From 7bc95e2e43c0b00b72fc794b18c26a880ac19d1c Mon Sep 17 00:00:00 2001 From: "micki.held@gmx.de" Date: Wed, 19 Feb 2014 20:35:04 +0000 Subject: [PATCH] - fixed iso1443a ManchesterDecoder in order to fix broken Snoop/Sniff - enhanced tracing: hf 14a list now shows meaningful timing information. With new option f it also shows the frame delay times (fdt) - small fix for hf 14b list - it used to run into the trace trailer - hf 14a sim now obeys iso14443 timing (fdt of 1172 or 1234 resp.) Note: you need to flash FPGA as well. More details in http://www.proxmark.org/forum/viewtopic.php?pid=9721#p9721 --- armsrc/apps.h | 2 +- armsrc/epa.c | 2 +- armsrc/fpgaloader.c | 14 +- armsrc/iclass.c | 9 +- armsrc/iso14443a.c | 1887 +++++++++++++++++++++--------------------- armsrc/iso14443a.h | 53 +- armsrc/mifarecmd.c | 32 +- armsrc/mifaresniff.c | 93 +-- armsrc/mifaresniff.h | 10 +- armsrc/util.c | 37 +- armsrc/util.h | 4 +- client/cmdhf14a.c | 238 +++--- client/cmdhf14b.c | 3 + client/cmdhfmf.c | 8 +- fpga/fpga.bit | Bin 42172 -> 42172 bytes fpga/hi_iso14443a.v | 366 ++++---- 16 files changed, 1405 insertions(+), 1353 deletions(-) diff --git a/armsrc/apps.h b/armsrc/apps.h index 4e99b1aa..497692be 100644 --- a/armsrc/apps.h +++ b/armsrc/apps.h @@ -144,7 +144,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param); void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data); void ReaderIso14443a(UsbCommand * c); // Also used in iclass.c -int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader); +bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t iSamples, uint32_t dwParity, bool bReader); uint32_t GetParity(const uint8_t * pbtCmd, int iLen); void iso14a_set_trigger(bool enable); void iso14a_clear_trace(); diff --git a/armsrc/epa.c b/armsrc/epa.c index 1300b515..b0ae5e0d 100644 --- a/armsrc/epa.c +++ b/armsrc/epa.c @@ -423,7 +423,7 @@ int EPA_Setup() // card select information iso14a_card_select_t card_select_info; // power up the field - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); // select the card return_code = iso14443a_select_card(uid, &card_select_info, NULL); diff --git a/armsrc/fpgaloader.c b/armsrc/fpgaloader.c index e3784bf5..1e728e11 100644 --- a/armsrc/fpgaloader.c +++ b/armsrc/fpgaloader.c @@ -119,7 +119,7 @@ void FpgaSetupSsc(void) AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0); // clock comes from TK pin, no clock output, outputs change on falling - // edge of TK, start on rising edge of TF + // edge of TK, sample on rising edge of TK AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) | SSC_CLOCK_MODE_START(5); // tx framing is the same as the rx framing @@ -140,12 +140,12 @@ bool FpgaSetupSscDma(uint8_t *buf, int len) return false; } - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; - AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) buf; - AT91C_BASE_PDC_SSC->PDC_RCR = len; - AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) buf; - AT91C_BASE_PDC_SSC->PDC_RNCR = len; - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTEN; + AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; // Disable DMA Transfer + AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) buf; // transfer to this memory address + AT91C_BASE_PDC_SSC->PDC_RCR = len; // transfer this many bytes + AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) buf; // next transfer to same memory address + AT91C_BASE_PDC_SSC->PDC_RNCR = len; // ... with same number of bytes + AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTEN; // go! return true; } diff --git a/armsrc/iclass.c b/armsrc/iclass.c index c673bb54..e876132e 100644 --- a/armsrc/iclass.c +++ b/armsrc/iclass.c @@ -1168,9 +1168,9 @@ void SimulateIClass(uint8_t arg0, uint8_t *datain) } if (tracing) { - LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE); + LogTrace(receivedCmd,len, rsamples, Uart.parityBits, TRUE); if (respdata != NULL) { - LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE); + LogTrace(respdata,respsize, rsamples, SwapBits(GetParity(respdata,respsize),respsize), FALSE); } if(traceLen > TRACE_SIZE) { DbpString("Trace full"); @@ -1349,7 +1349,7 @@ void ReaderTransmitIClass(uint8_t* frame, int len) LED_A_ON(); // Store reader command in buffer - if (tracing) LogTrace(frame,len,0,par,TRUE); + if (tracing) LogTrace(frame,len,rsamples,par,TRUE); } //----------------------------------------------------------------------------- @@ -1407,7 +1407,8 @@ int ReaderReceiveIClass(uint8_t* receivedAnswer) { int samples = 0; if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; - if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); + rsamples += samples; + if (tracing) LogTrace(receivedAnswer,Demod.len,rsamples,Demod.parityBits,FALSE); if(samples == 0) return FALSE; return Demod.len; } diff --git a/armsrc/iso14443a.c b/armsrc/iso14443a.c index 3f775de5..ca888295 100644 --- a/armsrc/iso14443a.c +++ b/armsrc/iso14443a.c @@ -23,13 +23,93 @@ static uint32_t iso14a_timeout; uint8_t *trace = (uint8_t *) BigBuf+TRACE_OFFSET; -int traceLen = 0; int rsamples = 0; +int traceLen = 0; int tracing = TRUE; uint8_t trigger = 0; // the block number for the ISO14443-4 PCB static uint8_t iso14_pcb_blocknum = 0; +// +// ISO14443 timing: +// +// minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles +#define REQUEST_GUARD_TIME (7000/16 + 1) +// minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles +#define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) +// bool LastCommandWasRequest = FALSE; + +// +// Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) +// +// When the PM acts as reader and is receiving, it takes +// 3 ticks for the A/D conversion +// 10 ticks ( 16 on average) delay in the modulation detector. +// 6 ticks until the SSC samples the first data +// 7*16 ticks to complete the transfer from FPGA to ARM +// 8 ticks to the next ssp_clk rising edge +// 4*16 ticks until we measure the time +// - 8*16 ticks because we measure the time of the previous transfer +#define DELAY_AIR2ARM_AS_READER (3 + 10 + 6 + 7*16 + 8 + 4*16 - 8*16) + +// When the PM acts as a reader and is sending, it takes +// 4*16 ticks until we can write data to the sending hold register +// 8*16 ticks until the SHR is transferred to the Sending Shift Register +// 8 ticks until the first transfer starts +// 8 ticks later the FPGA samples the data +// 1 tick to assign mod_sig_coil +#define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) + +// When the PM acts as tag and is receiving it takes +// 12 ticks delay in the RF part, +// 3 ticks for the A/D conversion, +// 8 ticks on average until the start of the SSC transfer, +// 8 ticks until the SSC samples the first data +// 7*16 ticks to complete the transfer from FPGA to ARM +// 8 ticks until the next ssp_clk rising edge +// 3*16 ticks until we measure the time +// - 8*16 ticks because we measure the time of the previous transfer +#define DELAY_AIR2ARM_AS_TAG (12 + 3 + 8 + 8 + 7*16 + 8 + 3*16 - 8*16) + +// The FPGA will report its internal sending delay in +uint16_t FpgaSendQueueDelay; +// the 5 first bits are the number of bits buffered in mod_sig_buf +// the last three bits are the remaining ticks/2 after the mod_sig_buf shift +#define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) + +// When the PM acts as tag and is sending, it takes +// 5*16 ticks until we can write data to the sending hold register +// 8*16 ticks until the SHR is transferred to the Sending Shift Register +// 8 ticks until the first transfer starts +// 8 ticks later the FPGA samples the data +// + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) +// + 1 tick to assign mod_sig_coil +#define DELAY_ARM2AIR_AS_TAG (5*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1) + +// When the PM acts as sniffer and is receiving tag data, it takes +// 3 ticks A/D conversion +// 16 ticks delay in the modulation detector (on average). +// + 16 ticks until it's result is sampled. +// + the delays in transferring data - which is the same for +// sniffing reader and tag data and therefore not relevant +#define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 16 + 16) + +// When the PM acts as sniffer and is receiving tag data, it takes +// 12 ticks delay in analogue RF receiver +// 3 ticks A/D conversion +// 8 ticks on average until we sample the data. +// + the delays in transferring data - which is the same for +// sniffing reader and tag data and therefore not relevant +#define DELAY_READER_AIR2ARM_AS_SNIFFER (12 + 3 + 8) + +//variables used for timing purposes: +//these are in ssp_clk cycles: +uint32_t NextTransferTime; +uint32_t LastTimeProxToAirStart; +uint32_t LastProxToAirDuration; + + + // CARD TO READER - manchester // Sequence D: 11110000 modulation with subcarrier during first half // Sequence E: 00001111 modulation with subcarrier during second half @@ -70,7 +150,7 @@ void iso14a_set_trigger(bool enable) { } void iso14a_clear_trace() { - memset(trace, 0x44, TRACE_SIZE); + memset(trace, 0x44, TRACE_SIZE); traceLen = 0; } @@ -110,274 +190,192 @@ void AppendCrc14443a(uint8_t* data, int len) } // The function LogTrace() is also used by the iClass implementation in iClass.c -int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) +bool RAMFUNC LogTrace(const uint8_t * btBytes, uint8_t iLen, uint32_t timestamp, uint32_t dwParity, bool bReader) { - // Return when trace is full - if (traceLen >= TRACE_SIZE) return FALSE; - - // Trace the random, i'm curious - rsamples += iSamples; - trace[traceLen++] = ((rsamples >> 0) & 0xff); - trace[traceLen++] = ((rsamples >> 8) & 0xff); - trace[traceLen++] = ((rsamples >> 16) & 0xff); - trace[traceLen++] = ((rsamples >> 24) & 0xff); - if (!bReader) { - trace[traceLen - 1] |= 0x80; - } - trace[traceLen++] = ((dwParity >> 0) & 0xff); - trace[traceLen++] = ((dwParity >> 8) & 0xff); - trace[traceLen++] = ((dwParity >> 16) & 0xff); - trace[traceLen++] = ((dwParity >> 24) & 0xff); - trace[traceLen++] = iLen; - memcpy(trace + traceLen, btBytes, iLen); - traceLen += iLen; - return TRUE; + // Return when trace is full + if (traceLen + sizeof(timestamp) + sizeof(dwParity) + iLen >= TRACE_SIZE) { + tracing = FALSE; // don't trace any more + return FALSE; + } + + // Trace the random, i'm curious + trace[traceLen++] = ((timestamp >> 0) & 0xff); + trace[traceLen++] = ((timestamp >> 8) & 0xff); + trace[traceLen++] = ((timestamp >> 16) & 0xff); + trace[traceLen++] = ((timestamp >> 24) & 0xff); + if (!bReader) { + trace[traceLen - 1] |= 0x80; + } + trace[traceLen++] = ((dwParity >> 0) & 0xff); + trace[traceLen++] = ((dwParity >> 8) & 0xff); + trace[traceLen++] = ((dwParity >> 16) & 0xff); + trace[traceLen++] = ((dwParity >> 24) & 0xff); + trace[traceLen++] = iLen; + if (btBytes != NULL && iLen != 0) { + memcpy(trace + traceLen, btBytes, iLen); + } + traceLen += iLen; + return TRUE; } -//----------------------------------------------------------------------------- -// The software UART that receives commands from the reader, and its state -// variables. +//============================================================================= +// ISO 14443 Type A - Miller decoder +//============================================================================= +// Basics: +// This decoder is used when the PM3 acts as a tag. +// The reader will generate "pauses" by temporarily switching of the field. +// At the PM3 antenna we will therefore measure a modulated antenna voltage. +// The FPGA does a comparison with a threshold and would deliver e.g.: +// ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... +// The Miller decoder needs to identify the following sequences: +// 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") +// 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") +// 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") +// Note 1: the bitstream may start at any time. We therefore need to sync. +// Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. //----------------------------------------------------------------------------- static tUart Uart; -static RAMFUNC int MillerDecoding(int bit) +void UartReset() { - //int error = 0; - int bitright; + Uart.state = STATE_UNSYNCD; + Uart.bitCount = 0; + Uart.len = 0; // number of decoded data bytes + Uart.shiftReg = 0; // shiftreg to hold decoded data bits + Uart.parityBits = 0; // + Uart.twoBits = 0x0000; // buffer for 2 Bits + Uart.highCnt = 0; + Uart.startTime = 0; + Uart.endTime = 0; +} - if(!Uart.bitBuffer) { - Uart.bitBuffer = bit ^ 0xFF0; - return FALSE; - } - else { - Uart.bitBuffer <<= 4; - Uart.bitBuffer ^= bit; +inline RAMFUNC Modulation_t MillerModulation(uint8_t b) +{ + // switch (b & 0x88) { + // case 0x00: return MILLER_MOD_BOTH_HALVES; + // case 0x08: return MILLER_MOD_FIRST_HALF; + // case 0x80: return MILLER_MOD_SECOND_HALF; + // case 0x88: return MILLER_MOD_NOMOD; + // } + // test the second cycle for a pause. For whatever reason the startbit tends to appear earlier than the rest. + switch (b & 0x44) { + case 0x00: return MOD_BOTH_HALVES; + case 0x04: return MOD_FIRST_HALF; + case 0x40: return MOD_SECOND_HALF; + default: return MOD_NOMOD; } +} - int EOC = FALSE; - - if(Uart.state != STATE_UNSYNCD) { - Uart.posCnt++; - - if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { - bit = 0x00; - } - else { - bit = 0x01; - } - if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { - bitright = 0x00; - } - else { - bitright = 0x01; - } - if(bit != bitright) { bit = bitright; } +// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time +static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) +{ - if(Uart.posCnt == 1) { - // measurement first half bitperiod - if(!bit) { - Uart.drop = DROP_FIRST_HALF; - } - } - else { - // measurement second half bitperiod - if(!bit & (Uart.drop == DROP_NONE)) { - Uart.drop = DROP_SECOND_HALF; + Uart.twoBits = (Uart.twoBits << 8) | bit; + + if (Uart.state == STATE_UNSYNCD) { // not yet synced + if (Uart.highCnt < 7) { // wait for a stable unmodulated signal + if (Uart.twoBits == 0xffff) { + Uart.highCnt++; + } else { + Uart.highCnt = 0; } - else if(!bit) { - // measured a drop in first and second half - // which should not be possible - Uart.state = STATE_ERROR_WAIT; - //error = 0x01; + } else { + Uart.syncBit = 0xFFFF; // not set + // look for 00xx1111 (the start bit) + if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; + else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6; + else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5; + else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4; + else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3; + else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2; + else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1; + else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0; + if (Uart.syncBit != 0xFFFF) { + Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); + Uart.startTime -= Uart.syncBit; + Uart.state = STATE_START_OF_COMMUNICATION; } + } - Uart.posCnt = 0; - - switch(Uart.state) { - case STATE_START_OF_COMMUNICATION: - Uart.shiftReg = 0; - if(Uart.drop == DROP_SECOND_HALF) { - // error, should not happen in SOC - Uart.state = STATE_ERROR_WAIT; - //error = 0x02; - } - else { - // correct SOC - Uart.state = STATE_MILLER_Z; - } - break; - - case STATE_MILLER_Z: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; - } - // if(Uart.drop == DROP_FIRST_HALF) { - // Uart.state = STATE_MILLER_Z; stay the same - // we see a logic '0' } - if(Uart.drop == DROP_SECOND_HALF) { - // we see a logic '1' - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; - } - break; - - case STATE_MILLER_X: - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // sequence Y, we see a '0' - Uart.state = STATE_MILLER_Y; - Uart.bitCnt++; - } - if(Uart.drop == DROP_FIRST_HALF) { - // Would be STATE_MILLER_Z - // but Z does not follow X, so error - Uart.state = STATE_ERROR_WAIT; - //error = 0x03; - } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and stay in state X - Uart.shiftReg |= 0x100; - Uart.bitCnt++; - } - break; - - case STATE_MILLER_Y: - Uart.bitCnt++; - Uart.shiftReg >>= 1; - if(Uart.drop == DROP_NONE) { - // logic '0' followed by sequence Y - // end of communication - Uart.state = STATE_UNSYNCD; - EOC = TRUE; - } - if(Uart.drop == DROP_FIRST_HALF) { - // we see a '0' - Uart.state = STATE_MILLER_Z; - } - if(Uart.drop == DROP_SECOND_HALF) { - // We see a '1' and go to state X - Uart.shiftReg |= 0x100; - Uart.state = STATE_MILLER_X; - } - break; + } else { - case STATE_ERROR_WAIT: - // That went wrong. Now wait for at least two bit periods - // and try to sync again - if(Uart.drop == DROP_NONE) { - Uart.highCnt = 6; - Uart.state = STATE_UNSYNCD; + switch (MillerModulation(Uart.twoBits >> Uart.syncBit)) { + case MOD_FIRST_HALF: // Sequence Z = 0 + if (Uart.state == STATE_MILLER_X) { // error - must not follow after X + UartReset(); + Uart.highCnt = 6; + } else { + Uart.bitCount++; + Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg + Uart.state = STATE_MILLER_Z; + Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); + Uart.parityBits <<= 1; // make room for the parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.bitCount = 0; + Uart.shiftReg = 0; } - break; - - default: + } + break; + case MOD_SECOND_HALF: // Sequence X = 1 + Uart.bitCount++; + Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg + Uart.state = STATE_MILLER_X; + Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); + Uart.parityBits <<= 1; // make room for the new parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.bitCount = 0; + Uart.shiftReg = 0; + } + break; + case MOD_NOMOD: // no modulation in both halves - Sequence Y + if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication Uart.state = STATE_UNSYNCD; - Uart.highCnt = 0; - break; - } - - Uart.drop = DROP_NONE; - - // should have received at least one whole byte... - if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { - return TRUE; - } - - if(Uart.bitCnt == 9) { - Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); - Uart.byteCnt++; - - Uart.parityBits <<= 1; - Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); - - if(EOC) { - // when End of Communication received and - // all data bits processed.. + if(Uart.len == 0 && Uart.bitCount > 0) { // if we decoded some bits + Uart.shiftReg >>= (9 - Uart.bitCount); // add them to the output + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); + Uart.parityBits <<= 1; // no parity bit - add "0" + Uart.bitCount--; // last "0" was part of the EOC sequence + } return TRUE; } - Uart.bitCnt = 0; - } - - /*if(error) { - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = error & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; - Uart.byteCnt++; - Uart.output[Uart.byteCnt] = 0xAA; - Uart.byteCnt++; - return TRUE; - }*/ - } - - } - else { - bit = Uart.bitBuffer & 0xf0; - bit >>= 4; - bit ^= 0x0F; - if(bit) { - // should have been high or at least (4 * 128) / fc - // according to ISO this should be at least (9 * 128 + 20) / fc - if(Uart.highCnt == 8) { - // we went low, so this could be start of communication - // it turns out to be safer to choose a less significant - // syncbit... so we check whether the neighbour also represents the drop - Uart.posCnt = 1; // apparently we are busy with our first half bit period - Uart.syncBit = bit & 8; - Uart.samples = 3; - if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } - else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } - if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } - else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } - if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; - if(Uart.syncBit && (Uart.bitBuffer & 8)) { - Uart.syncBit = 8; - - // the first half bit period is expected in next sample - Uart.posCnt = 0; - Uart.samples = 3; + if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC + UartReset(); + Uart.highCnt = 6; + } else { // a logic "0" + Uart.bitCount++; + Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg + Uart.state = STATE_MILLER_Y; + if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) + Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); + Uart.parityBits <<= 1; // make room for the parity bit + Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit + Uart.bitCount = 0; + Uart.shiftReg = 0; } } - else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } - - Uart.syncBit <<= 4; - Uart.state = STATE_START_OF_COMMUNICATION; - Uart.drop = DROP_FIRST_HALF; - Uart.bitCnt = 0; - Uart.byteCnt = 0; - Uart.parityBits = 0; - //error = 0; - } - else { - Uart.highCnt = 0; - } - } - else { - if(Uart.highCnt < 8) { - Uart.highCnt++; - } + break; + case MOD_BOTH_HALVES: // Error + UartReset(); + Uart.highCnt = 6; + return FALSE; } - } + + } - return FALSE; + return FALSE; // not finished yet, need more data } + + //============================================================================= // ISO 14443 Type A - Manchester decoder //============================================================================= // Basics: +// This decoder is used when the PM3 acts as a reader. // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... @@ -386,105 +384,95 @@ static RAMFUNC int MillerDecoding(int bit) // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 // 8 ticks unmodulated: Sequence F = end of communication // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D -// Note 1: the bitstream may start at any time (either in first or second nibble within the parameter bit). We therefore need to sync. +// Note 1: the bitstream may start at any time. We therefore need to sync. // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) static tDemod Demod; -inline RAMFUNC bool IsModulation(byte_t b) -{ - if (b >= 5 || b == 3) // majority decision: 2 or more bits are set - return true; - else - return false; - -} +const bool Mod_Manchester_LUT[] = { + FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, + FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE +}; + +#define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) +#define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) -inline RAMFUNC bool IsModulationNibble1(byte_t b) -{ - return IsModulation((b & 0xE0) >> 5); -} -inline RAMFUNC bool IsModulationNibble2(byte_t b) +void DemodReset() { - return IsModulation((b & 0x0E) >> 1); + Demod.state = DEMOD_UNSYNCD; + Demod.len = 0; // number of decoded data bytes + Demod.shiftReg = 0; // shiftreg to hold decoded data bits + Demod.parityBits = 0; // + Demod.collisionPos = 0; // Position of collision bit + Demod.twoBits = 0xffff; // buffer for 2 Bits + Demod.highCnt = 0; + Demod.startTime = 0; + Demod.endTime = 0; } -static RAMFUNC int ManchesterDecoding(int bit, uint16_t offset) +// use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time +static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) { + + Demod.twoBits = (Demod.twoBits << 8) | bit; - switch (Demod.state) { - - case DEMOD_UNSYNCD: // not yet synced - Demod.len = 0; // initialize number of decoded data bytes - Demod.bitCount = offset; // initialize number of decoded data bits - Demod.shiftReg = 0; // initialize shiftreg to hold decoded data bits - Demod.parityBits = 0; // initialize parity bits - Demod.collisionPos = 0; // Position of collision bit - - if (IsModulationNibble1(bit) - && !IsModulationNibble2(bit)) { // this is the start bit - Demod.samples = 8; - if(trigger) LED_A_OFF(); + if (Demod.state == DEMOD_UNSYNCD) { + + if (Demod.highCnt < 2) { // wait for a stable unmodulated signal + if (Demod.twoBits == 0x0000) { + Demod.highCnt++; + } else { + Demod.highCnt = 0; + } + } else { + Demod.syncBit = 0xFFFF; // not set + if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; + else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; + else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; + else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; + else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; + else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; + else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; + else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; + if (Demod.syncBit < 8) { + Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); + Demod.startTime -= Demod.syncBit; + Demod.bitCount = offset; // number of decoded data bits Demod.state = DEMOD_MANCHESTER_DATA; - } else if (!IsModulationNibble1(bit) && IsModulationNibble2(bit)) { // this may be the first half of the start bit - Demod.samples = 4; - Demod.state = DEMOD_HALF_SYNCD; } - break; + } + } else { - case DEMOD_HALF_SYNCD: - Demod.samples += 8; - if (IsModulationNibble1(bit)) { // error: this was not a start bit. - Demod.state = DEMOD_UNSYNCD; - } else { - if (IsModulationNibble2(bit)) { // modulation in first half - Demod.state = DEMOD_MOD_FIRST_HALF; - } else { // no modulation in first half - Demod.state = DEMOD_NOMOD_FIRST_HALF; - } - } - break; - - - case DEMOD_MOD_FIRST_HALF: - Demod.samples += 8; - Demod.bitCount++; - if (IsModulationNibble1(bit)) { // modulation in both halfs - collision + if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half + if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision if (!Demod.collisionPos) { Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; } } // modulation in first half only - Sequence D = 1 - Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg - if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the parity bit + Demod.bitCount++; + Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg + if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); + Demod.parityBits <<= 1; // make room for the parity bit Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; } - if (IsModulationNibble2(bit)) { // modulation in first half - Demod.state = DEMOD_MOD_FIRST_HALF; - } else { // no modulation in first half - Demod.state = DEMOD_NOMOD_FIRST_HALF; - } - break; - - - case DEMOD_NOMOD_FIRST_HALF: - if (IsModulationNibble1(bit)) { // modulation in second half only - Sequence E = 0 + Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; + } else { // no modulation in first half + if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 Demod.bitCount++; - Demod.samples += 8; - Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg + Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the new parity bit Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); + Demod.parityBits <<= 1; // make room for the new parity bit Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit Demod.bitCount = 0; Demod.shiftReg = 0; } + Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); } else { // no modulation in both halves - End of communication - Demod.samples += 4; if(Demod.bitCount > 0) { // if we decoded bits Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output Demod.output[Demod.len++] = Demod.shiftReg & 0xff; @@ -492,55 +480,10 @@ static RAMFUNC int ManchesterDecoding(int bit, uint16_t offset) Demod.parityBits <<= 1; } Demod.state = DEMOD_UNSYNCD; // start from the beginning + Demod.twoBits = 0; return TRUE; // we are finished with decoding the raw data sequence } - if (IsModulationNibble2(bit)) { // modulation in first half - Demod.state = DEMOD_MOD_FIRST_HALF; - } else { // no modulation in first half - Demod.state = DEMOD_NOMOD_FIRST_HALF; - } - break; - - - case DEMOD_MANCHESTER_DATA: - Demod.samples += 8; - if (IsModulationNibble1(bit)) { // modulation in first half - if (IsModulationNibble2(bit) & 0x0f) { // ... and in second half = collision - if (!Demod.collisionPos) { - Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; - } - } // modulation in first half only - Sequence D = 1 - Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg - if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the parity bit - Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); - Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit - Demod.bitCount = 0; - Demod.shiftReg = 0; - } - } else { // no modulation in first half - if (IsModulationNibble2(bit)) { // and modulation in second half = Sequence E = 0 - Demod.bitCount++; - Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg - if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) - Demod.parityBits <<= 1; // make room for the new parity bit - Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); - Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit - Demod.bitCount = 0; - Demod.shiftReg = 0; - } - } else { // no modulation in both halves - End of communication - if(Demod.bitCount > 0) { // if we decoded bits - Demod.shiftReg >>= (9 - Demod.bitCount); // add the remaining decoded bits to the output - Demod.output[Demod.len++] = Demod.shiftReg & 0xff; - // No parity bit, so just shift a 0 - Demod.parityBits <<= 1; - } - Demod.state = DEMOD_UNSYNCD; // start from the beginning - return TRUE; // we are finished with decoding the raw data sequence - } - } + } } @@ -570,8 +513,8 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { // a good trigger condition to get started is probably when we see a // response from the tag. // triggered == FALSE -- to wait first for card - int triggered = !(param & 0x03); - + bool triggered = !(param & 0x03); + // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! @@ -584,40 +527,31 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { //uint8_t *trace = (uint8_t *)BigBuf; // The DMA buffer, used to stream samples from the FPGA - int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; - int8_t *data = dmaBuf; + uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; + uint8_t *data = dmaBuf; + uint8_t previous_data = 0; int maxDataLen = 0; int dataLen = 0; + bool TagIsActive = FALSE; + bool ReaderIsActive = FALSE; + + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Set up the demodulator for tag -> reader responses. Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; // Set up the demodulator for the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); Uart.output = receivedCmd; - Uart.byteCntMax = 32; // was 100 (greg)////////////////// - Uart.state = STATE_UNSYNCD; - // Setup for the DMA. - FpgaSetupSsc(); + // Setup and start DMA. FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); - - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED - LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - - // Count of samples received so far, so that we can include timing - // information in the trace buffer. - rsamples = 0; + // And now we loop, receiving samples. - while(true) { + for(uint32_t rsamples = 0; TRUE; ) { + if(BUTTON_PRESS()) { DbpString("cancelled by button"); - goto done; + break; } LED_A_ON(); @@ -628,14 +562,14 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if (readBufDataP <= dmaBufDataP){ dataLen = dmaBufDataP - readBufDataP; } else { - dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; + dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; } // test for length of buffer if(dataLen > maxDataLen) { maxDataLen = dataLen; if(dataLen > 400) { - Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); - goto done; + Dbprintf("blew circular buffer! dataLen=%d", dataLen); + break; } } if(dataLen < 1) continue; @@ -644,6 +578,7 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { if (!AT91C_BASE_PDC_SSC->PDC_RCR) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; + Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary } // secondary buffer sets as primary, secondary buffer was stopped if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { @@ -652,39 +587,51 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { } LED_A_OFF(); + + if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder - rsamples += 4; - if(MillerDecoding((data[0] & 0xF0) >> 4)) { - LED_C_ON(); + if(!TagIsActive) { // no need to try decoding reader data if the tag is sending + uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); + if (MillerDecoding(readerdata, (rsamples-1)*4)) { + LED_C_ON(); - // check - if there is a short 7bit request from reader - if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE; + // check - if there is a short 7bit request from reader + if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; - if(triggered) { - if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break; + if(triggered) { + if (!LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, Uart.parityBits, TRUE)) break; + if (!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; + } + /* And ready to receive another command. */ + UartReset(); + /* And also reset the demod code, which might have been */ + /* false-triggered by the commands from the reader. */ + DemodReset(); + LED_B_OFF(); + } + ReaderIsActive = (Uart.state != STATE_UNSYNCD); } - /* And ready to receive another command. */ - Uart.state = STATE_UNSYNCD; - /* And also reset the demod code, which might have been */ - /* false-triggered by the commands from the reader. */ - Demod.state = DEMOD_UNSYNCD; - LED_B_OFF(); - } - if(ManchesterDecoding(data[0], 0)) { - LED_B_ON(); + if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time + uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); + if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { + LED_B_ON(); - if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break; + if (!LogTrace(receivedResponse, Demod.len, Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, Demod.parityBits, FALSE)) break; + if (!LogTrace(NULL, 0, Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, 0, FALSE)) break; - if ((!triggered) && (param & 0x01)) triggered = TRUE; + if ((!triggered) && (param & 0x01)) triggered = TRUE; - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = receivedResponse; - Demod.state = DEMOD_UNSYNCD; - LED_C_OFF(); + // And ready to receive another response. + DemodReset(); + LED_C_OFF(); + } + TagIsActive = (Demod.state != DEMOD_UNSYNCD); + } } + previous_data = *data; + rsamples++; data++; if(data > dmaBuf + DMA_BUFFER_SIZE) { data = dmaBuf; @@ -693,10 +640,9 @@ void RAMFUNC SnoopIso14443a(uint8_t param) { DbpString("COMMAND FINISHED"); -done: - AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; - Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt); - Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); + FpgaDisableSscDma(); + Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); + Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]); LEDsoff(); } @@ -721,6 +667,7 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity // Send startbit ToSend[++ToSendMax] = SEC_D; + LastProxToAirDuration = 8 * ToSendMax - 4; for(i = 0; i < len; i++) { int j; @@ -739,8 +686,10 @@ static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity // Get the parity bit if ((dwParity >> i) & 0x01) { ToSend[++ToSendMax] = SEC_D; + LastProxToAirDuration = 8 * ToSendMax - 4; } else { ToSend[++ToSendMax] = SEC_E; + LastProxToAirDuration = 8 * ToSendMax; } } @@ -755,48 +704,6 @@ static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); } -////----------------------------------------------------------------------------- -//// This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 -////----------------------------------------------------------------------------- -//static void CodeStrangeAnswerAsTag() -//{ -// int i; -// -// ToSendReset(); -// -// // Correction bit, might be removed when not needed -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(1); // 1 -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// ToSendStuffBit(0); -// -// // Send startbit -// ToSend[++ToSendMax] = SEC_D; -// -// // 0 -// ToSend[++ToSendMax] = SEC_E; -// -// // 0 -// ToSend[++ToSendMax] = SEC_E; -// -// // 1 -// ToSend[++ToSendMax] = SEC_D; -// -// // Send stopbit -// ToSend[++ToSendMax] = SEC_F; -// -// // Flush the buffer in FPGA!! -// for(i = 0; i < 5; i++) { -// ToSend[++ToSendMax] = SEC_F; -// } -// -// // Convert from last byte pos to length -// ToSendMax++; -//} static void Code4bitAnswerAsTag(uint8_t cmd) { @@ -821,8 +728,10 @@ static void Code4bitAnswerAsTag(uint8_t cmd) for(i = 0; i < 4; i++) { if(b & 1) { ToSend[++ToSendMax] = SEC_D; + LastProxToAirDuration = 8 * ToSendMax - 4; } else { ToSend[++ToSendMax] = SEC_E; + LastProxToAirDuration = 8 * ToSendMax; } b >>= 1; } @@ -830,11 +739,6 @@ static void Code4bitAnswerAsTag(uint8_t cmd) // Send stopbit ToSend[++ToSendMax] = SEC_F; - // Flush the buffer in FPGA!! - for(i = 0; i < 5; i++) { - ToSend[++ToSendMax] = SEC_F; - } - // Convert from last byte pos to length ToSendMax++; } @@ -853,40 +757,37 @@ static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. + UartReset(); Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; + + // clear RXRDY: + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; - - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(MillerDecoding((b & 0xf0) >> 4)) { - *len = Uart.byteCnt; - return TRUE; - } - if(MillerDecoding(b & 0x0f)) { - *len = Uart.byteCnt; + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(MillerDecoding(b, 0)) { + *len = Uart.len; return TRUE; } - } + } } } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded); -int EmSend4bitEx(uint8_t resp, int correctionNeeded); +static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded); +int EmSend4bitEx(uint8_t resp, bool correctionNeeded); int EmSend4bit(uint8_t resp); -int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par); -int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par); -int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded); +int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); +int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par); +int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded); int EmSendCmd(uint8_t *resp, int respLen); int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par); +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity); static uint8_t* free_buffer_pointer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); @@ -895,6 +796,7 @@ typedef struct { size_t response_n; uint8_t* modulation; size_t modulation_n; + uint32_t ProxToAirDuration; } tag_response_info_t; void reset_free_buffer() { @@ -902,7 +804,7 @@ void reset_free_buffer() { } bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { - // Exmaple response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes + // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes // This will need the following byte array for a modulation sequence // 144 data bits (18 * 8) // 18 parity bits @@ -926,8 +828,9 @@ bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffe // Copy the byte array, used for this modulation to the buffer position memcpy(response_info->modulation,ToSend,ToSendMax); - // Store the number of bytes that were used for encoding/modulation + // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them response_info->modulation_n = ToSendMax; + response_info->ProxToAirDuration = LastProxToAirDuration; return true; } @@ -956,10 +859,9 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) { // Enable and clear the trace - tracing = TRUE; iso14a_clear_trace(); + iso14a_set_tracing(TRUE); - // This function contains the tag emulation uint8_t sak; // The first response contains the ATQA (note: bytes are transmitted in reverse order). @@ -1034,41 +936,41 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) uint8_t response6[] = { 0x04, 0x58, 0x00, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); - #define TAG_RESPONSE_COUNT 7 - tag_response_info_t responses[TAG_RESPONSE_COUNT] = { - { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type - { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid - { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked - { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 - { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 - { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) - { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS - }; - - // Allocate 512 bytes for the dynamic modulation, created when the reader querries for it - // Such a response is less time critical, so we can prepare them on the fly - #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 - #define DYNAMIC_MODULATION_BUFFER_SIZE 512 - uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; - uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; - tag_response_info_t dynamic_response_info = { - .response = dynamic_response_buffer, - .response_n = 0, - .modulation = dynamic_modulation_buffer, - .modulation_n = 0 - }; + #define TAG_RESPONSE_COUNT 7 + tag_response_info_t responses[TAG_RESPONSE_COUNT] = { + { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type + { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid + { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked + { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 + { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 + { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) + { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS + }; + + // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it + // Such a response is less time critical, so we can prepare them on the fly + #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 + #define DYNAMIC_MODULATION_BUFFER_SIZE 512 + uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; + uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; + tag_response_info_t dynamic_response_info = { + .response = dynamic_response_buffer, + .response_n = 0, + .modulation = dynamic_modulation_buffer, + .modulation_n = 0 + }; - // Reset the offset pointer of the free buffer - reset_free_buffer(); + // Reset the offset pointer of the free buffer + reset_free_buffer(); - // Prepare the responses of the anticollision phase + // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA - for (size_t i=0; i 0) { - // Copy the CID from the reader query - dynamic_response_info.response[1] = receivedCmd[1]; + if (dynamic_response_info.response_n > 0) { + // Copy the CID from the reader query + dynamic_response_info.response[1] = receivedCmd[1]; - // Add CRC bytes, always used in ISO 14443A-4 compliant cards - AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); - dynamic_response_info.response_n += 2; + // Add CRC bytes, always used in ISO 14443A-4 compliant cards + AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); + dynamic_response_info.response_n += 2; - if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { - Dbprintf("Error preparing tag response"); - break; - } - p_response = &dynamic_response_info; - } + if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { + Dbprintf("Error preparing tag response"); + if (tracing) { + LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + } + break; + } + p_response = &dynamic_response_info; + } } // Count number of wakeups received after a halt @@ -1200,12 +1117,6 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) // Count number of other messages after a halt if(order != 6 && lastorder == 5) { happened2++; } - // Look at last parity bit to determine timing of answer - if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { - // 1236, so correction bit needed - //i = 0; - } - if(cmdsRecvd > 999) { DbpString("1000 commands later..."); break; @@ -1213,16 +1124,25 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) cmdsRecvd++; if (p_response != NULL) { - EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); - if (tracing) { - LogTrace(p_response->response,p_response->response_n,0,SwapBits(GetParity(p_response->response,p_response->response_n),p_response->response_n),FALSE); - if(traceLen > TRACE_SIZE) { - DbpString("Trace full"); -// break; - } - } - } - } + EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); + // do the tracing for the previous reader request and this tag answer: + EmLogTrace(Uart.output, + Uart.len, + Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.parityBits, + p_response->response, + p_response->response_n, + LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, + (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, + SwapBits(GetParity(p_response->response, p_response->response_n), p_response->response_n)); + } + + if (!tracing) { + Dbprintf("Trace Full. Simulation stopped."); + break; + } + } Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); LED_A_OFF(); @@ -1242,7 +1162,7 @@ void PrepareDelayedTransfer(uint16_t delay) for (uint16_t i = 0; i < delay; i++) { bitmask |= (0x01 << i); } - ToSend[++ToSendMax] = 0x00; + ToSend[ToSendMax++] = 0x00; for (uint16_t i = 0; i < ToSendMax; i++) { bits_to_shift = ToSend[i] & bitmask; ToSend[i] = ToSend[i] >> delay; @@ -1252,38 +1172,48 @@ void PrepareDelayedTransfer(uint16_t delay) } } -//----------------------------------------------------------------------------- + +//------------------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. // Parameter timing: -// if NULL: ignored -// if == 0: return time of transfer +// if NULL: transfer at next possible time, taking into account +// request guard time and frame delay time +// if == 0: transfer immediately and return time of transfer // if != 0: delay transfer until time specified -//----------------------------------------------------------------------------- +//------------------------------------------------------------------------------------- static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) { - int c; - + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); + uint32_t ThisTransferTime = 0; if (timing) { if(*timing == 0) { // Measure time - *timing = (GetCountMifare() + 8) & 0xfffffff8; + *timing = (GetCountSspClk() + 8) & 0xfffffff8; } else { PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) } - if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); - while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) - } - - for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission?) - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - c++; - } + if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); + while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) + LastTimeProxToAirStart = *timing; + } else { + ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); + while(GetCountSspClk() < ThisTransferTime); + LastTimeProxToAirStart = ThisTransferTime; } - c = 0; + // clear TXRDY + AT91C_BASE_SSC->SSC_THR = SEC_Y; + + // for(uint16_t c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission) + // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + // AT91C_BASE_SSC->SSC_THR = SEC_Y; + // c++; + // } + // } + + uint16_t c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; @@ -1293,88 +1223,91 @@ static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing) } } } - + + NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); + } + //----------------------------------------------------------------------------- // Prepare reader command (in bits, support short frames) to send to FPGA //----------------------------------------------------------------------------- void CodeIso14443aBitsAsReaderPar(const uint8_t * cmd, int bits, uint32_t dwParity) { - int i, j; - int last; - uint8_t b; - - ToSendReset(); - - // Start of Communication (Seq. Z) - ToSend[++ToSendMax] = SEC_Z; - last = 0; - - size_t bytecount = nbytes(bits); - // Generate send structure for the data bits - for (i = 0; i < bytecount; i++) { - // Get the current byte to send - b = cmd[i]; - size_t bitsleft = MIN((bits-(i*8)),8); - - for (j = 0; j < bitsleft; j++) { - if (b & 1) { - // Sequence X - ToSend[++ToSendMax] = SEC_X; - last = 1; - } else { - if (last == 0) { - // Sequence Z - ToSend[++ToSendMax] = SEC_Z; - } else { - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; - last = 0; - } - } - b >>= 1; - } + int i, j; + int last; + uint8_t b; - // Only transmit (last) parity bit if we transmitted a complete byte - if (j == 8) { - // Get the parity bit - if ((dwParity >> i) & 0x01) { - // Sequence X - ToSend[++ToSendMax] = SEC_X; - last = 1; - } else { - if (last == 0) { - // Sequence Z - ToSend[++ToSendMax] = SEC_Z; - } else { - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; - last = 0; - } - } - } - } + ToSendReset(); - // End of Communication - if (last == 0) { - // Sequence Z - ToSend[++ToSendMax] = SEC_Z; - } else { - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; - last = 0; - } - // Sequence Y - ToSend[++ToSendMax] = SEC_Y; + // Start of Communication (Seq. Z) + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + last = 0; + + size_t bytecount = nbytes(bits); + // Generate send structure for the data bits + for (i = 0; i < bytecount; i++) { + // Get the current byte to send + b = cmd[i]; + size_t bitsleft = MIN((bits-(i*8)),8); + + for (j = 0; j < bitsleft; j++) { + if (b & 1) { + // Sequence X + ToSend[++ToSendMax] = SEC_X; + LastProxToAirDuration = 8 * (ToSendMax+1) - 2; + last = 1; + } else { + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + } + b >>= 1; + } + + // Only transmit (last) parity bit if we transmitted a complete byte + if (j == 8) { + // Get the parity bit + if ((dwParity >> i) & 0x01) { + // Sequence X + ToSend[++ToSendMax] = SEC_X; + LastProxToAirDuration = 8 * (ToSendMax+1) - 2; + last = 1; + } else { + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + } + } + } - // Just to be sure! - ToSend[++ToSendMax] = SEC_Y; - ToSend[++ToSendMax] = SEC_Y; - ToSend[++ToSendMax] = SEC_Y; + // End of Communication: Logic 0 followed by Sequence Y + if (last == 0) { + // Sequence Z + ToSend[++ToSendMax] = SEC_Z; + LastProxToAirDuration = 8 * (ToSendMax+1) - 6; + } else { + // Sequence Y + ToSend[++ToSendMax] = SEC_Y; + last = 0; + } + ToSend[++ToSendMax] = SEC_Y; - // Convert from last character reference to length - ToSendMax++; + // Convert to length of command: + ToSendMax++; } //----------------------------------------------------------------------------- @@ -1390,7 +1323,7 @@ void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) // Stop when button is pressed (return 1) or field was gone (return 2) // Or return 0 when command is captured //----------------------------------------------------------------------------- -static int EmGetCmd(uint8_t *received, int *len, int maxLen) +static int EmGetCmd(uint8_t *received, int *len) { *len = 0; @@ -1415,9 +1348,11 @@ static int EmGetCmd(uint8_t *received, int *len, int maxLen) AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; // Now run a 'software UART' on the stream of incoming samples. + UartReset(); Uart.output = received; - Uart.byteCntMax = maxLen; - Uart.state = STATE_UNSYNCD; + + // Clear RXRDY: + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; for(;;) { WDT_HIT(); @@ -1441,98 +1376,157 @@ static int EmGetCmd(uint8_t *received, int *len, int maxLen) analogAVG = 0; } } - // transmit none - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - AT91C_BASE_SSC->SSC_THR = 0x00; - } + // receive and test the miller decoding - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(MillerDecoding((b & 0xf0) >> 4)) { - *len = Uart.byteCnt; - if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); - return 0; - } - if(MillerDecoding(b & 0x0f)) { - *len = Uart.byteCnt; - if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { + b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + if(MillerDecoding(b, 0)) { + *len = Uart.len; return 0; } - } + } + } } -static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded) -{ - int i, u = 0; - uint8_t b = 0; +static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, bool correctionNeeded) +{ + uint8_t b; + uint16_t i = 0; + uint32_t ThisTransferTime; + // Modulate Manchester FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); - AT91C_BASE_SSC->SSC_THR = 0x00; - FpgaSetupSsc(); - - // include correction bit - i = 1; - if((Uart.parityBits & 0x01) || correctionNeeded) { + + // include correction bit if necessary + if (Uart.parityBits & 0x01) { + correctionNeeded = TRUE; + } + if(correctionNeeded) { // 1236, so correction bit needed i = 0; + } else { + i = 1; } + + // clear receiving shift register and holding register + while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + b = AT91C_BASE_SSC->SSC_RHR; (void) b; + while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + b = AT91C_BASE_SSC->SSC_RHR; (void) b; + // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) + for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never + while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); + if (AT91C_BASE_SSC->SSC_RHR) break; + } + + while ((ThisTransferTime = GetCountSspClk()) & 0x00000007); + + // Clear TXRDY: + AT91C_BASE_SSC->SSC_THR = SEC_F; + // send cycle - for(;;) { - if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - (void)b; - } + for(; i <= respLen; ) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - if(i > respLen) { - b = 0xff; // was 0x00 - u++; - } else { - b = resp[i]; - i++; - } - AT91C_BASE_SSC->SSC_THR = b; - - if(u > 4) break; + AT91C_BASE_SSC->SSC_THR = resp[i++]; + FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; } + if(BUTTON_PRESS()) { break; } } + // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: + for (i = 0; i < 2 ; ) { + if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { + AT91C_BASE_SSC->SSC_THR = SEC_F; + FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + i++; + } + } + + LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); + return 0; } -int EmSend4bitEx(uint8_t resp, int correctionNeeded){ - Code4bitAnswerAsTag(resp); +int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ + Code4bitAnswerAsTag(resp); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); - if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE); + // do the tracing for the previous reader request and this tag answer: + EmLogTrace(Uart.output, + Uart.len, + Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.parityBits, + &resp, + 1, + LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, + (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, + SwapBits(GetParity(&resp, 1), 1)); return res; } int EmSend4bit(uint8_t resp){ - return EmSend4bitEx(resp, 0); + return EmSend4bitEx(resp, false); } -int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){ - CodeIso14443aAsTagPar(resp, respLen, par); +int EmSendCmdExPar(uint8_t *resp, int respLen, bool correctionNeeded, uint32_t par){ + CodeIso14443aAsTagPar(resp, respLen, par); int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); - if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE); + // do the tracing for the previous reader request and this tag answer: + EmLogTrace(Uart.output, + Uart.len, + Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, + Uart.parityBits, + resp, + respLen, + LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, + (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, + SwapBits(GetParity(resp, respLen), respLen)); return res; } -int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){ +int EmSendCmdEx(uint8_t *resp, int respLen, bool correctionNeeded){ return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); } int EmSendCmd(uint8_t *resp, int respLen){ - return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen)); + return EmSendCmdExPar(resp, respLen, false, GetParity(resp, respLen)); } int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ - return EmSendCmdExPar(resp, respLen, 0, par); + return EmSendCmdExPar(resp, respLen, false, par); +} + +bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint32_t reader_Parity, + uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint32_t tag_Parity) +{ + if (tracing) { + // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from + // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. + // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: + uint16_t reader_modlen = reader_EndTime - reader_StartTime; + uint16_t approx_fdt = tag_StartTime - reader_EndTime; + uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; + reader_EndTime = tag_StartTime - exact_fdt; + reader_StartTime = reader_EndTime - reader_modlen; + if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_Parity, TRUE)) { + return FALSE; + } else if (!LogTrace(NULL, 0, reader_EndTime, 0, TRUE)) { + return FALSE; + } else if (!LogTrace(tag_data, tag_len, tag_StartTime, tag_Parity, FALSE)) { + return FALSE; + } else { + return (!LogTrace(NULL, 0, tag_EndTime, 0, FALSE)); + } + } else { + return TRUE; + } } //----------------------------------------------------------------------------- @@ -1540,9 +1534,9 @@ int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- -static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen, int *samples) +static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, int maxLen) { - int c; + uint16_t c; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). @@ -1551,26 +1545,23 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // Now get the answer from the card + DemodReset(); Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; - - uint8_t b; + // clear RXRDY: + uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; + c = 0; for(;;) { WDT_HIT(); - // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { - // AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! - // if (elapsed) (*elapsed)++; - // } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { - if(c < iso14a_timeout) { c++; } else { return FALSE; } b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; - if(ManchesterDecoding(b, offset)) { - *samples = Demod.samples; + if(ManchesterDecoding(b, offset, 0)) { + NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); return TRUE; + } else if(c++ > iso14a_timeout) { + return FALSE; } } } @@ -1579,15 +1570,18 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint16_t offset, void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing) { - CodeIso14443aBitsAsReaderPar(frame,bits,par); + CodeIso14443aBitsAsReaderPar(frame,bits,par); - // Send command to tag - TransmitFor14443a(ToSend, ToSendMax, timing); - if(trigger) - LED_A_ON(); + // Send command to tag + TransmitFor14443a(ToSend, ToSendMax, timing); + if(trigger) + LED_A_ON(); - // Log reader command in trace buffer - if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE); + // Log reader command in trace buffer + if (tracing) { + LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); + LogTrace(NULL, 0, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, 0, TRUE); + } } void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing) @@ -1609,10 +1603,11 @@ void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing) int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset) { - int samples = 0; - if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160,&samples)) return FALSE; - if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); - if(samples == 0) return FALSE; + if (!GetIso14443aAnswerFromTag(receivedAnswer,offset,160)) return FALSE; + if (tracing) { + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); + LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); + } return Demod.len; } @@ -1623,11 +1618,12 @@ int ReaderReceive(uint8_t* receivedAnswer) int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr) { - int samples = 0; - if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160,&samples)) return FALSE; - if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); + if (!GetIso14443aAnswerFromTag(receivedAnswer,0,160)) return FALSE; + if (tracing) { + LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.parityBits, FALSE); + LogTrace(NULL, 0, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, 0, FALSE); + } *parptr = Demod.parityBits; - if(samples == 0) return FALSE; return Demod.len; } @@ -1649,6 +1645,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u // Broadcast for a card, WUPA (0x52) will force response from all cards in the field ReaderTransmitBitsPar(wupa,7,0, NULL); + // Receive the ATQA if(!ReaderReceive(resp)) return 0; // Dbprintf("atqa: %02x %02x",resp[0],resp[1]); @@ -1707,7 +1704,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u memcpy(uid_resp,resp,4); } uid_resp_len = 4; - // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]); + // Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]); // calculate crypto UID. Always use last 4 Bytes. if(cuid_ptr) { @@ -1768,25 +1765,28 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u return 1; } -void iso14443a_setup() { +void iso14443a_setup(uint8_t fpga_minor_mode) { // Set up the synchronous serial port FpgaSetupSsc(); - // Start from off (no field generated) - // Signal field is off with the appropriate LED -// LED_D_OFF(); -// FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); - // SpinDelay(50); - + // connect Demodulated Signal to ADC: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - // Now give it time to spin up. // Signal field is on with the appropriate LED - LED_D_ON(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - SpinDelay(7); // iso14443-3 specifies 5ms max. + if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD + || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { + LED_D_ON(); + } else { + LED_D_OFF(); + } + FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); - Demod.state = DEMOD_UNSYNCD; - iso14a_timeout = 2048; //default + // Start the timer + StartCountSspClk(); + + DemodReset(); + UartReset(); + NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; + iso14a_set_timeout(1050); // 10ms default } int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { @@ -1820,10 +1820,10 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { // Read an ISO 14443a tag. Send out commands and store answers. // //----------------------------------------------------------------------------- -void ReaderIso14443a(UsbCommand * c) +void ReaderIso14443a(UsbCommand *c) { iso14a_command_t param = c->arg[0]; - uint8_t * cmd = c->d.asBytes; + uint8_t *cmd = c->d.asBytes; size_t len = c->arg[1]; size_t lenbits = c->arg[2]; uint32_t arg0 = 0; @@ -1833,14 +1833,14 @@ void ReaderIso14443a(UsbCommand * c) iso14a_clear_trace(); } - iso14a_set_tracing(true); + iso14a_set_tracing(TRUE); if(param & ISO14A_REQUEST_TRIGGER) { - iso14a_set_trigger(1); + iso14a_set_trigger(TRUE); } if(param & ISO14A_CONNECT) { - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!(param & ISO14A_NO_SELECT)) { iso14a_card_select_t *card = (iso14a_card_select_t*)buf; arg0 = iso14443a_select_card(NULL,card,NULL); @@ -1852,10 +1852,6 @@ void ReaderIso14443a(UsbCommand * c) iso14a_timeout = c->arg[2]; } - if(param & ISO14A_SET_TIMEOUT) { - iso14a_timeout = c->arg[2]; - } - if(param & ISO14A_APDU) { arg0 = iso14_apdu(cmd, len, buf); cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); @@ -1876,7 +1872,7 @@ void ReaderIso14443a(UsbCommand * c) } if(param & ISO14A_REQUEST_TRIGGER) { - iso14a_set_trigger(0); + iso14a_set_trigger(FALSE); } if(param & ISO14A_NO_DISCONNECT) { @@ -1926,8 +1922,9 @@ void ReaderMifare(bool first_try) static uint8_t mf_nr_ar3; uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); + iso14a_clear_trace(); - tracing = false; + iso14a_set_tracing(TRUE); byte_t nt_diff = 0; byte_t par = 0; @@ -1952,11 +1949,9 @@ void ReaderMifare(bool first_try) if (first_try) { - StartCountMifare(); mf_nr_ar3 = 0; - iso14443a_setup(); - while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up" - sync_time = GetCountMifare() & 0xfffffff8; + iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); + sync_time = GetCountSspClk() & 0xfffffff8; sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). nt_attacked = 0; nt = 0; @@ -1974,7 +1969,7 @@ void ReaderMifare(bool first_try) LED_B_OFF(); LED_C_OFF(); - + for(uint16_t i = 0; TRUE; i++) { WDT_HIT(); @@ -1991,14 +1986,11 @@ void ReaderMifare(bool first_try) continue; } - //keep the card active - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); - sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; catch_up_cycles = 0; // if we missed the sync time already, advance to the next nonce repeat - while(GetCountMifare() > sync_time) { + while(GetCountSspClk() > sync_time) { sync_time = (sync_time & 0xfffffff8) + sync_cycles; } @@ -2092,9 +2084,6 @@ void ReaderMifare(bool first_try) } } - LogTrace((const uint8_t *)&nt, 4, 0, GetParity((const uint8_t *)&nt, 4), TRUE); - LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE); - LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE); mf_nr_ar[3] &= 0x1F; @@ -2110,7 +2099,8 @@ void ReaderMifare(bool first_try) // Thats it... FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - tracing = TRUE; + + iso14a_set_tracing(FALSE); } /** @@ -2157,7 +2147,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; - + //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 // This can be used in a reader-only attack. // (it can also be retrieved via 'hf 14a list', but hey... @@ -2165,31 +2155,27 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * uint8_t ar_nr_collected = 0; // clear trace - iso14a_clear_trace(); - - tracing = true; + iso14a_clear_trace(); + iso14a_set_tracing(TRUE); - // Authenticate response - nonce + // Authenticate response - nonce uint32_t nonce = bytes_to_num(rAUTH_NT, 4); - + //-- Determine the UID // Can be set from emulator memory, incoming data // and can be 7 or 4 bytes long - if(flags & FLAG_4B_UID_IN_DATA) + if (flags & FLAG_4B_UID_IN_DATA) { // 4B uid comes from data-portion of packet memcpy(rUIDBCC1,datain,4); rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - }else if(flags & FLAG_7B_UID_IN_DATA) - { + } else if (flags & FLAG_7B_UID_IN_DATA) { // 7B uid comes from data-portion of packet memcpy(&rUIDBCC1[1],datain,3); memcpy(rUIDBCC2, datain+3, 4); _7BUID = true; - } - else - { + } else { // get UID from emul memory emlGetMemBt(receivedCmd, 7, 1); _7BUID = !(receivedCmd[0] == 0x00); @@ -2200,40 +2186,31 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * emlGetMemBt(rUIDBCC2, 3, 4); } } + /* * Regardless of what method was used to set the UID, set fifth byte and modify * the ATQA for 4 or 7-byte UID */ - rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; - if(_7BUID) - { + if (_7BUID) { rATQA[0] = 0x44; rUIDBCC1[0] = 0x88; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; } - // start mkseconds counter - StartCountUS(); - // We need to listen to the high-frequency, peak-detected path. - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); - FpgaSetupSsc(); + iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - SpinDelay(200); if (MF_DBGLEVEL >= 1) { if (!_7BUID) { Dbprintf("4B UID: %02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3]); - }else - { + } else { Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x",rUIDBCC1[0] , rUIDBCC1[1] , rUIDBCC1[2] , rUIDBCC1[3],rUIDBCC2[0],rUIDBCC2[1] ,rUIDBCC2[2] , rUIDBCC2[3]); } } - // calibrate mkseconds counter - GetDeltaCountUS(); - bool finished = false; + + bool finished = FALSE; while (!BUTTON_PRESS() && !finished) { WDT_HIT(); @@ -2251,14 +2228,15 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * //Now, get data - res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout) + res = EmGetCmd(receivedCmd, &len); if (res == 2) { //Field is off! cardSTATE = MFEMUL_NOFIELD; LEDsoff(); continue; - }else if(res == 1) break;//return value 1 means button press - - + } else if (res == 1) { + break; //return value 1 means button press + } + // REQ or WUP request in ANY state and WUP in HALTED state if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { selTimer = GetTickCount(); @@ -2272,11 +2250,13 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardAUTHKEY = 0xff; continue; } - + switch (cardSTATE) { case MFEMUL_NOFIELD: case MFEMUL_HALTED: case MFEMUL_IDLE:{ + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); break; } case MFEMUL_SELECT1:{ @@ -2294,12 +2274,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // select card if (len == 9 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { - - if (!_7BUID) - EmSendCmd(rSAK, sizeof(rSAK)); - else - EmSendCmd(rSAK1, sizeof(rSAK1)); - + EmSendCmd(_7BUID?rSAK1:rSAK, sizeof(_7BUID?rSAK1:rSAK)); cuid = bytes_to_num(rUIDBCC1, 4); if (!_7BUID) { cardSTATE = MFEMUL_WORK; @@ -2308,16 +2283,16 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } else { cardSTATE = MFEMUL_SELECT2; - break; } } - break; } case MFEMUL_AUTH1:{ if( len != 8) { cardSTATE_TO_IDLE(); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); break; } uint32_t ar = bytes_to_num(receivedCmd, 4); @@ -2342,10 +2317,12 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // test if auth OK if (cardRr != prng_successor(nonce, 64)){ if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x",cardRr, prng_successor(nonce, 64)); - //Shouldn't we respond anything here? + // Shouldn't we respond anything here? // Right now, we don't nack or anything, which causes the // reader to do a WUPA after a while. /Martin cardSTATE_TO_IDLE(); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); break; } @@ -2360,8 +2337,11 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } case MFEMUL_SELECT2:{ - if (!len) break; - + if (!len) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + break; + } if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); break; @@ -2371,7 +2351,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (len == 9 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { EmSendCmd(rSAK, sizeof(rSAK)); - cuid = bytes_to_num(rUIDBCC2, 4); cardSTATE = MFEMUL_WORK; LED_B_ON(); @@ -2380,22 +2359,30 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } // i guess there is a command). go into the work state. - if (len != 4) break; + if (len != 4) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + break; + } cardSTATE = MFEMUL_WORK; //goto lbWORK; //intentional fall-through to the next case-stmt } - case MFEMUL_WORK:{ - if (len == 0) break; + case MFEMUL_WORK:{ + if (len == 0) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + break; + } + bool encrypted_data = (cardAUTHKEY != 0xFF) ; - if(encrypted_data) - { + if(encrypted_data) { // decrypt seqence mf_crypto1_decrypt(pcs, receivedCmd, len); } - + if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { authTimer = GetTickCount(); cardAUTHSC = receivedCmd[1] / 4; // received block num @@ -2408,10 +2395,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce - } - else{ // nested authentication + } else { // nested authentication if (MF_DBGLEVEL >= 2) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); - ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); + ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); num_to_bytes(ans, 4, rAUTH_AT); } EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); @@ -2419,7 +2405,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE = MFEMUL_AUTH1; break; } - + // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued // BUT... ACK --> NACK if (len == 1 && receivedCmd[0] == CARD_ACK) { @@ -2433,25 +2419,25 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * break; } - if(len != 4) break; + if(len != 4) { + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); + break; + } if(receivedCmd[0] == 0x30 // read block || receivedCmd[0] == 0xA0 // write block || receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2 // inc dec restore - || receivedCmd[0] == 0xB0) // transfer - { - if (receivedCmd[1] >= 16 * 4) - { - + || receivedCmd[0] == 0xB0) { // transfer + if (receivedCmd[1] >= 16 * 4) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); break; } - if (receivedCmd[1] / 4 != cardAUTHSC) - { + if (receivedCmd[1] / 4 != cardAUTHSC) { EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); break; @@ -2467,8 +2453,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * mf_crypto1_encrypt(pcs, response, 18, &par); EmSendCmdPar(response, 18, par); numReads++; - if(exitAfterNReads > 0 && numReads == exitAfterNReads) - { + if(exitAfterNReads > 0 && numReads == exitAfterNReads) { Dbprintf("%d reads done, exiting", numReads); finished = true; } @@ -2477,17 +2462,14 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * // write block if (receivedCmd[0] == 0xA0) { if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); - EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - //nextCycleTimeout = 50; cardSTATE = MFEMUL_WRITEBL2; cardWRBL = receivedCmd[1]; break; - } + } // increment, decrement, restore if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - if (emlCheckValBl(receivedCmd[1])) { if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); @@ -2501,28 +2483,25 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * if (receivedCmd[0] == 0xC2) cardSTATE = MFEMUL_INTREG_REST; cardWRBL = receivedCmd[1]; - break; } - // transfer if (receivedCmd[0] == 0xB0) { if (MF_DBGLEVEL >= 2) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); - if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); else EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); - break; } - // halt if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { LED_B_OFF(); LED_C_OFF(); cardSTATE = MFEMUL_HALTED; if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); break; } // RATS @@ -2530,12 +2509,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); break; } - // command not allowed if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); - - // case break break; } case MFEMUL_WRITEBL2:{ @@ -2544,10 +2520,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * emlSetMem(receivedCmd, cardWRBL, 1); EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); cardSTATE = MFEMUL_WORK; - break; } else { cardSTATE_TO_IDLE(); - break; + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); } break; } @@ -2559,7 +2535,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); cardSTATE_TO_IDLE(); break; - } + } + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); cardINTREG = cardINTREG + ans; cardSTATE = MFEMUL_WORK; break; @@ -2572,6 +2550,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); cardINTREG = cardINTREG - ans; cardSTATE = MFEMUL_WORK; break; @@ -2584,6 +2564,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * cardSTATE_TO_IDLE(); break; } + LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parityBits, TRUE); + LogTrace(NULL, 0, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, 0, TRUE); cardSTATE = MFEMUL_WORK; break; } @@ -2593,9 +2575,6 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); - // add trace trailer - memset(rAUTH_NT, 0x44, 4); - LogTrace(rAUTH_NT, 4, 0, 0, TRUE); if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK { //May just aswell send the collected ar_nr in the response aswell @@ -2603,8 +2582,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * } if(flags & FLAG_NR_AR_ATTACK) { - if(ar_nr_collected > 1) - { + if(ar_nr_collected > 1) { Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x", ar_nr_responses[0], // UID @@ -2614,11 +2592,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t * ar_nr_responses[6], //AR2 ar_nr_responses[7] //NR2 ); - }else - { + } else { Dbprintf("Failed to obtain two AR/NR pairs!"); - if(ar_nr_collected >0) - { + if(ar_nr_collected >0) { Dbprintf("Only got these: UID=%08d, nonce=%08d, AR1=%08d, NR1=%08d", ar_nr_responses[0], // UID ar_nr_responses[1], //NT @@ -2659,71 +2635,73 @@ void RAMFUNC SniffMifare(uint8_t param) { //uint8_t *trace = (uint8_t *)BigBuf; // The DMA buffer, used to stream samples from the FPGA - int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; - int8_t *data = dmaBuf; + uint8_t *dmaBuf = ((uint8_t *)BigBuf) + DMA_BUFFER_OFFSET; + uint8_t *data = dmaBuf; + uint8_t previous_data = 0; int maxDataLen = 0; int dataLen = 0; + bool ReaderIsActive = FALSE; + bool TagIsActive = FALSE; + + iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); // Set up the demodulator for tag -> reader responses. Demod.output = receivedResponse; - Demod.len = 0; - Demod.state = DEMOD_UNSYNCD; // Set up the demodulator for the reader -> tag commands - memset(&Uart, 0, sizeof(Uart)); Uart.output = receivedCmd; - Uart.byteCntMax = 32; // was 100 (greg)////////////////// - Uart.state = STATE_UNSYNCD; // Setup for the DMA. - FpgaSetupSsc(); - FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. - // And put the FPGA in the appropriate mode - // Signal field is off with the appropriate LED LED_D_OFF(); - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); - SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // init sniffer MfSniffInit(); - int sniffCounter = 0; // And now we loop, receiving samples. - while(true) { + for(uint32_t sniffCounter = 0; TRUE; ) { + if(BUTTON_PRESS()) { DbpString("cancelled by button"); - goto done; + break; } LED_A_ON(); WDT_HIT(); - if (++sniffCounter > 65) { - if (MfSniffSend(2000)) { - FpgaEnableSscDma(); + if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time + // check if a transaction is completed (timeout after 2000ms). + // if yes, stop the DMA transfer and send what we have so far to the client + if (MfSniffSend(2000)) { + // Reset everything - we missed some sniffed data anyway while the DMA was stopped + sniffCounter = 0; + data = dmaBuf; + maxDataLen = 0; + ReaderIsActive = FALSE; + TagIsActive = FALSE; + FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. } - sniffCounter = 0; } - - int register readBufDataP = data - dmaBuf; - int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; - if (readBufDataP <= dmaBufDataP){ - dataLen = dmaBufDataP - readBufDataP; - } else { - dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; + + int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far + int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred + if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred + dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed + } else { + dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed } // test for length of buffer - if(dataLen > maxDataLen) { - maxDataLen = dataLen; + if(dataLen > maxDataLen) { // we are more behind than ever... + maxDataLen = dataLen; if(dataLen > 400) { Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); - goto done; + break; } } if(dataLen < 1) continue; - // primary buffer was stopped( <-- we lost data! + // primary buffer was stopped ( <-- we lost data! if (!AT91C_BASE_PDC_SSC->PDC_RCR) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; @@ -2737,44 +2715,51 @@ void RAMFUNC SniffMifare(uint8_t param) { LED_A_OFF(); - if(MillerDecoding((data[0] & 0xF0) >> 4)) { - LED_C_INV(); - // check - if there is a short 7bit request from reader - if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break; - - /* And ready to receive another command. */ - Uart.state = STATE_UNSYNCD; - - /* And also reset the demod code */ - Demod.state = DEMOD_UNSYNCD; - } + if (sniffCounter & 0x01) { - if(ManchesterDecoding(data[0], 0)) { - LED_C_INV(); + if(!TagIsActive) { // no need to try decoding tag data if the reader is sending + uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); + if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { + LED_C_INV(); + if (MfSniffLogic(receivedCmd, Uart.len, Uart.parityBits, Uart.bitCount, TRUE)) break; - if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; + /* And ready to receive another command. */ + UartReset(); + + /* And also reset the demod code */ + DemodReset(); + } + ReaderIsActive = (Uart.state != STATE_UNSYNCD); + } + + if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending + uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); + if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { + LED_C_INV(); - // And ready to receive another response. - memset(&Demod, 0, sizeof(Demod)); - Demod.output = receivedResponse; - Demod.state = DEMOD_UNSYNCD; + if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; - /* And also reset the uart code */ - Uart.state = STATE_UNSYNCD; + // And ready to receive another response. + DemodReset(); + } + TagIsActive = (Demod.state != DEMOD_UNSYNCD); + } } + previous_data = *data; + sniffCounter++; data++; if(data > dmaBuf + DMA_BUFFER_SIZE) { data = dmaBuf; } + } // main cycle DbpString("COMMAND FINISHED"); -done: FpgaDisableSscDma(); MfSniffEnd(); - Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax); + Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); LEDsoff(); } diff --git a/armsrc/iso14443a.h b/armsrc/iso14443a.h index 2a2b3403..6d18515f 100644 --- a/armsrc/iso14443a.h +++ b/armsrc/iso14443a.h @@ -25,21 +25,31 @@ typedef struct { enum { DEMOD_UNSYNCD, - DEMOD_HALF_SYNCD, - DEMOD_MOD_FIRST_HALF, - DEMOD_NOMOD_FIRST_HALF, + // DEMOD_HALF_SYNCD, + // DEMOD_MOD_FIRST_HALF, + // DEMOD_NOMOD_FIRST_HALF, DEMOD_MANCHESTER_DATA } state; + uint16_t twoBits; + uint16_t highCnt; uint16_t bitCount; uint16_t collisionPos; uint16_t syncBit; - uint16_t parityBits; + uint32_t parityBits; uint16_t shiftReg; uint16_t samples; uint16_t len; + uint32_t startTime, endTime; uint8_t *output; } tDemod; +typedef enum { + MOD_NOMOD = 0, + MOD_SECOND_HALF, + MOD_FIRST_HALF, + MOD_BOTH_HALVES + } Modulation_t; + typedef struct { enum { STATE_UNSYNCD, @@ -47,27 +57,24 @@ typedef struct { STATE_MILLER_X, STATE_MILLER_Y, STATE_MILLER_Z, - STATE_ERROR_WAIT - } state; - uint16_t shiftReg; - int bitCnt; - int byteCnt; - int byteCntMax; - int posCnt; - int syncBit; - int parityBits; - int samples; - int highCnt; - int bitBuffer; - enum { - DROP_NONE, - DROP_FIRST_HALF, - DROP_SECOND_HALF - } drop; - uint8_t *output; + // DROP_NONE, + // DROP_FIRST_HALF, + } state; + uint16_t shiftReg; + uint16_t bitCount; + uint16_t len; + uint16_t byteCntMax; + uint16_t posCnt; + uint16_t syncBit; + uint32_t parityBits; + uint16_t highCnt; + uint16_t twoBits; + uint32_t startTime, endTime; + uint8_t *output; } tUart; + extern byte_t oddparity (const byte_t bt); extern uint32_t GetParity(const uint8_t *pbtCmd, int iLen); extern void AppendCrc14443a(uint8_t *data, int len); @@ -78,7 +85,7 @@ extern void ReaderTransmitPar(uint8_t *frame, int len, uint32_t par, uint32_t *t extern int ReaderReceive(uint8_t *receivedAnswer); extern int ReaderReceivePar(uint8_t *receivedAnswer, uint32_t *parptr); -extern void iso14443a_setup(); +extern void iso14443a_setup(uint8_t fpga_minor_mode); extern int iso14_apdu(uint8_t *cmd, size_t cmd_len, void *data); extern int iso14443a_select_card(uint8_t *uid_ptr, iso14a_card_select_t *resp_data, uint32_t *cuid_ptr); extern void iso14a_set_trigger(bool enable); diff --git a/armsrc/mifarecmd.c b/armsrc/mifarecmd.c index cbad7a90..c934a280 100644 --- a/armsrc/mifarecmd.c +++ b/armsrc/mifarecmd.c @@ -38,7 +38,7 @@ void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) iso14a_clear_trace(); // iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -107,7 +107,7 @@ void MifareUReadBlock(uint8_t arg0,uint8_t *datain) // clear trace iso14a_clear_trace(); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -173,7 +173,7 @@ void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) iso14a_clear_trace(); // iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -260,7 +260,7 @@ void MifareUReadCard(uint8_t arg0, uint8_t *datain) iso14a_clear_trace(); // iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -293,7 +293,7 @@ void MifareUReadCard(uint8_t arg0, uint8_t *datain) LogTrace(uid, 4, 0, 0, TRUE); LED_B_ON(); - cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,64); + cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,64); //cmd_send(CMD_ACK,isOK,0,0,dataoutbuf+32, 32); LED_B_OFF(); @@ -332,7 +332,7 @@ void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) iso14a_clear_trace(); // iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -405,7 +405,7 @@ void MifareUWriteBlock(uint8_t arg0, uint8_t *datain) iso14a_clear_trace(); // iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -467,7 +467,7 @@ void MifareUWriteBlock_Special(uint8_t arg0, uint8_t *datain) iso14a_clear_trace(); // iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -554,20 +554,16 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *dat uint32_t auth1_time, auth2_time; static uint16_t delta_time; - StartCountMifare(); - // clear trace iso14a_clear_trace(); iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_C_OFF(); - while((GetCountMifare() & 0xffff0000) != 0x00010000); // wait for counter to reset and "warm up" - // statistics on nonce distance if (calibrate) { // for first call only. Otherwise reuse previous calibration LED_B_ON(); @@ -767,7 +763,7 @@ void MifareChkKeys(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) iso14a_clear_trace(); iso14a_set_tracing(TRUE); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -874,7 +870,7 @@ void MifareECardLoad(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai iso14a_clear_trace(); iso14a_set_tracing(false); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -992,7 +988,7 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai iso14a_clear_trace(); iso14a_set_tracing(TRUE); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -1130,7 +1126,7 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai iso14a_clear_trace(); iso14a_set_tracing(TRUE); - iso14443a_setup(); + iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_A_ON(); LED_B_OFF(); @@ -1144,7 +1140,7 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai while (true) { if (workFlags & 0x02) { - ReaderTransmitBitsPar(wupC1,7,0, NULL); + ReaderTransmitBitsPar(wupC1,7,0, NULL); if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error"); break; diff --git a/armsrc/mifaresniff.c b/armsrc/mifaresniff.c index f95ca3df..bd9840e8 100644 --- a/armsrc/mifaresniff.c +++ b/armsrc/mifaresniff.c @@ -17,104 +17,95 @@ static uint8_t sniffUID[8]; static uint8_t sniffATQA[2]; static uint8_t sniffSAK; static uint8_t sniffBuf[16]; -static int timerData = 0; +static uint32_t timerData = 0; -int MfSniffInit(void){ - rsamples = 0; +bool MfSniffInit(void){ memset(sniffUID, 0x00, 8); memset(sniffATQA, 0x00, 2); sniffSAK = 0; sniffUIDType = SNF_UID_4; - return 0; + return FALSE; } -int MfSniffEnd(void){ -// UsbCommand ack = {CMD_ACK, {0, 0, 0}}; - +bool MfSniffEnd(void){ LED_B_ON(); - cmd_send(CMD_ACK,0,0,0,0,0); -// UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand)); + cmd_send(CMD_ACK,0,0,0,0,0); LED_B_OFF(); - return 0; + return FALSE; } -int RAMFUNC MfSniffLogic(const uint8_t * data, int len, uint32_t parity, int bitCnt, int reader) { +bool RAMFUNC MfSniffLogic(const uint8_t *data, uint16_t len, uint32_t parity, uint16_t bitCnt, bool reader) { - if ((len == 1) && (bitCnt = 9) && (data[0] > 0x0F)) { + if (reader && (len == 1) && (bitCnt == 7)) { // reset on 7-Bit commands from reader sniffState = SNF_INIT; } switch (sniffState) { case SNF_INIT:{ - if ((reader) && (len == 1) && (bitCnt == 9) && ((data[0] == 0x26) || (data[0] == 0x52))) { + if ((len == 1) && (reader) && (bitCnt == 7) ) { // REQA or WUPA from reader sniffUIDType = SNF_UID_4; memset(sniffUID, 0x00, 8); memset(sniffATQA, 0x00, 2); sniffSAK = 0; - sniffState = SNF_WUPREQ; } break; } case SNF_WUPREQ:{ - if ((!reader) && (len == 2)) { + if ((!reader) && (len == 2)) { // ATQA from tag memcpy(sniffATQA, data, 2); - sniffState = SNF_ATQA; } break; } case SNF_ATQA:{ - if ((reader) && (len == 2) && (data[0] == 0x93) && (data[1] == 0x20)) { + if ((reader) && (len == 2) && (data[0] == 0x93) && (data[1] == 0x20)) { // Select ALL from reader sniffState = SNF_ANTICOL1; } break; } case SNF_ANTICOL1:{ - if ((!reader) && (len == 5) && ((data[0] ^ data[1] ^ data[2] ^ data[3]) == data[4])) { + if ((!reader) && (len == 5) && ((data[0] ^ data[1] ^ data[2] ^ data[3]) == data[4])) { // UID from tag (CL1) memcpy(sniffUID + 3, data, 4); - sniffState = SNF_UID1; } break; } case SNF_UID1:{ - if ((reader) && (len == 9) && (data[0] == 0x93) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) { + if ((reader) && (len == 9) && (data[0] == 0x93) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) { // Select 4 Byte UID from reader sniffState = SNF_SAK; } break; } case SNF_SAK:{ - if ((!reader) && (len == 3) && (CheckCrc14443(CRC_14443_A, data, 3))) { + if ((!reader) && (len == 3) && (CheckCrc14443(CRC_14443_A, data, 3))) { // SAK from card? sniffSAK = data[0]; - if (sniffUID[3] == 0x88) { + if (sniffUID[3] == 0x88) { // CL2 UID part to be expected sniffState = SNF_ANTICOL2; - } else { + } else { // select completed sniffState = SNF_CARD_IDLE; } } break; } case SNF_ANTICOL2:{ - if ((!reader) && (len == 5) && ((data[0] ^ data[1] ^ data[2] ^ data[3]) == data[4])) { + if ((!reader) && (len == 5) && ((data[0] ^ data[1] ^ data[2] ^ data[3]) == data[4])) { // CL2 UID memcpy(sniffUID, data, 4); sniffUIDType = SNF_UID_7; - sniffState = SNF_UID2; - } + } break; } case SNF_UID2:{ - if ((reader) && (len == 9) && (data[0] == 0x95) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) { + if ((reader) && (len == 9) && (data[0] == 0x95) && (data[1] == 0x70) && (CheckCrc14443(CRC_14443_A, data, 9))) { // Select 2nd part of 7 Byte UID sniffState = SNF_SAK; - Dbprintf("SNF_SAK"); } break; } - case SNF_CARD_IDLE:{ + case SNF_CARD_IDLE:{ // trace the card select sequence sniffBuf[0] = 0xFF; sniffBuf[1] = 0xFF; memcpy(sniffBuf + 2, sniffUID, 7); @@ -123,18 +114,15 @@ int RAMFUNC MfSniffLogic(const uint8_t * data, int len, uint32_t parity, int bit sniffBuf[12] = 0xFF; sniffBuf[13] = 0xFF; LogTrace(sniffBuf, 14, 0, parity, true); - timerData = GetTickCount(); - } - case SNF_CARD_CMD:{ + } // intentionally no break; + case SNF_CARD_CMD:{ LogTrace(data, len, 0, parity, true); - sniffState = SNF_CARD_RESP; timerData = GetTickCount(); break; } case SNF_CARD_RESP:{ LogTrace(data, len, 0, parity, false); - sniffState = SNF_CARD_CMD; timerData = GetTickCount(); break; @@ -145,51 +133,40 @@ int RAMFUNC MfSniffLogic(const uint8_t * data, int len, uint32_t parity, int bit break; } - return 0; + + return FALSE; } -int RAMFUNC MfSniffSend(int maxTimeoutMs) { - if (traceLen && (timerData + maxTimeoutMs < GetTickCount())) { +bool RAMFUNC MfSniffSend(uint16_t maxTimeoutMs) { + if (traceLen && (GetTickCount() > timerData + maxTimeoutMs)) { return intMfSniffSend(); } - return 0; + return FALSE; } -// internal seding function. not a RAMFUNC. -int intMfSniffSend() { - +// internal sending function. not a RAMFUNC. +bool intMfSniffSend() { + int pckSize = 0; int pckLen = traceLen; int pckNum = 0; - - if (!traceLen) return 0; FpgaDisableSscDma(); - while (pckLen > 0) { - pckSize = MIN(32, pckLen); -// UsbCommand ack = {CMD_ACK, {1, pckSize, pckNum}}; -// memcpy(ack.d.asBytes, trace + traceLen - pckLen, pckSize); - + pckSize = MIN(USB_CMD_DATA_SIZE, pckLen); LED_B_ON(); - cmd_send(CMD_ACK,1,pckSize,pckNum,trace + traceLen - pckLen,pckSize); -// UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand)); -// SpinDelay(20); + cmd_send(CMD_ACK, 1, pckSize, pckNum, trace + traceLen - pckLen, pckSize); LED_B_OFF(); pckLen -= pckSize; pckNum++; } -// UsbCommand ack = {CMD_ACK, {2, 0, 0}}; - LED_B_ON(); - cmd_send(CMD_ACK,2,0,0,0,0); -// UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand)); + cmd_send(CMD_ACK,2,0,0,0,0); LED_B_OFF(); - traceLen = 0; - memset(trace, 0x44, TRACE_SIZE); + iso14a_clear_trace(); - return 1; + return TRUE; } diff --git a/armsrc/mifaresniff.h b/armsrc/mifaresniff.h index db5af9a8..1065fa61 100644 --- a/armsrc/mifaresniff.h +++ b/armsrc/mifaresniff.h @@ -38,10 +38,10 @@ #define SNF_UID_4 0 #define SNF_UID_7 0 -int MfSniffInit(void); -int RAMFUNC MfSniffLogic(const uint8_t * data, int len, uint32_t parity, int bitCnt, int reader); -int RAMFUNC MfSniffSend(int maxTimeoutMs); -int intMfSniffSend(); -int MfSniffEnd(void); +bool MfSniffInit(void); +bool RAMFUNC MfSniffLogic(const uint8_t * data, uint16_t len, uint32_t parity, uint16_t bitCnt, bool reader); +bool RAMFUNC MfSniffSend(uint16_t maxTimeoutMs); +bool intMfSniffSend(); +bool MfSniffEnd(void); #endif \ No newline at end of file diff --git a/armsrc/util.c b/armsrc/util.c index dc18e5e3..6d34ae5e 100644 --- a/armsrc/util.c +++ b/armsrc/util.c @@ -316,9 +316,9 @@ uint32_t RAMFUNC GetDeltaCountUS(){ // ------------------------------------------------------------------------- -// Mifare timer. Uses ssp_clk from FPGA +// Timer for iso14443 commands. Uses ssp_clk from FPGA // ------------------------------------------------------------------------- -void StartCountMifare() +void StartCountSspClk() { AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1 @@ -330,7 +330,7 @@ void StartCountMifare() AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz | AT91C_TC_CPCSTOP // Stop clock on RC compare | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event - | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssc_clk from FPGA = 13,56MHz / 16) + | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16) | AT91C_TC_ENETRG // Enable external trigger event | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare | AT91C_TC_WAVE // Waveform Mode @@ -339,7 +339,7 @@ void StartCountMifare() AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04 // use TC0 to count TIOA1 pulses - AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0 + AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1 | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_WAVESEL_UP // just count @@ -354,29 +354,40 @@ void StartCountMifare() | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_WAVESEL_UP; // just count - AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2 - // activate the ISO14443 part of the FPGA. We need the clock and frame signals. - FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); - - // synchronize the counter with the ssp_frame signal. + // + // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present + // + while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame) while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low - while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // sync on rising edge of ssp_frame (= start of transfer) - + // after the falling edge of ssp_frame, there is delay of 1/13,56MHz (73ns) until the next rising edge of ssp_clk. This are only a few + // processor cycles. We therefore may or may not be able to sync on this edge. Therefore better make sure that we miss it: + while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high + // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame + // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge) + // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0) + // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on, + // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer. + // (just started with the transfer of the 4th Bit). + // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before + // we can use the counter. + while (AT91C_BASE_TC0->TC_CV < 0xFFF0); } -uint32_t RAMFUNC GetCountMifare(){ +uint32_t RAMFUNC GetCountSspClk(){ uint32_t tmp_count; tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV; - if ((tmp_count & 0xffff) == 0) { //small chance that we may have missed an increment in TC2 + if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2 return (AT91C_BASE_TC2->TC_CV << 16); } else { return tmp_count; } } + + diff --git a/armsrc/util.h b/armsrc/util.h index 9c4b4c58..e8b9cdff 100644 --- a/armsrc/util.h +++ b/armsrc/util.h @@ -47,7 +47,7 @@ void StartCountUS(); uint32_t RAMFUNC GetCountUS(); uint32_t RAMFUNC GetDeltaCountUS(); -void StartCountMifare(); -uint32_t RAMFUNC GetCountMifare(); +void StartCountSspClk(); +uint32_t RAMFUNC GetCountSspClk(); #endif diff --git a/client/cmdhf14a.c b/client/cmdhf14a.c index 2c5fd1c0..d16d71ff 100644 --- a/client/cmdhf14a.c +++ b/client/cmdhf14a.c @@ -16,7 +16,6 @@ #include "util.h" #include "iso14443crc.h" #include "data.h" -//#include "proxusb.h" #include "proxmark3.h" #include "ui.h" #include "cmdparser.h" @@ -30,129 +29,150 @@ static void waitCmd(uint8_t iLen); int CmdHF14AList(const char *Cmd) { - uint8_t got[1920]; - GetFromBigBuf(got,sizeof(got),0); - WaitForResponse(CMD_ACK,NULL); - - PrintAndLog("recorded activity:"); - PrintAndLog(" ETU :rssi: who bytes"); - PrintAndLog("---------+----+----+-----------"); - - int i = 0; - int prev = -1; + bool ShowWaitCycles = false; + char param = param_getchar(Cmd, 0); + + if (param == 'h' || (param != 0 && param != 'f')) { + PrintAndLog("List data in trace buffer."); + PrintAndLog("Usage: hf 14a list [f]"); + PrintAndLog("f - show frame delay times as well"); + PrintAndLog("sample: hf 14a list f"); + return 0; + } - for (;;) { - if(i >= 1900) { - break; - } + if (param == 'f') { + ShowWaitCycles = true; + } + + uint8_t got[1920]; + GetFromBigBuf(got,sizeof(got),0); + WaitForResponse(CMD_ACK,NULL); + + PrintAndLog("Recorded Activity"); + PrintAndLog(""); + PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer"); + PrintAndLog("All times are in carrier periods (1/13.56Mhz)"); + PrintAndLog(""); + PrintAndLog(" Start | End | Src | Data"); + PrintAndLog("-----------|-----------|-----|--------"); + + int i = 0; + uint32_t first_timestamp = 0; + uint32_t timestamp; + uint32_t EndOfTransmissionTimestamp = 0; + + for (;;) { + if(i >= 1900) { + break; + } - bool isResponse; - int timestamp = *((uint32_t *)(got+i)); - if (timestamp & 0x80000000) { - timestamp &= 0x7fffffff; - isResponse = 1; - } else { - isResponse = 0; - } + bool isResponse; + timestamp = *((uint32_t *)(got+i)); + if (timestamp & 0x80000000) { + timestamp &= 0x7fffffff; + isResponse = true; + } else { + isResponse = false; + } - int metric = 0; - int parityBits = *((uint32_t *)(got+i+4)); - // 4 bytes of additional information... - // maximum of 32 additional parity bit information - // - // TODO: - // at each quarter bit period we can send power level (16 levels) - // or each half bit period in 256 levels. + if(i==0) { + first_timestamp = timestamp; + } + + int parityBits = *((uint32_t *)(got+i+4)); + int len = got[i+8]; - int len = got[i+8]; + if (len > 100) { + break; + } + if (i + len >= 1900) { + break; + } - if (len > 100) { - break; - } - if (i + len >= 1900) { - break; - } + uint8_t *frame = (got+i+9); - uint8_t *frame = (got+i+9); + // Break and stick with current result if buffer was not completely full + if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break; - // Break and stick with current result if buffer was not completely full - if (frame[0] == 0x44 && frame[1] == 0x44 && frame[3] == 0x44) { break; } + char line[1000] = ""; + int j; + if (len) { + for (j = 0; j < len; j++) { + int oddparity = 0x01; + int k; - char line[1000] = ""; - int j; - for (j = 0; j < len; j++) { - int oddparity = 0x01; - int k; + for (k=0;k<8;k++) { + oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01); + } - for (k=0;k<8;k++) { - oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01); - } + //if((parityBits >> (len - j - 1)) & 0x01) { + if (isResponse && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) { + sprintf(line+(j*4), "%02x! ", frame[j]); + } else { + sprintf(line+(j*4), "%02x ", frame[j]); + } + } + } else { + if (ShowWaitCycles) { + uint32_t next_timestamp = (*((uint32_t *)(got+i+9))) & 0x7fffffff; + sprintf(line, "fdt (Frame Delay Time): %d", (next_timestamp - timestamp)); + } + } - //if((parityBits >> (len - j - 1)) & 0x01) { - if (isResponse && (oddparity != ((parityBits >> (len - j - 1)) & 0x01))) { - sprintf(line+(j*4), "%02x! ", frame[j]); - } - else { - sprintf(line+(j*4), "%02x ", frame[j]); - } - } + char *crc; + crc = ""; + if (len > 2) { + uint8_t b1, b2; + for (j = 0; j < (len - 1); j++) { + // gives problems... search for the reason.. + /*if(frame[j] == 0xAA) { + switch(frame[j+1]) { + case 0x01: + crc = "[1] Two drops close after each other"; + break; + case 0x02: + crc = "[2] Potential SOC with a drop in second half of bitperiod"; + break; + case 0x03: + crc = "[3] Segment Z after segment X is not possible"; + break; + case 0x04: + crc = "[4] Parity bit of a fully received byte was wrong"; + break; + default: + crc = "[?] Unknown error"; + break; + } + break; + }*/ + } - char *crc; - crc = ""; - if (len > 2) { - uint8_t b1, b2; - for (j = 0; j < (len - 1); j++) { - // gives problems... search for the reason.. - /*if(frame[j] == 0xAA) { - switch(frame[j+1]) { - case 0x01: - crc = "[1] Two drops close after each other"; - break; - case 0x02: - crc = "[2] Potential SOC with a drop in second half of bitperiod"; - break; - case 0x03: - crc = "[3] Segment Z after segment X is not possible"; - break; - case 0x04: - crc = "[4] Parity bit of a fully received byte was wrong"; - break; - default: - crc = "[?] Unknown error"; - break; - } - break; - }*/ - } - - if (strlen(crc)==0) { - ComputeCrc14443(CRC_14443_A, frame, len-2, &b1, &b2); - if (b1 != frame[len-2] || b2 != frame[len-1]) { - crc = (isResponse & (len < 6)) ? "" : " !crc"; - } else { - crc = ""; + if (strlen(crc)==0) { + ComputeCrc14443(CRC_14443_A, frame, len-2, &b1, &b2); + if (b1 != frame[len-2] || b2 != frame[len-1]) { + crc = (isResponse & (len < 6)) ? "" : " !crc"; + } else { + crc = ""; + } + } + } else { + crc = ""; // SHORT } - } - } else { - crc = ""; // SHORT - } - char metricString[100]; - if (isResponse) { - sprintf(metricString, "%3d", metric); - } else { - strcpy(metricString, " "); - } + i += (len + 9); - PrintAndLog(" +%7d: %s: %s %s %s", - (prev < 0 ? 0 : (timestamp - prev)), - metricString, - (isResponse ? "TAG " : " "), line, crc); + EndOfTransmissionTimestamp = (*((uint32_t *)(got+i))) & 0x7fffffff; + + if (!ShowWaitCycles) i += 9; + + PrintAndLog(" %9d | %9d | %s | %s %s", + (timestamp - first_timestamp), + (EndOfTransmissionTimestamp - first_timestamp), + (len?(isResponse ? "Tag" : "Rdr"):" "), + line, crc); - prev = timestamp; - i += (len + 9); - } + } return 0; } @@ -167,7 +187,7 @@ int CmdHF14AReader(const char *Cmd) SendCommand(&c); UsbCommand resp; - WaitForResponse(CMD_ACK,&resp); + WaitForResponse(CMD_ACK,&resp); iso14a_card_select_t *card = (iso14a_card_select_t *)resp.d.asBytes; diff --git a/client/cmdhf14b.c b/client/cmdhf14b.c index 6696ac09..c42d54c5 100644 --- a/client/cmdhf14b.c +++ b/client/cmdhf14b.c @@ -182,6 +182,9 @@ int CmdHF14BList(const char *Cmd) uint8_t *frame = (got+i+9); + // Break and stick with current result if buffer was not completely full + if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break; + char line[1000] = ""; int j; for(j = 0; j < len; j++) { diff --git a/client/cmdhfmf.c b/client/cmdhfmf.c index 637ef4a1..8d78b0e6 100644 --- a/client/cmdhfmf.c +++ b/client/cmdhfmf.c @@ -1144,7 +1144,7 @@ int CmdHF14AMfChk(const char *Cmd) int CmdHF14AMf1kSim(const char *Cmd) { - uint8_t uid[7] = {0, 0, 0, 0,0,0,0}; + uint8_t uid[7] = {0, 0, 0, 0, 0, 0, 0}; uint8_t exitAfterNReads = 0; uint8_t flags = 0; @@ -1196,7 +1196,7 @@ int CmdHF14AMf1kSim(const char *Cmd) memcpy(c.d.asBytes, uid, sizeof(uid)); SendCommand(&c); - if(flags & 1) + if(flags & FLAG_INTERACTIVE) { UsbCommand resp; PrintAndLog("Press pm3-button to abort simulation"); @@ -1879,7 +1879,7 @@ int CmdHF14AMfSniff(const char *Cmd){ PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum); num = 0; while (bufPtr - buf + 9 < blockLen) { - isTag = bufPtr[3] & 0x80 ? true:false; + isTag = bufPtr[3] & 0x80 ? true:false; bufPtr += 4; parity = *((uint32_t *)(bufPtr)); bufPtr += 4; @@ -1923,7 +1923,7 @@ static command_t CommandTable[] = {"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"}, {"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"}, {"chk", CmdHF14AMfChk, 0, "Test block keys"}, - {"mifare", CmdHF14AMifare, 0, "Read parity error messages. param - "}, + {"mifare", CmdHF14AMifare, 0, "Read parity error messages."}, {"nested", CmdHF14AMfNested, 0, "Test nested authentication"}, {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"}, diff --git a/fpga/fpga.bit b/fpga/fpga.bit index e7d6270779a2e87db920d2fd16bbd18ddaca0b66..97cdd23362dfe38359dd9066c57ad5b893fb225a 100644 GIT binary patch literal 42172 zcmb5Xe|S{ac`o|R+9P>0d!*S2;VZ{B-Wmxq;E@<4f-#2CLMXY4p+WJJV}JF~l30wsOh#R7$#H$RJ|em)=1cJZ*JD1*N2;MFMh^dPn*RG)F~aBh|Lu#Bq!z0FGL@P9@&D$J zU%7uV=l{EpDgHNK;eIT=@A(h=kk_Z|Kl&d3|BpWMKlmcQ`**)LeF@q?H&c;v8^z>v z=r8DI<+o{bL#NxvDf)nJP`wpAt6ismRd*%+=#mzr5vr%)s5XgZ#2;mzqoY(N^}XVK z^Q;Od^gdx*DHXQ#3X%1@eNvxwsGlr~m|}#sQ>~m;CP*plmTo4`dEevAwedYql5UF$ z+G{S7x+&~%io!xqCnx<0{wZSJmg0mmR*BO@ZV`5gb zPU3DHG5oQ7H`8HNm6)|b{Av3kRbv~i;y+VoXJtbFywJVxY1Vxhk3AYR=LD;NMJt<( zq~=$So{>?XhNa>^^7ah&VwDWtuU%Ewsi86CXcy@!H8h1zYNH~-eR_-D!uP}mg8PkH zI%(DJ4fSbJI!$%XI$K*r?)o&(PB%YGm4o^h#clLLOHHS-+E_>1$Z~WmQ0A?(L%Vs* zS-n-vqrbOn#*NKlp1(tVg+GBY@ozPkyL+0|KP`gg9Zu9Slz2dNOjeKS5mDyt`}o{m zx=eMw`hG1Ec#YzzkZmkVo{~#d^ruFh_gl^MCQZ?CTC6lQ+Ts*SX<2=eo;ESTmtn&A zqni`f1DvB=BCA&`ItX>o+`L8m@0`;O@-x@rv6?^-&oU$}9T4!N-vy`G*LZeco zWH+UfqS%|eUWB1Wtb5%tw^LNEO*a-%yJ@xTy;%rf8;`kS?vF6#CwYCw*ap93>=xBx zJ65bBjqgctAG^E2;2#wTNe55$d4}v|@GW`x;L$o(QFlA$+n@ zhLkbr*;mB0)fDxaQKe<+EXDQp%CP+I`j93(`-=GQrl$$E^S-!5JDl1+*iM8VkyT1} zgz)wvQuH|qzv1XBlS9^{nWz(pl?Daut7XpABx--k?`gt2UNSbdP&t=(Q%Eu{py|lIQ@%-VYICI z6P&V|v~fWkqpegaOYRqoymcmeoVNLE2943=ZFG>w+!pu~N}`Xx38S%iFB0X$)?*YM z?J~tWve~|tiwTh=Th8hgv%G!p#h#v_hSAXDnxC#%82lCE+jPnYyXeuTe@oGX?#^qE zHfCPY-3jie57>zIVRzhf=riFesbTPrUv+%c@&+{!T;)o7i4HhH%&W=m)9(K|JxgDA zjPHx{)J3(*$jo_wUQ^+B;IS=f@|ac8pTUR2tdw}m_XG1mWyC~O>=*(l>=Tx^7rNgM zEQp?P&uWsQ=u^B7{>G9K3ul$T1_ob^z2NV`8N>NeyC$`$ehMBSn9xXT;V$;=7kSJM z+YbE+HK_HIaQN40m9svpjTg6ZAE)T5c7riyb<&EOPRl? z9Td(QePXdZ+F6@5J}7%u?n-xO^$B5l>zpbYkvptvb!$unO$^>KmTnDF2ZbHIQiMJG za^~(AJGO*R7@6Xzy9jGDVm}rNeeA}Vx9@WH1Pyj9>%$oX?%=Qici2D2vQgVGXYgx3 zW&y80X-s$%oYY3R(Gtq$@oPVwlFJmnXM*0t_rP!Lr_&}Hb`HOaZnJjKgN;T;JI4Fv ztew>2YMa8UX0;rCeZi-Sqn42oBfbuvS0*q*9X1+vc=-%|&7-ZIH8vpNhyHDyHCe_2 z+NRKmTv2KZIG#fTP|wy%NUMhvx%$9xWrTEb9)Uy&6Q+NM3|+1K9N z--3&SSKm7agZIVdu17n@_p*h60|Zt8(MvI3a`a7&G|g>!C}P$9XR{(L0QB={aNi1&W^lke$lm z7fs2(bN5tt_Y|Y1;WXAq8G&j1Dq3Vc?WHn)M<{F?Hn2&u|A`c>!+u5m zaDyX0*KfpxUnEt;!6(!BW&40%W(^tN5U=~(^V|l9zfDw*8cSyIt5=^#AKNun=v%k|;uI>4_9Ml=~Zs7>P+64v52r`pj_ z4P&7x?Km2DWrN?&K=?&FEV?TXJ%bZ}FcBf}wz%R@K zE1#L}vp$311oO(`lRSP&cu0|VDU-%Zaf<4*`eaoOzaGS1;P_?0FBqgcG9s#XDLWg; z9uXE-s_g_rbC;Vr%iqyZUhLK%UTH6eMy{{ilhc`s_ zh=?BsastEXm0hBC#F#3;FY2T4=k%pm`2(~F%mS|4b@)rfMqh%@D)0-(xZ6op1R~~v z_C-9MUIvaVRwGtqaUaI7E3@kFi~d4ePM3xUoSn<(EElIK-fG0OmKppyM%NgU(m<;l zbl0eHQ9H|iz7g}v@vr@K*@BnI7`<4QZ@|x2jiUiSKaj_-DEy)Iik{Xs3x-hu*%8@A z%cL=>eZ$*}EbOaKS_)nwMQ|4mHf0#|avOR4@*PT7epTNfzV+FMRpr>No5j<FzNc9a(g$QUMPmr8Pgs@{!uMFfWi;~q>ll4R&kltyh_mu<>Dd!J9f5f{p*C$a zk6#~94D-?==5H~bXa-Zp`T!8M0{nUk)|6^1s{rk)auB$_hQ@p{zFB}@bVyaT>C2q} z{iCWpr*BT84`c4;Li{?QTci4NY-N|SvSGB_9yVG<#-u9Th>3t#^?drva&+_8lwy53K=!m^!Q!cmG-e;UD*;$Bc6}(*#Q5d zBP!g6b2y*2%W#X12KYtoLwXvvlf$ngGTI#3)3^nF>=wOT^jO<{wX7Z#&)66E7ge`J z$^)P<(&EOCu({EDBcICQS4o1VRNM}xwCO_%;A?0edw+>%wmCag6dj=k7^6-lM*a@G{?U@{E9?&1gerL z)g6hX0%dk@H$2HF@r$ZAfFYJUTNYL}SG0(7#YD_77yUc@(#_&>+9J{CzOtnZWC_^U z4F6*M!U+#Pu2uU_`e7jHDqd#>sY3h$+iG3>xQ5PY{ww%H7ktgGLj2N~@v>Mn4CftG zM$A79AAnDC_!R-`exf~M!*A?R%aqMUG$z_l-Z zr7*nskn!s{?F;DN6#qBvlJiGrwe7C3wyDbOtW6+vlJ|n~>!P|V5*&P0ZwVCOSB7Xb zl1f^nq)kRjRAcV7jj*o*{F)s6Oj|J11^2GPGIIF!01Y@*GLjX`5oXjVJu6lc{Jd;lS%_Z)PFTX? zHt8@uZX}3(I2?W+zsw9-1fS`LS=GwD=BFh4jcg<)G#_sl5%7!SL!6cb&QF}8O54PK zY&AS~j(=Sxs81($IZ&U_ppeuKvY#jT!yJB10+*}I;DxG{>faOy_>^{Cf`3`TNiD~} z-lU_=;d1J4T#TW159BWb` zMGI(`Q`=%pQWXuTa2j|zLH|bG=Sn9XJ3}@ z4)Q#I@jUsAs@fO;squd|U75Idxya!c(Ld43y+Glh?5B)V8q+4!6*Gp0ai8EJLq9x5 zH%xaH7v&$!8lDaU53^yY^g<#3x}xe5of+*V+L4IM;DGi3{f1&Tgw_K5f_~`ee`tH7yjg%fjQnfgMV3v(~+$HE%2|cCl+V*&Eii5_*b@KMIOIi!b~G$*vjYq zN=1K-#slDA7B$E6`r*@b*?&(aYR|c3ouX9(z^_*Dul~K@%Q^nV6y`g?FOdyTIWB(L z_$02EDlMlUo@WY^fU6wiz)VKdT8|$NzqK@-*AKrckEq%W2J2%-?yqgu_a?`P^|8`) zpb)>T+Gg~b02zUO?G`<5p8z|%=`bDE$jL-pD+X6!ylI^-B(PxH#m4JV# zxCN>691Xy}f@+Qu&S)Q%Zt2M3*T;0pX=sDC^9TKsT9pWyRb%RsXka0+fPYoc#zK*zTA%*!@Qcw(4ADNG7dP6a+xP^2J=o%| z4}44GEG(3X#s)Z<9DcopWr?reg%Mg94}f*{m;ipEQHWoc{PAXt`FV-G7>3D=`5C_! zr?nh@?L!;~E~DTfhpl)y91$AuNQg;t_ysq(dT}q<)>PXL8SM%DLW~2ytQ2CKd%eAg z6#bFvsEB?5j}2MFjAr!!HV*M&0-xmg*E|!R-!a<6ML@t}Cm_Y^?Z7V<5?g2RD^4$T zGVRjd5HGaX*wMe%u6Mtn4nR=SX7t0`!7H(qp$zoi%b#DlBh$++lN^3I!24(#Gd&|Z6v9HQY($4|8O0|#{Cbkd+yYndzI9ryJPZ4}3Ln)6 zamL8u7wEr?H({IJR5#4{$xx@}icb7V4!f@=@*aB9P|GG%WgU|2BOy0>hC9X<#4i5dNH0UdE_E%-y&AT1cu`^rY>2@d{adHf>E z5c99bA!u<69Qch9Z93*}oWU=|hwfg$94?^`{PR`udj#Y>9xpz$Z^xM7=O1R;b%Snl z*1P_Yt!Ywwr`W?3-$!&6VMfWg_5qzqHrV*9Z>uwrdOJ9&O?v#xG2sfV@V$C>a;)cP z9knT=FBz6yYZf^h24?bK!$l+Z5#2hWTf)Kdiw+vG@H#XSJot0d_%(Y!9aYva)YKvR z8Tcs{f#Z!uOxC9JUvlpIbOHW3+FLf3K23l3{H{s(L-3SgeKMc_I;O7Cvx(4~+DB=? zaW>Sp=5q3i4$seIB;jI#xgTy2YO2!SvHf32EUvl=E6`fq2*e?p%r}m zMxX$PU)6K?H4grDz;8=ry9Rk)yiG&YpRUg8v9f9YW&7sQGwS~P^=9#^|GR48nDN)* zWjd@r&7h#0lE=gR>qA*5ql6O$+0X&)8iEe6)Y%y;)DJ(VJDNhzx%+jGbCb7mcaLII z^88D|w>bmopu@K70bZWb9Daxq z0=AkF79LhLZ4qdmKs4~LzY&vUxnnLLk^K@bMMoqIK_H=L%1XHLD=fmx{uuWepPho{ zS)0_mjeD%iv?>GpT0xfulmT12;{DdY*AGQVRh_V=8sk8;Jbq2kNgXL9xJnD|R0iF= zjEoP#iw=6f#r$hK;HGqsc#eKeaNUmwst30t0$H1e!#8<66~1cP-UJ`MN4y2tLZ3%P zH3y1~@aoUc;MaU=m(i9$Ir=`hO806X!3M#<9@nnXrAYiyyVTj**}ET53(nS`L{Fen#E(r zfs{We4-b0wRWY}dwwRTY(8t1*n}Bgx4NQ>d?(Ky=7ifiZ2+d(WXxHD}SK>9|5*qBd zr*E|So@~9O;+v2fdz+mngYS?z-8k*pSH!ejv_jatg!327sViy9s-s;>JLTuCfHt@g zXce|~I~+j+`r-Rke==T1^nwWz1UgbTDn22lblaMdT0fWsQR9prZmUfuin{vX^XE? zuKgmJ4us7ieN$rvb(#x#Jnwqz40djH>Xmu`v`c3j46GKq)k&4=2W{|>7LUg&AEuN_ z5Lot24$KNl2n-GWumTet_V&GZ?k|L^s%5kQT@ejVX-2ETCx{a=+Ius$%=#g-$T{wG zoSK7G_(U>NwAl~~PHIk*+ei7o4cMwuhD*D!&XKfu z&q|%Ey$}95JA+>lz*ZRPS78xo7g9gsUE-uI_nEOTopmi}-2n@n8htG2Hj1JOSTJp0 z6l?|;?!&Q}Q;q4skHs)}HZ=HW$Fnc{wka3C)^iyE3Im+bWR?4ggg>0&Uvsa6-Sk_* z6Kk%cY@?ro4(!XV=$JB=d;6s-kj`_$R&ysXH{}ak_ol=GI_d}i8p!i6hqSUVMT((g z{{;I3htDbv&>@z~e-+tDpt&B|+c*YUBTVc1|34Y3< z$R%1SgPn8c>ky{SVtq#a7WWx0@+m|Ggy?jP?k2?ZN>nSv^E{ppyuEOWzMvjUAj@DB zzbg?`>|PiP=wdtB%!My`_C>xpZA(94MOushi4Lk7`}3QVx6&4H8Q|Bj_dTt85&ct3 zOa@Kljv>yZN@AL>P*1W0^Lp8{FM0bO@v*t86T9;Vx;DE(fp%S<-nblo%^jgZv0^lu z(SD~uz_Z|A5#T$JI#YGd+pp$Z9`|>esNZN4qjV6N;bw$$F#OLr_+%Qt97sOfIu~YV zfhy8d7%FWRpQ3Hb#oQVE@;_&F#H_(vR$+aPki}aGANf$h_(EsTeUZ>DPJ7;g>7=9uLArUqu;b2a)N2?ef4=? zT{9Zz>7)(BFTk&_nA?3;qrNBkwzb{Ah)LFv-0oPcACBks!|%;mkVs{29>Y1Tl7X}0 zqJY?VFZ#UX?M2WZq;`cpEiZl!TxOv(Hi%cL-3m)M{J|pkYzzbwbT+w+cB0fojJMPg zsNy6IXZi>c(F}gwcCq-1Tqzg7uDwtHoIsGgM|+F@a9|ZX{PW&fttfhhUZhp4gQGC3 zOSD|>WFqz=)$_b^_%$w4$Rg-UvmmgC(SR#RQ8zcH@k=inbEO!)!ZoW14|Rw-eD0Wk zIfGw4sAhqZlNM3e$uxt67I(FW&*774{8HsV25iL>i2CQ#CAmUI(%Km8BG!ThANTAc zLO&wJNHS!0^jMeth_x~uP_KBdX%FZ1Ecl9&!(asZ;zdjB%gEETS(rFTdFcz!+cAD}|%_$nMmw#zD`% zEXFTi&0y-Ad_=8EXI27ShVxB`&>U}1Bl^v>wSAQxozmj;OSQxf{(03KbdB}HR^Om! zU;6DF({g0B7IhBg@z+96vUBiZg7!@QOBR84sZ~~R%J-TM+0ZuL(XP|qs#RkEve6m* zLTv`s6zg9sdtLqu)r=YmF`9UaYIgonB9C9spwD6x7RQ_sn9E~E@@`P)FUS}vckVWInpS3lk7Icu8}d-!mq(!=B2YXxgI~X+ z56dyHN44?9hr;dSBHCz)t>y6RBE96Vr=9FG;oiqW2`wg}45(;U8*Xxc3-ueRu4FjY zoN7GJf&J*MwpfgV6rBV}jnClMSLp{TY^73wt)sNSG4{EK4X4h=p>5%L=@j%oMqwY~ zUPhE^$FPw9IzTRvP47GDo9H(_J}q;ysB>867&h`>jKY|gBTW7t`}V6Suz=3y!1Qj= zJx*xU#|?av)v`CWaUTcy%ByC-g(&3%6QB?a4TFe*kuigw=3mNup9ajZWekY(e$;Oa zqcLGIb3tRK{;?gZTHT;K6sE)8@D2x`6!NcT zY~?{Mf>>(>r@cT_EmsW5;a3z6rMAh)_*!|t5C}E8iRQBy&oq7^|K-a#QPa2?Ht+;R zD>S0h5wQMA%xh}KzUI-v_8QCBko?aem`HnV7Oz@Q?R0ZV)A$AcB|p?xQpm&?{FYX# zkOd(7fM7d${3>zvLx1R>-7|KNTt7PJBA+py*JyEq_lxT{rc!mO&}~{6oRM|5n;ryy zVWv6$)r|V6!#-b`(V~4(JxMi6Puw?3ooqw}_{IFIvbXE3=<{*SiN3k)4d9nM<{A9r z{IYHlbT$XhG>U_X2I45*(;R-G{?O^$8v2pei?ml

VV{aEfZ%VQ4x0f@d?KHFavJ zPtY66a3I_0>Lyox%ISxY4HdTgSk>DWLj6s_bjJegk`tH31^BgzwTnUb*gzX>(@o!} zts_**6$>-`tEifeRJccrg))%Pmjg@XGgO+uf0g53h^$Pot(X|{!R@r@En+Tw3+4s< z^6@gG{xCt4<0#uu8U~O33My>eRS_ou*$jS_V9fSBMk_Zxlt2S&kH^2>E_Us!0=UD> zB{+K1MNk-|8-QQti)fS-;1}u-5y7Hb!)r|A7bBYZg6GHF`V9d($*{%s8*YP%7#cbL z)k8&%_98(puKT+=#D- zJqgdt9sH)nN2<8t&NQbV+CDD=c`R!Vi@1*U;ax_=n8&Z82(4(VRR)$Rv4a+;OS;7+ zdEBXb6230Szt+J61j#58tlN~10ib_}Q)iF1#&Diof5`bS)FVlw1+oUPK+R$;?rg9}eVLV?H6GGhoR0xp#zV=oa$Brs1okzJDMXKB zUX^6D6<7EU`)lN_EuTB<+eTlL|FwXB!M+A93+J$zo{&*_>(a*eNjXujf;%~bUl?dSk~oV7^=g5Ox}UUH2=EY z&42L-UD$Ha$bB-yzlyF|XRP}6osMSGbAD`hc23M?Z97Nv_%)(-4MGPQT z6|lG&{Sf$dn(j$Q$L6dQZ^^osqXXIjd9`I#dGMbL@$2JamkVDtAtXAXgn`HS$gG$+}KB&wVtUt&2g)F|oM#GhDQicG>r#8cKUm{#T!sUHcPXf>IKZ zLpqoL@;&f>JkeR5g=b^OW;L&kik+fE+Rh>?kgwm6+XgGMMuoVK_SpNfYn#QN0t+g$ z&8sQ$9pg@M}t_+8L@W? z@#{BMU3MMvdhn~UbL(vF0jwDKSFe`Of2BHP43xa_HnM4<(<~AHAh>m~DP^7?L;j1t z3#bMEnkP`m0g*7kV_ujote;0pLb$Z66!_IU8rdmW6OMS_6XP|UK>gusv`p3f)VNb! zF6!%Fm+feUb9!18=D)Hu={rulNXu4VWkcI~t4)(l<%9|5@M{QObVV!9bFsJ}>jp#V zSzK2D<*g9E#CGaV%u0*-<(K547UMgpRok8jgG7iK{PICDlVSOTQSq7NGl6g;?5mm{ zR#l1S(L8>kY=aW=7AT1H6je*3ym*g2T|b}0uSRNCb)5eSi>nH94I;8M*N6KDt7h=) z7RYO|wq@2H?YY1u2{-tX+~ve`P<{TbDp$rJ(+h z6_|%rpt3RL5Bne}as7PQeE1XjuSY5BN}YOpqa|_JnlOt9K4}y_@3&@ye*xoWp)8XZ zie=Smg2k=gp3i^H9y5OpFM({AySyzZ+t`G4Ue2Es)*nL4MXUwb>W!~Pu|4yzLk>R4 z;};E!46RdKc1RF{+Pf^=IKV;`)E}Z+-qjC{DSA~_bsAad*vF|`K|c(5b`dFhz?W2s zL?k8*r4&*>1CZP^COPnRx%}5{sv`wGAtwHr(kPoZ5&`JpxFNE(EnmM8PrkrxYqK_w zo`Y<7#}xF#kJXZMq2>Af*U#-M95H6J5w~6xjd2qW|127L{Ibpa%v=xyYhH`~$UdHwJhyhNQ-lF@bKe_vIZ0 z_;nfcDveeB4hIrCz@a(AbXmGFZ2^9Pb|r$7bE5PD3OO+42;wO8natua`i}L)7<3qE*srIaKvpGn8 zR%pO@n(HjjQ^Sm74)3;n!HYT5mL0MsK+Om*J!ajuU^FSxZ;sTx-$xxaOGmI zsIOBv3GbG>_T};~|8fWRej7b0Y6vFt`YgAiqkw;XpANUzWK)~rCAO-?7K$fd!i$QA;9um9 z8Tz4`S{E0KRmTNjE(eNQR-*BV{MYa3bPuAhbd?|O6m@!lfaFQDt_cm`J+>6}hkr)f ztp!~7K0kRuaQ$KU1v;7PZY#vEVDWbGpv1kKrT0P#Zb2yWJNR(uY=!(wwwqs(21@uq z#KN-GM4iKyzi;NwQ)!D-mvY`!nGOX%s@QWGzy8XPmVi!XqxD!Q& z_9_W%x=O!uRZ!e}I07c|Gs(o#iHkc&bGS1j>4Q70w}v z7!6>_BL(^)vabH<>WbOnAz%~mYgCl$oMmvw?BUnkAL&P|TKSVqV~>D7-(s``meLV3 z+@z<&)A}L!m%P-;_ywsGexprGS3yWrZk#ag`R9o57w|1BB`S-UcEwwf*L#~qZ;5&3 z@kY8ZxbdQZ>ruXz@$2eaBlh4o`u*$5oOr7CfM5(j(S^O?PR zsdyp1G8!@2dvNr0~Lww^;WcifAy%NR;g2a2w!l6;_Yyi?rjt*#IFzOOlN(z z_9}4jCAGvtm=Q0(uKMlJR8WYkygbo_NgQ2b1jXpX2x@=!pF{flwTTW-xVk#ZgR>~;_&p(;x zUmF$VYv-p+7d=6{)B+oKg=(qKvHW^QW-=OkIPJFE!jI+n7uRouKu-|Q z1HTmfA^Uk3$a46F`^(lnS;&T$ky^bw5tP~?x-q~0&0uSuf1L-(5m{V^99Kt@0J5EB zopiJ%?3CDf{BnH#CKQ;8cao@mt@~_C;a6cSjH1 zL*0(g7Bl>7?zyHbe(Xi6>Rr07mM7NjU&Crf-xwT74!;KcH;TbZ9N!e~>%q^rX%|on zflmtVfAN2{!U?I4cj&UJORnpw+7En3eT$vvU$yG6zR}UP!V3BwF`(OP63Eyua*QA4 z_*c=r<^5xktah7l{C$#I^krhF>DJp=u*w#;Q_DAx4yPBMGd487>_3#QvLYMG{*->) zzA)Q0j=)25pJrXB5B(AFuQd*a3UXvs?xf%PVkbgYN15O*ZvElMzPlW_!D+sHq3T-W zzq#`=MrZIV3t1JjNNWz_D1`ADO;4Zp)qQ~V$?>o6$^OPlwv^Ed1d0U79fkA`?x!U3 z{Oh~wu$rIk+AKb@b~)f*%L6OS@7k4#S-Jbm>sUWTGzbdw+t_2u9@6g)+*$bpva$;; z+=F&8Wqj_>=mXy}wQF3vLeD$(b}(T?!ms)2?2<&jejfP6u$9shVjT7J0J1DDIvw{z zoy+kraGCV7MDTkW^MYlq2u@JZ!TVKEKmT<)GK?xgrWNqdZIA>}NY9RX&nM~+{R^6b zR-hhgLF3v-#gE|d!!5V&$=4sU8jtTO7eyv=wQ{Z5==Zfp01D}u_>lF(DYXp#*+8K} z`!WoEj%_+tj9Fx@=I%S!&;NB3c*3{wT>nbdn0+a7{NB*Z9R>LHb6O^`r(^W5 z_T4f#s(pp$#T6Z&;9mmrwRkrJ+C{o5OQMiI9EqF?0m&`4} z%0^Ul%wXCL3p$x8H0v$-`okgh4v%NI5BOENA`#uIeU(1XV{f~Wog&2K6;%Wux^8h0l%Dl{b9sBB*L~a1}oUQ zZ=cc=;Y9%iz>H`){ssL|ueOY6l4Er%pi0^_*Ig*g3BK6)HNGB!a^l&G4_sCDS+Bz?YjT9)ho>CUgN>!yReHO9txPrfBhDH;-sORGWkx+ z&0m69O;}HZf9*ohMXsIt%p2Bar@ngqXa}w>fBv39_>BR2$yeVF{L0lIeuetvA~FJi z+IHI>*DYKua_^f@=IiGzI*KD|^opnnYH#U#%X-X|Kzyi#;jiqZ)Uui>;;gN6I%FZ<6ppSd4981weaF|#VAhb_S91OTY^P0oL*ln*C!chd6K zXSm3rCoGqh46{B@EPh(;7IvpBSHCfLC#9;xvyH8dZ_(2p<(%lmc^>TAC#LJ?Y3@~e zzY|rRJK?^N5ShfarYsGrJ}1-*rJ{|ep7mwu54i8Jiy7k8Bulvc*TuC#G|qNRd3)Mq z+6-Hx!DHHaG~!NaMziSb=j--F(=+_*Y*CFu^$6*li##%lYj^|6D0MaAF8O|u<6nQI za0iMIISg4yd%cR#C`!9!BBAdTlRO%NHdcnHsWPjt1BH1iSz{TS17!mB8{jg@VXsfK zPISSFQB-In^r5-(Y-vm@p|djM=lTt=k1RPR5nVW;$vK#phUv6vlTFw`Cv*b*%i>&rZ9#gf2z7ABh8}!V)IbjGEOzv}yfNfh2dT zN=t7RWpvP~iKV8*Jetmb>E!-aGw`e9^N2uV2%q|8^pb9s5zb*0jzxTG2ERD%)d!EH zEmW7CcsdFqMyLGoG~$F6)8B(g>ng4Cg`72$>8nA zdr@tHf(FtI{Hks_X@O;@s|LM3;9u4eAIxD-_|xVQS=(k*1d39quiJ!b!z{UfDvGM* zQ&c74C6>}Nv{(Xsmx_nEF)DKTuX6d+qx+=($AO!hp4x-7Am_ifILNSkb0$6enj$Q?kJaLxZFC1BGP)|LVMC$5)^EzII++vYDP#J#R9*S-)3%zt}yidyCHZ zoNTZA%blYJ$_}Z1^}5kDoIpo}Hi{b%ZlC4mn*`W0T@Qe3%f4nL!h+Kk_0LbQVbKt^ zOLze9PK~=MNQC*3#j6l6`z)S(#oV4qyC3WGC~7>~o4_lP{~~5&h!~$Qcl+3L-xi=< zGWZ>B0bHfK;2>GP_~(r@oVnYl)weToMW8Mvt-W1#NgM~koP$1G7?9Rp^Y#MoZ_w~k zRtvSP<(AE>s;nB0;ge(@zwWels4((hV#<6ZfO5gCxEy&z!f#A;!-?}B)XxJ4;5QBq zzEsv>BUp-sUlgcF++@T8Vg|n|sGSgxeM!7xZ4pQ+Nr6ir?UfRUHXR>=f5o0p9ms}S z!TOmuq5kkXHxi*KEl}+K7Vt~J&!0feTNd;LTgiopSLpa31JS1OOQIgYyX~c2m#7Cw ztUJ5rvj2J~Zb^)5XTA05ot>7jrsum_!mnhX(rf(9P2z0z;SDuSMxyLpuMbg*(8nAjG@@6Ronk}F8r7)Zuz1h|bDvC}ZmOLO zJ+1wot~e`WIFQJdq~k9ek7(~wg8L|X&O%NTyYmFX3=5`*P4UBshOrmpo}H%6tLiyb z??m4P|ALcI!E8s|9uW=WIET~t1^ZIl?Xc5)aL}TGKyAC;Q&tj2MUVp|%ISv@N?BnC zY%7{LYSwlKQo!6Do#?Y%Sl)gCzXFQv6F@7S`g|bZgx&7&GrJMf`>udrI5rN#9*g}L z(hX>!{?K9lu-N2zP1nz#V820Ei&rVolgVPY9-sifKA_*n>PLXWD+q~83vmmCdcws$ z-2d{q_Qmf^!YvS- z%&cLGZ}?)|$C=yH-r?uD2ap6*NLwgTtpAL{SwkhK@k`Dg^uI^-I>xgoalwf#4<76I zG@Wqz5)hrFr?+H%V2E^#7H70cKiqp~=v@>%KzVBn5eR02e@mLZIGM|wVCJUz1c8e{ zPZoqvNyPI#TDdpo;i76nwY;PM_nRIdybmynXOU3kY%OcVyy{5u_hgHtuisa#nxW+a zm#e3sQ~2Tgtrm#7IsWx2-{FJ60=&O5|FHU+RnaPLmb*K@l7M}!^uA{u@?Te~m&yq4 zFQaT@>7XS#f=z>ojDs;3@UI&Y#;-d!%j@Q36raRNTme@^&SHj*-qiTiT+B`;HdFI>Sb;-$rx+tU~V^-|~J7`k{#u2vMqxH!b)L^Cs9=D`%W{sgB*`o(l ze3*|2?r901DZJlOc;Ds-b<2n;J`IN!-h_9b=KHs|gqy&dEOO60@T;2ZdzpVB*&4Ew#F&!Uz{Hx9irZmeBLsKCIA~vp8 zP^inu@vjN}k^|4SXW>WU4|H61At&xXDWPxtrcgh;MD>3WJljzY2@bMh3-m**s{>NA zUsj>s@S8|7CZVoX$vy}fYjH>fWWWf>C>b~Q)8qs2;VqPE z@UQe5F5*R_Onc3 zN8}R<_I1kJ3+RWcpEkZ3S(^NUg=EkmN*8=qQrQCt6!Y~P)?stsp#Dt}r~ipu67Z{> z-;WwaJT~rq5A&}ZYDqS_dCi{+B*N_V8;nm?JL&)@MBWv!WJ3M?e*20<*gSn%B>-D)AB?$dxo(Bv$!Jwy!q$%%JQ~ph&E^(MP*?L`RXx z__cTDd*}XC-k`pXh`MXx&`|QEYnAlc@S!RA=l8umRrC%r5%EUohj?60p-;+qi_Xav zjiF3Oj(>d&pV{9MY|&PtQNO6v(N@?abdQ9mO?bc6j{7M`d0xkowb+!fwSA|kv3}}U zn*)lg=rTc*nZgV}V+4>{G+ie=T|ZBAe@nxi zwf^XiHBrzE)P0c#h67(0RnYz1F=u^G3!t!#r>?*&&AU{H3FZy`SqFPM>Dd?8&%etS zr?dxPdUdK)Y0wW%;8zCUWAWUFi|$lAsCEJ+pzm8pNGLY|))hD-`_LpJxB#;=4gKwDIeZEQ}yK}aEWgLcgeZ%YFmre@;9W&|bYBtmoz{ObdX zsnR-ar}!oAFNf+1>Nj|sWat8>^AVMFf`5&o((+k9V*b(M1dqA5=(h@01ZGfmaOfDb zgX$)WJ&6xDmBOAsY@WSGZVTcHdCNwWX~EtZzqrA+ldIqOpR^@~p?({oY=5fKjtm$7 z(0^Dh)A$;fg6AyHcRo-#!l{3Yg|*AE*{Idv-dBW;+D&#qJJ76%xh zpH`uQ`^#CH)K}^p79#FFP9f!ch_1>z2pgBv4|zIu*_K^>o>o*=2>9c728(hE<}G$1i!nw43zV0;C2I zaC#JEZ5JV)AI;;}8hh&9x)sq!xW29z%c~HuF!NpShBT;k5**Lk|sSSv%1cLBee z!N1Hoe*X!2dIN;1T>Zv=b*Tu^d!IIDBA#a=HYQyBD$oyY8uzWBT@M?UoRarY@C4k& z2-V?aYCAmpiue|`pnl^!rM;NW(}eTmy}yBmRj3~#&zD8?zSBII=tVL4y~3|ZIkO7z ztBkfLD^CO%3l8EKN7}?H1ZGvvtVz*2gI}fA`|9p6sx^K{AE~?T;D$Ljix=9LWNQlW z>*or2qOZyo8u@+-9yttqm_md;&B&2)pMKhxx&`kaito~VxL}~EYhSJ9 zLpV>?S%l55eM$IvpGv2y&l=0iru9R6?$71%&brZPZ*qbL&cVu<%$$DMDiOw8U3<#d z_l89?9!`OO=K63gF;l-`S?HtVsgS6014Z=FP;`Vout5p8L98D_A+nIlWT8H+B8asJ z!3p;PLh~O5{6ftMTmjNvSMU>VLf_5rWD4{{AI8jH!oB}R>!mg+pda#>3-VuAll2x} zh^>S31n-{GmYD!(2NB4mw_nV^xXQvvhQsvi=pqY)UqH{wZpN>yhutaY8w1LswG6ec zsGElN4yQ+feEkOUUjxE5Z(KUnrt2 zw$M0OoSDggjrooesQqYYxazVzN)3}pKyWq7N>x)(KmT*C+4k?kbwBGvvu&LsIow`pfz%9pdy4#*)sGRbS5QGe^vCW6E(fz8S}~_KUq65Q zfO%tf!;mqFdM%DOLSHndBpO2{7xMV^wtTl0G2}t*)9SPy{}Ny;YF@G2MA-EGW#E^! zP2yV0L*jOOn^iNiwgvgG{xVA<8hqKaFNco%e%$jlU~b)AzVBvg+KlGnH;~2Kmz`Bm zzXAP_qG$0?T1gSErJU_5FFwry)hK*RLH!2eguN)ITqIwkcqWusdqrKQdf<7!e*Rqf z6rmP9X}l?hC6~=Bi;0++SCIdLUlnm#l3`w8_9fQi?b#*-9ul5^&^u$w|F!hdq6Zw5 zg+us#6DG5#>MM*^oVS{(KP+OiLJgiNdgM>=pjlTs*<(%j$?1pSUw)LAmy1r{0ZK?b zZUQY1#ihW(K_4Ftw|*XDRwbmtQ7iBZg~pVsV-(KSZ;W_owO4B*$Tbqq;hX+T&CfQi z&*2x>&m(N+S-5_cB2eVUOWxd3KaZh8Eo4{V zQbn`4m|yhePX@jC5c(mq(zp*|;@LWH%Eb$a85!2+d2iqCxmag+JjQ%HsnI7xrZFFd z{m?g{AA0d2>gUxZu0I59d4p$wzTk6TarCl*bZ{yR(u0&$L0xgOgpU~Qqc{- zRzo)Q?X_{b;WQ*58{%OH@Gtm7X9m9>NBw*azy5*ow4m`7@hjlzK1VO8-`Gn}N&M9$ zs3K%TGGy`siy_>{A&bwLRqkNQQ3q-UbT*29sY~CAJAGU;5X;wZOpowd$07?uy%6e! zet3qUycOJEeuwu0Yzx~2vr0l@I)^0tN}gAae@#kEM};QW#uUnjROn?SjNJDeCJX8} zXh7C3@5+E%4Xh5AL3V!2Q>Zc`SHCfz&#E6t6hR@P>&&x?s~X@lvorXGY7IAqgtLlp zmm@!(sXMP}`(plup%RdY^+TK=9_kh0&dbqe_?PZJ8^x>y4d1R&?G<*6pTMuHSdDt8 zdKmb{`7a2_-*!I<7Q7#oWfZn_q;KH9AaxEv7TbmRN1x2|uOU{|Bv#&!Cs42{F|p3? z)>_B%`LCbgHJfm|u5g~Q2xJ@xMEzaB?&etIjD9%xn)mB_wTPNNT3jE_3BJPjqb^EZ zgMIU{Kg8S#P9gBP;?8T%)C~XXq*D}=`+Miq!tEe9$!K^%SHzs)fhWuv{EE=_=CINq z7gcnRs?9=jZ%FI{21cgx{Hs~Drw}pPB1o}BRKRtIiaVs@`ly_Kc(a*Ql^gX9jb((l zEV9Pt#(Dm2?UiFt6!jVWB629E2Te@}*@L*m)+(Y~twl2eG5wF5_ z+8RexhqQ*9zmb1`K1oX5Zz2EnG966SgdrQg(eBpIUluw3HQ`20daM!g;ZD4%QX%*~ z8C-lQcs~mHFJFx1>v6zVy#0=M;Ra9no>s^&=iZNUk00Ww4zF>C@@2&o-As!~%ki)C z>eqP1DC)ks=fqpqr#r?7LZS>7@UO2D-rqp}OT68J{8vjC9-=Qsp}1^)97Nva^?`mU z{$Vwq92qUXNN)ZsBi@2~5Z<5{ynk3Ox0p4^e=T@bK9#Q71c(0|wR8R9ZF&Cn0KP zI%g?pAoRmgm#3ia%gNVooKrh9-N=8zE?{WPzq$$a8xZRA^&79)TYQ$hh4HJM4K0m} zD#$V*;>z={PPIjbn=8yRw-47|?(`w{?>kWS3mol=&xB0ix{fuAJ{L3nTlTTfR-h<=U zFCQ>(wM0;KpkfO4m8;+Q$K)wH;~VsMFS3=*>#?&Ro zWjC+agg1E(Vx}=(AD?+qoMzgU#rlBM^cY!f6?wP3q!TIrb~>#(4xE- z=e+ok-|zha{e{ytAbx?)-CGeBPM{tM_p%H4*MvCjU*YUJ)=`25NB#VEZGukWCUP{# zzp}oaclKxjR|p`o8Qmvv%d8(ssB4>atoUOqFowHRahC>JMed zZZ~rjryr|*38OXnhJ>P+1%BoD7o*kEp)(yL4AA ze4Vzn)V!j9LyS1vA~nOXogDxAq1={%!U@fD_IK^YSzP;iLv7hxGl4Nrdhua%`2?&f z!I{~Y=rM|BQ!B)XzoXNgd!BzGPC$Anp}m#_|FVPowQ+HZ+=Oi5{bhC+{FWe|o%e^@ zeU5+1zmgUg@GqbhE#sIU?i3Cd`7e9|EiPEVzcvX*E8}|sE<5aY5GalTPl0G@*p6#o zz%QJ-1OJK|Eil`*HtEg1PK%jQZS$i(j~11)*cwz6S9A;jmi9 zz7DdXLVT#^oWo|Ww4jgW_!pxUOmFngt7shK!N1Ln?BCVTv#K9z$h>85D9mN^pj{57{Iv{ZdHzN1{#KqBlSh|!4M9YWO8pc3>wC0O8V8cq?Mra~t7}j3 z7;V4bU7sBP;&py{b*Ow!HLj}hI#*#l%6)J$&%clw!@Tx(plpMIjPHN(BQ}^|0es-)HsI2(WLFQ3m+g?X91Z63Uk|{(5bi=zlnBuw zogqf*_`p45`TUpqG4q|V85#Ub;&r)IxaT>?ze*x2&D^}cDue5Q(C6D1VY3+9$biIZkumHdK-(kW1exIVG|n&t|L{|o=B95TMV zyMmrIk&naul$NJfFLYpE(>3ix;Ami5h7=VNIkHA0QT#eR1FJ-z9RK2SI8aVq_$)la zpXsVD9`PU0`Nm3~e;uP6@be*S&MXAC$1~toaC#0ZF<|c=r{??1Zm8db>i}0o*?pl- z-w0t|@Dh3aVx9t@>7afCu+E{9(x zw#h+h2hwL`O)~ru2b}KrBwQyx*WHUDc&!EEmyk80hqP=X62xpfKGsv7u(F#f3y3yEe}WjbHK;n7K`@qUa46!>wi3DyLQ zv-13Fol7Sp6!4qCFR3qgW27kh%-mm|^r3!U)nvhC=J|H1s&Rcv{1@s}H3?(GO#O!Y z{vnV$Sgn;{UNISrX^dzq6#|c3{lD^B$xlf`x`*3U{<@EPT383$k)*6 z6yKBT&ezX-(feZ6!L%!03?M_XYp1Jh=lGZFDjBU9wy<9rt(xNve3E~^cM}~Et~Z8T z=Dpw|`R(k((<0BmpeTBMI7h~RwN&T&LnMsy`7eSN*Azki3m3tL$7Jq)ioQXT;JE8rwb~c2vyAR zFV24f0-8!O9Xe^^nWjD3Qp}5qn6aQxKa5)Xj$~M+Y|yS#n9ej2o6dhVL!Uo@Sp@L5 zp}oZd2e}W2)+J*3`i;3g-rU`Nw<=HI0cS>YER>ngf4NAMC{1gh29TAtcn{GFEO=U* z=3lM89v*XZ=zGRk<0b#`=EZvf9b7-Z81;vqeR2IEwvwOSV6#FYhcnYC&<|NQtYx%{ z5Xw>PhiwGpXt?-gN?vFF_fz0ECSg{k)S)6-B!hx@ND9&WC-g&{XRhD4owmt42WM>x z--h?zD~D3wD6HQ&tX8@Aj>Q>uBpbv-h}M}@{W;ud&ev~v_65lT4FtEg_B(YY;bz39 z@r(0c@P`)SdH3J{N}vqjx``L1@b9N|nBIQ%vVHNt=kmoQ3R!9K=k(Rd*EepfsChn; zdwIPj9-8Sa3TGGsPOzM|NAMx zrYx$jBi3af!oq{v4LajAOa?D@O!KdF4!<<$qB6c4v}-~EsX2o=&A*g+l`9{dP`0Cj zUV?rYoa~tS$ER?xT_3Le4**XWbDVHDy&A8{1f8n`Ht9CfDI}l9mu)+*U=X7L_xRJ|$ zjimbZ=%AiX29rt4C1MVNJo1N>cvOT<242jYZ2!M~6-bAVP80t8`jU1s(e5`}I|GU~T@ zeTIv8FWk)I`?zQ+CL=r^ct0Lko_{Gmc5^DzDQsJRR&Hze`-ezuu?! zFpG6417PCA%Q7J^TkgDa{OfTKwpxH+uW}IBCeF&kF+{M1{0meOn7aWk`8$edy z@rJ$sh5W_ovE`kZfAQDO;z0U1`c-sd*e z&}w0&uu%LVk7zF+vBL=8k;%U}d;~*&6boaUZT^M#l8~*waCP`Qa9hZx z5<48BHrwaF@G&c2vIDNy5p5Ac>wek%>(8J+o6=vHUwRD&M1giBK1s7gC;t*iTllnB zt0ES>h%frs9eqb^RmF$${k|$QJMB+@-N-O zznV+%7t`iU{zYjQ^4Aa!iZ|&}TKi=3FS^?`qWBBnzp;d0fcPbUQe^iZB7ceK8ij?> z!ng^?7)H;_(!Xr}g>T#7a&->39jeEKKa>#~j%S^JE#m$|ddhh3jU5jIy@&(zuit_E z5Lkx4RIG&~6K}Q9E7Tr= z&G-<0U;liHAd`RLRujPd>yzjw0+nYmbo((#9i4vxzQ32YYU6U&pTtj9-`BmD7v-bnD?w?;S{*C_&9w3S4FZupn zI7D&gVR+xi?F~0+Q-qLnOFAz3>!NcWH&+b{@7kkr;YGmD&(Zn@ekhja!%Y75Hax~h za1IB#khqMO;4NS2sJU*$QSa}?@Ax{==BYHf7CJ@g!cr#_h1FyqeObNf2sHPB7a@R{ZU9{H;1pnEt>gnn*AHlX2n_lfq%%^y`sUu3R9ASbd;uEfcCgM z$4>JZKe&WoS_6=hbX0OB%okWB>JjdnX)!QBOGG4#0Rb!l`XF>5G;oEhB(BkE*WGWk z(_$ua*EI+b07(KGCyGi19^;63il)f$6jyJKXjQgGnD8V1QRp0uLMJ(cfbc zmz{4X7<;0F3e5Hpps@(BAJIDcn6_b?y9xU$oJ9L5zys0yO;(qZA!WlhFXEeJ@yZVf z0~Q(C@F48A{i-@~vlJcke4P0$5K>}nC;(!dor^%Xy zcibTf(mF|mwqd(!`>g?MLEMy<$h0|WhS7vqZaE70 zEoXnTFPf;Atxn>eVkhB*2o#t?z(Q6U1J2k8}3eVe9%$Dau($2SdJ|4#F{%QO3CrCl4=`bQ>}j? z7?O^b;2?U)!_TX8Sq}6t{BTv$6S^$;i83*Bpn?Wy(yaZlv~9oNh;_E23?qLsYyZ2C*TkmYxoM7 zx;zY`8m&sSK)^RZN{kBhvx4AD{)l6MlmJPrPN{etuA~Rzfk_QY2-qc(aHHgD3SjGw zB86bRSA*2(42ShKe{}xB84XHjhJBvyjOQ;585MYX<0~7#-MF=JI}fbRy@0)c*m3Zk zkCuP_Eds0WXMsI^-_gn6?E2@W_x>TlzAUghPyOJ_e|+T^*FXA{z{`iOzxe4>=j&^` z-njnv?^zvInB}kfPdI%mJq9SrU|(vK9CyyOyu2A$ox-MhLlLx`Nx%_c55uPzfV(7!=P$<#jN?NK#u2KF@1(;^xp5oiEm=qE=s3tTFac$e2dW&O@j`;n%sdW#A_rQs zD&Vzkd07#3s^&wEs+NxPKo-QYr7^O3(F1%l)fSLS6BEP8Eh^0uv(< zs+$#oEkPS#bZ{Kvx^qP9&N%?4 zUqxu7mDnYA+X}d@3mGQM%QC(;5~V`pa1$?Ef+k?cYSn~2FAWU6+yiu+=HCEmRnCqotF>|R~8NgIA_|wp_<>d|l;H1WDUn(Bw zS1upeKadC9^s8=We&S_C3I?Q93LQkpI}I;y0%J-6f9C1fO03SkfIJ-=$@lH)c{(w@`t{3qIt5(J=|i;JV3F zIwcz&74u~WnG67FZCoFB9D#aplA5Q&M!BL+@#7|d!&U2KtJz$!)#;xvT!h#89zPGP zj_Fr61JhH!)!D`@#!yDbhu#?Pl%IpaGzV5yq=}DP$g|Gn?0l{;xT^XEx>r1BDDGvh zsUTM<~D=Y>f}$i5~E{1R{|Q2TB1ih`DtzdZjw+*pP?@g zzH7W&w+QPpQ&S#Too&owEM|263t!%L&eY`?U*6VG#>`t?IA=jr>?9+dvn=ZR@^(|f z|JL8_#knKEZT*afNetCz@2J%MN7n*f3v?~ewLsSbT?=$Aa35Ph#!DD5VZ6leV>5KS z-nBs20$mGqEzq?<*8=yc1@JCE-bVZStr!H|PAkU1`|iaQTHlRfiO!=P1^9cVb6ZLm F@^1r%a~l8v literal 42172 zcmb@ve{>wxl`gvbR7sS&TI#Yaa|IYvYROI`TCKL^7^BFoW7(72U?)~c?p>althsIC zWRzJRu3+-!Ik~*#s3qI&AE3rK8HIRq3n7SLoJm_UU;{B_BcS~QP#oWkAs*5=vLir{ z1{@;W!o2TPN!{&P>)!SLc*-9s+DFyr*WTa$zP-;8mHBh-|A;*6$@o^+->z@y+PMB3 z-`o(s`x_hRF7h`0Lv!RG?^zs)&^JhLiY#t!T)en(@olt$$`&tcS$u2D;s||{Xt3)u z{5<*N|MIN}2@ern6Y<35|7#JC=^@e95FuOsH_iNeS%mO;;lDi*;?zNP-=IoEe*C}r zQHApl{~y{I%KzpS&d1z+5Bop0A-7HC|EZ1o|5qF5Oa5qh;t~@}Jmi8?%v2+?O|s+!^-$=f9;iGb9-^=vOtHTc_+%^?VF8cx9(&$iwgdm9Khi!a zKS3Ej8KxK}A#F!>^a`RPywy ztA|-5^~wIEm`%@7!zukE_7OG^e(aJp)FVuL$MsAxA2maE8L<;IB7AS_5jKS_CVxB& zDz_$Uvii5ZUUO@*F{{PcZ?vbx-)HqrEaSeXQwymtQrh+#ib}tyR{Kj4ZAY_?mXM{Q?^y0&(oE6dbWy&wDvvr zrsoB*FsuC!24j-n6|0hKT4(Fam=6zkpVn?;S-wxy*;vy`cikuE4bd@b68`sB7BzKFZaHxZfqz4YZBIe8(Pko^P|mTze`pPTNGdQ|k{*kRjhwT~eq0*a&ky z#qduQUJ*;Pakgy^8b8QhbJs#!RU#fN3w7vA*ek4?LMt?bjS?R22v)M=jvJu^7|rf8S{jPh@Ek=nRFrHq?@B8=jca{d}; zT-Ec=i;Kx7?jKX;(?QX)!iP5ORW$aEDW&duEi-=453~nJ7tEvs9Rbn=%TkiU6cen} z9lKUCYVE`9>jqOj4^oiJKC9hoh-(qXT>Gk?H%JHRE{whXbDo2$*{Hg>7I z7M41Qt_HZjU$3J#SPKvRSUD%;%!g8X(6z514bsPQ6c5*qn|N5&*IzqM7ey<_?mgn# zSCA}h?Wf7-Op6wk4{sY2BFeC)%(bte8l>$M5L$NNqPaaA7TV7Po%Dd!nA9yVbJrp$ z?TbuXdzu}khwRW{?6DJMiBK9N^}6+~~fu(88~Gw(qc zUJ=a`zD>%T?B9}Y6QRzYE9QBzJnLVk)Vubj-ME)7^A@{NU~9b>kG|=*lu7% z94U><{liPH&}VkrS>Htk4`TV-6;sMv#>=8P>zh)@U9Ta}9(BLbVEgW2r_^WgpxwjH z&=y`Z>g{0l?mUyRhn_)K%kEip8V`+Q-YzzM*A}|j)^g~LDZeWY`x>E;tzE;;(?0nS z!PpZNw7n6gx$8bO?|HfmpKyO#dC$B=jdn#!xuPDko|XP^=DP$<(iB`=<9=nb?lMKQ z{@obhC4Q~+Em_yTJjNM1u?v3no|O^fb!xVK6UsDwKnraDm`NGRCv*$(0M%tk{ZNhNf0lUnqJYhU3!j^sjyO+yxY2+iJhU^>2 ztJ0&i$SyOTafNL7Oy=4b(MHNJ^heA!;m4W}ms`rT@vijzX`Pe~`5tS|bm=twe4h>X z{yR)UIEy}Cp*He&C=;b!vW;Ex5xpvYV)|_5`}8}}oY|REP7l2!iFr1V1M^in@7;+v$OcsYd%B+ z$uhzAqOob~X*OXzib>GZ?Njc$$LEdHQMz9Eda(q54FD=nUo(LL!edL^ar&G^bn-{u zW>t(T_c;!~A~*N6^8kmRbM1>8gTSw)y=w;X9*JLA?x1?y(`1K=@XN$-%t1{~?+$7l z#n!rw`br)>tfiGe0p{Hyd2H=2~14epS*|@r0#)chOs(pLI86wN0g8 zpslGIJg}tuo=%O>pJ;MH31I8@6w3J0x@O98`HJvsAN!1Mwf(+U$Lqz?O=hdwhZ$l$G$zn zCh#yQ4eg}6?h?P=^)y+b34KDn#G<0XLJ09DEd_olm)!3Heu*hMq&5mqjWjd|zbH#B zSK-$ry+OmdP^$Y6*Z|QDzLaua9Hl1sRpmwZyBz%Dfi8ICm&CUA@Cx|nKLDfx@Xv~s z$1nEd_Q05yQh{H*j-$;vv@xX*e|g5f)Dn7-n;qUNHp;qrs6(s53q27t22e=2_I03~ z(`jlVU-GLGwidCN=*cEBG(0~fln)fgmiOFvo}KGH6uPjnn>Ysevb$c(jI$y+_=p)4UK55tK$?I9OHzP>g1zRBT`M_7 zn>{rgJyhvIs^P&7Rt3z(xD0k=7QcD}o2jNlOO@8)pK7_*(Nr}vKkQ|9EyTQY?5IFD z`W4`p+YQ;DVcDOF8T|49OCLH9*BqO{FXIt*nwlkSnKVI5sX{2y z;v@2tV>9?wQV;JJ5Y-mD&H=KZ#e(cj3J5$LbJs%R*F)Ww(9+kgjYwZtzl>?jL9|HV zn2TSQr`p`A)rerO^y|T`v|ec6Vb%0crYV7J!hO#W@arwHIIi8N{}r7VOX3w1dMSI+ z-j@ZUz00JlBkjf^b_t_sOe;wZ59GI+$LVrsbgY11RPr14rS5~4Z|bWpm9LANGNIE- z3xhw*0l#c_y@uwb#Qjv$3;e1UTg`@EZ-;!K+QaD2S$Cd^_LHjJ62~Xio-MSIYn+vO zwo;9aPi!(}f6OYIgfPGMM1;jyfdMt;13ZxIeT7|sB%Y%WIFI|`WL!e#{3iThXFf@ zHtt$zD$x@(AmAl3z^{#>%)o;L1$=VEwJ$2)KuK&r45w2AY;kOxaWEGEYg)0D4%r{; z#vGlY7kFb1ruY_M>n3}yBrGr3YjXwsx<{=C9UxG% zbVB0A0M^1A!r1F=-DHsxQ?}vrCgsfEiBU|_i?q}(PoqD_Maw9Hr9A(7UZU`rU&8T> zdq2TGa4dFe`cV$XK<^d0)f;5}v&r#!9 zEK@5w7Cx+vvnF>fvL#<{suPkoepb}+z}x%MUF!~JmFU|SLkB!004 zK(vOpwN8K?m*a|QKKh83+5W|ncA-DM2uKZx821e*l}t7v$-fY9*!~MEr%h*EAG!k^ z#kj^wb|zvix-6P96>@%Fi~$D+l)szBuRZEgCpv9EBc37iM17a+50Eiv zZr|nZdGIgo^Fs}iA<912OnRr#rccylwQsX7*S;kGN>eC{u}l0iZNx2DFY$O>v)C@z zz9fEKvfC2ixf65=M6ANngLKSl8uDe8@44UQ@Gt2udV9dX=#Yb7Ag}nOh=0LVCR^G= z2jN#Q($daQN~vSOcfRJ~TIPP2pbg?V0mfk{-vrSJ$6-4Qr8RYc$eVfmT5-^*2U;aQ zhc;-8HXvDnui&B7T?%je~|9I!{4Etvo7BJ%pLxRdd`=2$@Qu(x!^!RXsq@E zfp)3oDP@s;)M#4e+pXvMS612uU@MRXY*lDpVoG~b1kB(u_JBKf@Gsd_iB=9(jKL>V ziOptBEO_VD{L5im4)^3?Xe(L4nH)sx3B%MC>~E2aP~CE%9{pvU~!ir2NTV99O#*<@JglXtYx z0~FRY3laesnWYVaTX8u*!ID*!hELF!B+5ZOLfQI=w*q_2vbDNd{$+XQoBOFDvttvx zk+$Fqw0~gp&8@uVh!&saUqjjgx&YJjZvx!BESBdgzNcIdKQ>~m$>;_CWlVKKfidA} zfnQ@FEJI8>eC)#+{ssJ^6OwIpdX~~B;+dRp`m0NgS9?d|Mf_{d9y%qF=w3D-6tvb3 z=GYPfqO}8?X89NGp$DpK!M55v&}N~8ErT{!*Q(k&Hp9Qns*IK*Gpj9SoQ7TZZekw> z2&?E<IFJ{~|%rfE6(#|rp0Ex?ZJe7U(7jMqimVd#h7r_ao06YG`dU+>fQ zUQ=iX*ja*HBXz$JJ$DL`c@h75>1NQ$q!ww<0Fpu+K^KS93rNC}=U;=yHi6Yivkz#S zC(Nq_hWs22NZ`o1_QmI2;4fO~-kpD%`v>(Hw2Pg_+>LaZb;*(D`Pbu;l~{dg#Lv?d zjW_0$i$J|LfdS_6Ymkm-o4S4bm2cB=7UesKv8Kmq*nN*l_{o$k659?hMJ&PUj3nY` zZ9f)nYb+r9^O3t2Sf|cDXtCefA8>{==APBR$F9&nr6i)2=K0qo>(K(H76Fj#mG0*k#<_a-eL)QkBSm;B4$tz_d-R$9*KtufL2wR|cAX^`(F*+Q zC9zM0xDL)}NFW0?jl#aLX^Z%m)DOeA>#4vv9pqtt{SVnW^`IvllVhL7uk#YW(4Uom zkiZ&$V7D@^0i@RXQbqhrTuh+NE@fOG_KTIL@GwKfj#FIDPtdTWw{e!zm`Xubg?>nx z?j|Et#J_^{K>AjpTLJh(&~Ipt69BSWf%s>Ze|f$Pv_d2tfmx+RC{-ry3oU9p(Pm*o%hR(THXUB7)Gll^TIxX!A>i5Z<`c`5LK#QO^kE#fVY?}K}X$n!@rLcwv2 zJPtBc%Cuuw4E8<_@q2w{JB+v@uIU7NR1^0@0J_~Cq;$J&NK*Cmtp4A}K zKe%g>kV_hnZD#SyM?HiHB+YiJ!wj32*a_AH;0PA+udm_T(Vw&u!f?>}6xL!UPn73h zExAwx9sd;Fpd37Z{?@ zA4H!IvH;(HfW1r4n(ztev+Kt)B`3=Mg-o$J;`PD4ENNCY4QnQ^Z(?WXIJOM_uK^)>LX%LH$eUb&Z!^QIW!4|$oGgZN{rDQyt^3+Rb&-;HtYhz&Gp z*a>tn9@aY3m9zL&vN1J6mME)aJK44@!gzuk+;=$CPkH>ZJPQB;wS)RP_EXxN3dCs> zd((VcG;FvEzxc;MtMZ7lmyUWO9Dj9+q@L`AObKK`j3*W1c8|I~1Bd8{-p z`z-TcSZ<-E^{{%JBHR~Lg4z^32?jWWUzs_3RLF(`A>Vu$5o||lP0uhyjCuSL^i%Y? z!SXI^KSThsxL0yU5V0)!oX4*d1im9z=K&2NF?l^m0v;e!#Xc<34=-75qT*fU$;4}- zDOE9~-y$yYw1r^1pdXTCTMa@1si}@uUSrER>UQkItN7Opej)hhSoepOarGkbYkumg z{1-R5SJJM7+>9mr1Lx_W9pJ$f%i|aH4elV?LK@KmF;I^S;+OGSUUn6Jb@PDK4@+nt zf3zdm!A{Xrye95oft+UGR~-I14gC=Md`?cUP_lR!q4Fa9I$!yz0BlWre?!g#{Jfhd z+Lh;D9?%>E!$~RMq{F;f?$rzQDPN3F3jFJ=nG^%{$?YtV*l9V5Ffg(~M?b7^?JFkr zL#l~scP74uP~YTwHSlX69?<7}{;QY3$ZY!6omGkZF$uZ^`h65=2Y!{#;@3EH=6TP` z4Ju^A82kpX$%=ICOhI6G?6lK^B>?6&8ajqE03bsf75r-h9`gLlbnwe3bW=Ow&d=L4 z6>l;yQF;C~lm8k5OG?nK$@>QYWQUl8UwQuJ;8)fgVHId&o`tsa8XxJf?u2id$$wd% z>j-RX?2h=B8v%a{tuhzLz$@=9@UJL)K#XL=Q?)JZCF#D_)&7R2yBEiO(*^!DhDZzyMoCpIk3k6K_0F;9s9$DZjA6w@z6~S45lTe*^e6nQ9A#rfMm#AJS81?HX+b z%<5^aA*FXP;8#n-DlJ#wU%Tn~vYYvj$C$yN5@_?aEvL*uPs1J6T?PJSV~3giI%;RJ zeKv@Fb?Gaf5gzKo*z^1geoVB8hG*gDpXFhJKgB>FPC-`h;iK0HBf?Y^8clm8OxCWs@ADX41I>SkIR(fhG~`gmv} zm{#K4kai(T>ST;Wy20w$lN2!ZU6mhDl858TBK}1xLM*z0SRFk{mTWxAfYi1YVeKCI z8j|{<^a`i&6{*u9IX>Hvq(0n7#J zq0eT4f9<8`i~$}T@-Fl|DPcVcT;6Vm&*D8Z_(hI>*mTZUuPibq(xEsKJ(KG3Omr+{ zDYk20Sr70_(#fpyX9%PYuLM$yMzQuP{Sa$9ifK7V8NRd8k)ggF?XfvOgyZC7egBp$+8al9;qJ!3v&9p_D}es zQ#Anq+244uY2&LWiuFUthKK!;xufhPEs^WBM*W!X6Mpl>BK;6mD5HojPSJV7!-tA9 z(oug_pT#fC&&Py%081HX$Kc-AS{T=Pb6mWtCP**m+Hude8-Z+D~X4ab-VPzfe;k!yhEnFOrRspuMa`(zyf4+W0dXgsIC%3WGwJ<-> zwJeM@g?fO9oM)N;I!J*{;1@4R{&g?>GxS5dsbj}(WR4vBLj8vH*m3E)S8N*vXH3gB zd{KwKyGTEzeZ0=$GBW?g^*N4y2vA5}tsjD42v7!FNU2jd$)^1hbBpyu@f`P`R!*@` z4Pu{ZEQyOlvYtTx%c-G%xMsUJoOJS9jI;9uGh zJDW&a1HoX%JA+>{`k{>;swzrNBy62BAJd>&brkSx5c6|)On>nDI{t*DW)Gr%(FKvzp7kpT3e-D10aj83+?{gARI_j7Z5h6nsT0H{l-PRMfQ1|y{ASy9rE}_O*D>A zj*;62{LAq_y|9Cf=@2oKraVo?&VqiZ1|dT=f`73VdXm?mY(uH178>Y=z0cy8>Vq}G z27zC35U~ke>W2`kvs#epv-ahracv!Xo#)X}Z0t?Y4_}~~F>S-FeFdQ({y7W%@XFi; z>=m)kMEd@Ex`4<$G^Kli82EAOH#9&%TA5^1aY69HX5XlF1Cb$tPvi@I`-1% ziuA*o`VF!AHuj(6BEIqKD3r2k$R5-XZ&bT`eh4|2&j>R=t&~F$h^9gICrjTmmyY?Y zV*SwZb;GsqtCzVPSI;EfU^+RMS^m{AtvR874iv`8CCN~Knl%ew9>2QPjr5!vegq~1 zNTTp*J;$bu=hYgK%oX%Qw1IRl+n7J*;iR4}9mgk#7^Rrz_(NI0A=h+uggILGVJxoH z3eX0^xU&>kjE!N0-^CA~@kRcG?KztfWhEz;T$K6@f_dX?8O`7YKYEqnP1e z$r7+F85SZvL}{u|X_16xk7#wa9tq_2Lra5Nm_*eF+@Pp8wPDmBV(dBmRuTW2QkzUv zI>9ZA+brLh(j+d^((GDjXtVg0mZR|a$5u-%_Zg*etS2WUkaqMruOIG>OnIX55JC|N zTf&!8YQRrhz`OAtQ;t1TQbXzL@P5dlleEu-%yRvmCiP*SW4T10e{l>aG^Sn0UNwh3 zA%PG=19k^(t%c?F!%6~LWua`pMW9_KYWc30q(*X?jLWHG$b-$WtrL`^)+D-N(u-{xEFf8~28Wl)r9AAtF90;FkkiKr7vWEh#!#e1f9J zmy7Ys1lzJPuJhs@0fXH=cab;>r{>>Nz^{$wNOj;Jp#%IuJ7|aRTD=t|o9>w`DxmOLCmDJ)^SCuZL?s(`9y)rQqAG-N3iC@yJ zJYmy6qz70=i)#Kv9>2;ZHXY*r4&}leNP=T1MEo=OSKDfTfqwzN{=|OZU;)I&=6L9h zvZdzHOdC+IHebIX@#}6v_>}cL%L1g`&uS@oE=;RM9g5^K(WpOkRfwa zsNWdW5F2wRY<66VgYOi+1NQZDo`0dw;eYg}R!V9%+~G6keog{e*V_e#^PSLPbfKi;IHOXmtgfgC}5lR&EuR~Njqz@$~v_ocX zS|5iwY^TQES~ibgCDOjk2z=H{G-6w$`eLayVO-Tq(8lqHmZyq-DP%m>eoAU_q;qzH zwyLnWP3=L~zJ|0)pw(j2f4lM)mk)h0%%}ZQ(mbo`2n#QytjKDrXq-U&5cQz0XB7yPzLlVlRu&XDc!*m(pm> z3+v%Lqx45{D>9f$zJB9f+78V#maJSvJ4Xj%_4@%p$aZnfLfq@jPqJhJJJTBQ3hXG$ z2(`nkd{_%GGBaO4KW9k3=MnD~R?nUgEbdKv!w9kjcpODs`{HvZ=taB9s-U@xXd<)V z-o~`jU>-M`#xcNr{l)-)H-i>o#_0B=fnRGmj7#S1iuuR> zZ}#kxy&=?Z^wX6pEK`R^mQ&u^+xQ{i*r`Z-Tkn{~uME9Qt)fC;8-Hjv@zB1xA>(+g z^&`wr{cQb4KW&jF!x6_kW7OC~U95^r+bNHu?maHQ%ch5EP&A|=8~zo*w=rJ*J@k3A zXgrIWlL(ozO{^+IiCCx_CC#_fNPFl*2;(O8h)}l7EY#2UqY4+bpq={n=t^q2+=sG$ z0~<1~x47Ts)NjDEH45bso-=k`dlQ@nJpVe+-x!6?)?Zd<9<>rE+W4Vx^^JL<{*eot%n9KjrZY^&60R<7+#<@g4Tril^fKpDN?l z#bES~z9Rm00g=^heCL=_MX!3ETj3kSxQ^1&4&UyTMfDrcl2i)=rjeupLMR)M{0sFP zAR~@_N&a<^f?PB1P(6>R!4-%|s?5!rR1}N&7qVR@kD+!&eS)mG*FXVt34s?B_!sIo zKIAR`)i+NmVc%vgyaGH|+%B5p&}nDu=RJew`$&8q`2rgk7 z(hp{^b_s;UM}?UU1`GIwZH)b_b+OOWFSVK!9&V(c@%55_W;`=v6Ty`B#yC2(;R*-P^v0|C@2^s$ds872iy??HVueuN3%KqbSRk{xe{!hTqKD z81-s3geVu1jqDHVH|QZA61PW6AE1Xi>Nx1hVM>x|f`66G;+G&$s!X}5{DO`?*kqNb zYG0@00`(h3{0lY7Qa>E@oQqvv72OS!nUwe?eO(^EF3{^kpeI?+61bFR9)hbho%)Re z|ALIy?ZK{lQu$kLB-z>-wAd7T0ILDVn6IA?%-P{FYswC=Ur1839va#>IrY7ge{nf3 z)E`!&x{t1luoK1z{VNY@Xd~@QqhkD$dHjYng!6c(3alXEU+Ns zt|{s_;&9a*wzHFdZM53{Idf02Bj&Qqn&SLd#|NplUM$ns3286e|KZAM{s}F&@yXaM zeqj`zrc7T}(d0I^;ZkHq?E5FNSM&87I}!HO9MR(-RY;oHJ31=QAS3qowtkgJ<@9`LhN7l?9z#M1IkOhZ+aAz{sS2*xQrGuTgQ-gjG7Sq4X{Anc789 zbadx~1^oJ3u`L_uO8#?VkWfD_N!B>LI)t(x!FCL3J5oQ~%&aeBXR36+)@bV~bWZkGdLHksQa+Qgh`0zmaH>?vAO)a7AJto!=WFMF-`z(Bk zLjB?S1iX4DtZ5pg27N|uOGUND9sZ9B`r&yx`Y%vHPxqXf(M5p;Kt06WN}hkgYqbXm z=WepvkS8ow3zh>T3wr=$v;3>%CFudOJB(5!!UTk=j=&j1R&-z#h5C6^S`NfPImeBk zQ)65|9k?J+zafRhBK{@wUvP0K?04o_K}82|y%Tz7zJ4A#7wP>_g|g~mDS#}c0Kbd{ z^0)H&uK}P{)C8vvNDbfc+qF3Z^JDb&_T=+l_2%}mu+TqXnudC8u^NRO+99KH5E+(P z{jdc2uN5JCM}Tq3K}e@koAwDM z#V*ieT7v**Jfl5R+0eV17x2p_5!*;!6E!&r5xPrX+-_F^&AA@(=JQ{JG~tQb6~J8e z-ILgC>Dnw^7ExpEfu4N*;X85#&653cnE+(|-nk!0)MGb2UBIss(!JZhk5DT4Z@@2q z&V$-8(d@z4?Nv^U)U9>~P@YHLA=nN|3dM0Lo{ty-u^KybHvfebQXHwD{ji<-RN1IvxHScXY9v`-SV+sS@3^$dN@(p%07Bz6LZ3e%_J!vm=(Zg%g z`UL~Epu&GdIf9^~Z5)0+uOFiRkfVNMKX^(;YdZ4fq+Y{du!I>iX7LMb-5LZXj=q_FzY1g!bFol;GhgSy*N4!P#^P5xa*lC3`wSh)Qi@O7ib z_%$xG6}B&jbJ_3WIPF^214N4f3x*5)Yd1;QN_Me5l87bl;D{x_zl6Rdk>_8J(_;du z@J<%>4vJ9rmKem(EuvxkhVQX1>^c0zs$S;F_C@KNm$1i5cks|QZ?H5>Jt;@ozEgGf zymS7m^66xGR#`?LaFEB~KU_{oK>&74 z44L+7>hz_6O-BcsR{7GNI{K});P#S~Uc|q)@d0`MYazWcx>TO++CT_A08*8+_~n_; z?&r1bF~doF1y%(6@j|reC^Jg)_%)9<^S3*ytGt_W5UdW+<{e!llS-)W%i~uZ9Ca~; zG{w|1G;I1rtrd`k;^oOa|GMr2x=lpm{xj?!Rn%{M1*W$I2f+YjdkXc35+=Yae>!&| z9hPMqV>&n^fI}~?-$==9SJKxm>o*2qTC9E-5)dA!G!MA*4F1Kyw%U__(_SSun@;E` zIV1Xfb^V6-Q6B4%Z72}OMAgZ$Detl8ms1~_5lv2-!GXDj(CF?h~ z6Zn@bcb7m0?IMp~YaGQxYX$8}5bVon-wCZLltChFJ9Wr?i1S}4^Q*D7u7s@LsIg;N zr!WbKmOsBN>*ueC5fi7q-1?1*m~x0-5zFKLmf9zQ82G{YFByRlT;&8xE`eXBGD-gf znCpMKCy!rOm<;2=wyveutY#3gmCniN{r;(*Jpby4eKj1>Y*wXiF~7~XuTRKAsheen zuAbt~myu(7s+Y5f`NQW?3~a*&`)DCs-Bp_BU&lp~LWY;T+{Bsm{|i7CBIp}P1{KwB zn8$fETk)*!r;~P596A8b6KPAcsKhALZ^+?fO42=hz3(oJCSZCprfs<$BhB+K$cEYo zt;xYoUsanY?za`3lhSYsDW{8B{Mtl2RVddvwv64+%x-M;`&9Tt^v9d$Ur^Pk&emjY z2B@@MCb3`#-7U~(YZkvW>`b?fvR$#PvLUuc?eSo*Mhg6E4Sv0joc(i{HQ8ShE1|cb z7PPNR5gvElZ$yTUzCgOoatQgBi>(kp*=GzuR#d-{6R(P9O^eNKrI%C9JIhkR4}Q3-|4e9d?X~GAC4uHv-p)MvH24o$nwJLqeP9Ffo$j#{bU+J z;hn{=c@{=GmF@s+;XF@zmO-9hG`+#4O6S(ex*l9iz5BVVA zbjiJu^E?N%dOdbthUUGWdY6W)HK8-FM|$%*Q*iPW}@Ut^8@H?lkr5dG{RfuT*KTr<>Pw1W%PdB~h;fK$gd^mDXv#qy=ty0J7n*_%fWXnxTC) zJ5j%JO^57H|BWArUp{iEb8Uz6O{Be|@xE&1i%m|=Gi=kVG8U*B7(Hk(K$uyA=0mCc2rR2=BtUtV;9*KcPR?+5Q z%^hWTCaSCi4dApg*3=n&^}H=~Kcs}RAGX)2_Y+DkJJ>u}914AZ$V#i6HWtn=ANDkL zg{sk?!_)+AP~sOJz`ug-duHknWAJ|COeXlkd-QP*&(8tSZ_Z#7@?RNhuJ(zZIGymo zT^#vpgfas9&sFvF$QPu7gWjOn4s3#K7&Ld1C4y$)2qq9eLCL?M&&MKxJDDJh)}a^= zeKu_*nvcxl7wQkSN2F|M&{qDajqtLSwwe;rU|(Fm2j`dB%e|=9_%8U@s92m0bixflByeKn(my`~vL~jcMdzaV~)TMj7~**?I&coxv|&@`>^3zUSg=rj)<(y_{$^ zee34_75xsC`Q@9GYIlBce%bt`0admO=dw5RN9=OswwSayd{XbWA^IWh58NEbC)Mp+ zj9Qe|d%sTqM73i#=hzH>#jCPfWLJO(mw2VaH$7zn2;QSv_?XSa*h6#n(m%96i?d5O zrgs>7p|w|E!G6n|?FQVx;o5QvML*!nTl~)}kI4br6$cdXuijRi6zG|7?Nk^j+t8ZD z#$3-5@BJPef6gj6(u()^a8cU{(Ph zLkdaz7YY!zUl8$z+s0ild45?cih88NhZQyLm`N(yn08REsq-UHe|VZj_?mQW2;wIK za-7e_Hfpdr! z?xlH>j&X<>R*`-GW zGVJnyt@a!qKv;_SmsAUz0b3}We--~!k-A~OTtN;j_|`0b$@-0@6qIt!b|%B8fGM-& zFgB`i$L`i2VmJmH^+?*~Me$sea7g4+7uDf%7 znGnXOl$Y4i7153_@75nr$o{NN>7A~91wGE$|4#G}{EJ0nzqk!jryQ3*b;FykeW8BC zlw9VfUIk0(`98LZ6k2f<7o0k;AKom>%b&i%Vwd=#R9I}6g@|ubIHgf?!Zzz6WJ#jMkP&yaRKjvFtB zhOe9?9AuvG1#fAmmy@5b^Ka^@XVP?J{h`z6wQi|f^c0GYhKx%!sC*cn#V>+CoEGqY z7nQfzXbRVEOenjk4}m=j8av$e8p8QysFxJ%VyCGW5THS*hsD)gqu=9w(w!dy|B|Is zWnF2ba^=g-akJ9kax{ZW@}@XCntHsZrWwtug3TwGkyV#^2wn1>$^ z@C!8qv{!odX|v642;R^nUQM=EE`^RLtB$DeqkCVoC|F-B{H;>dz=m z&cew;MChU;*^Nc`1%gx(pw;QhkW3}mkTpykv05=%b>#-Xl2 zMVxs6?=j{40Ke4jhr=S6Wbe^)sc;0_2A+-B(>OKXRws~j6ceFLY0^paaXJDrfh?;n@eyGNecv?L^rr`b!qqP^>1#twx z!dIjp9-vR>NEEJh#>M^jC}-#sYK!}e@?R6ULa<4M4j@{_{KRfbK_GPwDDCe#>)Kar z&Te|f16INjtHX$Tbsng8>gR*^7U~ao(SA{5CS!=+_a_?y`hNqt283a z!-zo2g^bu>dMHFB+}l%(U;L6bAbgg7v$(V(YV}#DpT|WU7Km8>{MQ&Nb!GSjItkms z!^)g7-TQ*ER?N-g*LgZ@Vs(&n5mK{)R8_>k92*4x^5XnE+;ZR#IQA9pSe*(;4b5Dq z8DK7kTvOz~1ejD@JIyYjR;@9nk3sMU8Ifmr^ZaW*@?SL@f`3{0n^jMx8aC*s*yq8& z9{oyicR@e=hGkC-xA;`}gei{vj?hgb14R*tmam^bpOX2nzK3O>@vydfC2~n1VkktM zIltUra^A!#0GT6OqP|)HG7y%c{8yHe9QiMTS;0UE^dFxPBE~}fVaX_B3A00PKRIL$ z?)kEOknv$Y|1~HhVH^i&R|Wn_9{U=_UNw0&u-mmSYaa4(G|c_GcVK#}n>uh#9FYSx z@la}IKL52daan~|Ppv%9E{a3E5eJzi5hEDmG1tDF^UIQL^(v;w@TMxC_=a1*aTR_g zxBCVT;5M7v!~sQh{~AT~6?E-%NUNY1yBELh>s;AFuLiqqOgn4*cT!xAJGFcT{zYp?+amJU;Rf3#P`LgUf91^LEIzSk@oTr)>uETt zjqR$cd+PdzcKzPKnena5z`yQc`TL{#Ii&khZ9S{z0N>;dU8QH#t@I81<}PMq+3*ub zeXke`O=vqo`uFkB7;4^LWj)-?mPINvsZ=KTvD<e>e%E(eeolKd&E#XuBEk0Kb3*JUq4|&Gw>A*uEi+ z-OJ^;x5}}fTskV?NN0jOykZI0w=bF zS~@XljhJ^OcRZL#yY?md*L&1j=iAxybGpo)xKRJbsaGH)Wx{hxl_VTO>^m z5lHb}dVl*z?pkC$YnT|T6V>y{Pa~#0LSE{_y;$QOc# z3Y5*;VQ0MtzmV;_SX{p`VMedRDu19JSLJfA`~do4(-S*Klsx}>9uiZ-_8nd949T)X z9YJ7KAFFvdc<+&u?mSEW^?0gbBRs%cv^5E;cpo0NU=+ztmd7vbx@>3^{Oeb|S2PA! zkFqf=ulfE}_(ku=zz5gk+aVhcuYF?WJLWL~A@RuqemU-<5_ffG15-Bks!+1V)Pu5M zNXg?Dyl8iHgCE+U1}xxMxH|J9la&Sq{vt;8|d zM0CCH$I2fVD(bt?=OYxC{h7Icg8{#s#YG|F+_;KFA^DSq`wxTa_OAp)>@M~WKhzzD zPjm1qkXrp@`<0Y&0)-wuru`3;gRddd+S-huAoZg2v{o?^EUb^m?*6=f7CMFW46~RIG-6 zXgs6VW_%x4w#Ma+H~Nao{QVnyNGkRSpT15{m(|$Uxt9qn+@N>1&)^qHeS;(aUBzyv zbk@vOf1Wk49#JPCG0)&va^Cao_zIMeGJOci; zJqCJ`s(fFY61YZB`okTxv>o;}TfgD)(Zh5%EUt81{6vK8ZIOx)*6Xe$PHkjo)>QS$ z`VE48P0}#hR7)WdYf6aFX6%c~@1xTy`izn}Eu*#_F3-(vHD1B}QE(2nYhNz^Lbj`; zcA6%^(O^WtFHalrJC9%BU%#W~(egb1${{}}D^)fY-G6ASNizV>*bdy0{3|ENCBo~H zL$moW=!fDVB>BpSsR+?SHahR4M=87o##qRInUa5DT823AT@FyrPnZ?*U${StewS$$ z<LQ1 zJ<7nLusXrILjA_IZ0jyFqTPX$$@@iv1=CwV&=0Mk%q2PRiJ^Ypre)l>cx483sdcwM za*dCW|H7LJ`r&^10Rfj^td-YB`8%W>YC4MI`T~AsnN3R{2_@mW;WKT_PeTgh5+MOS zyi4{u27P0z4AHyp>UTs8$Qp=Op(tua_47T{D;AoNIwkD_|M~)3ApQw`#wQUsK6LM& zH%}%%A9#Sztf?%*45x=a@2ymwJwGuIYN2Oox9>6VLD-IfY#4z?)HsA2ee?D6pj{qW zq9*wlM2u^CJ?#LTC~NHP$>Y~3{Co@d_g~{sm=6CQ-DJ?UR%!i(`onJ_s~Kq5e^~1B zFMU2HVH>r?wVPJPXYs2paX;M>*T?R}wHrnwzadqRVpj@tZxR2xR`Rb^`d_l&@TYb+ zd{f`=^+1#hcGMfQ_XEiK!^}iWi(h4ue>EC#%ZxJAYKDu>FP|3&CGDE!U;Z=t#}Grl z&~<-D0l&_hpIXts^MQXsKZKCTSBEh!aO#e$&M))O98GW+wvhjl4~q`%5Uf}~gzT&t z9jjdaB@L~cHgYE??yNiT%aGNWF^8jZfCA2Li*2+>o(Q{2KXk%_Z<;75k^!E?Q=IFs zRDwnNA#2SwrdE#!z`x>+LU9V)xIfjC=U?(%Qj_NEo?D}3;^1FQk^Bqizj_Pjzv@lM z@&npAwoE+0Yg5_@7A%$Z8(P-uo$+*TFUtcZU-ldd6c zmVap%-2Hqum@DwF1@tlSD>R|Z@UQPGQ4{CC;%heL`PYqB1iX^VILe7hu6bH{AATNV z&*#6W1odpaw`O~%6yzpSZCR9U$T+L53;b&)|2_nL18DV%_Lamb^QmPGU)1mQ&S$VM zuHBP(az;m@et7kT92R%F7yL`;U8S6OGe5?@ z(bkOZN!PxH<~=U@pcaOnSN`boue1_{A8VZm%`eYc)~C5`}%G?x(>sUm%hR| zqzd>o#aPR`#!nBiaD>U!D%RZV-W@|=0lf`4}LtC2&Y%JZ+V zxq||`z5Cguc+Loq$~Lm*jca?_3;YXXw}eJ_*@hGn9W21*d)U3#&+soQk6{$JRSBW2 zvli&{e0;Lp#)hO>{L0O7sx{y@RELPk^bkCx4cnRJUnSG#C{`J4>m&HgW=Xp~qSu!- zkA^bvHjZ5g<5Nm@hb=v6o~0MY0yTP)oz=GTTSmRWTz8&x_^UV_gXvlRi0Y~`ey4}0uy|PT7TFp61f8ZI(mC_z5jsn4*c_Qx4(bxD;U?X z?R%_t%(XA%zqIKTaCr)B3+Dm|n&&6#OkOXKUwb`>Ds8+ct6esRd*N5l3EW&E6GnOd z)k-L#8N+#MjH^3fmp;b+V7x$&+Vw+;S^ibBkrFA>*6R|s80j|SiW#s~oDn+=rkUqo z6?Fe-&4nGE>|}f-RbzU;%}!Q5ld{I|C_2B4vKETi{>aJ`{9_{`^|2EhK2{?(55k9lv|aFzC9W92FWdj80)9=(-J9LHOlhR!T}=}ZNQ24C_cR^Z z*$W0VgI_!C&Ah?Za7>2xXg6P{b^UssiGyI7@~(n@_)|i*E30ivToGHX+KKC?O8>?l zv1%sk|B~hT*Ch4CaCWZuStvi|T8J$4oUlGma8AO270Yd+*nF_@n8nGs1?^7*d~ zu!}&KzNhki^&k&qcR=4T4ysSDC{HH}`7io$0&S23;s><=@GCH>$`j2XYcIP#Qv?5U z^2?i|UOyZJiv<4yom};?2M!;HoqOHQ5FW47cH~1GlYd$@o??u$|EL$qPgDlU#a3Y?Erf*oXjF>cPa@rgYThy?Ops5~81I;q^BRA=F3kzY16|(eWJg-u_*%6fVC@Q}OpxC{&}1 z(z;SXb=)}<0Z_29Y4iMRqxZKs9gVesqzrfA7tKTTXNG!`0{^;B=D*}^8?`x^_VPIQ z&i#O1u>CxbU!I%*oiu$%l!$lD zWBEO3--7pe9JQzD{4#2~Qf&!e zR=JHXS;IqqOAj*iM}({b|3b+MPNOu6!u=Zvy7(c&!sYqb`|9xlSwD|+E(koNJ5_OW zV5BSbu#(5GZ_zeemW7v&1AqWYKSCj5x4AT~N$tXreMbJv#G1;P+~?qM5VPhE99!;%pEo7jsx08wLE1Q`$$Qa} z9?D?IQePdAvytat=S?Vqe}UWY7n(Ek47B1+T+P?dcY2^c3CN)-9S7V9{0oAcykLJt zV?@c@s=B3knglxHigX!q9RYe8hI_?%t#9p+p+FOMzbK2NGidB0QOUlr`Icq(2# zrAxXrlEty*1^ilhjVRo#LFQuDA0D9S@0%uhoL zl^BQEH7&GJ8>taN;L=b9H9-_;6$Byu&dl7qyV)4!p;eLCc}PB=J#&A~+;hKs?!9xz zS=@;i>L)n3W+RX*v7&L@3U~+mH@p++wWXz{hnBdQp9jEqG%%i*@n7za@|vKx>Epq^ z$6F8Ff+JqTty5>(xL(&*tbe`le9F7ZUCaoD{MFni5r0V#bQFU~>-N#-(_IN(uO!6F zKLzKu&apfA|~cQ(pfX9pIyw(c$C0Y=Ou{w7!E1dR+JL`zfmn zEt9)DtPk8n{?bXzF=Bqh-|%SV`WMc#l8ET9q8Gg`o^Ls2f}lUd^V0FxFnWM)YP!LU zO+6#K{RcDV5o13;3j;w#U}s+cdU2w|gAZOVo}1{H!=V;`5(nh65=dcI^B1NKSNY3U z#Ny%ude&dq3;z0>vo?$K9Ln(*@76fB5Mi?5uxr_Sv47FGC)VA8Lqv}@1oh(mhpQzk{_U^We^2QO z{WDph#BP}_hAeRF|rB@uj4PA4aNQZqg_W(W_&Pf zBKB^;RzE4nUjcui&*XZY3wilu5CLtN=&FdnCTTx>86yWAkIZ1s3|7QS<@cAtU(_QO z@Z4Z@KK2nRnwasZioal%ZO+7kE9nL@**<^gx(mF~JQI#vg8hfbzv?aIWwgN z|2ja|NbK*8IECY{=LlU2&OgLf$sG(naq*&x*PL(gb^Jw`&6rD5Ta!OQcl!r3<{2s# zd#E`xHmmuIqpef%$y=7t34~qo$=Ij#j)#HkvlZ)Kgz?5Ks`FQROE53TPRkqcyf%z? z==cjON3_PrI1^+3(u%32yq5F_XPu9=^@{lG1ryI=ABOSI&vkPDe3}l5<%Q-4E90*h z%x)h|>+L~I5pbW04?RpRAH!U?<}cpmh3)l1+&7qwYcUx5i(} zti5HNfu; z^O_#CcN*Kp)jeA0E+H&e-ubu3a+AQ zWaO~B$gvJ9@RGg44<0cZ#;fr7yj z6=n8{X?Ms;j#&({3|1AJ+@X9@>v;AyV+-YEDg+w=jBUmcZI&q!9u*Un{MBXAds@G6#qdewamu}HuCbqHoC`(jc(?j;o;&yLq zIyIv~BTLq&(N@EBat*Pa@^x=bx@D$O0V4!o_LGqg(z*YFblQ96u(t{6MC}kItnjbM z(MHjlE^{myCPS$E4!O;{ENwqvUjR}{CnxMtV==9#ly8h0+i4TE`}Qae(^g2LymDFc zWZG?TjIjU&E!QhLERm|rS<8ha>mf%|N^TE>;vSZ$ zyij+vm&m`+5wW8+DoIqYX%VaPFLpE-YL>naKL_)S6M9^vWE;I=xUi_*n%2PXrM%dbuzZzHmwngNH#1uvPCZcrq|za@T1S|Kh$tBS zxHJ*u6-Xi_XYlr9S`Kw2_b{-BjEw;phoqcNu8JX#?5HGMqsqlv?q$uH~Sp^0au(VD*wuz4U*JWCU18`*kj6hP(E1-b&u02bN3mPNf ztAx7J`I$uT_`^FQ5Z}?25Pn-`{NbpFg5tXK8_xgv{D7YO2vG9?G+HDBl5{MWCj#SpMJd7@eC@BFRr|*Oyl!WOd3}JfoI9)|e zvIdNW35(oCc{wELsP7d}t>R@(&;j6|NuYokiFsRx4%YymHK2pMs`ykBD}W69d0}Kp zjYn#L43eRO@mcAFIwB{mg3(SnO4fpGm{*<}s9z>LD{a(*Fd52U$jh3b0U{ld({x-5 zM8sdlkhQb87%ZHesR4deW@E_QDffC;r<-OP7~Bbt5q4v|c9Xh(RNOlBl+U=T*hanxL7N!*uXW zt9jW3K`V*ULEBLC&cwjN1hkTns#lB(etX7_8v`{!pb6pCR24M z)gZ`B7GW=_>kZcDXCqrN>z!LSm!m*fo)cTnNsAoZ%m&lb+9U64aP6ULm$d1Qz=W91a=7q50C;WhSC@5D#A5LtTN}^`-0_ zjSbX2LZ^a&L@QT=mH5+gt7Y^5wRY|Nzfo)JXZ-lT`f1(y^XGj|ycXyzYk$&`&#lgU zzKm&NUFQFmFJDSJ+T$>t<|3Z_ocZ#u3a5@*J^GDk5~bWnX^GaE&j-=_DV>YB@TL25 zIi2}^8C_iYn#Y$_F9yYVeVG%f`|`!Qg8#3-mmltY2;2G%Zf+UMer-OTy1Z_Ix&`VM zs9T_Jfw~3i7Wg7tAQ&%Uz=ZLV_#)e(UiZ2M>K3S5pl*S>1?m>~Vp<@BSMZ4J?`BBy e0#__UqUlmB5$W3*D)D{1qX7R;m6xTWME(O!TGhk= diff --git a/fpga/hi_iso14443a.v b/fpga/hi_iso14443a.v index 1009c436..0f7325b6 100644 --- a/fpga/hi_iso14443a.v +++ b/fpga/hi_iso14443a.v @@ -3,6 +3,13 @@ // Gerhard de Koning Gans, April 2008 //----------------------------------------------------------------------------- +// constants for the different modes: +`define SNIFFER 3'b000 +`define TAGSIM_LISTEN 3'b001 +`define TAGSIM_MOD 3'b010 +`define READER_LISTEN 3'b011 +`define READER_MOD 3'b100 + module hi_iso14443a( pck0, ck_1356meg, ck_1356megb, pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, @@ -25,26 +32,23 @@ module hi_iso14443a( reg ssp_clk; reg ssp_frame; -reg fc_div_2; -always @(posedge ck_1356meg) - fc_div_2 = ~fc_div_2; - wire adc_clk; assign adc_clk = ck_1356meg; -reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3; +reg after_hysteresis, after_hysteresis_prev1, after_hysteresis_prev2, after_hysteresis_prev3, after_hysteresis_prev4; reg [11:0] has_been_low_for; reg [8:0] saw_deep_modulation; reg [2:0] deep_counter; reg deep_modulation; + always @(negedge adc_clk) begin - if(& adc_d[7:6]) after_hysteresis <= 1'b1; // if adc_d >= 196 - else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15 + if(& adc_d[7:6]) after_hysteresis <= 1'b1; // adc_d >= 196 (U >= 3,28V) -> after_hysteris = 1 + else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15 (U <= 1,13V) -> after_hysteresis = 0 - if(~(| adc_d[7:0])) + if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V) begin - if(deep_counter == 3'd7) + if(deep_counter == 3'd7) // adc_d == 0 for 7 adc_clk ticks -> deep_modulation (by reader) begin deep_modulation <= 1'b1; saw_deep_modulation <= 8'd0; @@ -52,10 +56,10 @@ begin else deep_counter <= deep_counter + 1; end - else + else begin deep_counter <= 3'd0; - if(saw_deep_modulation == 8'd255) + if(saw_deep_modulation == 8'd255) // adc_d != 0 for 255 adc_clk ticks -> deep_modulation is over, now waiting for tag's response deep_modulation <= 1'b0; else saw_deep_modulation <= saw_deep_modulation + 1; @@ -63,37 +67,31 @@ begin if(after_hysteresis) begin - has_been_low_for <= 7'b0; + has_been_low_for <= 12'd0; end else begin if(has_been_low_for == 12'd4095) begin has_been_low_for <= 12'd0; - after_hysteresis <= 1'b1; + after_hysteresis <= 1'b1; // reset after_hysteresis to 1 if it had been 0 for 4096 cycles (no field) end else + begin has_been_low_for <= has_been_low_for + 1; + end end end + + // Report every 4 subcarrier cycles -// 64 periods of carrier frequency => 6-bit counter [negedge_cnt] -reg [5:0] negedge_cnt; -reg bit1, bit2, bit3; -reg [3:0] count_ones; -reg [3:0] count_zeros; -// wire [7:0] avg; -// reg [7:0] lavg; -// reg signed [12:0] step1; -// reg signed [12:0] step2; -// reg [7:0] stepsize; -reg [7:0] rx_mod_edge_threshold; +// 128 periods of carrier frequency => 7-bit counter [negedge_cnt] +reg [6:0] negedge_cnt; +reg bit1, bit2, bit3, bit4; reg curbit; -// reg [12:0] average; -// wire signed [9:0] dif; -// storage for two previous samples: +// storage for four previous samples: reg [7:0] adc_d_1; reg [7:0] adc_d_2; reg [7:0] adc_d_3; @@ -108,201 +106,244 @@ assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1); reg [7:0] rx_mod_falling_edge_max; reg [7:0] rx_mod_rising_edge_max; -// A register to send the results to the arm -reg signed [7:0] to_arm; +// A register to send 8 Bit results to the arm +reg [7:0] to_arm; reg bit_to_arm; reg fdt_indicator, fdt_elapsed; reg [10:0] fdt_counter; -reg [47:0] mod_sig_buf; -wire mod_sig_buf_empty; -reg [5:0] mod_sig_ptr; +//reg [47:0] mod_sig_buf; +reg [31:0] mod_sig_buf; +//reg [5:0] mod_sig_ptr; +reg [4:0] mod_sig_ptr; reg [3:0] mod_sig_flip; reg mod_sig, mod_sig_coil; reg temp_buffer_reset; reg sendbit; - -assign mod_sig_buf_empty = ~(|mod_sig_buf[47:0]); -reg [2:0] ssp_frame_counter; +reg [3:0] sub_carrier_cnt; // ADC data appears on the rising edge, so sample it on the falling edge always @(negedge adc_clk) begin // ------------------------------------------------------------------------------------------------------------------------------------------------------------------ - // relevant for TAGSIM_MOD only. Timing of Tag's answer to a command received from a reader + // relevant for TAGSIM_MOD only. Timing of Tag's answer relative to a command received from a reader // ISO14443-3 specifies: // fdt = 1172, if last bit was 0. // fdt = 1236, if last bit was 1. // the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit). // The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay. - if(fdt_counter == 11'd740) fdt_indicator = 1'b1; // fdt_indicator is true for 740 <= fdt_counter <= 1148. Ready to buffer data. (?) - // Shouldn' this be 1236 - 720 = 516? (The mod_sig_buf can buffer 46 data bits, - // i.e. a maximum delay of 46 * 16 = 720 adc_clk ticks) + if(fdt_counter == 11'd547) fdt_indicator <= 1'b1; // The ARM must not send earlier to prevent mod_sig_buf overflow. + // The mod_sig_buf can buffer 29 excess data bits, i.e. a maximum delay of 29 * 16 = 464 adc_clk ticks. fdt_indicator + // could appear at ssp_din after 1 tick, 16 ticks for the transfer, 128 ticks until response is sended. + // 1148 - 464 - 1 - 128 - 8 = 547 - if(fdt_counter == 11'd1148) // additional 16 (+ eventual n*128) adc_clk_ticks delay will be added by the mod_sig_buf below - // the remaining 8 ticks delay comes from the 8 ticks timing difference between reseting fdt_counter and the mod_sig_buf clock. + if ((mod_type == `TAGSIM_MOD) || (mod_type == `TAGSIM_LISTEN)) begin - if(fdt_elapsed) + if(fdt_counter == 11'd1148) // the RF part delays the rising edge by approx 5 adc_clk_ticks, the ADC needs 3 clk_ticks for A/D conversion, + // 16 ticks delay by mod_sig_buf + // 1172 - 5 - 3 - 16 = 1148. begin - if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set) + if(fdt_elapsed) + begin + if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set) + sub_carrier_cnt[3:0] <= sub_carrier_cnt[3:0] + 1; + end + else + begin + mod_sig_flip <= negedge_cnt[3:0]; // start modulation at this time + sub_carrier_cnt[3:0] <= 0; // subcarrier phase in sync with start of modulation + mod_sig_coil <= mod_sig; // assign signal to coil + fdt_elapsed = 1'b1; + if(~(| mod_sig_ptr[4:0])) mod_sig_ptr <= 5'd9; // if mod_sig_ptr == 0 -> didn't receive a 1 yet. Delay next 1 by n*128 ticks. + else temp_buffer_reset = 1'b1; // else fix the buffer size at current position + end end else begin - mod_sig_flip[3:0] <= negedge_cnt[3:0]; // exact timing of modulation - mod_sig_coil <= mod_sig; // modulate (if mod_sig is already set) - fdt_elapsed = 1'b1; - fdt_indicator = 1'b0; - - if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001; // didn't receive a 1 yet. Delay next 1 by n*128 ticks. - else temp_buffer_reset = 1'b1; // else fix the buffer size at current position + fdt_counter <= fdt_counter + 1; // Count until 1155 end end - else + else // other modes: don't use the delay line. begin - fdt_counter <= fdt_counter + 1; // Count until 1148 - end + mod_sig_coil <= ssp_dout; + end //------------------------------------------------------------------------------------------------------------------------------------------- // Relevant for READER_LISTEN only // look for steepest falling and rising edges: - if (adc_d_filtered > 0) + + if(negedge_cnt[3:0] == 4'd1) // reset modulation detector. Save current edge. + begin + if (adc_d_filtered > 0) begin - if (adc_d_filtered > rx_mod_falling_edge_max) rx_mod_falling_edge_max <= adc_d_filtered; - end - else + rx_mod_rising_edge_max <= 0; + end + else begin - if (-adc_d_filtered > rx_mod_rising_edge_max) + rx_mod_falling_edge_max <= 0; rx_mod_rising_edge_max <= -adc_d_filtered; end - + end + else // detect modulation + begin + if (adc_d_filtered > 0) + begin + if (adc_d_filtered > rx_mod_falling_edge_max) + rx_mod_falling_edge_max <= adc_d_filtered; + end + else + begin + if (-adc_d_filtered > rx_mod_rising_edge_max) + rx_mod_rising_edge_max <= -adc_d_filtered; + end + end + + // detect modulation signal: if modulating, there must be a falling and a rising edge + if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6) + curbit <= 1'b1; // modulation + else + curbit <= 1'b0; // no modulation + + // store previous samples for filtering and edge detection: adc_d_4 <= adc_d_3; adc_d_3 <= adc_d_2; adc_d_2 <= adc_d_1; adc_d_1 <= adc_d; - - if(& negedge_cnt[3:0]) // == 0xf == 15 + // Relevant for TAGSIM_MOD only (timing the Tag's answer. See above) + // When we see end of a modulation and we are emulating a Tag, start fdt_counter. + // Reset fdt_counter when modulation is detected. + if(~after_hysteresis /* && mod_sig_buf_empty */ && mod_type == `TAGSIM_LISTEN) begin - // Relevant for TAGSIM_MOD only (timing Tag's answer. See above) - // When there is a dip in the signal and not in (READER_MOD, READER_LISTEN, TAGSIM_MOD) - if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset + fdt_counter <= 11'd0; + fdt_elapsed = 1'b0; + fdt_indicator <= 1'b0; + temp_buffer_reset = 1'b0; + mod_sig_ptr <= 5'b00000; + mod_sig = 1'b0; + end + + + if(negedge_cnt[3:0] == 4'd1) + begin + // What do we communicate to the ARM + if(mod_type == `TAGSIM_LISTEN) + sendbit = after_hysteresis; + else if(mod_type == `TAGSIM_MOD) + /* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh? + else */ + sendbit = fdt_indicator; + else if (mod_type == `READER_LISTEN) + sendbit = curbit; + else + sendbit = 1'b0; + end + + //------------------------------------------------------------------------------------------------------------------------------------------ + // Prepare 8 Bits to communicate to ARM + + // in SNIFFER mode: 4 Bits data sniffed as Tag, 4 Bits data sniffed as Reader + if(mod_type == `SNIFFER) + begin + if (negedge_cnt == 7'd63) begin - fdt_counter <= 11'd0; - fdt_elapsed = 1'b0; - fdt_indicator = 1'b0; - temp_buffer_reset = 1'b0; - mod_sig_ptr <= 6'b000000; - end - - // Relevant for READER_LISTEN only - // detect modulation signal: if modulating, there must be a falling and a rising edge ... and vice versa - if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6) - curbit = 1'b1; // modulation + if(deep_modulation) // a reader is sending (or there's no field at all) + begin + to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis_prev4,1'b0,1'b0,1'b0,1'b0}; + end else - curbit = 1'b0; // no modulation - - // prepare next edge detection: - rx_mod_rising_edge_max <= 0; - rx_mod_falling_edge_max <= 0; - - - // What do we communicate to the ARM - if(mod_type == 3'b001) sendbit = after_hysteresis; // TAGSIM_LISTEN - else if(mod_type == 3'b010) // TAGSIM_MOD + begin + to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis_prev4,bit1,bit2,bit3,bit4}; + end + negedge_cnt <= 0; + end + else begin - if(fdt_counter > 11'd772) sendbit = mod_sig_coil; - else sendbit = fdt_indicator; + negedge_cnt <= negedge_cnt + 1; end - else if(mod_type == 3'b011) sendbit = curbit; // READER_LISTEN - else sendbit = 1'b0; // READER_MOD, SNIFFER - end - - //------------------------------------------------------------------------------------------------------------------------------------------ - // Relevant for SNIFFER mode only. Prepare communication to ARM. - if(negedge_cnt == 7'd63) - begin - if(deep_modulation) + else + // other modes: 8 Bits info on queue delay + begin + if(negedge_cnt == 7'd127) begin - to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,1'b0,1'b0,1'b0,1'b0}; + if (mod_type == `TAGSIM_MOD) + begin + to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]}; + end + else + begin + to_arm[7:0] <= 8'd0; + end + negedge_cnt <= 0; end else begin - to_arm <= {after_hysteresis_prev1,after_hysteresis_prev2,after_hysteresis_prev3,after_hysteresis,bit1,bit2,bit3,curbit}; + negedge_cnt <= negedge_cnt + 1; end - - negedge_cnt <= 0; - end - else - begin - negedge_cnt <= negedge_cnt + 1; - end - - if(negedge_cnt == 6'd15) + + if(negedge_cnt == 7'd1) begin after_hysteresis_prev1 <= after_hysteresis; bit1 <= curbit; end - if(negedge_cnt == 6'd31) + if(negedge_cnt == 7'd17) begin after_hysteresis_prev2 <= after_hysteresis; bit2 <= curbit; end - if(negedge_cnt == 6'd47) + if(negedge_cnt == 7'd33) begin after_hysteresis_prev3 <= after_hysteresis; bit3 <= curbit; end + if(negedge_cnt == 7'd47) + begin + after_hysteresis_prev4 <= after_hysteresis; + bit4 <= curbit; + end //-------------------------------------------------------------------------------------------------------------------------------------------------------------- // Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time - // Note: Data in READER_MOD is fed through this delay line as well. - if(mod_type != 3'b000) // != SNIFFER + if(negedge_cnt[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge. begin - if(negedge_cnt[3:0] == 4'b1000) // == 0x8 + mod_sig_buf[31:0] <= {mod_sig_buf[30:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always. + // asign the delayed signal to mod_sig, but don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s) + // side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed. + if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks. + //if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss + //begin + // mod_sig_ptr <= 6'b000000; + //end + if (mod_sig_ptr == 5'd30) mod_sig_ptr <= 5'd0; + else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1. + else if(fdt_elapsed && ~temp_buffer_reset) + // fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already. begin - // The modulation signal of the tag. The delay line is only relevant for TAGSIM_MOD, but used in other modes as well. - // Note: this means that even in READER_MOD, there will be an arbitrary delay depending on the time of a previous reset of fdt_counter and the time and - // content of the next bit to be transmitted. - mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always. - if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks. - if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss - begin - mod_sig_ptr <= 6'b000000; - end - else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1. - else if(fdt_elapsed && ~temp_buffer_reset) - // fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already. - begin - // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen - // at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3) - if(ssp_dout) temp_buffer_reset = 1'b1; - if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001; // still nothing received, need to go for the next interval - else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer. - end - else - // mod_sig_ptr and therefore the delay is now fixed until fdt_counter is reset (this can happen in SNIFFER and TAGSIM_LISTEN mode only. Note that SNIFFER - // mode (3'b000) is the default and is active in FPGA_MAJOR_MODE_OFF if no other minor mode is explicitly requested. - begin - // don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s) - // side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed. - if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0; - // finally, do the modulation: - else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed; - end + // wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen + // at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3) + if(ssp_dout) temp_buffer_reset = 1'b1; + if(mod_sig_ptr == 5'd2) mod_sig_ptr <= 5'd9; // still nothing received, need to go for the next interval + else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer. + end + else + begin + if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0; + // finally, assign the delayed signal: + else mod_sig = mod_sig_buf[mod_sig_ptr]; end end //----------------------------------------------------------------------------------------------------------------------------------------------------------------------- // Communication to ARM (SSP Clock and data) // SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)): - if(mod_type == 3'b000) + if(mod_type == `SNIFFER) begin if(negedge_cnt[2:0] == 3'b100) ssp_clk <= 1'b0; @@ -311,7 +352,7 @@ begin begin ssp_clk <= 1'b1; // Don't shift if we just loaded new data, obviously. - if(negedge_cnt != 7'd0) + if(negedge_cnt[5:0] != 6'd0) begin to_arm[7:1] <= to_arm[6:0]; end @@ -333,41 +374,52 @@ begin if(negedge_cnt[3:0] == 4'b0111) begin - if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0; - else ssp_frame_counter <= ssp_frame_counter + 1; + // if(ssp_frame_counter == 3'd7) ssp_frame_counter <= 3'd0; + // else ssp_frame_counter <= ssp_frame_counter + 1; + if (negedge_cnt[6:4] == 3'b000) ssp_frame = 1'b1; + else ssp_frame = 1'b0; end + // ssp_frame = (ssp_frame_counter == 3'd7); if(negedge_cnt[3:0] == 4'b0000) begin ssp_clk <= 1'b1; + // Don't shift if we just loaded new data, obviously. + if(negedge_cnt[6:0] != 7'd0) + begin + to_arm[7:1] <= to_arm[6:0]; + end end - ssp_frame = (ssp_frame_counter == 3'd7); - - bit_to_arm = sendbit; - end + if (mod_type == `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset) + // transmit timing information + bit_to_arm = to_arm[7]; + else + // transmit data or fdt_indicator + bit_to_arm = sendbit; + end -end +end //always @(negedge adc_clk) assign ssp_din = bit_to_arm; -// Modulating carrier (adc_clk/16, for TAGSIM_MOD only). Will be 0 for other modes. -wire modulating_carrier; -assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010)); // in TAGSIM_MOD only. Otherwise always 0. +// Subcarrier (adc_clk/16, for TAGSIM_MOD only). +wire sub_carrier; +assign sub_carrier = ~sub_carrier_cnt[3]; -// for READER_MOD only: drop carrier for mod_sig_coil==1 (pause), READER_LISTEN: carrier always on, others: carrier always off -assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011))); +// in READER_MOD: drop carrier for mod_sig_coil==1 (pause); in READER_LISTEN: carrier always on; in other modes: carrier always off +assign pwr_hi = (ck_1356megb & (((mod_type == `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN))); // Enable HF antenna drivers: assign pwr_oe1 = 1'b0; assign pwr_oe3 = 1'b0; -// TAGSIM_MOD: short circuit antenna with different resistances (modulated by modulating_carrier) +// TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil) // for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms // for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms -assign pwr_oe4 = modulating_carrier; +assign pwr_oe4 = ~(mod_sig_coil & sub_carrier & (mod_type == `TAGSIM_MOD)); // This is all LF, so doesn't matter. assign pwr_oe2 = 1'b0; -- 2.39.2