X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/d16e0478d281e959e9d939ed5af331b5d67d17c9..1b492a97af74c0cb6c9886bce8b777d6bb50798d:/armsrc/lfops.c diff --git a/armsrc/lfops.c b/armsrc/lfops.c index cde4ae54..5e01e9b0 100644 --- a/armsrc/lfops.c +++ b/armsrc/lfops.c @@ -8,44 +8,65 @@ // Also routines for raw mode reading/simulating of LF waveform //----------------------------------------------------------------------------- -#include "proxmark3.h" +#include "../include/proxmark3.h" #include "apps.h" #include "util.h" -#include "hitag2.h" -#include "crc16.h" +#include "../include/hitag2.h" +#include "../common/crc16.h" #include "string.h" +#include "crapto1.h" +#include "mifareutil.h" -void AcquireRawAdcSamples125k(int at134khz) +// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) +// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz +// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) +// T0 = TIMER_CLOCK1 / 125000 = 192 +#define T0 192 + +#define SHORT_COIL() LOW(GPIO_SSC_DOUT) +#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) + +void LFSetupFPGAForADC(int divisor, bool lf_field) { - if (at134khz) + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else + else if (divisor == 0) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + else + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - + // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - + SpinDelay(150); + // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); +} - // Now call the acquisition routine +void AcquireRawAdcSamples125k(int divisor) +{ + LFSetupFPGAForADC(divisor, true); DoAcquisition125k(); } +void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) +{ + LFSetupFPGAForADC(divisor, false); + DoAcquisition125k_threshold(trigger_threshold); +} + // split into two routines so we can avoid timing issues after sending commands // -void DoAcquisition125k(void) +void DoAcquisition125k_internal(int trigger_threshold, bool silent) { - uint8_t *dest = (uint8_t *)BigBuf; - int n = sizeof(BigBuf); - int i; + uint8_t *dest = get_bigbufptr_recvrespbuf(); + uint16_t i = 0; + memset(dest, 0x00, FREE_BUFFER_SIZE); - memset(dest, 0, n); - i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; @@ -53,39 +74,42 @@ void DoAcquisition125k(void) } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; LED_D_OFF(); - if (i >= n) break; + if (trigger_threshold != -1 && dest[i] < trigger_threshold) + continue; + else + trigger_threshold = -1; + if (++i >= FREE_BUFFER_SIZE) break; } } - Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", + if (!silent){ + Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); + } } - +void DoAcquisition125k_threshold(int trigger_threshold) { + DoAcquisition125k_internal(trigger_threshold, true); +} +void DoAcquisition125k() { + DoAcquisition125k_internal(-1, true); +} + void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) { - int at134khz; - + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + /* Make sure the tag is reset */ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(2500); + int divisor = 95; // 125 KHz // see if 'h' was specified if (command[strlen((char *) command) - 1] == 'h') - at134khz = TRUE; - else - at134khz = FALSE; - - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + divisor = 88; // 134.8 KHz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); - // And a little more time for the tag to fully power up SpinDelay(2000); // Now set up the SSC to get the ADC samples that are now streaming at us. @@ -96,12 +120,9 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); LED_D_ON(); if(*(command++) == '0') SpinDelayUs(period_0); @@ -111,15 +132,11 @@ void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); SpinDelayUs(delay_off); - if (at134khz) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz - else - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); // now do the read - DoAcquisition125k(); + DoAcquisition125k(-1); } /* blank r/w tag data stream @@ -156,6 +173,7 @@ void ReadTItag(void) uint32_t threshold = (sampleslo - sampleshi + 1)>>1; // TI tags charge at 134.2Khz + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz // Place FPGA in passthrough mode, in this mode the CROSS_LO line @@ -272,17 +290,17 @@ void WriteTIbyte(uint8_t b) { if (b&(1<>8)&0xff); @@ -429,59 +448,168 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) DbpString("Now use tiread to check"); } -void SimulateTagLowFrequency(int period, int gap, int ledcontrol) + + +// PIO_CODR = Clear Output Data Register +// PIO_SODR = Set Output Data Register +//#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x) +//#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x) +void SimulateTagLowFrequency( uint16_t period, uint32_t gap, uint8_t ledcontrol) { - int i; - uint8_t *tab = (uint8_t *)BigBuf; - - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); - - AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; - + LED_D_ON(); + + uint16_t i = 0; + uint8_t send = 0; + + //int overflow = 0; + uint8_t *buf = (uint8_t *)BigBuf; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + RELAY_OFF(); + + // Configure output pin that is connected to the FPGA (for modulating) AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; - AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; - -#define SHORT_COIL() LOW(GPIO_SSC_DOUT) -#define OPEN_COIL() HIGH(GPIO_SSC_DOUT) - - i = 0; - for(;;) { - while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; + AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; + + SHORT_COIL(); + + // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering + AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); + + // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames + AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); + AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; + + // Disable timer during configuration + AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; + + // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, + // external trigger rising edge, load RA on rising edge of TIOA. + AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING; + + // Enable and reset counter + //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; + AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; + + while(!BUTTON_PRESS()) { + WDT_HIT(); + + // Receive frame, watch for at most T0*EOF periods + while (AT91C_BASE_TC1->TC_CV < T0 * 55) { + + // Check if rising edge in modulation is detected + if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { + // Retrieve the new timing values + //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow; + //Dbprintf("Timing value - %d %d", ra, overflow); + //overflow = 0; + + // Reset timer every frame, we have to capture the last edge for timing + AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; + send = 1; + + LED_B_ON(); } - WDT_HIT(); - } - - if (ledcontrol) - LED_D_ON(); - - if(tab[i]) - OPEN_COIL(); - else - SHORT_COIL(); - - if (ledcontrol) - LED_D_OFF(); - - while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { - if(BUTTON_PRESS()) { - DbpString("Stopped"); - return; + } + + if ( send ) { + // Disable timer 1 with external trigger to avoid triggers during our own modulation + AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; + + // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit, + // not that since the clock counts since the rising edge, but T_Wait1 is + // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low) + // periods. The gap time T_Low varies (4..10). All timer values are in + // terms of T0 units + while(AT91C_BASE_TC0->TC_CV < T0 * 16 ); + + // datat kommer in som 1 bit för varje position i arrayn + for(i = 0; i < period; ++i) { + + // Reset clock for the next bit + AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; + + if ( buf[i] > 0 ) + HIGH(GPIO_SSC_DOUT); + else + LOW(GPIO_SSC_DOUT); + + while(AT91C_BASE_TC0->TC_CV < T0 * 1 ); } - WDT_HIT(); + // Drop modulation + LOW(GPIO_SSC_DOUT); + + // Enable and reset external trigger in timer for capturing future frames + AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; + LED_B_OFF(); } - - i++; - if(i == period) { - i = 0; - if (gap) { - SHORT_COIL(); - SpinDelayUs(gap); + + send = 0; + + // Save the timer overflow, will be 0 when frame was received + //overflow += (AT91C_BASE_TC1->TC_CV/T0); + + // Reset the timer to restart while-loop that receives frames + AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; + } + + LED_B_OFF(); + LED_D_OFF(); + AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; + AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); + + DbpString("Sim Stopped"); +} + + +void SimulateTagLowFrequencyA(int len, int gap) +{ + //Dbprintf("LEN %d || Gap %d",len, gap); + + uint8_t *buf = (uint8_t *)BigBuf; + + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE); // new izsh toggle mode! + + // Connect the A/D to the peak-detected low-frequency path. + SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + + // Now set up the SSC to get the ADC samples that are now streaming at us. + FpgaSetupSsc(); + SpinDelay(5); + + AT91C_BASE_SSC->SSC_THR = 0x00; + + int i = 0; + while(!BUTTON_PRESS()) { + WDT_HIT(); + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { + + if ( buf[i] > 0 ) + AT91C_BASE_SSC->SSC_THR = 0x43; + else + AT91C_BASE_SSC->SSC_THR = 0x00; + + ++i; + LED_A_ON(); + if (i >= len){ + i = 0; } } + + if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { + volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; + (void)r; + LED_A_OFF(); + } } + DbpString("lf simulate stopped"); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } #define DEBUG_FRAME_CONTENTS 1 @@ -490,7 +618,7 @@ void SimulateTagLowFrequencyBidir(int divisor, int t0) } // compose fc/8 fc/10 waveform -static void fc(int c, int *n) { +static void fc(int c, uint16_t *n) { uint8_t *dest = (uint8_t *)BigBuf; int idx; @@ -538,9 +666,9 @@ static void fc(int c, int *n) { // prepare a waveform pattern in the buffer based on the ID given then // simulate a HID tag until the button is pressed -void CmdHIDsimTAG(int hi, int lo, int ledcontrol) +void CmdHIDsimTAG(int hi, int lo, uint8_t ledcontrol) { - int n=0, i=0; + uint16_t n=0, i=0; /* HID tag bitstream format The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits @@ -586,225 +714,341 @@ void CmdHIDsimTAG(int hi, int lo, int ledcontrol) if (ledcontrol) LED_A_ON(); + SimulateTagLowFrequency(n, 0, ledcontrol); if (ledcontrol) LED_A_OFF(); } +//translate wave to 11111100000 (1 for each short wave 0 for each long wave) +size_t fsk_demod(uint8_t * dest, size_t size) +{ + uint32_t last_transition = 0; + uint32_t idx = 1; + uint32_t maxVal=0; + // // we don't care about actual value, only if it's more or less than a + // // threshold essentially we capture zero crossings for later analysis + + // we do care about the actual value as sometimes near the center of the + // wave we may get static that changes direction of wave for one value + // if our value is too low it might affect the read. and if our tag or + // antenna is weak a setting too high might not see anything. [marshmellow] + if (size<100) return size; + for(idx=1; idx<100; idx++){ + if(maxVal1 transition + if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition + + dest[numBits] = (idx-last_transition < 9) ? 1 : 0; + last_transition = idx; + numBits++; + } + } + return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 +} -// loop to capture raw HID waveform then FSK demodulate the TAG ID from it -void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +uint32_t myround(float f) { - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, n=0, i=0, idx=0, found=0, lastval=0; - uint32_t hi2=0, hi=0, lo=0; + if (f >= 2000) return 2000;//something bad happened + return (uint32_t) (f + (float)0.5); +} - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); +//translate 11111100000 to 10 +size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, +{ + uint8_t lastval=dest[0]; + uint32_t idx=0; + size_t numBits=0; + uint32_t n=1; - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); + for( idx=1; idx < size; idx++) { - // Give it a bit of time for the resonant antenna to settle. - SpinDelay(50); + if (dest[idx]==lastval) { + n++; + continue; + } + //if lastval was 1, we have a 1->0 crossing + if ( dest[idx-1]==1 ) { + n=myround((float)(n+1)/((float)(rfLen)/(float)8)); + //n=(n+1) / h2l_crossing_value; + } else {// 0->1 crossing + n=myround((float)(n+1)/((float)(rfLen-2)/(float)10)); + //n=(n+1) / l2h_crossing_value; + } + if (n == 0) n = 1; + + if(n < maxConsequtiveBits) + { + if ( invert==0) + memset(dest+numBits, dest[idx-1] , n); + else + memset(dest+numBits, dest[idx-1]^1 , n); + + numBits += n; + } + n=0; + lastval=dest[idx]; + }//end for - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + return numBits; - for(;;) { - WDT_HIT(); - if (ledcontrol) - LED_A_ON(); - if(BUTTON_PRESS()) { - DbpString("Stopped"); - if (ledcontrol) - LED_A_OFF(); - return; - } +} +// loop to get raw HID waveform then FSK demodulate the TAG ID from it +void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = get_bigbufptr_recvrespbuf(); - i = 0; - m = sizeof(BigBuf); - memset(dest,128,m); - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x43; - if (ledcontrol) - LED_D_ON(); - } - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis - if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (ledcontrol) - LED_D_OFF(); - if(i >= m) { - break; - } - } - } + size_t size=0,idx=0; //, found=0; + uint32_t hi2=0, hi=0, lo=0; - // FSK demodulator + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(0, true); + + while(!BUTTON_PRESS()) { - // sync to first lo-hi transition - for( idx=1; idx0 : fc/8 in sets of 6 (RF/50 / 8 = 6.25) + // 0->1 : fc/10 in sets of 5 (RF/50 / 10= 5) + // do not invert + size = aggregate_bits(dest,size, 50,5,0); //6,5,5,0 + WDT_HIT(); // final loop, go over previously decoded manchester data and decode into usable tag ID // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 - for( idx=0; idx>1) & 0xFFFF); - } - else { - Dbprintf("TAG ID: %x%08x (%d)", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - } - /* if we're only looking for one tag */ - if (findone) - { - *high = hi; - *low = lo; - return; - } - hi2=0; - hi=0; - lo=0; - found=0; - } - } - if (found) { - if (dest[idx] && (!dest[idx+1]) ) { + if (sameCardCount>2) break; //only up to 2 valid sets of data for the same read of looping card data + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) + { // frame marker found + idx+=sizeof(frame_marker_mask); + + while(dest[idx] != dest[idx+1] && idx < size-2) + { + // Keep going until next frame marker (or error) + // Shift in a bit. Start by shifting high registers hi2=(hi2<<1)|(hi>>31); hi=(hi<<1)|(lo>>31); + //Then, shift in a 0 or one into low + if (dest[idx] && !dest[idx+1]) // 1 0 lo=(lo<<1)|0; - } else if ( (!dest[idx]) && dest[idx+1]) { - hi2=(hi2<<1)|(hi>>31); - hi=(hi<<1)|(lo>>31); - lo=(lo<<1)|1; - } else { - found=0; - hi2=0; - hi=0; - lo=0; + else // 0 1 + lo=(lo<<1)| + 1; + numshifts ++; + idx += 2; } - idx++; - } - if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) - { - found=1; - idx+=6; - if (found && (hi|lo)) { - if (hi2 != 0){ - Dbprintf("TAG ID: %x%08x%08x (%d)", - (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - } - else { - Dbprintf("TAG ID: %x%08x (%d)", - (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); - } - /* if we're only looking for one tag */ - if (findone) + //Dbprintf("Num shifts: %d ", numshifts); + // Hopefully, we read a tag and hit upon the next frame marker + if(idx + sizeof(frame_marker_mask) < size) + { + if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) { - *high = hi; - *low = lo; - return; + if (hi2 != 0){ //extra large HID tags + Dbprintf("TAG ID: %x%08x%08x (%d)", + (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + } + else { //standard HID tags <38 bits + //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd + uint8_t bitlen = 0; + uint32_t fc = 0; + uint32_t cardnum = 0; + if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used + uint32_t lo2=0; + lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit + uint8_t idx3 = 1; + while(lo2>1){ //find last bit set to 1 (format len bit) + lo2=lo2>>1; + idx3++; + } + bitlen =idx3+19; + fc =0; + cardnum=0; + if(bitlen==26){ + cardnum = (lo>>1)&0xFFFF; + fc = (lo>>17)&0xFF; + } + if(bitlen==37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + if(bitlen==34){ + cardnum = (lo>>1)&0xFFFF; + fc= ((hi&1)<<15)|(lo>>17); + } + if(bitlen==35){ + cardnum = (lo>>1)&0xFFFFF; + fc = ((hi&1)<<11)|(lo>>21); + } + } + else { //if bit 38 is not set then 37 bit format is used + bitlen= 37; + fc =0; + cardnum=0; + if(bitlen==37){ + cardnum = (lo>>1)&0x7FFFF; + fc = ((hi&0xF)<<12)|(lo>>20); + } + } + //Dbprintf("TAG ID: %x%08x (%d)", + // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); + Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", + (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, + (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); + } + sameCardCount++; + if (findone){ + if (ledcontrol) LED_A_OFF(); + return; + } } - hi2=0; - hi=0; - lo=0; - found=0; } + // reset + hi2 = hi = lo = 0; + numshifts = 0; + } else { + idx++; } } WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); } +uint32_t bytebits_to_byte(uint8_t* src, int numbits) +{ + uint32_t num = 0; + for(int i = 0 ; i < numbits ; i++) + { + num = (num << 1) | (*src); + src++; + } + return num; +} + + +void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) +{ + uint8_t *dest = (uint8_t *)BigBuf; + size_t size=0, idx=0; + uint32_t code=0, code2=0; + uint8_t isFinish = 0; + + // Configure to go in 125Khz listen mode + LFSetupFPGAForADC(0, true); + + while(!BUTTON_PRESS() & !isFinish) { + + WDT_HIT(); + + if (ledcontrol) LED_A_ON(); + + DoAcquisition125k_internal(-1,true); + size = sizeof(BigBuf); + //make sure buffer has data + if (size < 64) return; + //test samples are not just noise + uint8_t testMax=0; + for(idx=0;idx<64;idx++){ + if (testMax170){ + //Dbprintf("testMax: %d",testMax); + // FSK demodulator + size = fsk_demod(dest, size); + // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns + // 1->0 : fc/8 in sets of 7 (RF/64 / 8 = 8) + // 0->1 : fc/10 in sets of 6 (RF/64 / 10 = 6.4) + size = aggregate_bits(dest, size, 64, 13, 1); //13 max Consecutive should be ok as most 0s in row should be 10 for init seq - invert bits + WDT_HIT(); + //Index map + //0 10 20 30 40 50 60 + //| | | | | | | + //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 + //----------------------------------------------------------------------------- + //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 + // + //XSF(version)facility:codeone+codetwo + //Handle the data + uint8_t sameCardCount=0; + uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; + for( idx=0; idx < (size - 74); idx++) { + if (sameCardCount>2) break; + if ( memcmp(dest + idx, mask, sizeof(mask))==0) { + //frame marker found + if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ + //confirmed proper separator bits found + if(findone){ //only print binary if we are doing one + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); + Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); + Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); + } + code = bytebits_to_byte(dest+idx,32); + code2 = bytebits_to_byte(dest+idx+32,32); + short version = bytebits_to_byte(dest+idx+27,8); //14,4 + uint8_t facilitycode = bytebits_to_byte(dest+idx+19,8) ; + uint16_t number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 + + Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,facilitycode,number,code,code2); + + // if we're only looking for one tag + if (findone){ + if (ledcontrol) LED_A_OFF(); + isFinish = 1; + break; + } + sameCardCount++; + } + } + } + } + WDT_HIT(); + } + DbpString("Stopped"); + if (ledcontrol) LED_A_OFF(); +} /*------------------------------ * T5555/T5557/T5567 routines @@ -812,14 +1056,14 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) */ /* T55x7 configuration register definitions */ -#define T55x7_POR_DELAY 0x00000001 -#define T55x7_ST_TERMINATOR 0x00000008 -#define T55x7_PWD 0x00000010 +#define T55x7_POR_DELAY 0x00000001 +#define T55x7_ST_TERMINATOR 0x00000008 +#define T55x7_PWD 0x00000010 #define T55x7_MAXBLOCK_SHIFT 5 -#define T55x7_AOR 0x00000200 -#define T55x7_PSKCF_RF_2 0 -#define T55x7_PSKCF_RF_4 0x00000400 -#define T55x7_PSKCF_RF_8 0x00000800 +#define T55x7_AOR 0x00000200 +#define T55x7_PSKCF_RF_2 0 +#define T55x7_PSKCF_RF_4 0x00000400 +#define T55x7_PSKCF_RF_8 0x00000800 #define T55x7_MODULATION_DIRECT 0 #define T55x7_MODULATION_PSK1 0x00001000 #define T55x7_MODULATION_PSK2 0x00002000 @@ -830,17 +1074,17 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) #define T55x7_MODULATION_FSK2a 0x00007000 #define T55x7_MODULATION_MANCHESTER 0x00008000 #define T55x7_MODULATION_BIPHASE 0x00010000 -#define T55x7_BITRATE_RF_8 0 -#define T55x7_BITRATE_RF_16 0x00040000 -#define T55x7_BITRATE_RF_32 0x00080000 -#define T55x7_BITRATE_RF_40 0x000C0000 -#define T55x7_BITRATE_RF_50 0x00100000 -#define T55x7_BITRATE_RF_64 0x00140000 +#define T55x7_BITRATE_RF_8 0 +#define T55x7_BITRATE_RF_16 0x00040000 +#define T55x7_BITRATE_RF_32 0x00080000 +#define T55x7_BITRATE_RF_40 0x000C0000 +#define T55x7_BITRATE_RF_50 0x00100000 +#define T55x7_BITRATE_RF_64 0x00140000 #define T55x7_BITRATE_RF_100 0x00180000 #define T55x7_BITRATE_RF_128 0x001C0000 /* T5555 (Q5) configuration register definitions */ -#define T5555_ST_TERMINATOR 0x00000001 +#define T5555_ST_TERMINATOR 0x00000001 #define T5555_MAXBLOCK_SHIFT 0x00000001 #define T5555_MODULATION_MANCHESTER 0 #define T5555_MODULATION_PSK1 0x00000010 @@ -850,32 +1094,43 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) #define T5555_MODULATION_FSK2 0x00000050 #define T5555_MODULATION_BIPHASE 0x00000060 #define T5555_MODULATION_DIRECT 0x00000070 -#define T5555_INVERT_OUTPUT 0x00000080 -#define T5555_PSK_RF_2 0 -#define T5555_PSK_RF_4 0x00000100 -#define T5555_PSK_RF_8 0x00000200 -#define T5555_USE_PWD 0x00000400 -#define T5555_USE_AOR 0x00000800 -#define T5555_BITRATE_SHIFT 12 -#define T5555_FAST_WRITE 0x00004000 -#define T5555_PAGE_SELECT 0x00008000 +#define T5555_INVERT_OUTPUT 0x00000080 +#define T5555_PSK_RF_2 0 +#define T5555_PSK_RF_4 0x00000100 +#define T5555_PSK_RF_8 0x00000200 +#define T5555_USE_PWD 0x00000400 +#define T5555_USE_AOR 0x00000800 +#define T5555_BITRATE_SHIFT 12 +#define T5555_FAST_WRITE 0x00004000 +#define T5555_PAGE_SELECT 0x00008000 /* * Relevant times in microsecond * To compensate antenna falling times shorten the write times * and enlarge the gap ones. */ -#define START_GAP 250 -#define WRITE_GAP 160 -#define WRITE_0 144 // 192 -#define WRITE_1 400 // 432 for T55x7; 448 for E5550 +#define START_GAP 30*8 // 10 - 50fc 250 +#define WRITE_GAP 20*8 // 8 - 30fc +#define WRITE_0 24*8 // 16 - 31fc 24fc 192 +#define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 + +// VALUES TAKEN FROM EM4x function: SendForward +// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) +// WRITE_GAP = 128; (16*8) +// WRITE_1 = 256 32*8; (32*8) + +// These timings work for 4469/4269/4305 (with the 55*8 above) +// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); + +#define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..) // Write one bit to card void T55xxWriteBit(int bit) { + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - if (bit == 0) + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + if (!bit) SpinDelayUs(WRITE_0); else SpinDelayUs(WRITE_1); @@ -886,14 +1141,11 @@ void T55xxWriteBit(int bit) // Write one card block in page 0, no lock void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { - unsigned int i; + uint32_t i = 0; - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); + // Set up FPGA, 125kHz + // Wait for config.. (192+8190xPOW)x8 == 67ms + LFSetupFPGAForADC(0, true); // Now start writting FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); @@ -906,7 +1158,7 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod // Pwd for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Pwd & i); - } + } // Lock bit T55xxWriteBit(0); @@ -921,38 +1173,28 @@ void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMod // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, // so wait a little more) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); SpinDelay(20); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); } - -// Read one card block in page 0 +// Read one card block in page 0 void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) { - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, i=0; - - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); + uint8_t *dest = get_bigbufptr_recvrespbuf(); + uint16_t bufferlength = T55xx_SAMPLES_SIZE; + uint32_t i = 0; - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); + // Clear destination buffer before sending the command 0x80 = average. + memset(dest, 0x80, bufferlength); - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); + // Set up FPGA, 125kHz + // Wait for config.. (192+8190xPOW)x8 == 67ms + LFSetupFPGAForADC(0, true); - // Now start writting FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); - + // Opcode T55xxWriteBit(1); T55xxWriteBit(0); //Page 0 @@ -960,96 +1202,93 @@ void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) // Pwd for (i = 0x80000000; i != 0; i >>= 1) T55xxWriteBit(Pwd & i); - } + } // Lock bit T55xxWriteBit(0); // Block for (i = 0x04; i != 0; i >>= 1) T55xxWriteBit(Block & i); - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Now do the acquisition + // Turn field on to read the response + TurnReadLFOn(); + + // Now do the acquisition i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; + //AT91C_BASE_SSC->SSC_THR = 0xff; + LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - // we don't care about actual value, only if it's more or less than a - // threshold essentially we capture zero crossings for later analysis -// if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; - i++; - if (i >= m) break; + ++i; + LED_D_OFF(); + if (i >= bufferlength) break; } } - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + + cmd_send(CMD_ACK,0,0,0,0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); - DbpString("DONE!"); } // Read card traceability data (page 1) -void T55xxReadTrace(void){ - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, i=0; - - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); - // Connect the A/D to the peak-detected low-frequency path. - SetAdcMuxFor(GPIO_MUXSEL_LOPKD); - // Now set up the SSC to get the ADC samples that are now streaming at us. - FpgaSetupSsc(); - - LED_D_ON(); - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - - // Now start writting +void T55xxReadTrace(void){ + uint8_t *dest = get_bigbufptr_recvrespbuf(); + uint16_t bufferlength = T55xx_SAMPLES_SIZE; + uint32_t i = 0; + + // Clear destination buffer before sending the command 0x80 = average + memset(dest, 0x80, bufferlength); + + LFSetupFPGAForADC(0, true); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelayUs(START_GAP); - + // Opcode T55xxWriteBit(1); T55xxWriteBit(1); //Page 1 - // Turn field on to read the response - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Now do the acquisition - i = 0; + // Turn field on to read the response + TurnReadLFOn(); + + // Now do the acquisition for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = 0x43; + LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - if (i >= m) break; + ++i; + LED_D_OFF(); + + if (i >= bufferlength) break; } } - - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + + cmd_send(CMD_ACK,0,0,0,0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); - DbpString("DONE!"); +} + +void TurnReadLFOn(){ + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + // Give it a bit of time for the resonant antenna to settle. + //SpinDelay(30); + SpinDelayUs(8*150); } /*-------------- Cloning routines -----------*/ // Copy HID id to card and setup block 0 config void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { - int data1, data2, data3, data4, data5, data6; //up to six blocks for long format + int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format int last_block = 0; - + if (longFMT){ // Ensure no more than 84 bits supplied if (hi2>0xFFFFF) { @@ -1065,7 +1304,7 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) else data1 |= (1<<((3-i)*2)); // 0 -> 01 } - + data2 = 0; for (int i=0;i<16;i++) { if (hi2 & (1<<(15-i))) @@ -1073,7 +1312,7 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) else data2 |= (1<<((15-i)*2)); // 0 -> 01 } - + data3 = 0; for (int i=0;i<16;i++) { if (hi & (1<<(31-i))) @@ -1081,7 +1320,7 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) else data3 |= (1<<((15-i)*2)); // 0 -> 01 } - + data4 = 0; for (int i=0;i<16;i++) { if (hi & (1<<(15-i))) @@ -1097,7 +1336,7 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) else data5 |= (1<<((15-i)*2)); // 0 -> 01 } - + data6 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(15-i))) @@ -1106,25 +1345,25 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) data6 |= (1<<((15-i)*2)); // 0 -> 01 } } - else { + else { // Ensure no more than 44 bits supplied if (hi>0xFFF) { DbpString("Tags can only have 44 bits."); return; } - + // Build the 3 data blocks for supplied 44bit ID last_block = 3; data1 = 0x1D000000; // load preamble - - for (int i=0;i<12;i++) { - if (hi & (1<<(11-i))) - data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 - else - data1 |= (1<<((11-i)*2)); // 0 -> 01 - } - + + for (int i=0;i<12;i++) { + if (hi & (1<<(11-i))) + data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 + else + data1 |= (1<<((11-i)*2)); // 0 -> 01 + } + data2 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(31-i))) @@ -1132,16 +1371,16 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) else data2 |= (1<<((15-i)*2)); // 0 -> 01 } - + data3 = 0; for (int i=0;i<16;i++) { if (lo & (1<<(15-i))) data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 else data3 |= (1<<((15-i)*2)); // 0 -> 01 - } + } } - + LED_D_ON(); // Program the data blocks for supplied ID // and the block 0 for HID format @@ -1154,18 +1393,38 @@ void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) T55xxWriteBlock(data5,5,0,0); T55xxWriteBlock(data6,6,0,0); } - + // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) - T55xxWriteBlock(T55x7_BITRATE_RF_50 | - T55x7_MODULATION_FSK2a | - last_block << T55x7_MAXBLOCK_SHIFT, - 0,0,0); + T55xxWriteBlock(T55x7_BITRATE_RF_50 | + T55x7_MODULATION_FSK2a | + last_block << T55x7_MAXBLOCK_SHIFT, + 0,0,0); LED_D_OFF(); DbpString("DONE!"); } +void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) +{ + int data1=0, data2=0; //up to six blocks for long format + + data1 = hi; // load preamble + data2 = lo; + + LED_D_ON(); + // Program the data blocks for supplied ID + // and the block 0 for HID format + T55xxWriteBlock(data1,1,0,0); + T55xxWriteBlock(data2,2,0,0); + + //Config Block + T55xxWriteBlock(0x00147040,0,0,0); + LED_D_OFF(); + + DbpString("DONE!"); +} + // Define 9bit header for EM410x tags #define EM410X_HEADER 0x1FF #define EM410X_ID_LENGTH 40 @@ -1177,6 +1436,7 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) uint64_t rev_id = 0; // reversed ID int c_parity[4]; // column parity int r_parity = 0; // row parity + uint32_t clock = 0; // Reverse ID bits given as parameter (for simpler operations) for (i = 0; i < EM410X_ID_LENGTH; ++i) { @@ -1234,12 +1494,35 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) T55xxWriteBlock((uint32_t)id, 2, 0, 0); // Config for EM410x (RF/64, Manchester, Maxblock=2) - if (card) + if (card) { + // Clock rate is stored in bits 8-15 of the card value + clock = (card & 0xFF00) >> 8; + Dbprintf("Clock rate: %d", clock); + switch (clock) + { + case 32: + clock = T55x7_BITRATE_RF_32; + break; + case 16: + clock = T55x7_BITRATE_RF_16; + break; + case 0: + // A value of 0 is assumed to be 64 for backwards-compatibility + // Fall through... + case 64: + clock = T55x7_BITRATE_RF_64; + break; + default: + Dbprintf("Invalid clock rate: %d", clock); + return; + } + // Writing configuration for T55x7 tag - T55xxWriteBlock(T55x7_BITRATE_RF_64 | + T55xxWriteBlock(clock | T55x7_MODULATION_MANCHESTER | 2 << T55x7_MAXBLOCK_SHIFT, 0, 0, 0); + } else // Writing configuration for T5555(Q5) tag T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | @@ -1255,7 +1538,6 @@ void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) // Clone Indala 64-bit tag by UID to T55x7 void CopyIndala64toT55x7(int hi, int lo) { - //Program the 2 data blocks for supplied 64bit UID // and the block 0 for Indala64 format T55xxWriteBlock(hi,1,0,0); @@ -1264,17 +1546,15 @@ void CopyIndala64toT55x7(int hi, int lo) T55xxWriteBlock(T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | 2 << T55x7_MAXBLOCK_SHIFT, - 0,0,0); + 0, 0, 0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) -// T5567WriteBlock(0x603E1042,0); + // T5567WriteBlock(0x603E1042,0); DbpString("DONE!"); - } void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) { - //Program the 7 data blocks for supplied 224bit UID // and the block 0 for Indala224 format T55xxWriteBlock(uid1,1,0,0); @@ -1290,171 +1570,173 @@ void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int 7 << T55x7_MAXBLOCK_SHIFT, 0,0,0); //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) -// T5567WriteBlock(0x603E10E2,0); + // T5567WriteBlock(0x603E10E2,0); DbpString("DONE!"); - } + #define abs(x) ( ((x)<0) ? -(x) : (x) ) #define max(x,y) ( x GraphBuffer[0]) { + uint8_t BitStream[256]; + uint8_t Blocks[8][16]; + uint8_t *GraphBuffer = (uint8_t *)BigBuf; + int GraphTraceLen = sizeof(BigBuf); + int i, j, lastval, bitidx, half_switch; + int clock = 64; + int tolerance = clock / 8; + int pmc, block_done; + int lc, warnings = 0; + int num_blocks = 0; + int lmin=128, lmax=128; + uint8_t dir; + + AcquireRawAdcSamples125k(0); + + lmin = 64; + lmax = 192; + + i = 2; + + /* Find first local max/min */ + if(GraphBuffer[1] > GraphBuffer[0]) { while(i < GraphTraceLen) { if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) - break; + break; i++; } dir = 0; - } - else { + } + else { while(i < GraphTraceLen) { if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) - break; + break; i++; } dir = 1; - } - - lastval = i++; - half_switch = 0; - pmc = 0; - block_done = 0; - - for (bitidx = 0; i < GraphTraceLen; i++) - { - if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) + } + + lastval = i++; + half_switch = 0; + pmc = 0; + block_done = 0; + + for (bitidx = 0; i < GraphTraceLen; i++) { - lc = i - lastval; - lastval = i; - - // Switch depending on lc length: - // Tolerance is 1/8 of clock rate (arbitrary) - if (abs(lc-clock/4) < tolerance) { - // 16T0 - if((i - pmc) == lc) { /* 16T0 was previous one */ - /* It's a PMC ! */ - i += (128+127+16+32+33+16)-1; - lastval = i; - pmc = 0; - block_done = 1; - } - else { - pmc = i; - } - } else if (abs(lc-clock/2) < tolerance) { - // 32TO - if((i - pmc) == lc) { /* 16T0 was previous one */ - /* It's a PMC ! */ - i += (128+127+16+32+33)-1; - lastval = i; - pmc = 0; - block_done = 1; - } - else if(half_switch == 1) { - BitStream[bitidx++] = 0; - half_switch = 0; - } - else - half_switch++; - } else if (abs(lc-clock) < tolerance) { - // 64TO - BitStream[bitidx++] = 1; - } else { - // Error - warnings++; - if (warnings > 10) + if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) + { + lc = i - lastval; + lastval = i; + + // Switch depending on lc length: + // Tolerance is 1/8 of clock rate (arbitrary) + if (abs(lc-clock/4) < tolerance) { + // 16T0 + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33+16)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else { + pmc = i; + } + } else if (abs(lc-clock/2) < tolerance) { + // 32TO + if((i - pmc) == lc) { /* 16T0 was previous one */ + /* It's a PMC ! */ + i += (128+127+16+32+33)-1; + lastval = i; + pmc = 0; + block_done = 1; + } + else if(half_switch == 1) { + BitStream[bitidx++] = 0; + half_switch = 0; + } + else + half_switch++; + } else if (abs(lc-clock) < tolerance) { + // 64TO + BitStream[bitidx++] = 1; + } else { + // Error + warnings++; + if (warnings > 10) + { + Dbprintf("Error: too many detection errors, aborting."); + return 0; + } + } + + if(block_done == 1) { + if(bitidx == 128) { + for(j=0; j<16; j++) { + Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ + 64*BitStream[j*8+6]+ + 32*BitStream[j*8+5]+ + 16*BitStream[j*8+4]+ + 8*BitStream[j*8+3]+ + 4*BitStream[j*8+2]+ + 2*BitStream[j*8+1]+ + BitStream[j*8]; + } + num_blocks++; + } + bitidx = 0; + block_done = 0; + half_switch = 0; + } + if(i < GraphTraceLen) { - Dbprintf("Error: too many detection errors, aborting."); - return 0; - } - } - - if(block_done == 1) { - if(bitidx == 128) { - for(j=0; j<16; j++) { - Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ - 64*BitStream[j*8+6]+ - 32*BitStream[j*8+5]+ - 16*BitStream[j*8+4]+ - 8*BitStream[j*8+3]+ - 4*BitStream[j*8+2]+ - 2*BitStream[j*8+1]+ - BitStream[j*8]; - } - num_blocks++; + if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; + else dir = 1; + } } - bitidx = 0; - block_done = 0; - half_switch = 0; - } - if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; - else dir = 1; + if(bitidx==255) + bitidx=0; + warnings = 0; + if(num_blocks == 4) break; } - if(bitidx==255) - bitidx=0; - warnings = 0; - if(num_blocks == 4) break; - } - memcpy(outBlocks, Blocks, 16*num_blocks); - return num_blocks; + memcpy(outBlocks, Blocks, 16*num_blocks); + return num_blocks; } int IsBlock0PCF7931(uint8_t *Block) { - // Assume RFU means 0 :) - if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled + // Assume RFU means 0 :) + if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled return 1; - if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? + if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? return 1; - return 0; + return 0; } int IsBlock1PCF7931(uint8_t *Block) { - // Assume RFU means 0 :) - if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) + // Assume RFU means 0 :) + if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) return 1; - - return 0; + + return 0; } - #define ALLOC 16 void ReadPCF7931() { - uint8_t Blocks[8][17]; - uint8_t tmpBlocks[4][16]; - int i, j, ind, ind2, n; - int num_blocks = 0; - int max_blocks = 8; - int ident = 0; - int error = 0; - int tries = 0; - - memset(Blocks, 0, 8*17*sizeof(uint8_t)); - - do { + uint8_t Blocks[8][17]; + uint8_t tmpBlocks[4][16]; + int i, j, ind, ind2, n; + int num_blocks = 0; + int max_blocks = 8; + int ident = 0; + int error = 0; + int tries = 0; + + memset(Blocks, 0, 8*17*sizeof(uint8_t)); + + do { memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); n = DemodPCF7931((uint8_t**)tmpBlocks); if(!n) @@ -1471,272 +1753,279 @@ void ReadPCF7931() { for(i=0; i= 0; ind--,ind2--) { - if(ind2 < 0) - ind2 = max_blocks; - if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found - // Dbprintf("Tmp %d -> Block %d", ind, ind2); - memcpy(Blocks[ind2], tmpBlocks[ind], 16); - Blocks[ind2][ALLOC] = 1; - num_blocks++; - if(num_blocks == max_blocks) goto end; - } - } - for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { - if(ind2 > max_blocks) - ind2 = 0; - if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found - // Dbprintf("Tmp %d -> Block %d", ind, ind2); - memcpy(Blocks[ind2], tmpBlocks[ind], 16); - Blocks[ind2][ALLOC] = 1; - num_blocks++; - if(num_blocks == max_blocks) goto end; - } - } - } - } - } + if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 + for(j=0; j= 0; ind--,ind2--) { + if(ind2 < 0) + ind2 = max_blocks; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { + if(ind2 > max_blocks) + ind2 = 0; + if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found + // Dbprintf("Tmp %d -> Block %d", ind, ind2); + memcpy(Blocks[ind2], tmpBlocks[ind], 16); + Blocks[ind2][ALLOC] = 1; + num_blocks++; + if(num_blocks == max_blocks) goto end; + } + } + } + } + } } } tries++; if (BUTTON_PRESS()) return; - } while (num_blocks != max_blocks); - end: - Dbprintf("-----------------------------------------"); - Dbprintf("Memory content:"); - Dbprintf("-----------------------------------------"); - for(i=0; i", i); - } - Dbprintf("-----------------------------------------"); - - return ; + } + Dbprintf("-----------------------------------------"); + + return ; } //----------------------------------- -// EM4469 / EM4305 routines +// EM4469 / EM4305 routines //----------------------------------- -#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored -#define FWD_CMD_WRITE 0xA -#define FWD_CMD_READ 0x9 -#define FWD_CMD_DISABLE 0x5 +#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored +#define FWD_CMD_WRITE 0xA +#define FWD_CMD_READ 0x9 +#define FWD_CMD_DISABLE 0x5 + + +uint8_t forwardLink_data[64]; //array of forwarded bits +uint8_t * forward_ptr; //ptr for forward message preparation +uint8_t fwd_bit_sz; //forwardlink bit counter +uint8_t * fwd_write_ptr; //forwardlink bit pointer + +//==================================================================== +// prepares command bits +// see EM4469 spec +//==================================================================== +//-------------------------------------------------------------------- +uint8_t Prepare_Cmd( uint8_t cmd ) { + //-------------------------------------------------------------------- + + *forward_ptr++ = 0; //start bit + *forward_ptr++ = 0; //second pause for 4050 code + + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + cmd >>= 1; + *forward_ptr++ = cmd; + + return 6; //return number of emited bits +} +//==================================================================== +// prepares address bits +// see EM4469 spec +//==================================================================== -uint8_t forwardLink_data[64]; //array of forwarded bits -uint8_t * forward_ptr; //ptr for forward message preparation -uint8_t fwd_bit_sz; //forwardlink bit counter -uint8_t * fwd_write_ptr; //forwardlink bit pointer - -//==================================================================== -// prepares command bits -// see EM4469 spec -//==================================================================== -//-------------------------------------------------------------------- -uint8_t Prepare_Cmd( uint8_t cmd ) { -//-------------------------------------------------------------------- - - *forward_ptr++ = 0; //start bit - *forward_ptr++ = 0; //second pause for 4050 code - - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - cmd >>= 1; - *forward_ptr++ = cmd; - - return 6; //return number of emited bits -} - -//==================================================================== -// prepares address bits -// see EM4469 spec -//==================================================================== - -//-------------------------------------------------------------------- -uint8_t Prepare_Addr( uint8_t addr ) { -//-------------------------------------------------------------------- - - register uint8_t line_parity; - +//-------------------------------------------------------------------- +uint8_t Prepare_Addr( uint8_t addr ) { + //-------------------------------------------------------------------- + + register uint8_t line_parity; + uint8_t i; line_parity = 0; for(i=0;i<6;i++) { - *forward_ptr++ = addr; - line_parity ^= addr; + *forward_ptr++ = addr; + line_parity ^= addr; addr >>= 1; } - *forward_ptr++ = (line_parity & 1); - - return 7; //return number of emited bits -} - -//==================================================================== -// prepares data bits intreleaved with parity bits -// see EM4469 spec -//==================================================================== - -//-------------------------------------------------------------------- -uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { -//-------------------------------------------------------------------- - - register uint8_t line_parity; - register uint8_t column_parity; - register uint8_t i, j; - register uint16_t data; - - data = data_low; - column_parity = 0; - - for(i=0; i<4; i++) { - line_parity = 0; - for(j=0; j<8; j++) { - line_parity ^= data; - column_parity ^= (data & 1) << j; - *forward_ptr++ = data; - data >>= 1; - } - *forward_ptr++ = line_parity; - if(i == 1) - data = data_hi; - } - - for(j=0; j<8; j++) { - *forward_ptr++ = column_parity; - column_parity >>= 1; - } - *forward_ptr = 0; - - return 45; //return number of emited bits -} - -//==================================================================== -// Forward Link send function -// Requires: forwarLink_data filled with valid bits (1 bit per byte) -// fwd_bit_count set with number of bits to be sent -//==================================================================== -void SendForward(uint8_t fwd_bit_count) { + *forward_ptr++ = (line_parity & 1); + + return 7; //return number of emited bits +} - fwd_write_ptr = forwardLink_data; - fwd_bit_sz = fwd_bit_count; +//==================================================================== +// prepares data bits intreleaved with parity bits +// see EM4469 spec +//==================================================================== - LED_D_ON(); +//-------------------------------------------------------------------- +uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { + //-------------------------------------------------------------------- + + register uint8_t line_parity; + register uint8_t column_parity; + register uint8_t i, j; + register uint16_t data; + + data = data_low; + column_parity = 0; + + for(i=0; i<4; i++) { + line_parity = 0; + for(j=0; j<8; j++) { + line_parity ^= data; + column_parity ^= (data & 1) << j; + *forward_ptr++ = data; + data >>= 1; + } + *forward_ptr++ = line_parity; + if(i == 1) + data = data_hi; + } + + for(j=0; j<8; j++) { + *forward_ptr++ = column_parity; + column_parity >>= 1; + } + *forward_ptr = 0; + + return 45; //return number of emited bits +} +//==================================================================== +// Forward Link send function +// Requires: forwarLink_data filled with valid bits (1 bit per byte) +// fwd_bit_count set with number of bits to be sent +//==================================================================== +void SendForward(uint8_t fwd_bit_count) { + + fwd_write_ptr = forwardLink_data; + fwd_bit_sz = fwd_bit_count; + + LED_D_ON(); + //Field on - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); - - // Give it a bit of time for the resonant antenna to settle. - // And for the tag to fully power up - SpinDelay(150); - + FpgaDownloadAndGo(FPGA_BITSTREAM_LF); + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); + + // Give it a bit of time for the resonant antenna to settle. + // And for the tag to fully power up + SpinDelay(150); + // force 1st mod pulse (start gap must be longer for 4305) - fwd_bit_sz--; //prepare next bit modulation - fwd_write_ptr++; + fwd_bit_sz--; //prepare next bit modulation + fwd_write_ptr++; FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on SpinDelayUs(16*8); //16 cycles on (8us each) - - // now start writting - while(fwd_bit_sz-- > 0) { //prepare next bit modulation - if(((*fwd_write_ptr++) & 1) == 1) + + // now start writting + while(fwd_bit_sz-- > 0) { //prepare next bit modulation + if(((*fwd_write_ptr++) & 1) == 1) SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) else { //These timings work for 4469/4269/4305 (with the 55*8 above) - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off SpinDelayUs(23*8); //16-4 cycles off (8us each) - FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz - FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER);//field on + FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz + FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on SpinDelayUs(9*8); //16 cycles on (8us each) } - } + } } -void Login (uint32_t Password) { - uint8_t fwd_bit_count; - - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); - fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); - - SendForward(fwd_bit_count); +void EM4xLogin(uint32_t Password) { - //Wait for command to complete - SpinDelay(20); - -} - -void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { - uint8_t fwd_bit_count; - uint8_t *dest = (uint8_t *)BigBuf; - int m=0, i=0; - - //If password mode do login - if (PwdMode == 1) Login(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); + fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); + + SendForward(fwd_bit_count); + + //Wait for command to complete + SpinDelay(20); + +} - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); - fwd_bit_count += Prepare_Addr( Address ); +void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + + uint8_t *dest = get_bigbufptr_recvrespbuf(); + uint16_t bufferlength = 12000; + uint32_t i = 0; - m = sizeof(BigBuf); - // Clear destination buffer before sending the command - memset(dest, 128, m); + // Clear destination buffer before sending the command 0x80 = average. + memset(dest, 0x80, bufferlength); + + uint8_t fwd_bit_count; + + //If password mode do login + if (PwdMode == 1) EM4xLogin(Pwd); + + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); + fwd_bit_count += Prepare_Addr( Address ); + // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(); - - SendForward(fwd_bit_count); - // Now do the acquisition + SendForward(fwd_bit_count); + + // // Turn field on to read the response + // TurnReadLFOn(); + + // Now do the acquisition i = 0; for(;;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { @@ -1744,31 +2033,32 @@ void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - i++; - if (i >= m) break; + ++i; + if (i >= bufferlength) break; } } - FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off + + cmd_send(CMD_ACK,0,0,0,0,0); + FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off LED_D_OFF(); } -void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { - +void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { + uint8_t fwd_bit_count; - + //If password mode do login - if (PwdMode == 1) Login(Pwd); - - forward_ptr = forwardLink_data; - fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); - fwd_bit_count += Prepare_Addr( Address ); - fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); - - SendForward(fwd_bit_count); + if (PwdMode == 1) EM4xLogin(Pwd); - //Wait for write to complete - SpinDelay(20); + forward_ptr = forwardLink_data; + fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); + fwd_bit_count += Prepare_Addr( Address ); + fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); + + SendForward(fwd_bit_count); + + //Wait for write to complete + SpinDelay(20); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off - LED_D_OFF(); + LED_D_OFF(); } -