X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/ca8a3478d949a03953129ec34d209a9c80079252..5ea2a24839c71ba6e58af937a392a6204b8b4696:/fpga/hi_read_rx_xcorr.v diff --git a/fpga/hi_read_rx_xcorr.v b/fpga/hi_read_rx_xcorr.v deleted file mode 100644 index 503c8d67..00000000 --- a/fpga/hi_read_rx_xcorr.v +++ /dev/null @@ -1,271 +0,0 @@ -//----------------------------------------------------------------------------- -// -// Jonathan Westhues, April 2006 -//----------------------------------------------------------------------------- - -module hi_read_rx_xcorr( - pck0, ck_1356meg, ck_1356megb, - pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, - adc_d, adc_clk, - ssp_frame, ssp_din, ssp_dout, ssp_clk, - cross_hi, cross_lo, - dbg, - xcorr_is_848, snoop, xcorr_quarter_freq, hi_read_rx_xcorr_amplitude -); - input pck0, ck_1356meg, ck_1356megb; - output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; - input [7:0] adc_d; - output adc_clk; - input ssp_dout; - output ssp_frame, ssp_din, ssp_clk; - input cross_hi, cross_lo; - output dbg; - input xcorr_is_848, snoop, xcorr_quarter_freq, hi_read_rx_xcorr_amplitude; - -// Carrier is steady on through this, unless we're snooping. -assign pwr_hi = ck_1356megb & (~snoop); -assign pwr_oe1 = 1'b0; -assign pwr_oe3 = 1'b0; -assign pwr_oe4 = 1'b0; -// Unused. -assign pwr_lo = 1'b0; -assign pwr_oe2 = 1'b0; - -assign adc_clk = ck_1356megb; // sample frequency is 13,56 MHz - -// When we're a reader, we just need to do the BPSK demod; but when we're an -// eavesdropper, we also need to pick out the commands sent by the reader, -// using AM. Do this the same way that we do it for the simulated tag. -reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev; -reg [11:0] has_been_low_for; -always @(negedge adc_clk) -begin - if(& adc_d[7:0]) after_hysteresis <= 1'b1; - else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0; - - if(after_hysteresis) - begin - has_been_low_for <= 7'b0; - end - else - begin - if(has_been_low_for == 12'd4095) - begin - has_been_low_for <= 12'd0; - after_hysteresis <= 1'b1; - end - else - has_been_low_for <= has_been_low_for + 1; - end -end - - -// Let us report a correlation every 64 samples. I.e. -// one Q/I pair after 4 subcarrier cycles for the 848kHz subcarrier, -// one Q/I pair after 2 subcarrier cycles for the 424kHz subcarriers, -// one Q/I pair for each subcarrier cyle for the 212kHz subcarrier. -// We need a 6-bit counter for the timing. -reg [5:0] corr_i_cnt; -always @(negedge adc_clk) -begin - corr_i_cnt <= corr_i_cnt + 1; -end - -// And a couple of registers in which to accumulate the correlations. From the 64 samples -// we would add at most 32 times the difference between unmodulated and modulated signal. It should -// be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%. -// 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign. -// Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the -// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits. -// Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits. -reg signed [13:0] corr_i_accum; -reg signed [13:0] corr_q_accum; -// we will report maximum 8 significant bits -reg signed [7:0] corr_i_out; -reg signed [7:0] corr_q_out; - -// clock and frame signal for communication to ARM -reg ssp_clk; -reg ssp_frame; - - - -// the amplitude of the subcarrier is sqrt(ci^2 + cq^2). -// approximate by amplitude = max(|ci|,|cq|) + 1/2*min(|ci|,|cq|) -reg [13:0] corr_amplitude, abs_ci, abs_cq, max_ci_cq, min_ci_cq; - - -always @(corr_i_accum or corr_q_accum) -begin - if (corr_i_accum[13] == 1'b0) - abs_ci <= corr_i_accum; - else - abs_ci <= -corr_i_accum; - - if (corr_q_accum[13] == 1'b0) - abs_cq <= corr_q_accum; - else - abs_cq <= -corr_q_accum; - - if (abs_ci > abs_cq) - begin - max_ci_cq <= abs_ci; - min_ci_cq <= abs_cq; - end - else - begin - max_ci_cq <= abs_cq; - min_ci_cq <= abs_ci; - end - - corr_amplitude <= max_ci_cq + min_ci_cq/2; - -end - - -// The subcarrier reference signals -reg subcarrier_I; -reg subcarrier_Q; - -always @(corr_i_cnt or xcorr_is_848 or xcorr_quarter_freq) -begin - if (xcorr_is_848 & ~xcorr_quarter_freq) // 848 kHz - begin - subcarrier_I = ~corr_i_cnt[3]; - subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]); - end - else if (xcorr_is_848 & xcorr_quarter_freq) // 212 kHz - begin - subcarrier_I = ~corr_i_cnt[5]; - subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]); - end - else - begin // 424 kHz - subcarrier_I = ~corr_i_cnt[4]; - subcarrier_Q = ~(corr_i_cnt[4] ^ corr_i_cnt[3]); - end -end - - -// ADC data appears on the rising edge, so sample it on the falling edge -always @(negedge adc_clk) -begin - // These are the correlators: we correlate against in-phase and quadrature - // versions of our reference signal, and keep the (signed) results or the - // resulting amplitude to send out later over the SSP. - if(corr_i_cnt == 6'd0) - begin - if(snoop) - begin - if (hi_read_rx_xcorr_amplitude) - begin - // send amplitude plus 2 bits reader signal - corr_i_out <= corr_amplitude[13:6]; - corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev}; - end - else - begin - // Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal - if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) - corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev}; - else // truncate to maximum value - if (corr_i_accum[13] == 1'b0) - corr_i_out <= {7'b0111111, after_hysteresis_prev_prev}; - else - corr_i_out <= {7'b1000000, after_hysteresis_prev_prev}; - // Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal - if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) - corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev}; - else // truncate to maximum value - if (corr_q_accum[13] == 1'b0) - corr_q_out <= {7'b0111111, after_hysteresis_prev}; - else - corr_q_out <= {7'b1000000, after_hysteresis_prev}; - end - end - else - begin - if (hi_read_rx_xcorr_amplitude) - begin - // send amplitude - corr_i_out <= {2'b00, corr_amplitude[13:8]}; - corr_q_out <= corr_amplitude[7:0]; - end - else - begin - // Send 8 bits of in phase tag signal - if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) - corr_i_out <= corr_i_accum[11:4]; - else // truncate to maximum value - if (corr_i_accum[13] == 1'b0) - corr_i_out <= 8'b01111111; - else - corr_i_out <= 8'b10000000; - // Send 8 bits of quadrature phase tag signal - if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111) - corr_q_out <= corr_q_accum[11:4]; - else // truncate to maximum value - if (corr_q_accum[13] == 1'b0) - corr_q_out <= 8'b01111111; - else - corr_q_out <= 8'b10000000; - end - end - - // for each Q/I pair report two reader signal samples when sniffing. Store the 1st. - after_hysteresis_prev_prev <= after_hysteresis; - // Initialize next correlation. - // Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate. - corr_i_accum <= $signed({1'b0,adc_d}); - corr_q_accum <= $signed({1'b0,adc_d}); - end - else - begin - if (subcarrier_I) - corr_i_accum <= corr_i_accum + $signed({1'b0,adc_d}); - else - corr_i_accum <= corr_i_accum - $signed({1'b0,adc_d}); - - if (subcarrier_Q) - corr_q_accum <= corr_q_accum + $signed({1'b0,adc_d}); - else - corr_q_accum <= corr_q_accum - $signed({1'b0,adc_d}); - end - - // for each Q/I pair report two reader signal samples when sniffing. Store the 2nd. - if(corr_i_cnt == 6'd32) - after_hysteresis_prev <= after_hysteresis; - - // Then the result from last time is serialized and send out to the ARM. - // We get one report each cycle, and each report is 16 bits, so the - // ssp_clk should be the adc_clk divided by 64/16 = 4. - // ssp_clk frequency = 13,56MHz / 4 = 3.39MHz - - if(corr_i_cnt[1:0] == 2'b10) - ssp_clk <= 1'b0; - - if(corr_i_cnt[1:0] == 2'b00) - begin - ssp_clk <= 1'b1; - // Don't shift if we just loaded new data, obviously. - if(corr_i_cnt != 6'd0) - begin - corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; - corr_q_out[7:1] <= corr_q_out[6:0]; - end - end - - // set ssp_frame signal for corr_i_cnt = 0..3 - // (send one frame with 16 Bits) - if(corr_i_cnt[5:2] == 4'b0000) - ssp_frame = 1'b1; - else - ssp_frame = 1'b0; - -end - -assign ssp_din = corr_i_out[7]; - -assign dbg = corr_i_cnt[3]; - -endmodule