X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/9492e0b0986a557afe1c85f08fd02a7fb979f536..72e930ef3206224ae0ff0696a8a146a0b26268f7:/client/ui.c diff --git a/client/ui.c b/client/ui.c index 5fe58dc2..59ca72dc 100644 --- a/client/ui.c +++ b/client/ui.c @@ -12,16 +12,20 @@ #include #include #include +#include #include #include #include - +#include "loclass/cipherutils.h" #include "ui.h" +//#include +#define M_PI 3.14159265358979323846264338327 + double CursorScaleFactor; int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64; int offline; - +int flushAfterWrite = 0; //buzzy extern pthread_mutex_t print_lock; static char *logfilename = "proxmark3.log"; @@ -77,12 +81,528 @@ void PrintAndLog(char *fmt, ...) } va_end(argptr2); + if (flushAfterWrite == 1) //buzzy + { + fflush(NULL); + } //release lock pthread_mutex_unlock(&print_lock); } - void SetLogFilename(char *fn) { logfilename = fn; } + +int manchester_decode( int * data, const size_t len, uint8_t * dataout){ + + int bitlength = 0; + int i, clock, high, low, startindex; + low = startindex = 0; + high = 1; + uint8_t bitStream[len]; + + memset(bitStream, 0x00, len); + + /* Detect high and lows */ + for (i = 0; i < len; i++) { + if (data[i] > high) + high = data[i]; + else if (data[i] < low) + low = data[i]; + } + + /* get clock */ + clock = GetT55x7Clock( data, len, high ); + startindex = DetectFirstTransition(data, len, high); + + PrintAndLog(" Clock : %d", clock); + PrintAndLog(" startindex : %d", startindex); + + if (high != 1) + bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex); + else + bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex); + + memcpy(dataout, bitStream, bitlength); + return bitlength; +} + + int GetT55x7Clock( const int * data, const size_t len, int peak ){ + + int i,lastpeak,clock; + clock = 0xFFFF; + lastpeak = 0; + + /* Detect peak if we don't have one */ + if (!peak) { + for (i = 0; i < len; ++i) { + if (data[i] > peak) { + peak = data[i]; + } + } + } + + for (i = 1; i < len; ++i) { + /* if this is the beginning of a peak */ + if ( data[i-1] != data[i] && data[i] == peak) { + /* find lowest difference between peaks */ + if (lastpeak && i - lastpeak < clock) + clock = i - lastpeak; + lastpeak = i; + } + } + //return clock; + //defaults clock to precise values. + switch(clock){ + case 8: + case 16: + case 32: + case 40: + case 50: + case 64: + case 100: + case 128: + return clock; + break; + default: break; + } + + //PrintAndLog(" Found Clock : %d - trying to adjust", clock); + + // When detected clock is 31 or 33 then then return + int clockmod = clock%8; + if ( clockmod == 7 ) + clock += 1; + else if ( clockmod == 1 ) + clock -= 1; + + return clock; + } + + int DetectFirstTransition(const int * data, const size_t len, int threshold){ + + int i =0; + /* now look for the first threshold */ + for (; i < len; ++i) { + if (data[i] == threshold) { + break; + } + } + return i; + } + + int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){ + + int i, j, z, hithigh, hitlow, bitIndex, startType; + i = 0; + bitIndex = 0; + + int isDamp = 0; + int damplimit = (int)((high / 2) * 0.3); + int dampHi = (high/2)+damplimit; + int dampLow = (high/2)-damplimit; + int firstST = 0; + + // i = clock frame of data + for (; i < (int)(len / clock); i++) + { + hithigh = 0; + hitlow = 0; + startType = -1; + z = startIndex + (i*clock); + isDamp = 0; + + /* Find out if we hit both high and low peaks */ + for (j = 0; j < clock; j++) + { + if (data[z+j] == high){ + hithigh = 1; + if ( startType == -1) + startType = 1; + } + + if (data[z+j] == low ){ + hitlow = 1; + if ( startType == -1) + startType = 0; + } + + if (hithigh && hitlow) + break; + } + + // No high value found, are we in a dampening field? + if ( !hithigh ) { + //PrintAndLog(" # Entering damp test at index : %d (%d)", z+j, j); + for (j = 0; j < clock; j++) + { + if ( + (data[z+j] <= dampHi && data[z+j] >= dampLow) + ){ + isDamp++; + } + } + } + + /* Manchester Switching.. + 0: High -> Low + 1: Low -> High + */ + if (startType == 0) + dataout[bitIndex++] = 1; + else if (startType == 1) + dataout[bitIndex++] = 0; + else + dataout[bitIndex++] = 2; + + if ( isDamp > clock/2 ) { + firstST++; + } + + if ( firstST == 4) + break; + } + return bitIndex; + } + + int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){ + + PrintAndLog(" Path B"); + + int i,j, bitindex, lc, tolerance, warnings; + warnings = 0; + int upperlimit = len*2/clock+8; + i = startIndex; + j = 0; + tolerance = clock/4; + uint8_t decodedArr[len]; + + /* Detect duration between 2 successive transitions */ + for (bitindex = 1; i < len; i++) { + + if (data[i-1] != data[i]) { + lc = i - startIndex; + startIndex = i; + + // Error check: if bitindex becomes too large, we do not + // have a Manchester encoded bitstream or the clock is really wrong! + if (bitindex > upperlimit ) { + PrintAndLog("Error: the clock you gave is probably wrong, aborting."); + return 0; + } + // Then switch depending on lc length: + // Tolerance is 1/4 of clock rate (arbitrary) + if (abs((lc-clock)/2) < tolerance) { + // Short pulse : either "1" or "0" + decodedArr[bitindex++] = data[i-1]; + } else if (abs(lc-clock) < tolerance) { + // Long pulse: either "11" or "00" + decodedArr[bitindex++] = data[i-1]; + decodedArr[bitindex++] = data[i-1]; + } else { + ++warnings; + PrintAndLog("Warning: Manchester decode error for pulse width detection."); + if (warnings > 10) { + PrintAndLog("Error: too many detection errors, aborting."); + return 0; + } + } + } + } + + /* + * We have a decodedArr of "01" ("1") or "10" ("0") + * parse it into final decoded dataout + */ + for (i = 0; i < bitindex; i += 2) { + + if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) { + dataout[j++] = 1; + } else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) { + dataout[j++] = 0; + } else { + i++; + warnings++; + PrintAndLog("Unsynchronized, resync..."); + PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)"); + + if (warnings > 10) { + PrintAndLog("Error: too many decode errors, aborting."); + return 0; + } + } + } + + PrintAndLog("%s", sprint_hex(dataout, j)); + return j; + } + + void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){ + /* + * We have a bitstream of "01" ("1") or "10" ("0") + * parse it into final decoded bitstream + */ + int i, j, warnings; + uint8_t decodedArr[(len/2)+1]; + + j = warnings = 0; + + uint8_t lastbit = 0; + + for (i = 0; i < len; i += 2) { + + uint8_t first = bitstream[i]; + uint8_t second = bitstream[i+1]; + + if ( first == second ) { + ++i; + ++warnings; + if (warnings > 10) { + PrintAndLog("Error: too many decode errors, aborting."); + return; + } + } + else if ( lastbit != first ) { + decodedArr[j++] = 0 ^ invert; + } + else { + decodedArr[j++] = 1 ^ invert; + } + lastbit = second; + } + + PrintAndLog("%s", sprint_hex(decodedArr, j)); +} + +void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){ + + PrintAndLog(" Manchester decoded : %d bits", len); + + uint8_t mod = len % blocksize; + uint8_t div = len / blocksize; + int i; + + // Now output the bitstream to the scrollback by line of 16 bits + for (i = 0; i < div*blocksize; i+=blocksize) { + PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) ); + } + + if ( mod > 0 ) + PrintAndLog(" %s", sprint_bin(bitStream+i, mod) ); +} + +void iceFsk(int * data, const size_t len){ + + //34359738 == 125khz (2^32 / 125) = + + // parameters + float phase_offset = 0.00f; // carrier phase offset + float frequency_offset = 0.30f; // carrier frequency offset + float wn = 0.01f; // pll bandwidth + float zeta = 0.707f; // pll damping factor + float K = 1000; // pll loop gain + size_t n = len; // number of samples + + // generate loop filter parameters (active PI design) + float t1 = K/(wn*wn); // tau_1 + float t2 = 2*zeta/wn; // tau_2 + + // feed-forward coefficients (numerator) + float b0 = (4*K/t1)*(1.+t2/2.0f); + float b1 = (8*K/t1); + float b2 = (4*K/t1)*(1.-t2/2.0f); + + // feed-back coefficients (denominator) + // a0 = 1.0 is implied + float a1 = -2.0f; + float a2 = 1.0f; + + // filter buffer + float v0=0.0f, v1=0.0f, v2=0.0f; + + // initialize states + float phi = phase_offset; // input signal's initial phase + float phi_hat = 0.0f; // PLL's initial phase + + unsigned int i; + float complex x,y; + float complex output[n]; + + for (i=0; i 60)? 100:0; + } + } + + for (j=0; j 0)? 10 : -10; + } + + // show data + for (j=0; j0 ? 1:0; + printf("%d", bit ); + } + printf("\n"); + + printf("R/50 : "); + for (i =startPos ; i < len; i += 50){ + bit = data[i]>0 ? 1:0; + printf("%d", bit ); } + printf("\n"); + +} + +float complex cexpf (float complex Z) +{ + float complex Res; + double rho = exp (__real__ Z); + __real__ Res = rho * cosf(__imag__ Z); + __imag__ Res = rho * sinf(__imag__ Z); + return Res; +}