X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/blobdiff_plain/eb191de615e499035904263bcbdbff21539dd103..refs/pull/34/head:/common/lfdemod.c diff --git a/common/lfdemod.c b/common/lfdemod.c index 1d668a14..a03e7f02 100644 --- a/common/lfdemod.c +++ b/common/lfdemod.c @@ -8,38 +8,25 @@ // Low frequency commands //----------------------------------------------------------------------------- -//#include #include #include -//#include -//#include #include "lfdemod.h" -//#include "proxmark3.h" -//#include "data.h" -//#include "ui.h" -//#include "graph.h" -//#include "cmdparser.h" -//#include "util.h" -//#include "cmdmain.h" -//#include "cmddata.h" -//uint8_t BinStream[MAX_GRAPH_TRACE_LEN]; -//uint8_t BinStreamLen; //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID -uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen) +uint64_t Em410xDecode(uint8_t *BitStream,uint32_t BitLen) { //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future // otherwise could be a void with no arguments //set defaults - int high=0, low=0; + int high=0, low=128; uint64_t lo=0; //hi=0, uint32_t i = 0; - uint32_t initLoopMax = 1000; + uint32_t initLoopMax = 65; if (initLoopMax>BitLen) initLoopMax=BitLen; - for (;i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values + for (;i < initLoopMax; ++i) //65 samples should be plenty to find high and low values { if (BitStream[i] > high) high = BitStream[i]; @@ -57,7 +44,7 @@ uint64_t Em410xDecode(uint8_t BitStream[],uint32_t BitLen) uint32_t ii=0; uint8_t resetCnt = 0; while( (idx + 64) < BitLen) { -restart: + restart: // search for a start of frame marker if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) { // frame marker found @@ -97,171 +84,195 @@ restart: //prints binary found and saves in graphbuffer for further commands int askmandemod(uint8_t * BinStream,uint32_t *BitLen,int *clk, int *invert) { - uint32_t i; - //int invert=0; //invert default - int high = 0, low = 0; - *clk=DetectClock2(BinStream,(size_t)*BitLen,*clk); //clock default - uint8_t BitStream[MAX_BitStream_LEN] = {0}; + int i; + int high = 0, low = 128; + *clk=DetectASKClock(BinStream,(size_t)*BitLen,*clk); //clock default - //sscanf(Cmd, "%i %i", &clk, &invert); if (*clk<8) *clk =64; if (*clk<32) *clk=32; if (*invert != 0 && *invert != 1) *invert=0; - uint32_t initLoopMax = 1000; + uint32_t initLoopMax = 200; if (initLoopMax>*BitLen) initLoopMax=*BitLen; // Detect high and lows - //PrintAndLog("Using Clock: %d and invert=%d",clk,invert); - for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values + for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values { if (BinStream[i] > high) high = BinStream[i]; else if (BinStream[i] < low) low = BinStream[i]; } - if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first) + if ((high < 158) ){ //throw away static //PrintAndLog("no data found"); - return -1; + return -2; } - //13% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)(0.75*high); - low=(int)(0.75*low); - + //25% fuzz in case highs and lows aren't clipped [marshmellow] + high=(int)((high-128)*.75)+128; + low= (int)((low-128)*.75)+128; + //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check uint32_t bitnum = 0; //output counter - uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave + int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely - uint32_t iii = 0; + int iii = 0; uint32_t gLen = *BitLen; - if (gLen > 500) gLen=500; + if (gLen > 3000) gLen=3000; uint8_t errCnt =0; uint32_t bestStart = *BitLen; uint32_t bestErrCnt = (*BitLen/1000); + uint32_t maxErr = (*BitLen/1000); //PrintAndLog("DEBUG - lastbit - %d",lastBit); //loop to find first wave that works for (iii=0; iii < gLen; ++iii){ if ((BinStream[iii]>=high)||(BinStream[iii]<=low)){ lastBit=iii-*clk; + errCnt=0; //loop through to see if this start location works for (i = iii; i < *BitLen; ++i) { if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ lastBit+=*clk; - BitStream[bitnum] = *invert; - bitnum++; } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ //low found and we are expecting a bar lastBit+=*clk; - BitStream[bitnum] = 1-*invert; - bitnum++; } else { //mid value found or no bar supposed to be here if ((i-lastBit)>(*clk+tol)){ //should have hit a high or low based on clock!! - - + //debug //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); - if (bitnum > 0){ - BitStream[bitnum]=77; - bitnum++; - } - errCnt++; lastBit+=*clk;//skip over until hit too many errors - if (errCnt>((*BitLen/1000))){ //allow 1 error for every 1000 samples else start over - errCnt=0; - bitnum=0;//start over - break; - } + if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over } } + if ((i-iii) >(400 * *clk)) break; //got plenty of bits } //we got more than 64 good bits and not all errors - if ((bitnum > (64+errCnt)) && (errCnt<(*BitLen/1000))) { + if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt=gLen){ //exhausted test - //if there was a ok test go back to that one and re-run the best run (then dump after that run) - if (bestErrCnt < (*BitLen/1000)) iii=bestStart; - } } - if (bitnum>16){ - - // PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum); - //move BitStream back to GraphBuffer - //ClearGraph(0); - for (i=0; i < bitnum; ++i){ - BinStream[i]=BitStream[i]; + if (bestErrCnt= high) && ((i-lastBit)>(*clk-tol))){ + lastBit+=*clk; + BinStream[bitnum] = *invert; + bitnum++; + } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ + //low found and we are expecting a bar + lastBit+=*clk; + BinStream[bitnum] = 1-*invert; + bitnum++; + } else { + //mid value found or no bar supposed to be here + if ((i-lastBit)>(*clk+tol)){ + //should have hit a high or low based on clock!! + + //debug + //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); + if (bitnum > 0){ + BinStream[bitnum]=77; + bitnum++; + } + + lastBit+=*clk;//skip over error + } + } + if (bitnum >=400) break; } *BitLen=bitnum; - //RepaintGraphWindow(); - //output - //if (errCnt>0){ - // PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt); - //} - // PrintAndLog("ASK decoded bitstream:"); - // Now output the bitstream to the scrollback by line of 16 bits - // printBitStream2(BitStream,bitnum); - // Em410xDecode(Cmd); - } - return errCnt; + } else{ + *invert=bestStart; + *clk=iii; + return -1; + } + return bestErrCnt; } //by marshmellow //take 10 and 01 and manchester decode //run through 2 times and take least errCnt -int manrawdemod(uint8_t * BitStream, int *bitLen) +int manrawdecode(uint8_t * BitStream, int *bitLen) { - uint8_t BitStream2[MAX_BitStream_LEN]={0}; int bitnum=0; int errCnt =0; int i=1; int bestErr = 1000; int bestRun = 0; - int finish = 0; int ii=1; for (ii=1;ii<3;++ii){ i=1; for (i=i+ii;i<*bitLen-2;i+=2){ if(BitStream[i]==1 && (BitStream[i+1]==0)){ - BitStream2[bitnum++]=0; } else if((BitStream[i]==0)&& BitStream[i+1]==1){ - BitStream2[bitnum++]=1; } else { - BitStream2[bitnum++]=77; errCnt++; } + if(bitnum>300) break; } if (bestErr>errCnt){ bestErr=errCnt; bestRun=ii; } - if (ii>1 || finish==1) { - if (bestRun==ii) { - break; - } else{ - ii=bestRun-1; - finish=1; - } - } errCnt=0; - bitnum=0; } errCnt=bestErr; - if (errCnt<10){ - for (i=0; i300) break; + } + *bitLen=bitnum; + } + return errCnt; +} + + +//by marshmellow +//take 01 or 10 = 0 and 11 or 00 = 1 +int BiphaseRawDecode(uint8_t * BitStream, int *bitLen, int offset) +{ + uint8_t bitnum=0; + uint32_t errCnt =0; + uint32_t i=1; + i=offset; + for (;i<*bitLen-2;i+=2){ + if((BitStream[i]==1 && BitStream[i+1]==0)||(BitStream[i]==0 && BitStream[i+1]==1)){ + BitStream[bitnum++]=1; + } else if((BitStream[i]==0 && BitStream[i+1]==0)||(BitStream[i]==1 && BitStream[i+1]==1)){ + BitStream[bitnum++]=0; + } else { + BitStream[bitnum++]=77; + errCnt++; + } + if(bitnum>250) break; + } + *bitLen=bitnum; return errCnt; } @@ -273,30 +284,30 @@ int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) { uint32_t i; // int invert=0; //invert default - int high = 0, low = 0; - *clk=DetectClock2(BinStream,*bitLen,*clk); //clock default - uint8_t BitStream[MAX_BitStream_LEN] = {0}; + int high = 0, low = 128; + *clk=DetectASKClock(BinStream,*bitLen,*clk); //clock default + uint8_t BitStream[502] = {0}; if (*clk<8) *clk =64; if (*clk<32) *clk=32; if (*invert != 0 && *invert != 1) *invert =0; - uint32_t initLoopMax = 1000; + uint32_t initLoopMax = 200; if (initLoopMax>*bitLen) initLoopMax=*bitLen; // Detect high and lows - for (i = 0; i < initLoopMax; ++i) //1000 samples should be plenty to find high and low values + for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values { if (BinStream[i] > high) high = BinStream[i]; else if (BinStream[i] < low) low = BinStream[i]; } - if ((high < 30) && ((high !=1)||(low !=-1))){ //throw away static - allow 1 and -1 (in case of threshold command first) + if ((high < 158)){ //throw away static // PrintAndLog("no data found"); - return -1; + return -2; } - //13% fuzz in case highs and lows aren't clipped [marshmellow] - high=(int)(0.75*high); - low=(int)(0.75*low); + //25% fuzz in case highs and lows aren't clipped [marshmellow] + high=(int)((high-128)*.75)+128; + low= (int)((low-128)*.75)+128; //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); int lastBit = 0; //set first clock check @@ -363,8 +374,9 @@ int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) bitnum=0;//start over break; } - } + } } + if (bitnum>500) break; } //we got more than 64 good bits and not all errors if ((bitnum > (64+errCnt)) && (errCnt<(*bitLen/1000))) { @@ -407,31 +419,32 @@ int askrawdemod(uint8_t *BinStream, int *bitLen,int *clk, int *invert) return errCnt; } //translate wave to 11111100000 (1 for each short wave 0 for each long wave) -size_t fsk_wave_demod2(uint8_t * dest, size_t size) +size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { uint32_t last_transition = 0; uint32_t idx = 1; uint32_t maxVal=0; - // // we don't care about actual value, only if it's more or less than a - // // threshold essentially we capture zero crossings for later analysis - - // we do care about the actual value as sometimes near the center of the + if (fchigh==0) fchigh=10; + if (fclow==0) fclow=8; + // we do care about the actual theshold value as sometimes near the center of the // wave we may get static that changes direction of wave for one value // if our value is too low it might affect the read. and if our tag or // antenna is weak a setting too high might not see anything. [marshmellow] if (size<100) return 0; for(idx=1; idx<100; idx++){ - if(maxVal1 transition if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition - if (idx-last_transition<6){ + if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise //do nothing with extra garbage - } else if (idx-last_transition < 9) { + } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves dest[numBits]=1; - } else { + } else { //9+ = 10 waves dest[numBits]=0; } last_transition = idx; @@ -467,7 +481,7 @@ uint32_t myround2(float f) } //translate 11111100000 to 10 -size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, +size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, uint8_t invert,uint8_t fchigh,uint8_t fclow )// uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, { uint8_t lastval=dest[0]; uint32_t idx=0; @@ -482,10 +496,10 @@ size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxCon } //if lastval was 1, we have a 1->0 crossing if ( dest[idx-1]==1 ) { - n=myround2((float)(n+1)/((float)(rfLen)/(float)8)); + n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); //n=(n+1) / h2l_crossing_value; } else {// 0->1 crossing - n=myround2((float)(n+1)/((float)(rfLen-2)/(float)10)); + n=myround2((float)(n+1)/((float)(rfLen-2)/(float)fchigh)); //-2 for fudge factor //n=(n+1) / l2h_crossing_value; } if (n == 0) n = 1; @@ -506,23 +520,11 @@ size_t aggregate_bits2(uint8_t *dest,size_t size, uint8_t rfLen, uint8_t maxCon } //by marshmellow (from holiman's base) // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) -int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert) +int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { - //uint8_t h2l_crossing_value = 6; - //uint8_t l2h_crossing_value = 5; - - // if (rfLen==64) //currently only know settings for RF/64 change from default if option entered - // { - // h2l_crossing_value=8; //or 8 as 64/8 = 8 - // l2h_crossing_value=6; //or 6.4 as 64/10 = 6.4 - // } - // size_t size = GraphTraceLen; - // FSK demodulator - size = fsk_wave_demod2(dest, size); - size = aggregate_bits2(dest, size,rfLen,192,invert); - // size = aggregate_bits(size, h2l_crossing_value, l2h_crossing_value,192, invert); //192=no limit to same values - //done messing with GraphBuffer - repaint - //RepaintGraphWindow(); + // FSK demodulator + size = fsk_wave_demod(dest, size, fchigh, fclow); + size = aggregate_bits(dest, size,rfLen,192,invert,fchigh,fclow); return size; } // loop to get raw HID waveform then FSK demodulate the TAG ID from it @@ -531,7 +533,7 @@ int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_ size_t idx=0; //, found=0; //size=0, // FSK demodulator - size = fskdemod(dest, size,50,0); + size = fskdemod(dest, size,50,0,10,8); // final loop, go over previously decoded manchester data and decode into usable tag ID // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 @@ -590,19 +592,20 @@ uint32_t bytebits_to_byte(uint8_t* src, int numbits) int IOdemodFSK(uint8_t *dest, size_t size) { - size_t idx=0; + uint32_t idx=0; //make sure buffer has data - if (size < 64) return -1; + if (size < 66) return -1; //test samples are not just noise uint8_t testMax=0; - for(idx=0;idx<64;idx++){ + for(idx=0;idx<65;idx++){ if (testMax170){ // FSK demodulator - size = fskdemod(dest, size,64,1); + size = fskdemod(dest, size,64,1,10,8); // RF/64 and invert + if (size < 65) return -1; //did we get a good demod? //Index map //0 10 20 30 40 50 60 //| | | | | | | @@ -612,14 +615,14 @@ int IOdemodFSK(uint8_t *dest, size_t size) // //XSF(version)facility:codeone+codetwo //Handle the data - uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; - for( idx=0; idx < (size - 74); idx++) { + uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; + for( idx=0; idx < (size - 65); idx++) { if ( memcmp(dest + idx, mask, sizeof(mask))==0) { //frame marker found if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ //confirmed proper separator bits found //return start position - return idx; + return (int) idx; } } } @@ -630,33 +633,36 @@ int IOdemodFSK(uint8_t *dest, size_t size) // by marshmellow // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) // maybe somehow adjust peak trimming value based on samples to fix? -int DetectClock2(uint8_t dest[], size_t size, int clock) +int DetectASKClock(uint8_t dest[], size_t size, int clock) { int i=0; int peak=0; - int low=0; + int low=128; int clk[]={16,32,40,50,64,100,128,256}; + int loopCnt = 256; //don't need to loop through entire array... + if (sizepeak){ - peak = dest[i]; - } - if(dest[i]peak){ + peak = dest[i]; + } + if(dest[i]=peak) || (dest[ii]<=low)){ errCnt[clkCnt]=0; + // now that we have the first one lined up test rest of wave array for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ - }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ + }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ }else{ //error no peak detected errCnt[clkCnt]++; } } + //if we found no errors this is correct one - return this clock if(errCnt[clkCnt]==0) return clk[clkCnt]; + //if we found errors see if it is lowest so far and save it as best run if(errCnt[clkCnt]