X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/c80eb8ba79b86a157f9769203b7ddc26960d2dc4..315e18e66cea20bd426be9b05337f53c9055e0c7:/fpga/hi_read_rx_xcorr.v diff --git a/fpga/hi_read_rx_xcorr.v b/fpga/hi_read_rx_xcorr.v index 433d6736..f637abf2 100644 --- a/fpga/hi_read_rx_xcorr.v +++ b/fpga/hi_read_rx_xcorr.v @@ -27,22 +27,12 @@ assign pwr_hi = ck_1356megb & (~snoop); assign pwr_oe1 = 1'b0; assign pwr_oe3 = 1'b0; assign pwr_oe4 = 1'b0; +// Unused. +assign pwr_lo = 1'b0; +assign pwr_oe2 = 1'b0; + +assign adc_clk = ck_1356megb; // sample frequency is 13,56 MHz -reg [2:0] fc_div; -always @(negedge ck_1356megb) - fc_div <= fc_div + 1; - -(* clock_signal = "yes" *) reg adc_clk; // sample frequency, always 16 * fc -always @(ck_1356megb, xcorr_is_848, xcorr_quarter_freq, fc_div) - if (xcorr_is_848 & ~xcorr_quarter_freq) // fc = 847.5 kHz, standard ISO14443B - adc_clk <= ck_1356megb; - else if (~xcorr_is_848 & ~xcorr_quarter_freq) // fc = 423.75 kHz - adc_clk <= fc_div[0]; - else if (xcorr_is_848 & xcorr_quarter_freq) // fc = 211.875 kHz - adc_clk <= fc_div[1]; - else // fc = 105.9375 kHz - adc_clk <= fc_div[2]; - // When we're a reader, we just need to do the BPSK demod; but when we're an // eavesdropper, we also need to pick out the commands sent by the reader, // using AM. Do this the same way that we do it for the simulated tag. @@ -69,15 +59,27 @@ begin end end -// Let us report a correlation every 4 subcarrier cycles, or 4*16=64 samples, -// so we need a 6-bit counter. + +// Let us report a correlation every 64 samples. I.e. +// one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier, +// one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers, +// one Q/I pair for each subcarrier cyle for the 212kHz subcarrier. +// We need a 6-bit counter for the timing. reg [5:0] corr_i_cnt; -// And a couple of registers in which to accumulate the correlations. -// We would add at most 32 times the difference between unmodulated and modulated signal. It should +always @(negedge adc_clk) +begin + corr_i_cnt <= corr_i_cnt + 1; +end + +// And a couple of registers in which to accumulate the correlations. From the 64 samples +// we would add at most 32 times the difference between unmodulated and modulated signal. It should // be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%. // 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign. -reg signed [11:0] corr_i_accum; -reg signed [11:0] corr_q_accum; +// Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the +// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. +// Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits. +reg signed [13:0] corr_i_accum; +reg signed [13:0] corr_q_accum; // we will report maximum 8 significant bits reg signed [7:0] corr_i_out; reg signed [7:0] corr_q_out; @@ -86,12 +88,29 @@ reg ssp_clk; reg ssp_frame; -always @(negedge adc_clk) -begin - corr_i_cnt <= corr_i_cnt + 1; -end - +// The subcarrier reference signals +reg subcarrier_I; +reg subcarrier_Q; +always @(corr_i_cnt or xcorr_is_848 or xcorr_quarter_freq) +begin + if (xcorr_is_848 & ~xcorr_quarter_freq) // 848 kHz + begin + subcarrier_I = ~corr_i_cnt[3]; + subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]); + end + else if (xcorr_is_848 & xcorr_quarter_freq) // 212 kHz + begin + subcarrier_I = ~corr_i_cnt[5]; + subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]); + end + else + begin // 424 kHz + subcarrier_I = ~corr_i_cnt[4]; + subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]); + end +end + // ADC data appears on the rising edge, so sample it on the falling edge always @(negedge adc_clk) begin @@ -103,36 +122,60 @@ begin if(snoop) begin // Send 7 most significant bits of tag signal (signed), plus 1 bit reader signal - corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev}; - corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev}; + if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) + corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev}; + else // truncate to maximum value + if (corr_i_accum[13] == 1'b0) + corr_i_out <= {7'b0111111, after_hysteresis_prev_prev}; + else + corr_i_out <= {7'b1000000, after_hysteresis_prev_prev}; + if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) + corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev}; + else // truncate to maximum value + if (corr_q_accum[13] == 1'b0) + corr_q_out <= {7'b0111111, after_hysteresis_prev}; + else + corr_q_out <= {7'b1000000, after_hysteresis_prev}; after_hysteresis_prev_prev <= after_hysteresis; end else begin - // 8 bits of tag signal - corr_i_out <= corr_i_accum[11:4]; - corr_q_out <= corr_q_accum[11:4]; + // Send 8 bits of tag signal + if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) + corr_i_out <= corr_i_accum[11:4]; + else // truncate to maximum value + if (corr_i_accum[13] == 1'b0) + corr_i_out <= 8'b01111111; + else + corr_i_out <= 8'b10000000; + if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) + corr_q_out <= corr_q_accum[11:4]; + else // truncate to maximum value + if (corr_q_accum[13] == 1'b0) + corr_q_out <= 8'b01111111; + else + corr_q_out <= 8'b10000000; end - - corr_i_accum <= adc_d; - corr_q_accum <= adc_d; + // Initialize next correlation. + // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate. + corr_i_accum <= $signed({1'b0,adc_d}); + corr_q_accum <= $signed({1'b0,adc_d}); end else begin - if(corr_i_cnt[3]) - corr_i_accum <= corr_i_accum - adc_d; + if (subcarrier_I) + corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d}); else - corr_i_accum <= corr_i_accum + adc_d; + corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d}); - if(corr_i_cnt[3] == corr_i_cnt[2]) // phase shifted by pi/2 - corr_q_accum <= corr_q_accum + adc_d; + if (subcarrier_Q) + corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d}); else - corr_q_accum <= corr_q_accum - adc_d; + corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d}); end - // The logic in hi_simulate.v reports 4 samples per bit. We report two - // (I, Q) pairs per bit, so we should do 2 samples per pair. + // for each Q/I pair report two reader signal samples when sniffing if(corr_i_cnt == 6'd32) after_hysteresis_prev <= after_hysteresis; @@ -167,8 +210,4 @@ assign ssp_din = corr_i_out[7]; assign dbg = corr_i_cnt[3]; -// Unused. -assign pwr_lo = 1'b0; -assign pwr_oe2 = 1'b0; - endmodule