X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/c12512e99ad08689e171e80a01f7148e55ee64e1..58a0fa747eab16c1997da619c2994a9cda640b00:/common/lfdemod.c diff --git a/common/lfdemod.c b/common/lfdemod.c index 25e52552..88a250d8 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -5,76 +5,118 @@ // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- -// Low frequency commands +// Low frequency demod/decode commands //----------------------------------------------------------------------------- #include #include #include "lfdemod.h" -//by marshmellow -//takes 1s and 0s and searches for EM410x format - output EM ID -uint64_t Em410xDecode(uint8_t *BitStream, size_t size) -{ - //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future - // otherwise could be a void with no arguments - //set defaults - int high=0, low=128; - uint64_t lo=0; - - uint32_t i = 0; - uint32_t initLoopMax = 65; - if (initLoopMax>size) initLoopMax=size; - for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values - { - if (BitStream[i] > high) - high = BitStream[i]; - else if (BitStream[i] < low) - low = BitStream[i]; +uint8_t justNoise(uint8_t *BitStream, size_t size) +{ + static const uint8_t THRESHOLD = 123; + //test samples are not just noise + uint8_t justNoise1 = 1; + for(size_t idx=0; idx < size && justNoise1 ;idx++){ + justNoise1 = BitStream[idx] < THRESHOLD; } - if (((high !=1)||(low !=0))){ //allow only 1s and 0s - // PrintAndLog("no data found"); - return 0; + return justNoise1; +} + +//by marshmellow +//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise +int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) +{ + *high=0; + *low=255; + // get high and low thresholds + for (int i=0; i < size; i++){ + if (BitStream[i] > *high) *high = BitStream[i]; + if (BitStream[i] < *low) *low = BitStream[i]; } - uint8_t parityTest=0; - // 111111111 bit pattern represent start of frame - uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; - uint32_t idx = 0; - uint32_t ii=0; - uint8_t resetCnt = 0; - while( (idx + 64) < size) { - restart: - // search for a start of frame marker - if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - idx+=9; - for (i=0; i<10;i++){ - for(ii=0; ii<5; ++ii){ - parityTest += BitStream[(i*5)+ii+idx]; - } - if (parityTest== ((parityTest>>1)<<1)){ - parityTest=0; - for (ii=0; ii<4;++ii){ - lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); - } - //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); - }else {//parity failed - //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); - parityTest=0; - idx-=8; - if (resetCnt>5)return 0; - resetCnt++; - goto restart;//continue; - } - } - //skip last 5 bit parity test for simplicity. - return lo; - }else{ - idx++; - } + if (*high < 123) return -1; // just noise + *high = (int)(((*high-128)*(((float)fuzzHi)/100))+128); + *low = (int)(((*low-128)*(((float)fuzzLo)/100))+128); + return 1; +} + +// by marshmellow +// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType +// returns 1 if passed +uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) +{ + uint8_t ans = 0; + for (uint8_t i = 0; i < bitLen; i++){ + ans ^= ((bits >> i) & 1); } - return 0; + //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); + return (ans == pType); +} + +//by marshmellow +//search for given preamble in given BitStream and return startIndex and length +uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) +{ + uint8_t foundCnt=0; + for (int idx=0; idx < *size - pLen; idx++){ + if (memcmp(BitStream+idx, preamble, pLen) == 0){ + //first index found + foundCnt++; + if (foundCnt == 1){ + *startIdx = idx; + } + if (foundCnt == 2){ + *size = idx - *startIdx; + return 1; + } + } + } + return 0; +} + + +//by marshmellow +//takes 1s and 0s and searches for EM410x format - output EM ID +uint64_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx) +{ + //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future + // otherwise could be a void with no arguments + //set defaults + uint64_t lo=0; + uint32_t i = 0; + if (BitStream[1]>1){ //allow only 1s and 0s + // PrintAndLog("no data found"); + return 0; + } + // 111111111 bit pattern represent start of frame + uint8_t preamble[] = {1,1,1,1,1,1,1,1,1}; + uint32_t idx = 0; + uint32_t parityBits = 0; + uint8_t errChk = 0; + *startIdx = 0; + for (uint8_t extraBitChk=0; extraBitChk<5; extraBitChk++){ + errChk = preambleSearch(BitStream+extraBitChk+*startIdx, preamble, sizeof(preamble), size, startIdx); + if (errChk == 0) return 0; + idx = *startIdx + 9; + for (i=0; i<10;i++){ //loop through 10 sets of 5 bits (50-10p = 40 bits) + parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5); + //check even parity + if (parityTest(parityBits, 5, 0) == 0){ + //parity failed try next bit (in the case of 1111111111) but last 9 = preamble + startIdx++; + errChk = 0; + break; + } + for (uint8_t ii=0; ii<4; ii++){ + lo = (lo << 1LL) | (BitStream[(i*5)+ii+idx]); + } + } + if (errChk != 0) return lo; + //skip last 5 bit parity test for simplicity. + // *size = 64; + } + return 0; } //by marshmellow @@ -84,35 +126,26 @@ uint64_t Em410xDecode(uint8_t *BitStream, size_t size) int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) { int i; - int high = 0, low = 128; + int clk2=*clk; *clk=DetectASKClock(BinStream, *size, *clk); //clock default - if (*clk<8) *clk =64; - if (*clk<32) *clk=32; + // if autodetected too low then adjust //MAY NEED ADJUSTMENT + if (clk2==0 && *clk<8) *clk =64; + if (clk2==0 && *clk<32) *clk=32; if (*invert != 0 && *invert != 1) *invert=0; uint32_t initLoopMax = 200; if (initLoopMax > *size) initLoopMax=*size; // Detect high and lows - for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values - { - if (BinStream[i] > high) - high = BinStream[i]; - else if (BinStream[i] < low) - low = BinStream[i]; - } - if ((high < 158) ){ //throw away static - //PrintAndLog("no data found"); - return -2; - } - //25% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)(((high-128)*.75)+128); - low= (int)(((low-128)*.75)+128); + // 25% fuzz in case highs and lows aren't clipped [marshmellow] + int high, low, ans; + ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75); + if (ans<1) return -2; //just noise - //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); + // PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely + if (*clk<=32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely int iii = 0; uint32_t gLen = *size; if (gLen > 3000) gLen=3000; @@ -120,13 +153,13 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) uint32_t bestStart = *size; uint32_t bestErrCnt = (*size/1000); uint32_t maxErr = (*size/1000); - //PrintAndLog("DEBUG - lastbit - %d",lastBit); - //loop to find first wave that works + // PrintAndLog("DEBUG - lastbit - %d",lastBit); + // loop to find first wave that works for (iii=0; iii < gLen; ++iii){ if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){ lastBit=iii-*clk; errCnt=0; - //loop through to see if this start location works + // loop through to see if this start location works for (i = iii; i < *size; ++i) { if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ lastBit+=*clk; @@ -204,6 +237,22 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) return bestErrCnt; } +//by marshmellow +//encode binary data into binary manchester +int ManchesterEncode(uint8_t *BitStream, size_t size) +{ + size_t modIdx=20000, i=0; + if (size>modIdx) return -1; + for (size_t idx=0; idx < size; idx++){ + BitStream[idx+modIdx++] = BitStream[idx]; + BitStream[idx+modIdx++] = BitStream[idx]^1; + } + for (; i<(size*2); i++){ + BitStream[i] = BitStream[i+20000]; + } + return i; +} + //by marshmellow //take 10 and 01 and manchester decode //run through 2 times and take least errCnt @@ -251,20 +300,19 @@ int manrawdecode(uint8_t * BitStream, size_t *size) return errCnt; } - //by marshmellow //take 01 or 10 = 0 and 11 or 00 = 1 -int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset) +int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) { uint8_t bitnum=0; uint32_t errCnt =0; - uint32_t i=1; + uint32_t i; i=offset; - for (;i<*size-2;i+=2){ + for (;i<*size-2; i+=2){ if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ - BitStream[bitnum++]=1; + BitStream[bitnum++]=1^invert; } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ - BitStream[bitnum++]=0; + BitStream[bitnum++]=invert; } else { BitStream[bitnum++]=77; errCnt++; @@ -283,30 +331,21 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) { uint32_t i; // int invert=0; //invert default - int high = 0, low = 128; + int clk2 = *clk; *clk=DetectASKClock(BinStream, *size, *clk); //clock default - uint8_t BitStream[502] = {0}; + //uint8_t BitStream[502] = {0}; - if (*clk<8) *clk =64; - if (*clk<32) *clk=32; + //HACK: if clock not detected correctly - default + if (clk2==0 && *clk<8) *clk =64; + if (clk2==0 && *clk<32 && clk2==0) *clk=32; if (*invert != 0 && *invert != 1) *invert =0; uint32_t initLoopMax = 200; if (initLoopMax > *size) initLoopMax=*size; // Detect high and lows - for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values - { - if (BinStream[i] > high) - high = BinStream[i]; - else if (BinStream[i] < low) - low = BinStream[i]; - } - if ((high < 158)){ //throw away static - // PrintAndLog("no data found"); - return -2; - } //25% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)(((high-128)*.75)+128); - low= (int)(((low-128)*.75)+128); + int high, low, ans; + ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75); + if (ans<1) return -2; //just noise //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check @@ -321,6 +360,7 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) uint8_t errCnt =0; uint32_t bestStart = *size; uint32_t bestErrCnt = (*size/1000); + uint32_t maxErr = bestErrCnt; uint8_t midBit=0; //PrintAndLog("DEBUG - lastbit - %d",lastBit); //loop to find first wave that works @@ -331,30 +371,20 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) for (i = iii; i < *size; ++i) { if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ lastBit+=*clk; - BitStream[bitnum] = *invert; - bitnum++; midBit=0; } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ //low found and we are expecting a bar lastBit+=*clk; - BitStream[bitnum] = 1- *invert; - bitnum++; midBit=0; } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ //mid bar? midBit=1; - BitStream[bitnum]= 1- *invert; - bitnum++; } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ //mid bar? midBit=1; - BitStream[bitnum]= *invert; - bitnum++; } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){ //no mid bar found midBit=1; - BitStream[bitnum]= BitStream[bitnum-1]; - bitnum++; } else { //mid value found or no bar supposed to be here @@ -362,66 +392,100 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) //should have hit a high or low based on clock!! //debug //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - if (bitnum > 0){ - BitStream[bitnum]=77; - bitnum++; - } errCnt++; lastBit+=*clk;//skip over until hit too many errors if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over errCnt=0; - bitnum=0;//start over break; } } } - if (bitnum>500) break; + if ((i-iii)>(500 * *clk)) break; //got enough bits } //we got more than 64 good bits and not all errors - if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) { + if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) { //possible good read - if (errCnt==0) break; //great read - finish - if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish + if (errCnt==0){ + bestStart=iii; + bestErrCnt=errCnt; + break; //great read - finish + } if (errCnt=gLen){ //exhausted test - //if there was a ok test go back to that one and re-run the best run (then dump after that run) - if (bestErrCnt < (*size/1000)) iii=bestStart; - } } - if (bitnum>16){ - for (i=0; i < bitnum; ++i){ - BinStream[i]=BitStream[i]; + if (bestErrCnt= high) && ((i-lastBit) > (*clk-tol))){ + lastBit += *clk; + BinStream[bitnum] = *invert; + bitnum++; + midBit=0; + } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ + //low found and we are expecting a bar + lastBit+=*clk; + BinStream[bitnum] = 1-*invert; + bitnum++; + midBit=0; + } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ + //mid bar? + midBit=1; + BinStream[bitnum] = 1 - *invert; + bitnum++; + } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ + //mid bar? + midBit=1; + BinStream[bitnum] = *invert; + bitnum++; + } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){ + //no mid bar found + midBit=1; + if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1]; + bitnum++; + + } else { + //mid value found or no bar supposed to be here + if ((i-lastBit)>(*clk+tol)){ + //should have hit a high or low based on clock!! + + //debug + //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); + if (bitnum > 0){ + BinStream[bitnum]=77; + bitnum++; + } + + lastBit+=*clk;//skip over error + } + } + if (bitnum >=400) break; } *size=bitnum; - } else return -1; - return errCnt; + } else{ + *invert=bestStart; + *clk=iii; + return -1; + } + return bestErrCnt; } //translate wave to 11111100000 (1 for each short wave 0 for each long wave) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { uint32_t last_transition = 0; uint32_t idx = 1; - uint32_t maxVal=0; + //uint32_t maxVal=0; if (fchigh==0) fchigh=10; if (fclow==0) fclow=8; - // we do care about the actual theshold value as sometimes near the center of the - // wave we may get static that changes direction of wave for one value - // if our value is too low it might affect the read. and if our tag or - // antenna is weak a setting too high might not see anything. [marshmellow] - if (size<100) return 0; - for(idx=1; idx<100; idx++){ - if(maxVal1 crossing - n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor + n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor } if (n == 0) n = 1; @@ -508,56 +572,69 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow); return size; } + // loop to get raw HID waveform then FSK demodulate the TAG ID from it -int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) +int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { + if (justNoise(dest, *size)) return -1; + + size_t numStart=0, size2=*size, startIdx=0; + // FSK demodulator + *size = fskdemod(dest, size2,50,1,10,8); //fsk2a + if (*size < 96) return -2; + // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 + uint8_t preamble[] = {0,0,0,1,1,1,0,1}; + // find bitstring in array + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found - size_t idx=0; //, found=0; //size=0, + numStart = startIdx + sizeof(preamble); + // final loop, go over previously decoded FSK data and manchester decode into usable tag ID + for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ + if (dest[idx] == dest[idx+1]){ + return -4; //not manchester data + } + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|1; + else // 0 1 + *lo=(*lo<<1)|0; + } + return (int)startIdx; +} + +// loop to get raw paradox waveform then FSK demodulate the TAG ID from it +int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) +{ + if (justNoise(dest, *size)) return -1; + + size_t numStart=0, size2=*size, startIdx=0; // FSK demodulator - size = fskdemod(dest, size,50,0,10,8); - - // final loop, go over previously decoded manchester data and decode into usable tag ID - // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; - int numshifts = 0; - idx = 0; - //one scan - while( idx + sizeof(frame_marker_mask) < size) { - // search for a start of frame marker - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { // frame marker found - idx+=sizeof(frame_marker_mask); - while(dest[idx] != dest[idx+1] && idx < size-2) - { - // Keep going until next frame marker (or error) - // Shift in a bit. Start by shifting high registers - *hi2 = (*hi2<<1)|(*hi>>31); - *hi = (*hi<<1)|(*lo>>31); - //Then, shift in a 0 or one into low - if (dest[idx] && !dest[idx+1]) // 1 0 - *lo=(*lo<<1)|0; - else // 0 1 - *lo=(*lo<<1)|1; - numshifts++; - idx += 2; - } - // Hopefully, we read a tag and hit upon the next frame marker - if(idx + sizeof(frame_marker_mask) < size) - { - if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) - { - //good return - return idx; - } - } - // reset - *hi2 = *hi = *lo = 0; - numshifts = 0; - }else { - idx++; - } + *size = fskdemod(dest, size2,50,1,10,8); //fsk2a + if (*size < 96) return -2; + + // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 + uint8_t preamble[] = {0,0,0,0,1,1,1,1}; + + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -3; //preamble not found + + numStart = startIdx + sizeof(preamble); + // final loop, go over previously decoded FSK data and manchester decode into usable tag ID + for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ + if (dest[idx] == dest[idx+1]) + return -4; //not manchester data + *hi2 = (*hi2<<1)|(*hi>>31); + *hi = (*hi<<1)|(*lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 + *lo=(*lo<<1)|1; + else // 0 1 + *lo=(*lo<<1)|0; } - return -1; + return (int)startIdx; } uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) @@ -573,20 +650,12 @@ uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) int IOdemodFSK(uint8_t *dest, size_t size) { - static const uint8_t THRESHOLD = 140; - uint32_t idx=0; + if (justNoise(dest, size)) return -1; //make sure buffer has data - if (size < 66) return -1; - //test samples are not just noise - uint8_t justNoise = 1; - for(idx=0;idx< size && justNoise ;idx++){ - justNoise = dest[idx] < THRESHOLD; - } - if(justNoise) return 0; - + if (size < 66*64) return -2; // FSK demodulator - size = fskdemod(dest, size, 64, 1, 10, 8); // RF/64 and invert - if (size < 65) return -1; //did we get a good demod? + size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 + if (size < 65) return -3; //did we get a good demod? //Index map //0 10 20 30 40 50 60 //| | | | | | | @@ -596,18 +665,83 @@ int IOdemodFSK(uint8_t *dest, size_t size) // //XSF(version)facility:codeone+codetwo //Handle the data - uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; - for( idx=0; idx < (size - 65); idx++) { - if ( memcmp(dest + idx, mask, sizeof(mask))==0) { - //frame marker found - if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ - //confirmed proper separator bits found - //return start position - return (int) idx; - } + size_t startIdx = 0; + uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); + if (errChk == 0) return -4; //preamble not found + + if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ + //confirmed proper separator bits found + //return start position + return (int) startIdx; + } + return -5; +} + +// by marshmellow +// takes a array of binary values, start position, length of bits per parity (includes parity bit), +// Parity Type (1 for odd 0 for even), and binary Length (length to run) +size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) +{ + uint32_t parityWd = 0; + size_t j = 0, bitCnt = 0; + for (int word = 0; word < (bLen); word+=pLen){ + for (int bit=0; bit < pLen; bit++){ + parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; + BitStream[j++] = (BitStream[startIdx+word+bit]); } + j--; + // if parity fails then return 0 + if (parityTest(parityWd, pLen, pType) == 0) return -1; + bitCnt+=(pLen-1); + parityWd = 0; } - return 0; + // if we got here then all the parities passed + //return ID start index and size + return bitCnt; +} + +// by marshmellow +// FSK Demod then try to locate an AWID ID +int AWIDdemodFSK(uint8_t *dest, size_t *size) +{ + //make sure buffer has enough data + if (*size < 96*50) return -1; + + if (justNoise(dest, *size)) return -2; + + // FSK demodulator + *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 + if (*size < 96) return -3; //did we get a good demod? + + uint8_t preamble[] = {0,0,0,0,0,0,0,1}; + size_t startIdx = 0; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -4; //preamble not found + if (*size != 96) return -5; + return (int)startIdx; +} + +// by marshmellow +// FSK Demod then try to locate an Farpointe Data (pyramid) ID +int PyramiddemodFSK(uint8_t *dest, size_t *size) +{ + //make sure buffer has data + if (*size < 128*50) return -5; + + //test samples are not just noise + if (justNoise(dest, *size)) return -1; + + // FSK demodulator + *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 + if (*size < 128) return -2; //did we get a good demod? + + uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; + size_t startIdx = 0; + uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); + if (errChk == 0) return -4; //preamble not found + if (*size != 128) return -3; + return (int)startIdx; } // by marshmellow @@ -615,72 +749,67 @@ int IOdemodFSK(uint8_t *dest, size_t size) // maybe somehow adjust peak trimming value based on samples to fix? int DetectASKClock(uint8_t dest[], size_t size, int clock) { - int i=0; - int peak=0; - int low=128; - int clk[]={16,32,40,50,64,100,128,256}; - int loopCnt = 256; //don't need to loop through entire array... - if (size peak){ - peak = dest[i]; - } - if(dest[i] < low){ - low = dest[i]; - } - } - peak=(int)(((peak-128)*.75)+128); - low= (int)(((low-128)*.75)+128); - int ii; - int clkCnt; - int tol = 0; - int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000}; - int errCnt=0; - //test each valid clock from smallest to greatest to see which lines up - for(clkCnt=0; clkCnt < 6; ++clkCnt){ - if (clk[clkCnt] == 32){ - tol=1; - }else{ - tol=0; - } - bestErr[clkCnt]=1000; - //try lining up the peaks by moving starting point (try first 256) - for (ii=0; ii< loopCnt; ++ii){ - if ((dest[ii] >= peak) || (dest[ii] <= low)){ - errCnt=0; - // now that we have the first one lined up test rest of wave array - for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ - if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ - }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ - }else{ //error no peak detected - errCnt++; - } - } - //if we found no errors this is correct one - return this clock - if(errCnt==0) return clk[clkCnt]; - //if we found errors see if it is lowest so far and save it as best run - if(errCnt= peak) || (dest[ii] <= low)){ + errCnt=0; + // now that we have the first one lined up test rest of wave array + for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ + if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ + }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ + }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ + }else{ //error no peak detected + errCnt++; + } + } + //if we found no errors then we can stop here + // this is correct one - return this clock + //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); + if(errCnt==0 && clkCnt<6) return clk[clkCnt]; + //if we found errors see if it is lowest so far and save it as best run + if(errCnt peak){ - peak = dest[i]; - } - if(dest[i] < low){ - low = dest[i]; - } - } - peak=(int)(((peak-128)*.90)+128); - low= (int)(((low-128)*.90)+128); + int peak, low; + getHiLo(dest, loopCnt, &peak, &low, 75, 75); + //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low); int ii; uint8_t clkCnt; uint8_t tol = 0; int peakcnt=0; int errCnt=0; - int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; - int peaksdet[]={0,0,0,0,0,0,0,0,0}; + int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000}; + int peaksdet[]={0,0,0,0,0,0,0,0}; //test each valid clock from smallest to greatest to see which lines up - for(clkCnt=0; clkCnt < 6; ++clkCnt){ - if (clk[clkCnt] == 32){ - tol=0; + for(clkCnt=0; clkCnt < 7; ++clkCnt){ + if (clk[clkCnt] <= 32){ + tol=1; }else{ tol=0; } @@ -730,7 +850,7 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock) errCnt=0; peakcnt=0; // now that we have the first one lined up test rest of wave array - for (i=0; i < ((int)(size/clk[clkCnt])-1); ++i){ + for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ peakcnt++; }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ @@ -769,54 +889,67 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock) return clk[best]; } -//by marshmellow (attempt to get rid of high immediately after a low) -void pskCleanWave(uint8_t *bitStream, size_t size) +// by marshmellow (attempt to get rid of high immediately after a low) +void pskCleanWave(uint8_t *BitStream, size_t size) { int i; - int low=128; - int high=0; int gap = 4; - // int loopMax = 2048; - int newLow=0; + int newLow=0; int newHigh=0; - for (i=0; i < size; ++i){ - if (bitStream[i] < low) low=bitStream[i]; - if (bitStream[i] > high) high=bitStream[i]; - } - high = (int)(((high-128)*.80)+128); - low = (int)(((low-128)*.90)+128); - //low = (uint8_t)(((int)(low)-128)*.80)+128; - for (i=0; i < size; ++i){ + int high, low; + getHiLo(BitStream, size, &high, &low, 80, 90); + + for (i=0; i < size; ++i){ if (newLow == 1){ - bitStream[i]=low+8; - gap--; + if (BitStream[i]>low){ + BitStream[i]=low+8; + gap--; + } if (gap == 0){ newLow=0; gap=4; } }else if (newHigh == 1){ - bitStream[i]=high-8; - gap--; + if (BitStream[i]= high) newHigh=1; + if (BitStream[i] <= low) newLow=1; + if (BitStream[i] >= high) newHigh=1; } return; } +// by marshmellow +// convert psk1 demod to psk2 demod +// only transition waves are 1s +void psk1TOpsk2(uint8_t *BitStream, size_t size) +{ + size_t i=1; + uint8_t lastBit=BitStream[0]; + for (; i 1280) gLen=1280; - // get high - for (i=0; i < gLen; ++i){ - if (dest[i] > high) high = dest[i]; - if (dest[i] < low) low = dest[i]; - } - //fudge high/low bars by 25% - high = (uint8_t)((((int)(high)-128)*.75)+128); - low = (uint8_t)((((int)(low)-128)*.80)+128); - //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter - uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave - if (*clk==32)tol=2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely + uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave + if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely uint32_t iii = 0; uint8_t errCnt =0; uint32_t bestStart = *size; uint32_t maxErr = (*size/1000); uint32_t bestErrCnt = maxErr; - //uint8_t midBit=0; uint8_t curBit=0; uint8_t bitHigh=0; uint8_t ignorewin=*clk/8; @@ -953,7 +1077,6 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) bestErrCnt = errCnt; break; //great read - finish } - if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish if (errCnt < bestErrCnt){ //set this as new best run bestErrCnt = errCnt; bestStart = iii; @@ -1017,3 +1140,191 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) return errCnt; } +//by marshmellow +//detects the bit clock for FSK given the high and low Field Clocks +uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) +{ + uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; + uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; + uint8_t rfLensFnd = 0; + uint8_t lastFCcnt=0; + uint32_t fcCounter = 0; + uint16_t rfCounter = 0; + uint8_t firstBitFnd = 0; + size_t i; + + uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); + rfLensFnd=0; + fcCounter=0; + rfCounter=0; + firstBitFnd=0; + //PrintAndLog("DEBUG: fcTol: %d",fcTol); + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){ + // new peak + fcCounter++; + rfCounter++; + // if we got less than the small fc + tolerance then set it to the small fc + if (fcCounter < fcLow+fcTol) + fcCounter = fcLow; + else //set it to the large fc + fcCounter = fcHigh; + + //look for bit clock (rf/xx) + if ((fcCounterlastFCcnt)){ + //not the same size as the last wave - start of new bit sequence + + if (firstBitFnd>1){ //skip first wave change - probably not a complete bit + for (int ii=0; ii<15; ii++){ + if (rfLens[ii]==rfCounter){ + rfCnts[ii]++; + rfCounter=0; + break; + } + } + if (rfCounter>0 && rfLensFnd<15){ + //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); + rfCnts[rfLensFnd]++; + rfLens[rfLensFnd++]=rfCounter; + } + } else { + firstBitFnd++; + } + rfCounter=0; + lastFCcnt=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + rfCounter++; + } + } + uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; + + for (i=0; i<15; i++){ + //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); + //get highest 2 RF values (might need to get more values to compare or compare all?) + if (rfCnts[i]>rfCnts[rfHighest]){ + rfHighest3=rfHighest2; + rfHighest2=rfHighest; + rfHighest=i; + } else if(rfCnts[i]>rfCnts[rfHighest2]){ + rfHighest3=rfHighest2; + rfHighest2=i; + } else if(rfCnts[i]>rfCnts[rfHighest3]){ + rfHighest3=i; + } + } + // set allowed clock remainder tolerance to be 1 large field clock length+1 + // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off + uint8_t tol1 = fcHigh+1; + + //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); + + // loop to find the highest clock that has a remainder less than the tolerance + // compare samples counted divided by + int ii=7; + for (; ii>=0; ii--){ + if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ + if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ + break; + } + } + } + } + + if (ii<0) return 0; // oops we went too far + + return clk[ii]; +} + +//by marshmellow +//countFC is to detect the field clock lengths. +//counts and returns the 2 most common wave lengths +uint16_t countFC(uint8_t *BitStream, size_t size) +{ + uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; + uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; + uint8_t fcLensFnd = 0; + uint8_t lastFCcnt=0; + uint32_t fcCounter = 0; + size_t i; + + // prime i to first up transition + for (i = 1; i < size-1; i++) + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) + break; + + for (; i < size-1; i++){ + if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ + // new up transition + fcCounter++; + + //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) + if (lastFCcnt==5 && fcCounter==9) fcCounter--; + //if odd and not rc/5 add one (for when we get a fc 9 instead of 10) + if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++; + + // save last field clock count (fc/xx) + // find which fcLens to save it to: + for (int ii=0; ii<10; ii++){ + if (fcLens[ii]==fcCounter){ + fcCnts[ii]++; + fcCounter=0; + break; + } + } + if (fcCounter>0 && fcLensFnd<10){ + //add new fc length + fcCnts[fcLensFnd]++; + fcLens[fcLensFnd++]=fcCounter; + } + fcCounter=0; + } else { + // count sample + fcCounter++; + } + } + + uint8_t best1=9, best2=9, best3=9; + uint16_t maxCnt1=0; + // go through fclens and find which ones are bigest 2 + for (i=0; i<10; i++){ + // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); + // get the 3 best FC values + if (fcCnts[i]>maxCnt1) { + best3=best2; + best2=best1; + maxCnt1=fcCnts[i]; + best1=i; + } else if(fcCnts[i]>fcCnts[best2]){ + best3=best2; + best2=i; + } else if(fcCnts[i]>fcCnts[best3]){ + best3=i; + } + } + uint8_t fcH=0, fcL=0; + if (fcLens[best1]>fcLens[best2]){ + fcH=fcLens[best1]; + fcL=fcLens[best2]; + } else{ + fcH=fcLens[best2]; + fcL=fcLens[best1]; + } + + // TODO: take top 3 answers and compare to known Field clocks to get top 2 + + uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; + // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); + + return fcs; +}