: - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // sequence Y, we see a '0' - Uart.state = STATE_MILLER_Y; - Uart.bitCnt++; - } - if(Uart.drop == DROP_FIRST_HALF) { - // Would be STATE_MILLER_Z - // but Z does not follow X, so error - Uart.state = STATE_ERROR_WAIT; - error = 0x03; - } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and stay in state X - Uart.shiftReg |= 0x100; - Uart.bitCnt++; - } - break; - - case STATE_MILLER_Y: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; - } - if(Uart.drop == DROP_FIRST_HALF) { - // we see a '0' - Uart.state = STATE_MILLER_Z; - } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and go to state X - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; - } - break; - - case STATE_ERROR_WAIT: - // That went wrong. Now wait for at least two bit periods - // and try to sync again - if(Uart.drop == DROP_NONE) { - Uart.highCnt = 6; - Uart.state = STATE_UNSYNCD; - } - break; - - default: - Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - break; - } - - Uart.drop = DROP_NONE; - - // should have received at least one whole byte... - if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { - return TRUE; - } - - if(Uart.bitCnt == 9) { - Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); - Uart.byteCnt++; - - Uart.parityBits <<= 1; - Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); - - if(EOC) { - // when End of Communication received and - // all data bits processed.. - return TRUE; - } - Uart.bitCnt = 0; - } - - /*if(error) { - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = error & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - return TRUE; - }*/ - } - - } - else { - bit = Uart.bitBuffer & 0xf0; - bit >>= 4; - bit ^= 0x0F; - if(bit) { - // should have been high or at least (4 * 128) / fc - // according to ISO this should be at least (9 * 128 + 20) / fc - if(Uart.highCnt == 8) { - // we went low, so this could be start of communication - // it turns out to be safer to choose a less significant - // syncbit... so we check whether the neighbour also represents the drop - Uart.posCnt = 1; // apparently we are busy with our first half bit period - Uart.syncBit = bit & 8; - Uart.samples = 3; - if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } - else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } - if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } - else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } - if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; - if(Uart.syncBit & (Uart.bitBuffer & 8)) { - Uart.syncBit = 8; - - // the first half bit period is expected in next sample - Uart.posCnt = 0; - Uart.samples = 3; - } - } - else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } - - Uart.syncBit <<= 4; - Uart.state = STATE_START_OF_COMMUNICATION; - Uart.drop = DROP_FIRST_HALF; - Uart.bitCnt = 0; - Uart.byteCnt = 0; - Uart.parityBits = 0; - error = 0; - } - else { - Uart.highCnt = 0; - } - } - else { - if(Uart.highCnt < 8) { - Uart.highCnt++; - } - } - } - - return FALSE; -} - -//============================================================================= -// ISO 14443 Type A - Manchester -//============================================================================= - -static struct { - enum { - DEMOD_UNSYNCD, - DEMOD_START_OF_COMMUNICATION, - DEMOD_MANCHESTER_D, - DEMOD_MANCHESTER_E, - DEMOD_MANCHESTER_F, - DEMOD_ERROR_WAIT - } state; - int bitCount; - int posCount; - int syncBit; - int parityBits; - WORD shiftReg; - int buffer; - int buff; - int samples; - int len; - enum { - SUB_NONE, - SUB_FIRST_HALF, - SUB_SECOND_HALF - } sub; - BYTE *output; -} Demod; - -static BOOL ManchesterDecoding(int v) -{ - int bit; - int modulation; - int error = 0; - - if(!Demod.buff) { - Demod.buff = 1; - Demod.buffer = v; - return FALSE; - } - else { - bit = Demod.buffer; - Demod.buffer = v; - } - - if(Demod.state==DEMOD_UNSYNCD) { - Demod.output[Demod.len] = 0xfa; - Demod.syncBit = 0; - //Demod.samples = 0; - Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part - if(bit & 0x08) { Demod.syncBit = 0x08; } - if(!Demod.syncBit) { - if(bit & 0x04) { Demod.syncBit = 0x04; } - } - else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } - if(!Demod.syncBit) { - if(bit & 0x02) { Demod.syncBit = 0x02; } - } - else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } - if(!Demod.syncBit) { - if(bit & 0x01) { Demod.syncBit = 0x01; } - - if(Demod.syncBit & (Demod.buffer & 0x08)) { - Demod.syncBit = 0x08; - - // The first half bitperiod is expected in next sample - Demod.posCount = 0; - Demod.output[Demod.len] = 0xfb; - } - } - else if(bit & 0x01) { Demod.syncBit = 0x01; } - - if(Demod.syncBit) { - Demod.len = 0; - Demod.state = DEMOD_START_OF_COMMUNICATION; - Demod.sub = SUB_FIRST_HALF; - Demod.bitCount = 0; - Demod.shiftReg = 0; - Demod.parityBits = 0; - Demod.samples = 0; - if(Demod.posCount) { - switch(Demod.syncBit) { - case 0x08: Demod.samples = 3; break; - case 0x04: Demod.samples = 2; break; - case 0x02: Demod.samples = 1; break; - case 0x01: Demod.samples = 0; break; - } - } - error = 0; - } - } - else { - //modulation = bit & Demod.syncBit; - modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; - - Demod.samples += 4; - - if(Demod.posCount==0) { - Demod.posCount = 1; - if(modulation) { - Demod.sub = SUB_FIRST_HALF; - } - else { - Demod.sub = SUB_NONE; - } - } - else { - Demod.posCount = 0; - if(modulation && (Demod.sub == SUB_FIRST_HALF)) { - if(Demod.state!=DEMOD_ERROR_WAIT) { - Demod.state = DEMOD_ERROR_WAIT; - Demod.output[Demod.len] = 0xaa; - error = 0x01; - } - } - else if(modulation) { - Demod.sub = SUB_SECOND_HALF; - } - - switch(Demod.state) { - case DEMOD_START_OF_COMMUNICATION: - if(Demod.sub == SUB_FIRST_HALF) { - Demod.state = DEMOD_MANCHESTER_D; - } - else { - Demod.output[Demod.len] = 0xab; - Demod.state = DEMOD_ERROR_WAIT; - error = 0x02; - } - break; - - case DEMOD_MANCHESTER_D: - case DEMOD_MANCHESTER_E: - if(Demod.sub == SUB_FIRST_HALF) { - Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; - Demod.state = DEMOD_MANCHESTER_D; - } - else if(Demod.sub == SUB_SECOND_HALF) { - Demod.bitCount++; - Demod.shiftReg >>= 1; - Demod.state = DEMOD_MANCHESTER_E; - } - else { - Demod.state = DEMOD_MANCHESTER_F; - } - break; - - case DEMOD_MANCHESTER_F: - // Tag response does not need to be a complete byte! - if(Demod.len > 0 || Demod.bitCount > 0) { - if(Demod.bitCount > 0) { - Demod.shiftReg >>= (9 - Demod.bitCount); - Demod.output[Demod.len] = Demod.shiftReg & 0xff; - Demod.len++; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; - } - - Demod.state = DEMOD_UNSYNCD; - return TRUE; - } - else { - Demod.output[Demod.len] = 0xad; - Demod.state = DEMOD_ERROR_WAIT; - error = 0x03; - } - break; - - case DEMOD_ERROR_WAIT: - Demod.state = DEMOD_UNSYNCD; - break; - - default: - Demod.output[Demod.len] = 0xdd; - Demod.state = DEMOD_UNSYNCD; - break; - } - - if(Demod.bitCount>=9) { - Demod.output[Demod.len] = Demod.shiftReg & 0xff; - Demod.len++; - - Demod.parityBits <<= 1; - Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); - - Demod.bitCount = 0; - Demod.shiftReg = 0; - } - - /*if(error) { - Demod.output[Demod.len] = 0xBB; - Demod.len++; - Demod.output[Demod.len] = error & 0xFF; - Demod.len++; - Demod.output[Demod.len] = 0xBB; - Demod.len++; - Demod.output[Demod.len] = bit & 0xFF; - Demod.len++; - Demod.output[Demod.len] = Demod.buffer & 0xFF; - Demod.len++; - Demod.output[Demod.len] = Demod.syncBit & 0xFF; - Demod.len++; - Demod.output[Demod.len] = 0xBB; - Demod.len++; - return TRUE; - }*/ - - } - - } // end (state != UNSYNCED) - - return FALSE; -} - -//============================================================================= -// Finally, a `sniffer' for ISO 14443 Type A -// Both sides of communication! -//============================================================================= - -//----------------------------------------------------------------------------- -// Record the sequence of commands sent by the reader to the tag, with -// triggering so that we start recording at the point that the tag is moved -// near the reader. -//----------------------------------------------------------------------------- -void SnoopIso14443a(void) -{ -// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values -// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values -// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values -// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values -// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values - - // We won't start recording the frames that we acquire until we trigger; - // a good trigger condition to get started is probably when we see a - // response from the tag. - BOOL triggered = TRUE; // FALSE to wait first for card - - // The command (reader -> tag) that we're receiving. - // The length of a received command will in most cases be no more than 18 bytes. - // So 32 should be enough! - BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET); - // The response (tag -> reader) that we're receiving. - BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET); - - // As we receive stuff, we copy it from receivedCmd or receivedResponse - // into trace, along with its length and other annotations. - //BYTE *trace = (BYTE *)BigBuf; - //int traceLen = 0; - - // The DMA buffer, used to stream samples from the FPGA - SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET; - int lastRxCounter; - SBYTE *upTo; - int smpl; - int maxBehindBy = 0; - - // Count of samples received so far, so that we can include timing - // information in the trace buffer. - int samples = 0; - int rsamples = 0; - - memset(trace, 0x44, RECV_CMD_OFFSET); - - // Set up the demodulator for tag -> reader responses. - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - - // And the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); - Uart.output = receivedCmd; - Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// - Uart.state = STATE_UNSYNCD; - - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - - // Setup for the DMA. - FpgaSetupSsc(); - upTo = dmaBuf; - lastRxCounter = DMA_BUFFER_SIZE; - FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE); - - LED_A_ON(); - - // And now we loop, receiving samples. - for(;;) { - WDT_HIT(); - int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & - (DMA_BUFFER_SIZE-1); - if(behindBy > maxBehindBy) { - maxBehindBy = behindBy; - if(behindBy > 400) { - DbpString("blew circular buffer!"); - goto done; - } - } - if(behindBy < 1) continue; - - smpl = upTo[0]; - upTo++; - lastRxCounter -= 1; - if(upTo - dmaBuf > DMA_BUFFER_SIZE) { - upTo -= DMA_BUFFER_SIZE; - lastRxCounter += DMA_BUFFER_SIZE; - AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo; - AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; - } - - samples += 4; -#define HANDLE_BIT_IF_BODY \ - LED_C_ON(); \ - if(triggered) { \ - trace[traceLen++] = ((rsamples >> 0) & 0xff); \ - trace[traceLen++] = ((rsamples >> 8) & 0xff); \ - trace[traceLen++] = ((rsamples >> 16) & 0xff); \ - trace[traceLen++] = ((rsamples >> 24) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \ - trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \ - trace[traceLen++] = Uart.byteCnt; \ - memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ - traceLen += Uart.byteCnt; \ - if(traceLen > TRACE_LENGTH) break; \ - } \ - /* And ready to receive another command. */ \ - Uart.state = STATE_UNSYNCD; \ - /* And also reset the demod code, which might have been */ \ - /* false-triggered by the commands from the reader. */ \ - Demod.state = DEMOD_UNSYNCD; \ - LED_B_OFF(); \ - - if(MillerDecoding((smpl & 0xF0) >> 4)) { - rsamples = samples - Uart.samples; - HANDLE_BIT_IF_BODY - } - if(ManchesterDecoding(smpl & 0x0F)) { - rsamples = samples - Demod.samples; - LED_B_ON(); - - // timestamp, as a count of samples - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); - trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); - // length - trace[traceLen++] = Demod.len; - memcpy(trace+traceLen, receivedResponse, Demod.len); - traceLen += Demod.len; - if(traceLen > TRACE_LENGTH) break; - - triggered = TRUE; - - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = receivedResponse; - Demod.state = DEMOD_UNSYNCD; - LED_C_OFF(); - } - - if(BUTTON_PRESS()) { - DbpString("cancelled_a"); - goto done; - } - } - - DbpString("COMMAND FINISHED"); - - DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt); - DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]); - -done: - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; - DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt); - DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]); - LED_A_OFF(); - LED_B_OFF(); - LED_C_OFF(); - LED_D_OFF(); -} - -// Prepare communication bits to send to FPGA -void Sequence(SecType seq) -{ - ToSendMax++; - switch(seq) { - // CARD TO READER - case SEC_D: - // Sequence D: 11110000 - // modulation with subcarrier during first half - ToSend[ToSendMax] = 0xf0; - break; - case SEC_E: - // Sequence E: 00001111 - // modulation with subcarrier during second half - ToSend[ToSendMax] = 0x0f; - break; - case SEC_F: - // Sequence F: 00000000 - // no modulation with subcarrier - ToSend[ToSendMax] = 0x00; - break; - // READER TO CARD - case SEC_X: - // Sequence X: 00001100 - // drop after half a period - ToSend[ToSendMax] = 0x0c; - break; - case SEC_Y: - default: - // Sequence Y: 00000000 - // no drop - ToSend[ToSendMax] = 0x00; - break; - case SEC_Z: - // Sequence Z: 11000000 - // drop at start - ToSend[ToSendMax] = 0xc0; - break; - } -} - -//----------------------------------------------------------------------------- -// Prepare tag messages -//----------------------------------------------------------------------------- -static void CodeIso14443aAsTag(const BYTE *cmd, int len) -{ - int i; - int oddparity; - - ToSendReset(); - - // Correction bit, might be removed when not needed - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(1); // 1 - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - - // Send startbit - Sequence(SEC_D); - - for(i = 0; i < len; i++) { - int j; - BYTE b = cmd[i]; - - // Data bits - oddparity = 0x01; - for(j = 0; j < 8; j++) { - oddparity ^= (b & 1); - if(b & 1) { - Sequence(SEC_D); - } else { - Sequence(SEC_E); - } - b >>= 1; - } - - // Parity bit - if(oddparity) { - Sequence(SEC_D); - } else { - Sequence(SEC_E); - } - } - - // Send stopbit - Sequence(SEC_F); - - // Flush the buffer in FPGA!! - for(i = 0; i < 5; i++) { - Sequence(SEC_F); - } - - // Convert from last byte pos to length - ToSendMax++; - - // Add a few more for slop - ToSend[ToSendMax++] = 0x00; - ToSend[ToSendMax++] = 0x00; - //ToSendMax += 2; -} - -//----------------------------------------------------------------------------- -// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 -//----------------------------------------------------------------------------- -static void CodeStrangeAnswer() -{ - int i; - - ToSendReset(); - - // Correction bit, might be removed when not needed - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(1); // 1 - ToSendStuffBit(0); - ToSendStuffBit(0); - ToSendStuffBit(0); - - // Send startbit - Sequence(SEC_D); - - // 0 - Sequence(SEC_E); - - // 0 - Sequence(SEC_E); - - // 1 - Sequence(SEC_D); - - // Send stopbit - Sequence(SEC_F); - - // Flush the buffer in FPGA!! - for(i = 0; i < 5; i++) { - Sequence(SEC_F); - } - - // Convert from last byte pos to length - ToSendMax++; - - // Add a few more for slop - ToSend[ToSendMax++] = 0x00; - ToSend[ToSendMax++] = 0x00; - //ToSendMax += 2; -} - -//----------------------------------------------------------------------------- -// Wait for commands from reader -// Stop when button is pressed -// Or return TRUE when command is captured -//----------------------------------------------------------------------------- -static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen) -{ - // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - // Now run a `software UART' on the stream of incoming samples. - Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; - - for(;;) { - WDT_HIT(); - - if(BUTTON_PRESS()) return FALSE; - - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR; - if(MillerDecoding((b & 0xf0) >> 4)) { - *len = Uart.byteCnt; - return TRUE; - } - if(MillerDecoding(b & 0x0f)) { - *len = Uart.byteCnt; - return TRUE; - } - } - } -} - -//----------------------------------------------------------------------------- -// Main loop of simulated tag: receive commands from reader, decide what -// response to send, and send it. -//----------------------------------------------------------------------------- -void SimulateIso14443aTag(int tagType, int TagUid) -{ - // This function contains the tag emulation - - // Prepare protocol messages - // static const BYTE cmd1[] = { 0x26 }; -// static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg -// - static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me -// static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me - - // UID response - // static const BYTE cmd2[] = { 0x93, 0x20 }; - //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg - - - -// my desfire - static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips - - -// When reader selects us during cascade1 it will send cmd3 -//BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) -BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) -ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); - -// send cascade2 2nd half of UID -static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck -// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID - - -// When reader selects us during cascade2 it will send cmd3a -//BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) -BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) -ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); - - static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce - - BYTE *resp; - int respLen; - - // Longest possible response will be 16 bytes + 2 CRC = 18 bytes - // This will need - // 144 data bits (18 * 8) - // 18 parity bits - // 2 Start and stop - // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) - // 1 just for the case - // ----------- + - // 166 - // - // 166 bytes, since every bit that needs to be send costs us a byte - // - - - // Respond with card type - BYTE *resp1 = (((BYTE *)BigBuf) + 800); - int resp1Len; - - // Anticollision cascade1 - respond with uid - BYTE *resp2 = (((BYTE *)BigBuf) + 970); - int resp2Len; - - // Anticollision cascade2 - respond with 2nd half of uid if asked - // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 - BYTE *resp2a = (((BYTE *)BigBuf) + 1140); - int resp2aLen; - - // Acknowledge select - cascade 1 - BYTE *resp3 = (((BYTE *)BigBuf) + 1310); - int resp3Len; - - // Acknowledge select - cascade 2 - BYTE *resp3a = (((BYTE *)BigBuf) + 1480); - int resp3aLen; - - // Response to a read request - not implemented atm - BYTE *resp4 = (((BYTE *)BigBuf) + 1550); - int resp4Len; - - // Authenticate response - nonce - BYTE *resp5 = (((BYTE *)BigBuf) + 1720); - int resp5Len; - - BYTE *receivedCmd = (BYTE *)BigBuf; - int len; - - int i; - int u; - BYTE b; - - // To control where we are in the protocol - int order = 0; - int lastorder; - - // Just to allow some checks - int happened = 0; - int happened2 = 0; - - int cmdsRecvd = 0; - - BOOL fdt_indicator; - - memset(receivedCmd, 0x44, 400); - - // Prepare the responses of the anticollision phase - // there will be not enough time to do this at the moment the reader sends it REQA - - // Answer to request - CodeIso14443aAsTag(response1, sizeof(response1)); - memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; - - // Send our UID (cascade 1) - CodeIso14443aAsTag(response2, sizeof(response2)); - memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; - - // Answer to select (cascade1) - CodeIso14443aAsTag(response3, sizeof(response3)); - memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; - - // Send the cascade 2 2nd part of the uid - CodeIso14443aAsTag(response2a, sizeof(response2a)); - memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; - - // Answer to select (cascade 2) - CodeIso14443aAsTag(response3a, sizeof(response3a)); - memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; - - // Strange answer is an example of rare message size (3 bits) - CodeStrangeAnswer(); - memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; - - // Authentication answer (random nonce) - CodeIso14443aAsTag(response5, sizeof(response5)); - memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; - - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); - - cmdsRecvd = 0; - - LED_A_ON(); - for(;;) { - - if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { - DbpString("button press"); - break; - } - // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated - // Okay, look at the command now. - lastorder = order; - i = 1; // first byte transmitted - if(receivedCmd[0] == 0x26) { - // Received a REQUEST - resp = resp1; respLen = resp1Len; order = 1; - //DbpString("Hello request from reader:"); - } else if(receivedCmd[0] == 0x52) { - // Received a WAKEUP - resp = resp1; respLen = resp1Len; order = 6; -// //DbpString("Wakeup request from reader:"); - - } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision - // Received request for UID (cascade 1) - resp = resp2; respLen = resp2Len; order = 2; -// DbpString("UID (cascade 1) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision - // Received request for UID (cascade 2) - resp = resp2a; respLen = resp2aLen; order = 20; -// DbpString("UID (cascade 2) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select - // Received a SELECT - resp = resp3; respLen = resp3Len; order = 3; -// DbpString("Select (cascade 1) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select - // Received a SELECT - resp = resp3a; respLen = resp3aLen; order = 30; -// DbpString("Select (cascade 2) request from reader:"); -// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[0] == 0x30) { - // Received a READ - resp = resp4; respLen = resp4Len; order = 4; // Do nothing - DbpString("Read request from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - - } else if(receivedCmd[0] == 0x50) { - // Received a HALT - resp = resp1; respLen = 0; order = 5; // Do nothing - DbpString("Reader requested we HALT!:"); - - } else if(receivedCmd[0] == 0x60) { - // Received an authentication request - resp = resp5; respLen = resp5Len; order = 7; - DbpString("Authenticate request from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - - } else if(receivedCmd[0] == 0xE0) { - // Received a RATS request - resp = resp1; respLen = 0;order = 70; - DbpString("RATS request from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - } else { - // Never seen this command before - DbpString("Unknown command received from reader:"); - DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); - DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]); - DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]); - - // Do not respond - resp = resp1; respLen = 0; order = 0; - } - - // Count number of wakeups received after a halt - if(order == 6 && lastorder == 5) { happened++; } - - // Count number of other messages after a halt - if(order != 6 && lastorder == 5) { happened2++; } - - // Look at last parity bit to determine timing of answer - if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { - // 1236, so correction bit needed - i = 0; - } - - memset(receivedCmd, 0x44, 32); - - if(cmdsRecvd > 999) { - DbpString("1000 commands later..."); - break; - } - else { - cmdsRecvd++; - } - - if(respLen <= 0) continue; - - // Modulate Manchester - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(); - - // ### Transmit the response ### - u = 0; - b = 0x00; - fdt_indicator = FALSE; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR; - (void)b; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - if(i > respLen) { - b = 0x00; - u++; - } else { - b = resp[i]; - i++; - } - AT91C_BASE_SSC->SSC_THR = b; - - if(u > 4) { - break; - } - } - if(BUTTON_PRESS()) { - break; - } - } - - } - - DbpIntegers(happened, happened2, cmdsRecvd); - LED_A_OFF(); -} - -//----------------------------------------------------------------------------- -// Transmit the command (to the tag) that was placed in ToSend[]. -//----------------------------------------------------------------------------- -static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait) -{ - int c; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - - if (wait) - if(*wait < 10) - *wait = 10; - - for(c = 0; c < *wait;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! - c++; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile DWORD r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - - c = 0; - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = cmd[c]; - c++; - if(c >= len) { - break; - } - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile DWORD r = AT91C_BASE_SSC->SSC_RHR; - (void)r; - } - WDT_HIT(); - } - if (samples) *samples = (c + *wait) << 3; -} - -//----------------------------------------------------------------------------- -// To generate an arbitrary stream from reader -// -//----------------------------------------------------------------------------- -void ArbitraryFromReader(const BYTE *cmd, int parity, int len) -{ - int i; - int j; - int last; - BYTE b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - Sequence(SEC_Z); - last = 0; - - for(i = 0; i < len; i++) { - // Data bits - b = cmd[i]; - for(j = 0; j < 8; j++) { - if(b & 1) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - b >>= 1; - - } - - // Predefined parity bit, the flipper flips when needed, because of flips in byte sent - if(((parity >> (len - i - 1)) & 1)) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - } - - // End of Communication - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - // Sequence Y - Sequence(SEC_Y); - - // Just to be sure! - Sequence(SEC_Y); - Sequence(SEC_Y); - Sequence(SEC_Y); - - // Convert from last character reference to length - ToSendMax++; -} - -//----------------------------------------------------------------------------- -// Code a 7-bit command without parity bit -// This is especially for 0x26 and 0x52 (REQA and WUPA) -//----------------------------------------------------------------------------- -void ShortFrameFromReader(const BYTE bt) -{ - int j; - int last; - BYTE b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - Sequence(SEC_Z); - last = 0; - - b = bt; - for(j = 0; j < 7; j++) { - if(b & 1) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - b >>= 1; - } - - // End of Communication - if(last == 0) { - // Sequence Z - Sequence(SEC_Z); - } - else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - // Sequence Y - Sequence(SEC_Y); - - // Just to be sure! - Sequence(SEC_Y); - Sequence(SEC_Y); - Sequence(SEC_Y); - - // Convert from last character reference to length - ToSendMax++; -} - -//----------------------------------------------------------------------------- -// Prepare reader command to send to FPGA -// -//----------------------------------------------------------------------------- -void CodeIso14443aAsReaderPar(const BYTE * cmd, int len, DWORD dwParity) -{ - int i, j; - int last; - BYTE b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - Sequence(SEC_Z); - last = 0; - - // Generate send structure for the data bits - for (i = 0; i < len; i++) { - // Get the current byte to send - b = cmd[i]; - - for (j = 0; j < 8; j++) { - if (b & 1) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if (last == 0) { - // Sequence Z - Sequence(SEC_Z); - } else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - b >>= 1; - } - - // Get the parity bit - if ((dwParity >> i) & 0x01) { - // Sequence X - Sequence(SEC_X); - last = 1; - } else { - if (last == 0) { - // Sequence Z - Sequence(SEC_Z); - } else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - } - } - - // End of Communication - if (last == 0) { - // Sequence Z - Sequence(SEC_Z); - } else { - // Sequence Y - Sequence(SEC_Y); - last = 0; - } - // Sequence Y - Sequence(SEC_Y); - - // Just to be sure! - Sequence(SEC_Y); - Sequence(SEC_Y); - Sequence(SEC_Y); - - // Convert from last character reference to length - ToSendMax++; -} - -//----------------------------------------------------------------------------- -// Wait a certain time for tag response -// If a response is captured return TRUE -// If it takes to long return FALSE -//----------------------------------------------------------------------------- -static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer -{ - // buffer needs to be 512 bytes - int c; - - // Set FPGA mode to "reader listen mode", no modulation (listen - // only, since we are receiving, not transmitting). - // Signal field is on with the appropriate LED - LED_D_ON(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); - - // Now get the answer from the card - Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - - BYTE b; - if (elapsed) *elapsed = 0; - - c = 0; - for(;;) { - WDT_HIT(); - - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! - if (elapsed) (*elapsed)++; - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - if(c < 512) { c++; } else { return FALSE; } - b = (BYTE)AT91C_BASE_SSC->SSC_RHR; - if(ManchesterDecoding((b & 0xf0) >> 4)) { - *samples = ((c - 1) << 3) + 4; - return TRUE; - } - if(ManchesterDecoding(b & 0x0f)) { - *samples = c << 3; - return TRUE; - } - } - } -} - -void ReaderTransmitShort(const BYTE* bt) -{ - int wait = 0; - int samples = 0; - - ShortFrameFromReader(*bt); - - // Select the card - TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); - - // Store reader command in buffer - LogTrace(bt,1,0,GetParity(bt,1),TRUE); -} - -void ReaderTransmitPar(BYTE* frame, int len, DWORD par) -{ - int wait = 0; - int samples = 0; - - // This is tied to other size changes - // BYTE* frame_addr = ((BYTE*)BigBuf) + 2024; - - CodeIso14443aAsReaderPar(frame,len,par); - - // Select the card - TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); - - // Store reader command in buffer - LogTrace(frame,len,0,par,TRUE); -} - - -void ReaderTransmit(BYTE* frame, int len) -{ - // Generate parity and redirect - ReaderTransmitPar(frame,len,GetParity(frame,len)); -} - -BOOL ReaderReceive(BYTE* receivedAnswer) -{ - int samples = 0; - if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE; - LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); - return TRUE; -} - -//----------------------------------------------------------------------------- -// Read an ISO 14443a tag. Send out commands and store answers. -// -//----------------------------------------------------------------------------- -void ReaderIso14443a(DWORD parameter) -{ - // Anticollision - BYTE wupa[] = { 0x52 }; - BYTE sel_all[] = { 0x93,0x20 }; - BYTE sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; - BYTE sel_all_c2[] = { 0x95,0x20 }; - BYTE sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; - - // Mifare AUTH - BYTE mf_auth[] = { 0x60,0x00,0xf5,0x7b }; -// BYTE mf_nr_ar[] = { 0x00,0x00,0x00,0x00 }; - - BYTE* receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes - traceLen = 0; - - // Setup SSC - FpgaSetupSsc(); - - // Start from off (no field generated) - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - SpinDelay(200); - - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); - - // Now give it time to spin up. - // Signal field is on with the appropriate LED - LED_D_ON(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - SpinDelay(200); - - LED_A_ON(); - LED_B_OFF(); - LED_C_OFF(); - - while(traceLen < TRACE_LENGTH) - { - // Broadcast for a card, WUPA (0x52) will force response from all cards in the field - ReaderTransmitShort(wupa); - - // Test if the action was cancelled - if(BUTTON_PRESS()) { - break; - } - - // Receive the ATQA - if (!ReaderReceive(receivedAnswer)) continue; - - // Transmit SELECT_ALL - ReaderTransmit(sel_all,sizeof(sel_all)); - - // Receive the UID - if (!ReaderReceive(receivedAnswer)) continue; - - // Construct SELECT UID command - // First copy the 5 bytes (Mifare Classic) after the 93 70 - memcpy(sel_uid+2,receivedAnswer,5); - // Secondly compute the two CRC bytes at the end - AppendCrc14443a(sel_uid,7); - - // Transmit SELECT_UID - ReaderTransmit(sel_uid,sizeof(sel_uid)); - - // Receive the SAK - if (!ReaderReceive(receivedAnswer)) continue; - - // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in - // which case we need to make a cascade 2 request and select - this is a long UID - // When the UID is not complete, the 3nd bit (from the right) is set in the SAK. - if (receivedAnswer[0] &= 0x04) - { - // Transmit SELECT_ALL - ReaderTransmit(sel_all_c2,sizeof(sel_all_c2)); - - // Receive the UID - if (!ReaderReceive(receivedAnswer)) continue; - - // Construct SELECT UID command - memcpy(sel_uid_c2+2,receivedAnswer,5); - // Secondly compute the two CRC bytes at the end - AppendCrc14443a(sel_uid_c2,7); - - // Transmit SELECT_UID - ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2)); - - // Receive the SAK - if (!ReaderReceive(receivedAnswer)) continue; - } - - // Transmit MIFARE_CLASSIC_AUTH - ReaderTransmit(mf_auth,sizeof(mf_auth)); - - // Receive the (16 bit) "random" nonce - if (!ReaderReceive(receivedAnswer)) continue; - } - - // Thats it... - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - LEDsoff(); - DbpIntegers(rsamples, 0xCC, 0xCC); - DbpString("ready.."); -} +//----------------------------------------------------------------------------- +// Gerhard de Koning Gans - May 2008 +// +// This code is licensed to you under the terms of the GNU GPL, version 2 or, +// at your option, any later version. See the LICENSE.txt file for the text of +// the license. +//----------------------------------------------------------------------------- +// Routines to support ISO 14443 type A. +//----------------------------------------------------------------------------- + +#include "proxmark3.h" +#include "apps.h" +#include "util.h" +#include "string.h" + +#include "iso14443crc.h" + +static uint8_t *trace = (uint8_t *) BigBuf; +static int traceLen = 0; +static int rsamples = 0; +static int tracing = TRUE; + +typedef enum { + SEC_D = 1, + SEC_E = 2, + SEC_F = 3, + SEC_X = 4, + SEC_Y = 5, + SEC_Z = 6 +} SecType; + +static const uint8_t OddByteParity[256] = { + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 +}; + +// BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT +#define RECV_CMD_OFFSET 3032 +#define RECV_RES_OFFSET 3096 +#define DMA_BUFFER_OFFSET 3160 +#define DMA_BUFFER_SIZE 4096 +#define TRACE_LENGTH 3000 + +//----------------------------------------------------------------------------- +// Generate the parity value for a byte sequence +// +//----------------------------------------------------------------------------- +uint32_t GetParity(const uint8_t * pbtCmd, int iLen) +{ + int i; + uint32_t dwPar = 0; + + // Generate the encrypted data + for (i = 0; i < iLen; i++) { + // Save the encrypted parity bit + dwPar |= ((OddByteParity[pbtCmd[i]]) << i); + } + return dwPar; +} + +static void AppendCrc14443a(uint8_t* data, int len) +{ + ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); +} + +int LogTrace(const uint8_t * btBytes, size_t iLen, int iSamples, uint32_t dwParity, int bReader) +{ + // Return when trace is full + if (traceLen >= TRACE_LENGTH) return FALSE; + + // Trace the random, i'm curious + rsamples += iSamples; + trace[traceLen++] = ((rsamples >> 0) & 0xff); + trace[traceLen++] = ((rsamples >> 8) & 0xff); + trace[traceLen++] = ((rsamples >> 16) & 0xff); + trace[traceLen++] = ((rsamples >> 24) & 0xff); + if (!bReader) { + trace[traceLen - 1] |= 0x80; + } + trace[traceLen++] = ((dwParity >> 0) & 0xff); + trace[traceLen++] = ((dwParity >> 8) & 0xff); + trace[traceLen++] = ((dwParity >> 16) & 0xff); + trace[traceLen++] = ((dwParity >> 24) & 0xff); + trace[traceLen++] = iLen; + memcpy(trace + traceLen, btBytes, iLen); + traceLen += iLen; + return TRUE; +} + +int LogTraceInfo(byte_t* data, size_t len) +{ + return LogTrace(data,len,0,GetParity(data,len),TRUE); +} + +//----------------------------------------------------------------------------- +// The software UART that receives commands from the reader, and its state +// variables. +//----------------------------------------------------------------------------- +static struct { + enum { + STATE_UNSYNCD, + STATE_START_OF_COMMUNICATION, + STATE_MILLER_X, + STATE_MILLER_Y, + STATE_MILLER_Z, + STATE_ERROR_WAIT + } state; + uint16_t shiftReg; + int bitCnt; + int byteCnt; + int byteCntMax; + int posCnt; + int syncBit; + int parityBits; + int samples; + int highCnt; + int bitBuffer; + enum { + DROP_NONE, + DROP_FIRST_HALF, + DROP_SECOND_HALF + } drop; + uint8_t *output; +} Uart; + +static int MillerDecoding(int bit) +{ + int error = 0; + int bitright; + + if(!Uart.bitBuffer) { + Uart.bitBuffer = bit ^ 0xFF0; + return FALSE; + } + else { + Uart.bitBuffer <<= 4; + Uart.bitBuffer ^= bit; + } + + int EOC = FALSE; + + if(Uart.state != STATE_UNSYNCD) { + Uart.posCnt++; + + if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { + bit = 0x00; + } + else { + bit = 0x01; + } + if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { + bitright = 0x00; + } + else { + bitright = 0x01; + } + if(bit != bitright) { bit = bitright; } + + if(Uart.posCnt == 1) { + // measurement first half bitperiod + if(!bit) { + Uart.drop = DROP_FIRST_HALF; + } + } + else { + // measurement second half bitperiod + if(!bit & (Uart.drop == DROP_NONE)) { + Uart.drop = DROP_SECOND_HALF; + } + else if(!bit) { + // measured a drop in first and second half + // which should not be possible + Uart.state = STATE_ERROR_WAIT; + error = 0x01; + } + + Uart.posCnt = 0; + + switch(Uart.state) { + case STATE_START_OF_COMMUNICATION: + Uart.shiftReg = 0; + if(Uart.drop == DROP_SECOND_HALF) { + // error, should not happen in SOC + Uart.state = STATE_ERROR_WAIT; + error = 0x02; + } + else { + // correct SOC + Uart.state = STATE_MILLER_Z; + } + break; + + case STATE_MILLER_Z: + Uart.bitCnt++; + Uart.shiftReg >>= 1; + if(Uart.drop == DROP_NONE) { + // logic '0' followed by sequence Y + // end of communication + Uart.state = STATE_UNSYNCD; + EOC = TRUE; + } + // if(Uart.drop == DROP_FIRST_HALF) { + // Uart.state = STATE_MILLER_Z; stay the same + // we see a logic '0' } + if(Uart.drop == DROP_SECOND_HALF) { + // we see a logic '1' + Uart.shiftReg |= 0x100; + Uart.state = STATE_MILLER_X; + } + break; + + case STATE_MILLER_X: + Uart.shiftReg >>= 1; + if(Uart.drop == DROP_NONE) { + // sequence Y, we see a '0' + Uart.state = STATE_MILLER_Y; + Uart.bitCnt++; + } + if(Uart.drop == DROP_FIRST_HALF) { + // Would be STATE_MILLER_Z + // but Z does not follow X, so error + Uart.state = STATE_ERROR_WAIT; + error = 0x03; + } + if(Uart.drop == DROP_SECOND_HALF) { + // We see a '1' and stay in state X + Uart.shiftReg |= 0x100; + Uart.bitCnt++; + } + break; + + case STATE_MILLER_Y: + Uart.bitCnt++; + Uart.shiftReg >>= 1; + if(Uart.drop == DROP_NONE) { + // logic '0' followed by sequence Y + // end of communication + Uart.state = STATE_UNSYNCD; + EOC = TRUE; + } + if(Uart.drop == DROP_FIRST_HALF) { + // we see a '0' + Uart.state = STATE_MILLER_Z; + } + if(Uart.drop == DROP_SECOND_HALF) { + // We see a '1' and go to state X + Uart.shiftReg |= 0x100; + Uart.state = STATE_MILLER_X; + } + break; + + case STATE_ERROR_WAIT: + // That went wrong. Now wait for at least two bit periods + // and try to sync again + if(Uart.drop == DROP_NONE) { + Uart.highCnt = 6; + Uart.state = STATE_UNSYNCD; + } + break; + + default: + Uart.state = STATE_UNSYNCD; + Uart.highCnt = 0; + break; + } + + Uart.drop = DROP_NONE; + + // should have received at least one whole byte... + if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { + return TRUE; + } + + if(Uart.bitCnt == 9) { + Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); + Uart.byteCnt++; + + Uart.parityBits <<= 1; + Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); + + if(EOC) { + // when End of Communication received and + // all data bits processed.. + return TRUE; + } + Uart.bitCnt = 0; + } + + /*if(error) { + Uart.output[Uart.byteCnt] = 0xAA; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = error & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = 0xAA; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; + Uart.byteCnt++; + Uart.output[Uart.byteCnt] = 0xAA; + Uart.byteCnt++; + return TRUE; + }*/ + } + + } + else { + bit = Uart.bitBuffer & 0xf0; + bit >>= 4; + bit ^= 0x0F; + if(bit) { + // should have been high or at least (4 * 128) / fc + // according to ISO this should be at least (9 * 128 + 20) / fc + if(Uart.highCnt == 8) { + // we went low, so this could be start of communication + // it turns out to be safer to choose a less significant + // syncbit... so we check whether the neighbour also represents the drop + Uart.posCnt = 1; // apparently we are busy with our first half bit period + Uart.syncBit = bit & 8; + Uart.samples = 3; + if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } + else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } + if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } + else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } + if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; + if(Uart.syncBit & (Uart.bitBuffer & 8)) { + Uart.syncBit = 8; + + // the first half bit period is expected in next sample + Uart.posCnt = 0; + Uart.samples = 3; + } + } + else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } + + Uart.syncBit <<= 4; + Uart.state = STATE_START_OF_COMMUNICATION; + Uart.drop = DROP_FIRST_HALF; + Uart.bitCnt = 0; + Uart.byteCnt = 0; + Uart.parityBits = 0; + error = 0; + } + else { + Uart.highCnt = 0; + } + } + else { + if(Uart.highCnt < 8) { + Uart.highCnt++; + } + } + } + + return FALSE; +} + +//============================================================================= +// ISO 14443 Type A - Manchester +//============================================================================= + +static struct { + enum { + DEMOD_UNSYNCD, + DEMOD_START_OF_COMMUNICATION, + DEMOD_MANCHESTER_D, + DEMOD_MANCHESTER_E, + DEMOD_MANCHESTER_F, + DEMOD_ERROR_WAIT + } state; + int bitCount; + int posCount; + int syncBit; + int parityBits; + uint16_t shiftReg; + int buffer; + int buff; + int samples; + int len; + enum { + SUB_NONE, + SUB_FIRST_HALF, + SUB_SECOND_HALF + } sub; + uint8_t *output; +} Demod; + +static int ManchesterDecoding(int v) +{ + int bit; + int modulation; + int error = 0; + + if(!Demod.buff) { + Demod.buff = 1; + Demod.buffer = v; + return FALSE; + } + else { + bit = Demod.buffer; + Demod.buffer = v; + } + + if(Demod.state==DEMOD_UNSYNCD) { + Demod.output[Demod.len] = 0xfa; + Demod.syncBit = 0; + //Demod.samples = 0; + Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part + if(bit & 0x08) { Demod.syncBit = 0x08; } + if(!Demod.syncBit) { + if(bit & 0x04) { Demod.syncBit = 0x04; } + } + else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } + if(!Demod.syncBit) { + if(bit & 0x02) { Demod.syncBit = 0x02; } + } + else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } + if(!Demod.syncBit) { + if(bit & 0x01) { Demod.syncBit = 0x01; } + + if(Demod.syncBit & (Demod.buffer & 0x08)) { + Demod.syncBit = 0x08; + + // The first half bitperiod is expected in next sample + Demod.posCount = 0; + Demod.output[Demod.len] = 0xfb; + } + } + else if(bit & 0x01) { Demod.syncBit = 0x01; } + + if(Demod.syncBit) { + Demod.len = 0; + Demod.state = DEMOD_START_OF_COMMUNICATION; + Demod.sub = SUB_FIRST_HALF; + Demod.bitCount = 0; + Demod.shiftReg = 0; + Demod.parityBits = 0; + Demod.samples = 0; + if(Demod.posCount) { + switch(Demod.syncBit) { + case 0x08: Demod.samples = 3; break; + case 0x04: Demod.samples = 2; break; + case 0x02: Demod.samples = 1; break; + case 0x01: Demod.samples = 0; break; + } + } + error = 0; + } + } + else { + //modulation = bit & Demod.syncBit; + modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; + + Demod.samples += 4; + + if(Demod.posCount==0) { + Demod.posCount = 1; + if(modulation) { + Demod.sub = SUB_FIRST_HALF; + } + else { + Demod.sub = SUB_NONE; + } + } + else { + Demod.posCount = 0; + if(modulation && (Demod.sub == SUB_FIRST_HALF)) { + if(Demod.state!=DEMOD_ERROR_WAIT) { + Demod.state = DEMOD_ERROR_WAIT; + Demod.output[Demod.len] = 0xaa; + error = 0x01; + } + } + else if(modulation) { + Demod.sub = SUB_SECOND_HALF; + } + + switch(Demod.state) { + case DEMOD_START_OF_COMMUNICATION: + if(Demod.sub == SUB_FIRST_HALF) { + Demod.state = DEMOD_MANCHESTER_D; + } + else { + Demod.output[Demod.len] = 0xab; + Demod.state = DEMOD_ERROR_WAIT; + error = 0x02; + } + break; + + case DEMOD_MANCHESTER_D: + case DEMOD_MANCHESTER_E: + if(Demod.sub == SUB_FIRST_HALF) { + Demod.bitCount++; + Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; + Demod.state = DEMOD_MANCHESTER_D; + } + else if(Demod.sub == SUB_SECOND_HALF) { + Demod.bitCount++; + Demod.shiftReg >>= 1; + Demod.state = DEMOD_MANCHESTER_E; + } + else { + Demod.state = DEMOD_MANCHESTER_F; + } + break; + + case DEMOD_MANCHESTER_F: + // Tag response does not need to be a complete byte! + if(Demod.len > 0 || Demod.bitCount > 0) { + if(Demod.bitCount > 0) { + Demod.shiftReg >>= (9 - Demod.bitCount); + Demod.output[Demod.len] = Demod.shiftReg & 0xff; + Demod.len++; + // No parity bit, so just shift a 0 + Demod.parityBits <<= 1; + } + + Demod.state = DEMOD_UNSYNCD; + return TRUE; + } + else { + Demod.output[Demod.len] = 0xad; + Demod.state = DEMOD_ERROR_WAIT; + error = 0x03; + } + break; + + case DEMOD_ERROR_WAIT: + Demod.state = DEMOD_UNSYNCD; + break; + + default: + Demod.output[Demod.len] = 0xdd; + Demod.state = DEMOD_UNSYNCD; + break; + } + + if(Demod.bitCount>=9) { + Demod.output[Demod.len] = Demod.shiftReg & 0xff; + Demod.len++; + + Demod.parityBits <<= 1; + Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); + + Demod.bitCount = 0; + Demod.shiftReg = 0; + } + + /*if(error) { + Demod.output[Demod.len] = 0xBB; + Demod.len++; + Demod.output[Demod.len] = error & 0xFF; + Demod.len++; + Demod.output[Demod.len] = 0xBB; + Demod.len++; + Demod.output[Demod.len] = bit & 0xFF; + Demod.len++; + Demod.output[Demod.len] = Demod.buffer & 0xFF; + Demod.len++; + Demod.output[Demod.len] = Demod.syncBit & 0xFF; + Demod.len++; + Demod.output[Demod.len] = 0xBB; + Demod.len++; + return TRUE; + }*/ + + } + + } // end (state != UNSYNCED) + + return FALSE; +} + +//============================================================================= +// Finally, a `sniffer' for ISO 14443 Type A +// Both sides of communication! +//============================================================================= + +//----------------------------------------------------------------------------- +// Record the sequence of commands sent by the reader to the tag, with +// triggering so that we start recording at the point that the tag is moved +// near the reader. +//----------------------------------------------------------------------------- +void SnoopIso14443a(void) +{ +// #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values +// #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values +// #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values +// #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values +// #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values + + // We won't start recording the frames that we acquire until we trigger; + // a good trigger condition to get started is probably when we see a + // response from the tag. + int triggered = TRUE; // FALSE to wait first for card + + // The command (reader -> tag) that we're receiving. + // The length of a received command will in most cases be no more than 18 bytes. + // So 32 should be enough! + uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); + // The response (tag -> reader) that we're receiving. + uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); + + // As we receive stuff, we copy it from receivedCmd or receivedResponse + // into trace, along with its length and other annotations. + //uint8_t *trace = (uint8_t *)BigBuf; + //int traceLen = 0; + + // The DMA buffer, used to stream samples from the FPGA + int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; + int lastRxCounter; + int8_t *upTo; + int smpl; + int maxBehindBy = 0; + + // Count of samples received so far, so that we can include timing + // information in the trace buffer. + int samples = 0; + int rsamples = 0; + + memset(trace, 0x44, RECV_CMD_OFFSET); + + // Set up the demodulator for tag -> reader responses. + Demod.output = receivedResponse; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; + + // And the reader -> tag commands + memset(&Uart, 0, sizeof(Uart)); + Uart.output = receivedCmd; + Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// + Uart.state = STATE_UNSYNCD; + + // And put the FPGA in the appropriate mode + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + + // Setup for the DMA. + FpgaSetupSsc(); + upTo = dmaBuf; + lastRxCounter = DMA_BUFFER_SIZE; + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + + LED_A_ON(); + + // And now we loop, receiving samples. + for(;;) { + WDT_HIT(); + int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & + (DMA_BUFFER_SIZE-1); + if(behindBy > maxBehindBy) { + maxBehindBy = behindBy; + if(behindBy > 400) { + DbpString("blew circular buffer!"); + goto done; + } + } + if(behindBy < 1) continue; + + smpl = upTo[0]; + upTo++; + lastRxCounter -= 1; + if(upTo - dmaBuf > DMA_BUFFER_SIZE) { + upTo -= DMA_BUFFER_SIZE; + lastRxCounter += DMA_BUFFER_SIZE; + AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; + AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; + } + + samples += 4; +#define HANDLE_BIT_IF_BODY \ + LED_C_ON(); \ + if(triggered) { \ + trace[traceLen++] = ((rsamples >> 0) & 0xff); \ + trace[traceLen++] = ((rsamples >> 8) & 0xff); \ + trace[traceLen++] = ((rsamples >> 16) & 0xff); \ + trace[traceLen++] = ((rsamples >> 24) & 0xff); \ + trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \ + trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \ + trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \ + trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \ + trace[traceLen++] = Uart.byteCnt; \ + memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ + traceLen += Uart.byteCnt; \ + if(traceLen > TRACE_LENGTH) break; \ + } \ + /* And ready to receive another command. */ \ + Uart.state = STATE_UNSYNCD; \ + /* And also reset the demod code, which might have been */ \ + /* false-triggered by the commands from the reader. */ \ + Demod.state = DEMOD_UNSYNCD; \ + LED_B_OFF(); \ + + if(MillerDecoding((smpl & 0xF0) >> 4)) { + rsamples = samples - Uart.samples; + HANDLE_BIT_IF_BODY + } + if(ManchesterDecoding(smpl & 0x0F)) { + rsamples = samples - Demod.samples; + LED_B_ON(); + + // timestamp, as a count of samples + trace[traceLen++] = ((rsamples >> 0) & 0xff); + trace[traceLen++] = ((rsamples >> 8) & 0xff); + trace[traceLen++] = ((rsamples >> 16) & 0xff); + trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); + trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); + trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); + trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); + trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); + // length + trace[traceLen++] = Demod.len; + memcpy(trace+traceLen, receivedResponse, Demod.len); + traceLen += Demod.len; + if(traceLen > TRACE_LENGTH) break; + + triggered = TRUE; + + // And ready to receive another response. + memset(&Demod, 0, sizeof(Demod)); + Demod.output = receivedResponse; + Demod.state = DEMOD_UNSYNCD; + LED_C_OFF(); + } + + if(BUTTON_PRESS()) { + DbpString("cancelled_a"); + goto done; + } + } + + DbpString("COMMAND FINISHED"); + + Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); + Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + +done: + AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; + Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); + Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + LED_A_OFF(); + LED_B_OFF(); + LED_C_OFF(); + LED_D_OFF(); +} + +// Prepare communication bits to send to FPGA +void Sequence(SecType seq) +{ + ToSendMax++; + switch(seq) { + // CARD TO READER + case SEC_D: + // Sequence D: 11110000 + // modulation with subcarrier during first half + ToSend[ToSendMax] = 0xf0; + break; + case SEC_E: + // Sequence E: 00001111 + // modulation with subcarrier during second half + ToSend[ToSendMax] = 0x0f; + break; + case SEC_F: + // Sequence F: 00000000 + // no modulation with subcarrier + ToSend[ToSendMax] = 0x00; + break; + // READER TO CARD + case SEC_X: + // Sequence X: 00001100 + // drop after half a period + ToSend[ToSendMax] = 0x0c; + break; + case SEC_Y: + default: + // Sequence Y: 00000000 + // no drop + ToSend[ToSendMax] = 0x00; + break; + case SEC_Z: + // Sequence Z: 11000000 + // drop at start + ToSend[ToSendMax] = 0xc0; + break; + } +} + +//----------------------------------------------------------------------------- +// Prepare tag messages +//----------------------------------------------------------------------------- +static void CodeIso14443aAsTag(const uint8_t *cmd, int len) +{ + int i; + int oddparity; + + ToSendReset(); + + // Correction bit, might be removed when not needed + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(1); // 1 + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + + // Send startbit + Sequence(SEC_D); + + for(i = 0; i < len; i++) { + int j; + uint8_t b = cmd[i]; + + // Data bits + oddparity = 0x01; + for(j = 0; j < 8; j++) { + oddparity ^= (b & 1); + if(b & 1) { + Sequence(SEC_D); + } else { + Sequence(SEC_E); + } + b >>= 1; + } + + // Parity bit + if(oddparity) { + Sequence(SEC_D); + } else { + Sequence(SEC_E); + } + } + + // Send stopbit + Sequence(SEC_F); + + // Flush the buffer in FPGA!! + for(i = 0; i < 5; i++) { + Sequence(SEC_F); + } + + // Convert from last byte pos to length + ToSendMax++; + + // Add a few more for slop + ToSend[ToSendMax++] = 0x00; + ToSend[ToSendMax++] = 0x00; + //ToSendMax += 2; +} + +//----------------------------------------------------------------------------- +// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 +//----------------------------------------------------------------------------- +static void CodeStrangeAnswer() +{ + int i; + + ToSendReset(); + + // Correction bit, might be removed when not needed + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(1); // 1 + ToSendStuffBit(0); + ToSendStuffBit(0); + ToSendStuffBit(0); + + // Send startbit + Sequence(SEC_D); + + // 0 + Sequence(SEC_E); + + // 0 + Sequence(SEC_E); + + // 1 + Sequence(SEC_D); + + // Send stopbit + Sequence(SEC_F); + + // Flush the buffer in FPGA!! + for(i = 0; i < 5; i++) { + Sequence(SEC_F); + } + + // Convert from last byte pos to length + ToSendMax++; + + // Add a few more for slop + ToSend[ToSendMax++] = 0x00; + ToSend[ToSendMax++] = 0x00; + //ToSendMax += 2; +} + +//----------------------------------------------------------------------------- +// Wait for commands from reader +// Stop when button is pressed +// Or return TRUE when command is captured +//----------------------------------------------------------------------------- +static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) +{ + // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); + + // Now run a `software UART' on the stream of incoming samples. + Uart.output = received; + Uart.byteCntMax = maxLen; + Uart.state = STATE_UNSYNCD; + + for(;;) { + WDT_HIT(); + + if(BUTTON_PRESS()) return FALSE; + + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(MillerDecoding((b & 0xf0) >> 4)) { + *len = Uart.byteCnt; + return TRUE; + } + if(MillerDecoding(b & 0x0f)) { + *len = Uart.byteCnt; + return TRUE; + } + } + } +} + +//----------------------------------------------------------------------------- +// Main loop of simulated tag: receive commands from reader, decide what +// response to send, and send it. +//----------------------------------------------------------------------------- +void SimulateIso14443aTag(int tagType, int TagUid) +{ + // This function contains the tag emulation + + // Prepare protocol messages + // static const uint8_t cmd1[] = { 0x26 }; +// static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg +// + static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me +// static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me + + // UID response + // static const uint8_t cmd2[] = { 0x93, 0x20 }; + //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg + + + +// my desfire + static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips + + +// When reader selects us during cascade1 it will send cmd3 +//uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) +uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) +ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); + +// send cascade2 2nd half of UID +static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck +// NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID + + +// When reader selects us during cascade2 it will send cmd3a +//uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) +uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) +ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); + + static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce + + uint8_t *resp; + int respLen; + + // Longest possible response will be 16 bytes + 2 CRC = 18 bytes + // This will need + // 144 data bits (18 * 8) + // 18 parity bits + // 2 Start and stop + // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) + // 1 just for the case + // ----------- + + // 166 + // + // 166 bytes, since every bit that needs to be send costs us a byte + // + + + // Respond with card type + uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); + int resp1Len; + + // Anticollision cascade1 - respond with uid + uint8_t *resp2 = (((uint8_t *)BigBuf) + 970); + int resp2Len; + + // Anticollision cascade2 - respond with 2nd half of uid if asked + // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 + uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); + int resp2aLen; + + // Acknowledge select - cascade 1 + uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310); + int resp3Len; + + // Acknowledge select - cascade 2 + uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480); + int resp3aLen; + + // Response to a read request - not implemented atm + uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550); + int resp4Len; + + // Authenticate response - nonce + uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720); + int resp5Len; + + uint8_t *receivedCmd = (uint8_t *)BigBuf; + int len; + + int i; + int u; + uint8_t b; + + // To control where we are in the protocol + int order = 0; + int lastorder; + + // Just to allow some checks + int happened = 0; + int happened2 = 0; + + int cmdsRecvd = 0; + + int fdt_indicator; + + memset(receivedCmd, 0x44, 400); + + // Prepare the responses of the anticollision phase + // there will be not enough time to do this at the moment the reader sends it REQA + + // Answer to request + CodeIso14443aAsTag(response1, sizeof(response1)); + memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; + + // Send our UID (cascade 1) + CodeIso14443aAsTag(response2, sizeof(response2)); + memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; + + // Answer to select (cascade1) + CodeIso14443aAsTag(response3, sizeof(response3)); + memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; + + // Send the cascade 2 2nd part of the uid + CodeIso14443aAsTag(response2a, sizeof(response2a)); + memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; + + // Answer to select (cascade 2) + CodeIso14443aAsTag(response3a, sizeof(response3a)); + memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; + + // Strange answer is an example of rare message size (3 bits) + CodeStrangeAnswer(); + memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; + + // Authentication answer (random nonce) + CodeIso14443aAsTag(response5, sizeof(response5)); + memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; + + // We need to listen to the high-frequency, peak-detected path. + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaSetupSsc(); + + cmdsRecvd = 0; + + LED_A_ON(); + for(;;) { + + if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { + DbpString("button press"); + break; + } + // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated + // Okay, look at the command now. + lastorder = order; + i = 1; // first byte transmitted + if(receivedCmd[0] == 0x26) { + // Received a REQUEST + resp = resp1; respLen = resp1Len; order = 1; + //DbpString("Hello request from reader:"); + } else if(receivedCmd[0] == 0x52) { + // Received a WAKEUP + resp = resp1; respLen = resp1Len; order = 6; +// //DbpString("Wakeup request from reader:"); + + } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision + // Received request for UID (cascade 1) + resp = resp2; respLen = resp2Len; order = 2; +// DbpString("UID (cascade 1) request from reader:"); +// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); + + + } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision + // Received request for UID (cascade 2) + resp = resp2a; respLen = resp2aLen; order = 20; +// DbpString("UID (cascade 2) request from reader:"); +// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); + + + } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select + // Received a SELECT + resp = resp3; respLen = resp3Len; order = 3; +// DbpString("Select (cascade 1) request from reader:"); +// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); + + + } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select + // Received a SELECT + resp = resp3a; respLen = resp3aLen; order = 30; +// DbpString("Select (cascade 2) request from reader:"); +// DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); + + + } else if(receivedCmd[0] == 0x30) { + // Received a READ + resp = resp4; respLen = resp4Len; order = 4; // Do nothing + Dbprintf("Read request from reader: %x %x %x", + receivedCmd[0], receivedCmd[1], receivedCmd[2]); + + + } else if(receivedCmd[0] == 0x50) { + // Received a HALT + resp = resp1; respLen = 0; order = 5; // Do nothing + DbpString("Reader requested we HALT!:"); + + } else if(receivedCmd[0] == 0x60) { + // Received an authentication request + resp = resp5; respLen = resp5Len; order = 7; + Dbprintf("Authenticate request from reader: %x %x %x", + receivedCmd[0], receivedCmd[1], receivedCmd[2]); + + } else if(receivedCmd[0] == 0xE0) { + // Received a RATS request + resp = resp1; respLen = 0;order = 70; + Dbprintf("RATS request from reader: %x %x %x", + receivedCmd[0], receivedCmd[1], receivedCmd[2]); + } else { + // Never seen this command before + Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x", + receivedCmd[0], receivedCmd[1], receivedCmd[2], + receivedCmd[3], receivedCmd[3], receivedCmd[4], + receivedCmd[5], receivedCmd[6], receivedCmd[7]); + // Do not respond + resp = resp1; respLen = 0; order = 0; + } + + // Count number of wakeups received after a halt + if(order == 6 && lastorder == 5) { happened++; } + + // Count number of other messages after a halt + if(order != 6 && lastorder == 5) { happened2++; } + + // Look at last parity bit to determine timing of answer + if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { + // 1236, so correction bit needed + i = 0; + } + + memset(receivedCmd, 0x44, 32); + + if(cmdsRecvd > 999) { + DbpString("1000 commands later..."); + break; + } + else { + cmdsRecvd++; + } + + if(respLen <= 0) continue; + + // Modulate Manchester + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); + AT91C_BASE_SSC->SSC_THR = 0x00; + FpgaSetupSsc(); + + // ### Transmit the response ### + u = 0; + b = 0x00; + fdt_indicator = FALSE; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + (void)b; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + if(i > respLen) { + b = 0x00; + u++; + } else { + b = resp[i]; + i++; + } + AT91C_BASE_SSC->SSC_THR = b; + + if(u > 4) { + break; + } + } + if(BUTTON_PRESS()) { + break; + } + } + + } + + Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); + LED_A_OFF(); +} + +//----------------------------------------------------------------------------- +// Transmit the command (to the tag) that was placed in ToSend[]. +//----------------------------------------------------------------------------- +static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) +{ + int c; + + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + + if (wait) + if(*wait < 10) + *wait = 10; + + for(c = 0; c < *wait;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! + c++; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + + c = 0; + for(;;) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = cmd[c]; + c++; + if(c >= len) { + break; + } + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + } + WDT_HIT(); + } + if (samples) *samples = (c + *wait) << 3; +} + +//----------------------------------------------------------------------------- +// To generate an arbitrary stream from reader +// +//----------------------------------------------------------------------------- +void ArbitraryFromReader(const uint8_t *cmd, int parity, int len) +{ + int i; + int j; + int last; + uint8_t b; + + ToSendReset(); + + // Start of Communication (Seq. Z) + Sequence(SEC_Z); + last = 0; + + for(i = 0; i < len; i++) { + // Data bits + b = cmd[i]; + for(j = 0; j < 8; j++) { + if(b & 1) { + // Sequence X + Sequence(SEC_X); + last = 1; + } else { + if(last == 0) { + // Sequence Z + Sequence(SEC_Z); + } + else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + } + b >>= 1; + + } + + // Predefined parity bit, the flipper flips when needed, because of flips in byte sent + if(((parity >> (len - i - 1)) & 1)) { + // Sequence X + Sequence(SEC_X); + last = 1; + } else { + if(last == 0) { + // Sequence Z + Sequence(SEC_Z); + } + else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + } + } + + // End of Communication + if(last == 0) { + // Sequence Z + Sequence(SEC_Z); + } + else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + // Sequence Y + Sequence(SEC_Y); + + // Just to be sure! + Sequence(SEC_Y); + Sequence(SEC_Y); + Sequence(SEC_Y); + + // Convert from last character reference to length + ToSendMax++; +} + +//----------------------------------------------------------------------------- +// Code a 7-bit command without parity bit +// This is especially for 0x26 and 0x52 (REQA and WUPA) +//----------------------------------------------------------------------------- +void ShortFrameFromReader(const uint8_t bt) +{ + int j; + int last; + uint8_t b; + + ToSendReset(); + + // Start of Communication (Seq. Z) + Sequence(SEC_Z); + last = 0; + + b = bt; + for(j = 0; j < 7; j++) { + if(b & 1) { + // Sequence X + Sequence(SEC_X); + last = 1; + } else { + if(last == 0) { + // Sequence Z + Sequence(SEC_Z); + } + else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + } + b >>= 1; + } + + // End of Communication + if(last == 0) { + // Sequence Z + Sequence(SEC_Z); + } + else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + // Sequence Y + Sequence(SEC_Y); + + // Just to be sure! + Sequence(SEC_Y); + Sequence(SEC_Y); + Sequence(SEC_Y); + + // Convert from last character reference to length + ToSendMax++; +} + +//----------------------------------------------------------------------------- +// Prepare reader command to send to FPGA +// +//----------------------------------------------------------------------------- +void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) +{ + int i, j; + int last; + uint8_t b; + + ToSendReset(); + + // Start of Communication (Seq. Z) + Sequence(SEC_Z); + last = 0; + + // Generate send structure for the data bits + for (i = 0; i < len; i++) { + // Get the current byte to send + b = cmd[i]; + + for (j = 0; j < 8; j++) { + if (b & 1) { + // Sequence X + Sequence(SEC_X); + last = 1; + } else { + if (last == 0) { + // Sequence Z + Sequence(SEC_Z); + } else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + } + b >>= 1; + } + + // Get the parity bit + if ((dwParity >> i) & 0x01) { + // Sequence X + Sequence(SEC_X); + last = 1; + } else { + if (last == 0) { + // Sequence Z + Sequence(SEC_Z); + } else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + } + } + + // End of Communication + if (last == 0) { + // Sequence Z + Sequence(SEC_Z); + } else { + // Sequence Y + Sequence(SEC_Y); + last = 0; + } + // Sequence Y + Sequence(SEC_Y); + + // Just to be sure! + Sequence(SEC_Y); + Sequence(SEC_Y); + Sequence(SEC_Y); + + // Convert from last character reference to length + ToSendMax++; +} + +//----------------------------------------------------------------------------- +// Wait a certain time for tag response +// If a response is captured return TRUE +// If it takes to long return FALSE +//----------------------------------------------------------------------------- +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer +{ + // buffer needs to be 512 bytes + int c; + + // Set FPGA mode to "reader listen mode", no modulation (listen + // only, since we are receiving, not transmitting). + // Signal field is on with the appropriate LED + LED_D_ON(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); + + // Now get the answer from the card + Demod.output = receivedResponse; + Demod.len = 0; + Demod.state = DEMOD_UNSYNCD; + + uint8_t b; + if (elapsed) *elapsed = 0; + + c = 0; + for(;;) { + WDT_HIT(); + + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! + if (elapsed) (*elapsed)++; + } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + if(c < 512) { c++; } else { return FALSE; } + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(ManchesterDecoding((b & 0xf0) >> 4)) { + *samples = ((c - 1) << 3) + 4; + return TRUE; + } + if(ManchesterDecoding(b & 0x0f)) { + *samples = c << 3; + return TRUE; + } + } + } +} + +void ReaderTransmitShort(const uint8_t* bt) +{ + int wait = 0; + int samples = 0; + + ShortFrameFromReader(*bt); + + // Select the card + TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); + + // Store reader command in buffer + if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); +} + +void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) +{ + int wait = 0; + int samples = 0; + + // This is tied to other size changes + // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; + CodeIso14443aAsReaderPar(frame,len,par); + + // Select the card + TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); + + // Store reader command in buffer + if (tracing) LogTrace(frame,len,0,par,TRUE); +} + + +void ReaderTransmit(uint8_t* frame, int len) +{ + // Generate parity and redirect + ReaderTransmitPar(frame,len,GetParity(frame,len)); +} + +int ReaderReceive(uint8_t* receivedAnswer) +{ + int samples = 0; + if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE; + if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); + return TRUE; +} + +//----------------------------------------------------------------------------- +// Read an ISO 14443a tag. Send out commands and store answers. +// +//----------------------------------------------------------------------------- +void ReaderIso14443a(uint32_t parameter) +{ + // Anticollision + uint8_t wupa[] = { 0x52 }; + uint8_t sel_all[] = { 0x93,0x20 }; + uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + uint8_t sel_all_c2[] = { 0x95,0x20 }; + uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + + // Mifare AUTH + uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; +// uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 }; + + uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes + traceLen = 0; + + // Setup SSC + FpgaSetupSsc(); + + // Start from off (no field generated) + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaSetupSsc(); + + // Now give it time to spin up. + // Signal field is on with the appropriate LED + LED_D_ON(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + SpinDelay(200); + + LED_A_ON(); + LED_B_OFF(); + LED_C_OFF(); + + while(traceLen < TRACE_LENGTH) + { + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field + ReaderTransmitShort(wupa); + + // Test if the action was cancelled + if(BUTTON_PRESS()) { + break; + } + + // Receive the ATQA + if (!ReaderReceive(receivedAnswer)) continue; + + // Transmit SELECT_ALL + ReaderTransmit(sel_all,sizeof(sel_all)); + + // Receive the UID + if (!ReaderReceive(receivedAnswer)) continue; + + // Construct SELECT UID command + // First copy the 5 bytes (Mifare Classic) after the 93 70 + memcpy(sel_uid+2,receivedAnswer,5); + // Secondly compute the two CRC bytes at the end + AppendCrc14443a(sel_uid,7); + + // Transmit SELECT_UID + ReaderTransmit(sel_uid,sizeof(sel_uid)); + + // Receive the SAK + if (!ReaderReceive(receivedAnswer)) continue; + + // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in + // which case we need to make a cascade 2 request and select - this is a long UID + // When the UID is not complete, the 3nd bit (from the right) is set in the SAK. + if (receivedAnswer[0] &= 0x04) + { + // Transmit SELECT_ALL + ReaderTransmit(sel_all_c2,sizeof(sel_all_c2)); + + // Receive the UID + if (!ReaderReceive(receivedAnswer)) continue; + + // Construct SELECT UID command + memcpy(sel_uid_c2+2,receivedAnswer,5); + // Secondly compute the two CRC bytes at the end + AppendCrc14443a(sel_uid_c2,7); + + // Transmit SELECT_UID + ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2)); + + // Receive the SAK + if (!ReaderReceive(receivedAnswer)) continue; + } + + // Transmit MIFARE_CLASSIC_AUTH + ReaderTransmit(mf_auth,sizeof(mf_auth)); + + // Receive the (16 bit) "random" nonce + if (!ReaderReceive(receivedAnswer)) continue; + } + + // Thats it... + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); + Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC); + DbpString("ready.."); +} + +//----------------------------------------------------------------------------- +// Read an ISO 14443a tag. Send out commands and store answers. +// +//----------------------------------------------------------------------------- +void ReaderMifare(uint32_t parameter) +{ + + // Anticollision + uint8_t wupa[] = { 0x52 }; + uint8_t sel_all[] = { 0x93,0x20 }; + uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + + // Mifare AUTH + uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; + uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; + + uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes + traceLen = 0; + tracing = false; + + // Setup SSC + FpgaSetupSsc(); + + // Start from off (no field generated) + // Signal field is off with the appropriate LED + LED_D_OFF(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + + SetAdcMuxFor(GPIO_MUXSEL_HIPKD); + FpgaSetupSsc(); + + // Now give it time to spin up. + // Signal field is on with the appropriate LED + LED_D_ON(); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + SpinDelay(200); + + LED_A_ON(); + LED_B_OFF(); + LED_C_OFF(); + + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field + ReaderTransmitShort(wupa); + // Receive the ATQA + ReaderReceive(receivedAnswer); + // Transmit SELECT_ALL + ReaderTransmit(sel_all,sizeof(sel_all)); + // Receive the UID + ReaderReceive(receivedAnswer); + // Construct SELECT UID command + // First copy the 5 bytes (Mifare Classic) after the 93 70 + memcpy(sel_uid+2,receivedAnswer,5); + // Secondly compute the two CRC bytes at the end + AppendCrc14443a(sel_uid,7); + + byte_t nt_diff = 0; + LED_A_OFF(); + byte_t par = 0; + byte_t par_mask = 0xff; + byte_t par_low = 0; + int led_on = TRUE; + + tracing = FALSE; + byte_t nt[4]; + byte_t nt_attacked[4]; + byte_t par_list[8]; + byte_t ks_list[8]; + num_to_bytes(parameter,4,nt_attacked); + + while(TRUE) + { + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + SpinDelay(200); + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + + // Broadcast for a card, WUPA (0x52) will force response from all cards in the field + ReaderTransmitShort(wupa); + + // Test if the action was cancelled + if(BUTTON_PRESS()) { + break; + } + + // Receive the ATQA + if (!ReaderReceive(receivedAnswer)) continue; + + // Transmit SELECT_ALL + ReaderTransmit(sel_all,sizeof(sel_all)); + + // Receive the UID + if (!ReaderReceive(receivedAnswer)) continue; + + // Transmit SELECT_UID + ReaderTransmit(sel_uid,sizeof(sel_uid)); + + // Receive the SAK + if (!ReaderReceive(receivedAnswer)) continue; + + // Transmit MIFARE_CLASSIC_AUTH + ReaderTransmit(mf_auth,sizeof(mf_auth)); + + // Receive the (16 bit) "random" nonce + if (!ReaderReceive(receivedAnswer)) continue; + memcpy(nt,receivedAnswer,4); + + // Transmit reader nonce and reader answer + ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par); + + // Receive 4 bit answer + if (ReaderReceive(receivedAnswer)) + { + if (nt_diff == 0) + { + LED_A_ON(); + memcpy(nt_attacked,nt,4); + par_mask = 0xf8; + par_low = par & 0x07; + } + + if (memcmp(nt,nt_attacked,4) != 0) continue; + + led_on = !led_on; + if(led_on) LED_B_ON(); else LED_B_OFF(); + par_list[nt_diff] = par; + ks_list[nt_diff] = receivedAnswer[0]^0x05; + + // Test if the information is complete + if (nt_diff == 0x07) break; + + nt_diff = (nt_diff+1) & 0x07; + mf_nr_ar[3] = nt_diff << 5; + par = par_low; + } else { + if (nt_diff == 0) + { + par++; + } else { + par = (((par>>3)+1) << 3) | par_low; + } + } + } + + LogTraceInfo(sel_uid+2,4); + LogTraceInfo(nt,4); + LogTraceInfo(par_list,8); + LogTraceInfo(ks_list,8); + + // Thats it... + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + LEDsoff(); + tracing = TRUE; +}