From: Martin Holst Swende Date: Sun, 1 Mar 2015 23:38:36 +0000 (+0100) Subject: Implemented the correct way to calculate MAC from a tag, feeding it an extra 32 zeroe... X-Git-Tag: v2.0.0-rc1~3 X-Git-Url: http://git.zerfleddert.de/cgi-bin/gitweb.cgi/proxmark3-svn/commitdiff_plain/61fe90736be4400f09fb5f56e2de48d11a0ae0a7?hp=c99dc845b1057be4ba2e535730345b4e6e8bfc58 Implemented the correct way to calculate MAC from a tag, feeding it an extra 32 zeroes. Also divided it up into two parts, one of which can be precalculated by the device before the simulation begins --- diff --git a/armsrc/iclass.c b/armsrc/iclass.c index ca6d9a7e..f289d24e 100644 --- a/armsrc/iclass.c +++ b/armsrc/iclass.c @@ -1053,6 +1053,8 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); + State cipher_state; +// State cipher_state_reserve; uint8_t *csn = BigBuf_get_EM_addr(); uint8_t *emulator = csn; uint8_t sof_data[] = { 0x0F} ; @@ -1069,12 +1071,18 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]); + //The diversified key should be stored on block 3 + uint8_t diversified_key[8] = { 0 }; + //Get the diversified key from emulator memory + memcpy(diversified_key, emulator+(8*3),8); // e-Purse uint8_t card_challenge_data[8] = { 0x00 }; if(simulationMode == MODE_FULLSIM) { //Card challenge, a.k.a e-purse is on block 2 memcpy(card_challenge_data,emulator + (8 * 2) , 8); + //Precalculate the cipher state, feeding it the CC + opt_doTagMAC_1(card_challenge_data,diversified_key); } int exitLoop = 0; @@ -1200,21 +1208,10 @@ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) } else if(receivedCmd[0] == ICLASS_CMD_CHECK) { // Reader random and reader MAC!!! if(simulationMode == MODE_FULLSIM) - { //This is what we must do.. - //Reader just sent us NR and MAC(k,cc * nr) - //The diversified key should be stored on block 3 - //However, from a typical dump, the key will not be there - uint8_t diversified_key[8] = { 0 }; - - //Get the diversified key from emulator memory - memcpy(diversified_key, emulator+(8*3),8); - uint8_t ccnr[12] = { 0 }; - //Put our cc there (block 2) - memcpy(ccnr, emulator + (8 * 2), 8); - //Put nr there - memcpy(ccnr+8, receivedCmd+1,4); - //Now, calc MAC - opt_doMAC(ccnr,diversified_key, data_generic_trace); + { + //NR, from reader, is in receivedCmd +1 + opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key); + trace_data = data_generic_trace; trace_data_size = 4; CodeIClassTagAnswer(trace_data , trace_data_size); diff --git a/armsrc/optimized_cipher.c b/armsrc/optimized_cipher.c index 067e9022..444b93d0 100644 --- a/armsrc/optimized_cipher.c +++ b/armsrc/optimized_cipher.c @@ -68,21 +68,6 @@ #include #include -/** -* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2 -* consisting of the following four components: -* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; -* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; -* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . -* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . -**/ -typedef struct { - uint8_t l; - uint8_t r; - uint8_t b; - uint16_t t; -} State; - #define opt_T(s) (0x1 & ((s->t >> 15) ^ (s->t >> 14)^ (s->t >> 10)^ (s->t >> 8)^ (s->t >> 5)^ (s->t >> 4)^ (s->t >> 1)^ s->t)) @@ -118,7 +103,7 @@ uint8_t xopt__select(bool x, bool y, uint8_t r) } */ -void opt_successor(uint8_t* k, State *s, bool y, State* successor) +void opt_successor(const uint8_t* k, State *s, bool y, State* successor) { uint8_t Tt = 1 & opt_T(s); @@ -134,12 +119,12 @@ void opt_successor(uint8_t* k, State *s, bool y, State* successor) } -void opt_suc(uint8_t* k,State* s, uint8_t *in) +void opt_suc(const uint8_t* k,State* s, uint8_t *in, uint8_t length, bool add32Zeroes) { State x2; int i; uint8_t head = 0; - for(i =0 ; i < 12 ; i++) + for(i =0 ; i < length ; i++) { head = 1 & (in[i] >> 7); opt_successor(k,s,head,&x2); @@ -166,10 +151,16 @@ void opt_suc(uint8_t* k,State* s, uint8_t *in) opt_successor(k,&x2,head,s); } - + //For tag MAC, an additional 32 zeroes + if(add32Zeroes) + for(i =0 ; i < 16 ; i++) + { + opt_successor(k,s,0,&x2); + opt_successor(k,&x2,0,s); + } } -void opt_output(uint8_t* k,State* s, uint8_t *buffer) +void opt_output(const uint8_t* k,State* s, uint8_t *buffer) { uint8_t times = 0; uint8_t bout = 0; @@ -207,7 +198,7 @@ void opt_MAC(uint8_t* k, uint8_t* input, uint8_t* out) 0xE012 // t }; - opt_suc(k,&_init,input); + opt_suc(k,&_init,input,12, false); //printf("\noutp "); opt_output(k,&_init, out); } @@ -224,16 +215,74 @@ void opt_reverse_arraybytecpy(uint8_t* dest, uint8_t *src, size_t len) dest[i] = rev_byte(src[i]); } -void opt_doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) +void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]) { - static uint8_t cc_nr[13]; - static uint8_t div_key[8]; + static uint8_t cc_nr[12]; opt_reverse_arraybytecpy(cc_nr, cc_nr_p,12); - memcpy(div_key,div_key_p,8); uint8_t dest []= {0,0,0,0,0,0,0,0}; - opt_MAC(div_key,cc_nr, dest); + opt_MAC(div_key_p,cc_nr, dest); + //The output MAC must also be reversed + opt_reverse_arraybytecpy(mac, dest,4); + return; +} +void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]) +{ + static uint8_t cc_nr[8+4+4]; + opt_reverse_arraybytecpy(cc_nr, cc_p,12); + State _init = { + ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l + ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r + 0x4c, // b + 0xE012 // t + }; + opt_suc(div_key_p,&_init,cc_nr, 12,true); + uint8_t dest []= {0,0,0,0}; + opt_output(div_key_p,&_init, dest); + //The output MAC must also be reversed + opt_reverse_arraybytecpy(mac, dest,4); + return; + +} +/** + * The tag MAC can be divided (both can, but no point in dividing the reader mac) into + * two functions, since the first 8 bytes are known, we can pre-calculate the state + * reached after feeding CC to the cipher. + * @param cc_p + * @param div_key_p + * @return the cipher state + */ +State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p) +{ + static uint8_t cc_nr[8]; + opt_reverse_arraybytecpy(cc_nr, cc_p,8); + State _init = { + ((div_key_p[0] ^ 0x4c) + 0xEC) & 0xFF,// l + ((div_key_p[0] ^ 0x4c) + 0x21) & 0xFF,// r + 0x4c, // b + 0xE012 // t + }; + opt_suc(div_key_p,&_init,cc_nr, 8,false); + return _init; +} +/** + * The second part of the tag MAC calculation, since the CC is already calculated into the state, + * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag + * MAC response. + * @param _init - precalculated cipher state + * @param nr - the reader challenge + * @param mac - where to store the MAC + * @param div_key_p - the key to use + */ +void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p) +{ + static uint8_t _nr [4]; + opt_reverse_arraybytecpy(_nr, nr, 4); + opt_suc(div_key_p,&_init,_nr, 4, true); + //opt_suc(div_key_p,&_init,nr, 4, false); + uint8_t dest []= {0,0,0,0}; + opt_output(div_key_p,&_init, dest); //The output MAC must also be reversed - opt_reverse_arraybytecpy(mac, dest,12); + opt_reverse_arraybytecpy(mac, dest,4); return; } diff --git a/armsrc/optimized_cipher.h b/armsrc/optimized_cipher.h index 0f4f0ec2..c10aea28 100644 --- a/armsrc/optimized_cipher.h +++ b/armsrc/optimized_cipher.h @@ -1,5 +1,48 @@ #ifndef OPTIMIZED_CIPHER_H #define OPTIMIZED_CIPHER_H #include -void opt_doMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]); + +/** +* Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2 +* consisting of the following four components: +* 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; +* 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; +* 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . +* 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . +**/ +typedef struct { + uint8_t l; + uint8_t r; + uint8_t b; + uint16_t t; +} State; + +/** The reader MAC is MAC(key, CC * NR ) + **/ +void opt_doReaderMAC(uint8_t *cc_nr_p, uint8_t *div_key_p, uint8_t mac[4]); +/** + * The tag MAC is MAC(key, CC * NR * 32x0)) + */ +void opt_doTagMAC(uint8_t *cc_p, const uint8_t *div_key_p, uint8_t mac[4]); + +/** + * The tag MAC can be divided (both can, but no point in dividing the reader mac) into + * two functions, since the first 8 bytes are known, we can pre-calculate the state + * reached after feeding CC to the cipher. + * @param cc_p + * @param div_key_p + * @return the cipher state + */ +State opt_doTagMAC_1(uint8_t *cc_p, const uint8_t *div_key_p); +/** + * The second part of the tag MAC calculation, since the CC is already calculated into the state, + * this function is fed only the NR, and internally feeds the remaining 32 0-bits to generate the tag + * MAC response. + * @param _init - precalculated cipher state + * @param nr - the reader challenge + * @param mac - where to store the MAC + * @param div_key_p - the key to use + */ +void opt_doTagMAC_2(State _init, uint8_t* nr, uint8_t mac[4], const uint8_t* div_key_p); + #endif // OPTIMIZED_CIPHER_H