Features

* High-performance, Low-power Atmel® AVR® 8-bit Microcontroller
* Advanced RISC Architecture
— 131 Powerful Instructions — Most Single-clock Cycle Execution
— 32 x 8 General Purpose Working Registers
— Fully Static Operation
— Up to 20 MIPS Throughput at 20 MHz
— On-chip 2-cycle Multiplier
* High Endurance Non-volatile Memory segments
— 16K/32K/64K Bytes of In-System Self-programmable Flash program memory
512B/1K/2K Bytes EEPROM
1K/2K/4K Bytes Internal SRAM
— Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM
Data retention: 20 years at 85°C/100 years at 25°C%
Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
— Programming Lock for Software Security
* JTAG (IEEE std. 1149.1 Compliant) Interface
— Boundary-scan Capabilities According to the JTAG Standard
— Extensive On-chip Debug Support
— Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
* Peripheral Features
— Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
— One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
— Real Time Counter with Separate Oscillator
— Six PWM Channels
— 8-channel, 10-bit ADC
Differential mode with selectable gain at 1x, 10x or 200x
— Byte-oriented Two-wire Serial Interface
— Two Programmable Serial USART
— Master/Slave SPI Serial Interface
— Programmable Watchdog Timer with Separate On-chip Oscillator
— On-chip Analog Comparator
— Interrupt and Wake-up on Pin Change
* Special Microcontroller Features
— Power-on Reset and Programmable Brown-out Detection
— Internal Calibrated RC Oscillator
— External and Internal Interrupt Sources
— Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby and
Extended Standby
* |/O and Packages
— 32 Programmable I/O Lines
— 40-pin PDIP, 44-lead TQFP, 44-pad VQFN/QFN/MLF (ATmegal64P/324P/644P)
— 44-pad DRQFN (ATmegal64P)
* Operating Voltages
— 1.8V - 5.5V for ATmegal64P/324P/644PV
— 2.7V - 5.5V for ATmegal64P/324P/644P
* Speed Grades
— ATmegal64P/324P/644PV: 0-4 MHz @ 1.8V - 5.5V, 0 - 10 MHz @ 2.7V - 5.5V
— ATmegal64P/324P/644P: 0 - 10 MHz @ 2.7V - 5.5V, 0 - 20 MHz @ 4.5V - 5.5V
* Power Consumption at 1 MHz, 1.8V, 25°C for ATmegal64P/324P/644PV
— Active: 0.4 mA
— Power-down Mode: 0.1 pA
— Power-save Mode: 0.6 pA (Including 32 kHz RTC)

Note: 1. See "Data Retention” on page 8.

ATMEL

Y ()

8-bit AVR'
Microcontroller
with
16K/32K/64K
Bytes In-System
Programmable
Flash

ATmegal64P/V
ATmega324P/V
ATmega644P/V

80110-AVR-07/10

A\ T M egal164P/324P/644P

1. Pin Configurations

1.1 Pinout - PDIP/TQFP/VQFN/QFN/MLF
Figure 1-1. Pinout ATmegal64P/324P/644P
PDIP
_/
(PCINT8/XCKO/TO) PBO] 1 40 [PAO (ADCO/PCINTO)
(PCINT9/CLKO/T1) PB1] 2 39 [1 PA1 (ADC1/PCINT1)
(PCINT10/INT2/AINO) PB2 | 3 38 [1 PA2 (ADC2/PCINT2)
(PCINT11/OCOA/AIN1) PB3] 4 37 [J PA3 (ADC3/PCINT3)
(PCINT12/OCOB/S_S) PB4] 5 36 [J PA4 (ADC4/PCINT4)
(PCINT13/MOSI) PB5]| 6 35 [PA5 (ADC5/PCINTS5)
(PCINT14/MISO) PB6 [] 7 34 [PA6 (ADC6/PCINTS)
(PCINT15/SCK) PB7] 8 33 [J PA7 (ADC7/PCINT?7)
RESET] 9 32 [AREF
VCC] 10 31 2 GND
GND] 11 30 [7 AvcC
XTAL2 | 12 29 [0 PC7 (TOSC2/PCINT23)
XTAL1] 13 28 [1 PC6 (TOSC1/PCINT22)
(PCINT24/RXD0) PDO] 14 27 [3 PC5 (TDI/PCINT21)
(PCINT25/TXDO0) PD1 | 15 26 [J PC4 (TDO/PCINT20)
(PCINT26/RXD1/INTO) PD2 | 16 25 [J PC3 (TMS/PCINT19)
(PCINT27/TXD1/INT1) PD3] 17 24 1 PC2 (TCK/PCINT18)
(PCINT28/XCK1/0C1B) PD4] 18 23 [10 PC1 (SDA/PCINT17)
(PCINT29/0C1A) PD5] 19 22 [J PCO (SCL/PCINT16)
(PCINT30/0OC2B/ICP) PD6 | 20 21 [0 PD7 (OC2A/PCINT31)
TQFP/VQFN/QFN/MLF
SES.
E5z2E8 . _
0L955 [
Lgxsap zzzz
T3EQS 0000
0O0ZxXkE aaaan
0=350¢ 85008
|2 ZZ =0 aaoaa
2LLEX ZZLZ
13858202589
aoaoaoaoa> E E E E
OO
o 4443424140393837383534
(PCINT13/MOSI) PB5] 1 33 [J PA4 (ADC4/PCINT4)
(PCINT14/MISO) PB6] 2 32 [PA5 (ADC5/PCINTS)
(PCINT15/SCK) PB7] 3 31 |21 PA6 (ADCB/PCINTS)
RESET [] 4 30 [PA7 (ADC7/PCINT7)
VCC] 5 29 |1 AREF
GND] 6 28 |71 GND
XTAL2] 7 27 [3 Avce
XTAL1 [] 8 26 |1 PC7 (TOSC2/PCINT23)
(PCINT24/RXD0) PDO] 9 25 [11 PC6 (TOSC1/PCINT22)
(PCINT25/TXDO0) PD1] 10 24 [J PC5 (TDI/PCINT21)
(PCINT26/RXD1/INTO) PD2] 11 23 [PC4 (TDO/PCINT20)
121%14"5161718" 920222
gooooooouon
DT ONMNOAONOD T~ NM
OO0 0z0000
oooooa>@pooaoa
T@<asT A%<
E ==
20028 832E
S00d@0 R D&
[a] O ~ N
25002 zzzk
~XZ3Z [SRSRERS}
NG OO QLaoag
ENQAZ A ===
ZE=Z2 <=
cZ 9
ao L
e
Note: The large center pad underneath the VQFN/QFN/MLF package should be soldered to ground on

80110-AVR-07/10

the board to ensure good mechanical stability.

ATMEL

A\ T M egal164P/324P/644P

1.2 Pinout - DRQFN

Figure 1-2. DRQFN - Pinout ATmegal64P

Top view Bottom view
T & & & & R 2 2 2 B B 3
haENEHEOEm Gmgmﬁmmmamk
V4 g oo o g
Al A18 A18 —1 |:| |:| |] |:| |:| = Al
Bl B15 B15 O [| B1
A2 A17 A17 —1 goTTTEEEEE [— A2
B2 B14 B14 | = | B2
A3 A6 Als [' ' | Y
B3 B13 B13 | o = B3
A4 AL5 A5 =1 : ' | VA
B4 B12 B12 = O B4
A5 Al4 Al4 =D E 4 8
B5 B11 B1l a B5
A6 A13 a1z I:I I:I I:I I:I I:I | - A6
ononnonoan
g 5 8_8_8, LB 8.8 & 8
Y 2 2 2 7 g < T 2 2 2 g
Table 1-1. DRQFN - Pinout ATmegal64P/324P
Al PB5 A7 PD3 A13 PC4 A19 PA3
B1 PB6 B6 PD4 B11l PC5 B16 PA2
A2 PB7 A8 PD5 Al4 PC6 A20 PA1
B2 RESET B7 PD6 B12 PC7 B17 PAO
A3 VCC A9 PD7 Al5 AVCC A21 VCC
B3 GND B8 VCC B13 GND B18 GND
A4 XTAL2 Al10 GND Al6 AREF A22 PBO
B4 XTALL B9 PCO B14 PA7 B19 PB1
A5 PDO All PC1 Al7 PAG A23 PB2
B5 PD1 B10 PC2 B15 PAS5 B20 PB3
A6 PD2 Al2 PC3 Al8 PA4 A24 PB4

ATMEL ;

80110-AVR-07/10

A\ T M egal164P/324P/644P

2. Overview

The ATmegal64P/324P/644P is a low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the
ATmegal64P/324P/644P achieves throughputs approaching 1 MIPS per MHz allowing the sys-
tem designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

vee A I 3

rF—_— — — — — — — — — — — e —_— — — = = — |
I Power A 4
| Supervision |
RESET > SOR/BOD & PORT A (8) PORT B (8)
RESET yy A |
Y A
= I Watchdog ->
GND Timer A |
I 1 y \d Y v
Watchdog AID Analog P
I | Oscillator Converter Comparator > USARTO |
XTAL1 A | L |
I I Oscillator P Internal
I: I:l Circuits / »| EEPROM Bandgap reference SPI < >
= Clock |
I I I Generation +
— XTAL2 A A |
= I 8 bit T/C O [»
< > AVR CPU |
| »| JTAaGiocD I)\ 16 bitT/C 1 | = |
| — Y Y (S
<—»| USART1 I
TWI FLASH SRAM 8 bit T/C 2 >
I A
A A I
¢ ‘
I : |
I 4 A A {
PORT C (8) PORTD (8) [, I

TOSC2/PC7 TOSC1/PC6 PC5..0 PD7..0

The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than con-
ventional CISC microcontrollers.

ATMEL :

80110-AVR-07/10

A\ T M egal164P/324P/644P

The ATmegal64P/324P/644P provides the following features: 16K/32K/64K bytes of In-System
Programmable Flash with Read-While-Write capabilities, 512B/1K/2K bytes EEPROM,
1K/2K/4K bytes SRAM, 32 general purpose 1/O lines, 32 general purpose working registers,
Real Time Counter (RTC), three flexible Timer/Counters with compare modes and PWM, 2
USARTS, a byte oriented 2-wire Serial Interface, a 8-channel, 10-bit ADC with optional differen-
tial input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator,
an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the
On-chip Debug system and programming and six software selectable power saving modes. The
Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt sys-
tem to continue functioning. The Power-down mode saves the register contents but freezes the
Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-
save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base
while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all
I/0 modules except Asynchronous Timer and ADC, to minimize switching noise during ADC
conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the
device is sleeping. This allows very fast start-up combined with low power consumption. In
Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On-
chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel ATmegal64P/324P/644P is a powerful microcontroller that provides a highly flexible
and cost effective solution to many embedded control applications.

The ATmegal64P/324P/644P AVR is supported with a full suite of program and system devel-
opment tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.

2.2 Comparison Between ATmegal64P, ATmega324P and ATmega644P

Table 2-1. Differences between ATmegal64P and ATmega644P

Device Flash EEPROM RAM

ATmegal64P 16 Kbyte 512 Bytes 1 Kbyte
ATmega324P 32 Kbyte 1 Kbyte 2 Kbyte
ATmega644P 64 Kbyte 2 Kbyte 4 Kbyte

ATMEL ;

80110-AVR-07/10

A\ T M egal164P/324P/644P

2.3 Pin Descriptions

23.1 VCC

23.2 GND

Digital supply voltage.

Ground.

2.33 Port A (PA7:PAO)

Port A serves as analog inputs to the Analog-to-digital Converter.

Port A also serves as an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for
each bit). The Port A output buffers have symmetrical drive characteristics with both high sink
and source capability. As inputs, Port A pins that are externally pulled low will source current if
the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmegal64P/324P/644P as
listed on page 80.

2.34 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port B also serves the functions of various special features of the ATmegal64P/324P/644P as
listed on page 82.

2.35 Port C (PC7:PCO)

Port C is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port C also serves the functions of the JTAG interface, along with special features of the
ATmegal64P/324P/644P as listed on page 85.

2.3.6 Port D (PD7:PDO)

80110-AVR-07/10

Port D is an 8-bit bi-directional 1/0 port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

Port D also serves the functions of various special features of the ATmegal64P/324P/644P as
listed on page 87.

ATMEL ;

A\ T M egal164P/324P/644P

2.3.7 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in "System and Reset
Characteristics” on page 331. Shorter pulses are not guaranteed to generate a reset.

2.3.8 XTAL1L

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
2.3.9 XTAL2

Output from the inverting Oscillator amplifier.
2.3.10 AvCC

AVCC is the supply voltage pin for Port A and the Analog-to-digital Converter. It should be exter-
nally connected to V¢, even if the ADC is not used. If the ADC is used, it should be connected
to V¢ through a low-pass filter.

23.11 AREF

This is the analog reference pin for the Analog-to-digital Converter.

ATMEL 7

80110-AVR-07/10

A\ T M egal164P/324P/644P

3. About

3.1 Resources

A comprehensive set of development tools, application notes and datasheetsare available for
download on http://www.atmel.com/avr.

3.2 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of
the device. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen-
tation for more details.

The code examples assume that the part specific header file is included before compilation. For
I/O registers located in extended I/0O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instruc-
tions must be replaced with instructions that allow access to extended 1/O. Typically "LDS" and
"STS" combined with "SBRS", "SBRC", "SBR", and "CBR".

3.3 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.

ATMEL :

80110-AVR-07/10

A\ T M egal164P/324P/644P

4. AVR CPU Core

4.1 Overview

80110-AVR-07/10

This section discusses the AVR core architecture in general. The main function of the CPU core
is to ensure correct program execution. The CPU must therefore be able to access memories,
perform calculations, control peripherals, and handle interrupts.

Figure 4-1.

Block Diagram of the AVR Architecture

Data Bus 8-bit

<

A\ 4
Program Status
Flash < < <
Program Counter and Control
Memory <
Interrupt
\ > 32x8 < Unit
Instruction General
Register Purpose h SP
< Registrers <> Unit
A
Instruction Watchdog
Decoder A 4 < Timer
o g N
£ ‘»
[} [}
l 8 £ ALU PR Analog
Control Lines 3 b Comparator
<
- 3]
O (0]
() =
= e] P
e £ <> 1/0 Modulel
R Data <« >« 1/0 Module 2
SRAM
<—»| [|/O Module n
EEPROM <
I/O Lines <

v

In order to maximize performance and parallelism, the AVR uses a Harvard architecture — with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next instruc-
tion is pre-fetched from the program memory. This concept enables instructions to be executed
in every clock cycle. The program memory is In-System Reprogrammable Flash memory.

The fast-access Register File contains 32 x 8-bit general purpose working registers with a single
clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typ-

ATMEL ;

A\ T M egal164P/324P/644P

ical ALU operation, two operands are output from the Register File, the operation is executed,
and the result is stored back in the Register File — in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing — enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant and
a register. Single register operations can also be executed in the ALU. After an arithmetic opera-
tion, the Status Register is updated to reflect information about the result of the operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word for-
mat. Every program memory address contains a 16-bit or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the
Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack
size is only limited by the total SRAM size and the usage of the SRAM. All user programs must
initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack
Pointer (SP) is read/write accessible in the 1/0 space. The data SRAM can easily be accessed
through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector posi-
tion. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other 1/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - Ox5F. In addition, the
ATmegal64P/324P/644P has Extended I/O space from 0x60 - OXFF in SRAM where only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

4.2 ALU - Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are divided
into three main categories — arithmetic, logical, and bit-functions. Some implementations of the
architecture also provide a powerful multiplier supporting both signed/unsigned multiplication
and fractional format. See the “Instruction Set” section for a detailed description.

4.3 Status Register

The Status Register contains information about the result of the most recently executed arithme-
tic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as

ATMEL X

80110-AVR-07/10

A\ T M egal164P/324P/644P

specified in the Instruction Set Reference. This will in many cases remove the need for using the
dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and restored
when returning from an interrupt. This must be handled by software.

4.3.1 SREG - Status Register

The AVR Status Register — SREG — is defined as:

Bit 7 6 5 4 3 2 1 0

ox3F (0x5F) | I | T | H | S | Y N z c | srec
Read/Write R/W R/W R/W R/W R/W R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7-1I: Global Interrupt Enable

The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual inter-
rupt enable control is then performed in separate control registers. If the Global Interrupt Enable
Register is cleared, none of the interrupts are enabled independent of the individual interrupt
enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and is set by
the RETI instruction to enable subsequent interrupts. The I-bit can also be set and cleared by
the application with the SEI and CLI instructions, as described in the instruction set reference.

e Bit 6 — T: Bit Copy Storage

The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or desti-
nation for the operated bit. A bit from a register in the Register File can be copied into T by the
BST instruction, and a bit in T can be copied into a bit in a register in the Register File by the
BLD instruction.

e Bit 5 - H: Half Carry Flag
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is useful
in BCD arithmetic. See the “Instruction Set Description” for detailed information.

» Bit4-S:SignBit,S=N®V
The S-bit is always an exclusive or between the Negative Flag N and the Two’'s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

e Bit 3-V: Two’'s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two's complement arithmetics. See the
“Instruction Set Description” for detailed information.

¢ Bit 2 - N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

e Bit1-2Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

* Bit0-C: Carry Flag

The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

ATMEL i

80110-AVR-07/10

A\ T M egal164P/324P/644P

4.4 General Purpose Register File

80110-AVR-07/10

The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by the
Register File:

« One 8-bit output operand and one 8-bit result input

» Two 8-bit output operands and one 8-bit result input

« Two 8-bit output operands and one 16-bit result input

* One 16-bit output operand and one 16-bit result input

Figure 4-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 4-2. AVR CPU General Purpose Working Registers

7 0 Addr.
RO 0x00
R1 0x01
R2 0x02
R13 0x0D
General R14 O0xO0E
Purpose R15 OxOF
Working R16 0x10
Registers R17 0x11
R26 O0x1A X-register Low Byte
R27 0x1B X-register High Byte
R28 0x1C Y-register Low Byte
R29 0x1D Y-register High Byte
R30 Ox1E Z-register Low Byte
R31 Ox1F Z-register High Byte

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 4-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

ATMEL 1

A\ T M egal164P/324P/644P

44.1

4.5

The X-register, Y-register, and Z-register

Stack Pointer

80110-AVR-07/10

The registers R26..R31 have some added functions to their general purpose usage. These reg-
isters are 16-bit address pointers for indirect addressing of the data space. The three indirect
address registers X, Y, and Z are defined as described in Figure 4-3.

Figure 4-3. The X-, Y-, and Z-registers

15 XH XL
X-register |7 o7 0]
R27 (OX1B) R26 (OX1A)
15 YH YL
Y-register |7 o]~ 0|
R29 (0x1D) R28 (0x1C)
15 ZH ZL 0
Z-register |7 0 |7 0 |
R3L (OXLF) R30 (OXLE)

In the different addressing modes these address registers have functions as fixed displacement,
automatic increment, and automatic decrement (see the instruction set reference for details).

The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. Note that the Stack is implemented as
growing from higher to lower memory locations. The Stack Pointer Register always points to the
top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine
and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are
executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the
internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Figure
5-2 on page 20.

See Table 4-1 for Stack Pointer details.

Table 4-1. Stack Pointer instructions
Instruction | Stack Pointer Description
PUSH Decremented by 1 | Data is pushed onto the stack
CALL Decremented by 2 | Return address is pushed onto the stack with a subroutine call or
ICALL interrupt
RCALL
POP Incremented by 1 Data is popped from the stack
RET Incremented by 2 Return address is popped from the stack with return from
RETI subroutine or return from interrupt

The AVR Stack Pointer is implemented as two 8-bit registers in the 1/0 space. The number of
bits actually used is implementation dependent, see Table 4-2 on page 14. Note that the data
space in some implementations of the AVR architecture is so small that only SPL is needed. In
this case, the SPH Register will not be present.

ATMEL i

A\ T M egal164P/324P/644P

80110-AVR-07/10

45.1 SPH and SPL - Stack Pointer High and Stack pointer Low
Bit 15 14 13 12 11 10 9 8
0x3E (OX5E) - - - SP12 SP11 SP10 SP9 SP8 SPH
0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SPO SPL
7 6 5 4 3 2 1 0
Read/Write R R R R/W R/W R/W R/W R/W
R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0/0/1® 0/1/0® 1/0/0®) 0 0
1 1 1 1 1 1 1
Note: 1. Initial values respectively for the ATmegal64P/324P/644P.
Table 4-2. Stack Pointer size
Device Stack Pointer size
ATmegal64P SP[10:0]
ATmega324P SP[11:0]
ATmega644P SP[12:0]
45.2 RAMPZ — Extended Z-pointer Register for ELPM/SPM
Bit 7 6 5 4 3 2 1 0
0x3B (0x5B) I RAMPZ7 RAMPZ6 RAMPZ5 RAMPZ4 RAMPZ3 RAMPZ2 RAMPZ1 RAMPZ0 I RAMPZ
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0
For ELPM/SPM instructions, the Z-pointer is a concatenation of RAMPZ, ZH, and ZL, as shown
in Figure 4-4. Note that LPM is not affected by the RAMPZ setting.
Figure 4-4. The Z-pointer used by ELPM and SPM
Bit (Individually) 7 0 7 0 7 0
| RAMPZ | ZH | ZL |
Bit (Z-pointer) 23 16 15 8 7 0
The actual number of bits is implementation dependent. Unused bits in an implementation will
always read as zero. For compatibility with future devices, be sure to write these bits to zero.
4.6 Instruction Execution Timing

This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clk¢py,, directly generated from the selected clock source for the
chip. No internal clock division is used.

Figure 4-5 on page 15 shows the parallel instruction fetches and instruction executions enabled
by the Harvard architecture and the fast-access Register File concept. This is the basic pipelin-
ing concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions
per cost, functions per clocks, and functions per power-unit.

ATMEL 1

A\ T M egal164P/324P/644P

4.7

80110-AVR-07/10

Figure 4-5. The Parallel Instruction Fetches and Instruction Executions

T1 T2 T3 T4

ok — — 4 1 1

CPU

1st Instruction Fetch

1

i

1st Instruction Execute :
2nd Instruction Fetch :

1

1

1

2nd Instruction Execute
3rd Instruction Fetch
3rd Instruction Execute
4th Instruction Fetch X X X N

Figure 4-6 shows the internal timing concept for the Register File. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 4-6. Single Cycle ALU Operation
T1 T2 T3 T4

k. — 0 N

CPU
Total Execution Time

Register Operands Fetch

ALU Operation Execute

1
1
1
1
1
1
]
1
1
T J
1

1

Result Write Back : .
1 T 1 1
1 1 1 1

Reset and Interrupt Handling

The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Interrupt
Enable bit in the Status Register in order to enable the interrupt. Depending on the Program
Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12
are programmed. This feature improves software security. See the section "Memory Program-
ming” on page 293 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in "Interrupts” on page 61. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INTO — the External Interrupt Request
0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL
bit in the MCU Control Register (MCUCR). Refer to "Interrupts” on page 61 for more information.
The Reset Vector can also be moved to the start of the Boot Flash section by programming the
BOOTRST Fuse, see "Memory Programming” on page 293.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled

ATMEL i

A\ T M egal164P/324P/644P

80110-AVR-07/10

interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a
Return from Interrupt instruction — RETI — is executed.

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vec-
tor in order to execute the interrupt handling routine, and hardware clears the corresponding
Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s)
to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is
cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is
cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt
Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the
Global Interrupt Enable bit is set, and will then be executed by order of priority.

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the
interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute one
more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine, nor
restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled.
No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the
CLlI instruction. The following example shows how this can be used to avoid interrupts during the
timed EEPROM write sequence..

Assembly Code Example

in rlé6, SREG ; store SREG value
cli ; disable interrupts during timed sequence
sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE
out SREG, rlé6 ; restore SREG value (I-bit)

C Code Example

char cSREG;

CSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */
__disable interrupt();

EECR |= (1<<EEMPE); /* start EEPROM write */
EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

ATMEL i

A\ T M egal164P/324P/644P

Assembly Code Example

sei ; set Global Interrupt Enable
sleep; enter sleep, waiting for interrupt
; note: will enter sleep before any pending

; interrupt (s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */
__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt (s) */

4.7.1 Interrupt Response Time

80110-AVR-07/10

The interrupt execution response for all the enabled AVR interrupts is five clock cycles minimum.
After five clock cycles the program vector address for the actual interrupt handling routine is exe-
cuted. During these five clock cycle period, the Program Counter is pushed onto the Stack. The
vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an
interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before
the interrupt is served. If an interrupt occurs when the MCU is in sleep mode, the interrupt exe-
cution response time is increased by five clock cycles. This increase comes in addition to the
start-up time from the selected sleep mode.

A return from an interrupt handling routine takes five clock cycles. During these five clock cycles,
the Program Counter (three bytes) is popped back from the Stack, the Stack Pointer is incre-
mented by three, and the I-bit in SREG is set.

ATMEL i

A\ T M egal164P/324P/644P

5. AVR Memories

51 Overview

This section describes the different memories in the ATmegal64P/324P/644P. The AVR archi-
tecture has two main memory spaces, the Data Memory and the Program Memory space. In
addition, the ATmegal64P/324P/644P features an EEPROM Memory for data storage. All three
memory spaces are linear and regular.

5.2 In-System Reprogrammable Flash Program Memory

80110-AVR-07/10

The ATmegal64P/324P/644P contains 16K/32K/64K bytes On-chip In-System Reprogramma-
ble Flash memory for program storage. Since all AVR instructions are 16 bits or 32 bits wide, the
Flash is organized as 32/64 x 16. For software security, the Flash Program memory space is
divided into two sections, Boot Program section and Application Program section.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The
ATmegal64P/324P/644P Program Counter (PC) is 15/16 bits wide, thus addressing the 32/64K
program memory locations. The operation of Boot Program section and associated Boot Lock
bits for software protection are described in detail in "Memory Programming” on page 293.
"Memory Programming” on page 293 contains a detailed description on Flash data serial down-
loading using the SPI pins or the JTAG interface.

Constant tables can be allocated within the entire program memory address space (see the LPM
— Load Program Memory instruction description.

Timing diagrams for instruction fetch and execution are presented in "Instruction Execution Tim-
ing” on page 14.

ATMEL i

A\ T M egal164P/324P/644P

5.3

80110-AVR-07/10

Figure 5-1. Program Memory Map

Program Memory

0x0000
Application Flash Section
Boot Flash Section
Ox1FFF

SRAM Data Memory

Figure 5-2 shows how the ATmegal64P/324P/644P SRAM Memory is organized.

The ATmegal64P/324P/644P is a complex microcontroller with more peripheral units than can
be supported within the 64 location reserved in the Opcode for the IN and OUT instructions. For
the Extended 1/O space from $060 - $FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.

The first 4,352 Data Memory locations address both the Register File, the I/O Memory,
Extended 1/0O Memory, and the internal data SRAM. The first 32 locations address the Register
file, the next 64 location the standard I/O Memory, then 160 locations of Extended I/O memory
and the next 4,096 locations address the internal data SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register file,
registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address given
by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

ATMEL i

A\ T M egal164P/324P/644P

The 32 general purpose working registers, 64 1/0 registers, 160 Extended I/O Registers and the
1024/2048/4096 bytes of internal data SRAM in the ATmegal64P/324P/644P are all accessible
through all these addressing modes. The Register File is described in "General Purpose Regis-
ter File” on page 12.

Figure 5-2. Data Memory Map for ATmegal64P/324P/644P.

Data Memory

32 Registers 0x0000 - Ox001F
64 1/0 Registers 0x0020 - 0x005F
160 Ext I/0 Reg. 0x0060 - OXO0FF

0x0100

Internal SRAM
(1024/2048/4096 x 8)

0x04FF/0x08FF/0x10FF

531 Data Memory Access Times

This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clksp, cycles as described in Figure 5-3.

Figure 5-3. On-chip Data SRAM Access Cycles

T1 T2 T3
1 1 1
1 1 1
1 1 1

ok —4 — 1)

CPU

1
1 1
Address \ Compute Address , X Address valid
1 1 1
Data —— ~ s =0
1 1 1 E
WR __ '/ 2\ =
I 1 1 —
1 1 / it —_
Data . — P —
1 1 T @
1 1 1 &
1 1 1
RD : L/ n\ _|
1 1

Memory Access Instruction Next Instruction

ATMEL 2

80110-AVR-07/10

A\ T M egal164P/324P/644P

5.4 EEPROM Data Memory

The ATmegal64P/324P/644P contains 512B/1K/2K bytes of data EEPROM memory. It is orga-
nized as a separate data space, in which single bytes can be read and written. The EEPROM
has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and
the CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM
Data Register, and the EEPROM Control Register.

For a detailed description of SPI, JTAG and Parallel data downloading to the EEPROM, see
page 308, page 312, and page 297 respectively.

5.4.1 EEPROM Read/Write Access

The EEPROM Access Registers are accessible in the 1/0 space. See "Register Description” on
page 23 for details.

The write access time for the EEPROM is given in Table 5-2 on page 25. A self-timing function,
however, lets the user software detect when the next byte can be written. If the user code con-
tains instructions that write the EEPROM, some precautions must be taken. In heavily filtered
power supplies, V. is likely to rise or fall slowly on power-up/down. This causes the device for
some period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See Section “5.4.2" on page 21. for details on how to avoid problems in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.

5.4.2 Preventing EEPROM Corruption

80110-AVR-07/10

During periods of low V. the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V. reset Protection circuit can
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.

ATMEL 2

A\ T M egal164P/324P/644P

55 1/O Memory

80110-AVR-07/10

The /O space definition of the ATmegal64P/324P/644P is shown in "Register Summary” on
page 413.

All ATmegal64P/324P/644P 1/0Os and peripherals are placed in the I/O space. All I/O locations
may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring data between
the 32 general purpose working registers and the 1/0 space. /O Registers within the address
range Ox00 - Ox1F are directly bit-accessible using the SBI and CBI instructions. In these regis-
ters, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to
the instruction set section for more details. When using the 1/0 specific commands IN and OUT,
the I/0 addresses 0x00 - Ox3F must be used. When addressing 1/0 Registers as data space
using LD and ST instructions, 0x20 must be added to these addresses. The
ATmegal64P/324P/644P is a complex microcontroller with more peripheral units than can be
supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the
Extended I/O space from 0x60 - OxFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instruc-
tions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore
be used on registers containing such Status Flags. The CBI and SBI instructions work with reg-
isters 0x00 to Ox1F only.

The 1/0O and peripherals control registers are explained in later sections.

The ATmegal64P/324P/644P contains three General Purpose 1/0O Registers, see "Register
Description” on page 23. These registers can be used for storing any information, and they are
particularly useful for storing global variables and Status Flags. General Purpose 1/0 Registers
within the address range 0x00 - Ox1F are directly bit-accessible using the SBI, CBI, SBIS, and
SBIC instructions.

ATMEL 2

A\ T M egal164P/324P/644P

5.6 Register Description

5.6.1 EEARH and EEARL — The EEPROM Address Register

Bit 15 14 13 12 11 10 9 8
0x22 (0x42) - - - - EEAR11 EEAR10 EEAR9 EEARS EEARH
0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEARO EEARL
7 6 5 4 3 2 1 0
Read/Write R R R R R/W R/W R/W R/W
R/W R/IW R/IW R/W R/W R/W R/IW R/W
Initial Value 0 0 0 0 X X X X
X X X X X X X X

* Bits 15:12 — Res: Reserved Bits
These bits are reserved bits in the ATmegal64P/324P/644P and will always read as zero.

e Bits 11:0 — EEARS8:0: EEPROM Address

The EEPROM Address Registers — EEARH and EEARL specify the EEPROM address in the 4K
bytes EEPROM space. The EEPROM data bytes are addressed linearly between 0 and 4096.
The initial value of EEAR is undefined. A proper value must be written before the EEPROM may
be accessed.

5.6.2 EEDR — The EEPROM Data Register

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) | wmsB | Lse | EEDR
Read/Write RIW RIW RIW R/W RIW R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

» Bits 7:0 - EEDR7:0: EEPROM Data

For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

5.6.3 EECR — The EEPROM Control Register

Bit 7 6 5 4 3 2 1 0

ox1F (0x3F) | - | - EEPM1 EEPMO EERIE EEMPE EEPE EERE | EECR
Read/Write R R RIW RIW R/W RIW R/W RIW

Initial Value 0 0 X X 0 0 X 0

* Bits 7:6 — Res: Reserved Bits
These bits are reserved bits in the ATmegal64P/324P/644P and will always read as zero.

e Bits 5:4 — EEPM1 and EEPMO: EEPROM Programming Mode Bits

The EEPROM Programming mode bit setting defines which programming action that will be trig-
gered when writing EEPE. It is possible to program data in one atomic operation (erase the old
value and program the new value) or to split the Erase and Write operations in two different
operations. The Programming times for the different modes are shown in Table 5-1 on page 24.

ATMEL 2

80110-AVR-07/10

A\ T M egal164P/324P/644P

While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be
reset to Ob00 unless the EEPROM is busy programming.

Table 5-1. EEPROM Mode Bits

Programming
EEPM1 EEPMO Time Operation
0 0 3.4 ms Erase and Write in one operation (Atomic Operation)
0 1 1.8 ms Erase Only
1 0 1.8 ms Write Only
1 1 - Reserved for future use

* Bit 3 - EERIE: EEPROM Ready Interrupt Enable

Writing EERIE to one enables the EEPROM Ready Interrupt if the I-bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant inter-
rupt when EEPE is cleared.

* Bit 2 - EEMPE: EEPROM Master Programming Enable
The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at the
selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has been
written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

* Bit 1 - EEPE: EEPROM Programming Enable

The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, other-
wise no EEPROM write takes place. The following procedure should be followed when writing
the EEPROM (the order of steps 3 and 4 is not essential):

Wait until EEPE becomes zero.

Wait until SPMEN in SPMCSR becomes zero.

Write new EEPROM address to EEAR (optional).

Write new EEPROM data to EEDR (optional).

Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.
Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See "Memory Pro-
gramming” on page 293 for details about Boot programming.

o gk whPRE

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing the
interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag cleared
during all the steps to avoid these problems.

ATMEL 2

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been set,
the CPU is halted for two cycles before the next instruction is executed.

e Bit 0 — EERE: EEPROM Read Enable

The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the correct
address is set up in the EEAR Register, the EERE bit must be written to a logic one to trigger the
EEPROM read. The EEPROM read access takes one instruction, and the requested data is
available immediately. When the EEPROM is read, the CPU is halted for four cycles before the
next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 5-2 on page 25 lists the
typical programming time for EEPROM access from the CPU.

Table 5-2. EEPROM Programming Time
Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write

(from CPU) 26,368 3.3ms

ATMEL 2

A\ T M egal164P/324P/644P

80110-AVR-07/10

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (for example by disabling inter-
rupts globally) so that no interrupts will occur during execution of these functions. The examples
also assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Assembly Code Example?

EEPROM write:
; Wait for completion of previous write
sbic EECR, EEPE
rjmp EEPROM write
; Set up address (rl8:rl17) in address register
out EEARH, rl8
out EEARL, rl7
; Write data (rlé) to Data Register
out EEDR,rlé6
; Write logical one to EEMPE
sbi EECR, EEMPE
; Start eeprom write by setting EEPE
sbi EECR, EEPE

ret

C Code Example®

void EEPROM write (unsigned int uiAddress, unsigned char ucData)
{
/* Wait for completion of previous write */
while (EECR & (1<<EEPE))
/* Set up address and Data Registers */
EEAR = uiAddress;
EEDR = ucData;
/* Write logical one to EEMPE */
EECR |= (1<<EEMPE) ;
/* Start eeprom write by setting EEPE */
EECR |= (1<<EEPE);

Note: 1. See “About Code Examples” on page 8.

ATMEL 2

A\ T M egal164P/324P/644P

The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.

Assembly Code Example®

EEPROM_read:

; Wait for completion of previous write

sbic EECR, EEPE

rjmp EEPROM read

; Set up address (rl8:rl17) in address register
out EEARH, rl8

out EEARL, rl7

; Start eeprom read by writing EERE

sbi EECR, EERE

; Read data from Data Register

in rl6,EEDR

ret

C Code Example®

{

unsigned char EEPROM read(unsigned int uiAddress)

/* Wait for completion of previous write */
while (EECR & (1<<EEPE))

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

Note:

80110-AVR-07/10

1. See “About Code Examples” on page 8.

ATMEL 2

A\ T M egal164P/324P/644P

5.6.4 GPIOR2 — General Purpose I/0O Register 2

Bit 7 6 5 4 3 2 1 0

ox2B (0x48) | MsB | | LsB | GPIoR2
Read/Write R/W RIW R/W R/W RIW R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

5.6.5 GPIOR1 — General Purpose I/0O Register 1

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) | MsB | Lse | GPIOR1
Read/Write RIW RIW RIW R/W RIW R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

5.6.6 GPIORO — General Purpose I/0 Register 0

Bit 7 6 5 4 3 2 1 0

Ox1E(0x3E) | MmsB | | Lse | GPIoRo
Read/Write R/W RIW RIW RIW RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

Note: 1. SRWn1l=SRW11 (upper sector) or SRWOL1 (lower sector), SRWn0O = SRW10 (upper sector) or
SRWOO (lower sector). The ALE pulse in period T4 is only present if the next instruction
accesses the RAM (internal or external).

ATMEL 2

80110-AVR-07/10

A\ T M egal164P/324P/644P

6. System Clock and Clock Options

6.1

6.1.1

6.1.2

80110-AVR-07/10

Clock Systems and their Distribution

Figure 6-1 presents the principal clock systems in the AVR and their distribution. All of the clocks
need not be active at a given time. In order to reduce power consumption, the clocks to modules
not being used can be halted by using different sleep modes, as described in "Power Manage-
ment and Sleep Modes” on page 42. The clock systems are detailed below.

Figure 6-1. Clock Distribution

Asynchronous General /10 Flash and
Timer/Counter Modules ADC CPU Core RAM EEPROM
A Y Y A A A A A

ClKype
clkyq AVR Clock clkepy
Control Unit
ClkAsv CIkFLASH
A A
Reset Logic Watchdog Timer
1 *
Source clock Watchdog clock
System Clock Watchdog
Prescaler Oscillator
Clock
Multiplexer
A A 4 A

Timer/Counter External Clock Crystal Low-frequency Calibrated RC
Oscillator Oscillator Crystal Oscillator Oscillator

CPU Clock — clkepy

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from performing
general operations and calculations.

I/0 Clock —clkq

The 1/O clock is used by the majority of the 1/0O modules, like Timer/Counters, SPI, and USART.
The I/O clock is also used by the External Interrupt module, but note that some external inter-
rupts are detected by asynchronous logic, allowing such interrupts to be detected even if the I/O
clock is halted. Also note that start condition detection in the USI module is carried out asynchro-
nously when clk,q is halted, TWI address recognition in all sleep modes.

ATMEL 2

A\ T M egal164P/324P/644P

6.1.3

6.1.4

6.1.5

6.2

6.2.1

6.2.2

80110-AVR-07/10

Flash Clock — clkg asy

The Flash clock controls operation of the Flash interface. The Flash clock is usually active simul-
taneously with the CPU clock.

Asynchronous Timer Clock — clkgy

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32 kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

ADC Clock — clkapc

The ADC is provided with a dedicated clock domain. This allows halting the CPU and 1/O clocks
in order to reduce noise generated by digital circuitry. This gives more accurate ADC conversion
results.

Clock Sources

The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to the
appropriate modules.

Table 6-1. Device Clocking Options Select™®

Device Clocking Option CKSEL3..0
Low Power Crystal Oscillator 1111 - 1000
Full Swing Crystal Oscillator 0111 - 0110
Low Frequency Crystal Oscillator 0101 - 0100
Internal 128 kHz RC Oscillator 0011
Calibrated Internal RC Oscillator 0010
External Clock 0000
Reserved 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
Default Clock Source

The device is shipped with internal RC oscillator at 8.0 MHz and with the fuse CKDIV8 pro-
grammed, resulting in 1.0 MHz system clock. The startup time is set to maximum and time-out
period enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default setting ensures that
all users can make their desired clock source setting using any available programming interface.

Clock Startup Sequence

Any clock source needs a sufficient V. to start oscillating and a minimum number of oscillating
cycles before it can be considered stable.

To ensure sufficient V., the device issues an internal reset with a time-out delay (t;oy7) after
the device reset is released by all other reset sources. "On-chip Debug System” on page 46
describes the start conditions for the internal reset. The delay (t;o7) is timed from the Watchdog
Oscillator and the number of cycles in the delay is set by the SUTx and CKSELX fuse bits. The

ATMEL L

A\ T M egal164P/324P/644P

selectable delays are shown in Table 6-2. The frequency of the Watchdog Oscillator is voltage
dependent as shown in "Typical Characteristics” on page 338.

Table 6-2. Number of Watchdog Oscillator Cycles

Typ Time-out (V¢ = 5.0V) Typ Time-out (V¢ = 3.0V) Number of Cycles
0Oms 0ms 0
4.1ms 4.3 ms 512
65 ms 69 ms 8K (8,192)

Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum Vcc. The
delay will not monitor the actual voltage and it will be required to select a delay longer than the
Vcc rise time. If this is not possible, an internal or external Brown-Out Detection circuit should be
used. A BOD circuit will ensure sufficient Vcc before it releases the reset, and the time-out delay
can be disabled. Disabling the time-out delay without utilizing a Brown-Out Detection circuit is
not recommended.

The oscillator is required to oscillate for a minimum number of cycles before the clock is consid-
ered stable. An internal ripple counter monitors the oscillator output clock, and keeps the internal
reset active for a given number of clock cycles. The reset is then released and the device will
start to execute. The recommended oscillator start-up time is dependent on the clock type, and
varies from 6 cycles for an externally applied clock to 32K cycles for a low frequency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time when
the device starts up from reset. When starting up from Power-save or Power-down mode, Vcc is
assumed to be at a sufficient level and only the start-up time is included.

6.2.3 Clock Source Connections

80110-AVR-07/10

The pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which
can be configured for use as an On-chip Oscillator, as shown in Figure 6-2 on page 31. Either a
quartz crystal or a ceramic resonator may be used.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and the
electromagnetic noise of the environment. For ceramic resonators, the capacitor values given by
the manufacturer should be used.

Figure 6-2. Crystal Oscillator Connections

Cc2

— |—17 XTAL2
c1 7
o St 1 1 xmau

GND

ATMEL 2

A\ T M egal164P/324P/644P

6.3 Low Power Crystal Oscillator

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-
put. It gives the lowest power consumption, but is not capable of driving other clock inputs, and
may be more susceptible to noise in noisy environments. In these cases, refer to the "Full Swing
Crystal Oscillator” on page 33.

Some initial guidelines for choosing capacitors for use with crystals are given in Table 6-3. The
crystal should be connected as described in "Clock Source Connections” on page 31.

The Low Power Oscillator can operate in three different modes, each optimized for a specific fre-
quency range. The operating mode is selected by the fuses CKSEL3..1 as shown in Table 6-3.

Table 6-3. Low Power Crystal Oscillator Operating Modes®

Recommended Range for Capacitors C1
Frequency Range (MHz) CKSEL3..1@ and C2 (pF)
0.4-09 100® -
09-3.0 101 12-22
3.0-8.0 110 12-22
8.0-16.0 111 12-22

Notes: 1. If 8 MHz frequency exceeds the specification of the device (depends on V), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

2. This is the recommended CKSEL settings for the different frequency ranges.
3. This option should not be used with crystals, only with ceramic resonators.

The CKSELO Fuse together with the SUT1..0 Fuses select the start-up times as shown in Table

6-4.
Table 6-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection
Start-up Time from Additional Delay

Oscillator Source / Power-down and from Reset
Power Conditions Power-save (Vec =5.0V) CKSELO | SUTL1..0
C;gramlc resonator, fast 258 CK 14CK + 4.1 ms® 0 00
rising power
(_Ze_ramlc resonator, slowly 258 CK 14CK + 65 ms® 0 01
rising power
Ceramic resonator, BOD 1K CK 14CK®@ 0 10
enabled
C;gramlc resonator, fast 1K CK 14CK + 4.1 ms® 0 11
rising power
(_Ze_ramlc resonator, slowly 1K CK 14CK + 65 ms® 1 00
rising power

ATMEL 5

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 6-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection (Continued)

Start-up Time from Additional Delay
Oscillator Source / Power-down and from Reset
Power Conditions Power-save (Vee =5.0V) CKSELO | SUTL1..0
Crystal Oscillator, BOD 16K CK 14CK 1 o1
enabled
Crystal Oscillator, fast 16K CK 14CK + 4.1 ms 1 10
rising power
(_:r_ystal Oscillator, slowly 16K CK 14CK + 65 ms 1 11
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
guency of the device, and if frequency stability at start-up is not important for the application.

6.4 Full Swing Crystal Oscillator

80110-AVR-07/10

This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This is
useful for driving other clock inputs and in noisy environments. The current consumption is
higher than the "Low Power Crystal Oscillator” on page 32. Note that the Full Swing Crystal
Oscillator will only operate for Vcc = 2.7 - 5.5 volts.

Some initial guidelines for choosing capacitors for use with crystals are given in Table 6-6. The
crystal should be connected as described in "Clock Source Connections” on page 31.

The operating mode is selected by the fuses CKSEL3..1 as shown in Table 6-5.

Table 6-5. Full Swing Crystal Oscillator Operating Modes

Recommended Range for Capacitors C1
Frequency Range® (MHz) CKSEL3..1 and C2 (pF)

0.4-20 011 12 - 22

Notes: 1. If 8 MHz frequency exceeds the specification of the device (depends on V), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8. It must be ensured
that the resulting divided clock meets the frequency specification of the device.

Table 6-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Oscillator Source / Power-down and from Reset
Power Conditions Power-save (Vee =5.0V) CKSELO | SUTL..0
Qgramlc resonator, fast 258 CK 14CK + 4.1 ms® 0 00
rising power
C_:e_ramlc resonator, slowly 258 CK 14CK + 65 ms® 0 o1
rising power
Ceramic resonator, BOD 1K CK 14CK® 0 10
enabled

ATMEL 5

A\ T M egal164P/324P/644P

Table 6-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Start-up Time from Additional Delay
Oscillator Source / Power-down and from Reset
Power Conditions Power-save (Vee =5.0V) CKSELO | SUTL1..0
C_:e_ramlc resonator, fast 1K CK 14CK + 4.1 ms® 0 11
rising power
Ceramic resonator, slowly 1K CK 14CK + 65 ms® 1 00
rising power
Crystal Oscillator, BOD 16K CK 14CK 1 o1
enabled
C_:r_ystal Oscillator, fast 16K CK 14CK + 41 ms 1 10
rising power
C_:r_ystal Oscillator, slowly 16K CK 14CK + 65 ms 1 11
rising power

Notes: 1. These options should only be used when not operating close to the maximum frequency of the
device, and only if frequency stability at start-up is not important for the application. These
options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency stability
at start-up. They can also be used with crystals when not operating close to the maximum fre-
guency of the device, and if frequency stability at start-up is not important for the application.

6.5 Low Frequency Crystal Oscillator

The Low-frequency Crystal Oscillator is optimized for use with a 32.768 kHz watch crystal.
When selecting crystals, load capasitance and crystal’'s Equivalent Series Resistance, ESR
must be taken into consideration. Both values are specified by the crystal vendor.
ATmegal64P/324P/644P oscillator is optimized for very low power consumption, and thus when
selecting crystals, see Table 6-7 on page 34 for maximum ESR recommendations on 9 pF and
12.5 pF crystals

Table 6-7. Maximum ESR Recommendation for 32.768 kHz Watch Crystal

Crystal CL (pF) Max ESR [kQ]®
9.0 65
12.5 30

Note: 1. Maximum ESR is typical value based on characterization

The Low-frequency Crystal Oscillator provides an internal load capacitance, seeTable 6-8 on
page 34 at each TOSC pin.

Table 6-8. Capasitance for Low-frequency Oscillator.
Device 32 kHz Osc. Type Cap(Xtall/Toscl) Cap(Xtal2/Tosc2)
ATmegal64P/324P/644P System Osc. 18 pF 8 pF
Timer Osc. 6 pF 6 pF

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

The capacitance (Ce +Ci) needed at each TOSC pin can be calculated by using:
C=2-CL-C,
where:

— Ce - is optional external capacitors as described in Figure 8-2 on page29

— Ci - is the pin capacitance in table 8-8 on page 33

— CL - is the load capacitance for a 32.768 kHz crystal specified by the crystal vendor

— CS - is the total stray capacitance for one TOSC pin.
Crystals specifying load capacitance (CL) higher than 8.0 pF, require external capacitors applied
as described in Figure 6-2 on page 31.

When this oscillator is selected, start-up times are determined by the SUT Fuses and CKSELO
as shown in Table 6-9.

Table 6-9. Start-up Times for the Low Frequency Crystal Oscillator Clock Selection
Start-up Time from Additional Delay
Power-down and from Reset
Power Conditions Power-save (Ve =5.0V) CKSELO | SUT1..0
BOD enabled 1K CK 14CK®W 0 00
Fast rising power 1K CK 14CK + 4.1 ms® 0 01
Slowly rising power 1K CK 14CK + 65 ms®W 0 10
Reserved 0 11
BOD enabled 32K CK 14CK 1 00
Fast rising power 32K CK 14CK + 4.1 ms 1 01
Slowly rising power 32K CK 14CK + 65 ms 1 10
Reserved 1 11

Note: 1. These options should only be used if frequency stability at start-up is not important for the
application.

ATMEL 5

80110-AVR-07/10

A\ T M egal164P/324P/644P

6.6 Calibrated Internal RC Oscillator

80110-AVR-07/10

By default, the Internal RC Oscillator provides an approximate 8 MHz clock. Though voltage and
temperature dependent, this clock can be very accurately calibrated by the the user. See Table
25-4 on page 330 and "Internal Oscillator Speed” on page 356 and page 380 for more details.
The device is shipped with the CKDIV8 Fuse programmed. See "System Clock Prescaler” on
page 38 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown in
Table 6-10. If selected, it will operate with no external components. During reset, hardware loads
the pre-programmed calibration value into the OSCCAL Register and thereby automatically cal-
ibrates the RC Oscillator. The accuracy of this calibration is shown as Factory calibration in
Table 25-4 on page 330.

By changing the OSCCAL register from SW, see "OSCCAL — Oscillator Calibration Register” on
page 40, it is possible to get a higher calibration accuracy than by using the factory calibration.
The accuracy of this calibration is shown as User calibration in Table 25-4 on page 330.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the

Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed cali-

bration value, see the section "Calibration Byte” on page 296.

Table 6-10. Internal Calibrated RC Oscillator Operating Modes

Frequency Range® (MHz) CKSEL3..0
7.3-81 0010W

Notes: 1. The device is shipped with this option selected.
2. If 8 MHz frequency exceeds the specification of the device (depends on V), the CKDIV8
Fuse can be programmed in order to divide the internal frequency by 8.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 6-11 on page 36.

Table 6-11. Start-up times for the Internal Calibrated RC Oscillator clock selection

Start-up Time from Power- Additional Delay from
Power Conditions down and Power-save Reset (Ve =5.0V) SUT1..0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms 100
Reserved 11

Note: 1. The device is shipped with this option selected.

ATMEL s

A\ T M egal164P/324P/644P

6.7 128 kHz Internal Oscillator

The 128 kHz internal Oscillator is a low power Oscillator providing a clock of 128 kHz. The fre-
quency is nominal at 3V and 25°C. This clock may be select as the system clock by
programming the CKSEL Fuses to “0011” as shown in Table 6-12.

Table 6-12. 128 kHz Internal Oscillator Operating Modes®

Nominal Frequency CKSEL3..0
128 kHz 0011

Note: 1. Note that the 128 kHz oscillator is a very low power clock source, and is not designed for high

accuracy.
When this clock source is selected, start-up times are determined by the SUT Fuses as shown in
Table 6-13.
Table 6-13. Start-up Times for the 128 kHz Internal Oscillator
Start-up Time from Power- Additional Delay from
Power Conditions down and Power-save Reset SUT1..0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4 ms 01
Slowly rising power 6 CK 14CK + 64 ms 10
Reserved 11

6.8 External Clock

To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
6-3. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000".

Figure 6-3. External Clock Drive Configuration

NC ———— XTAL2
EXTERNAL
CLOCK ——— XTAL1
SIGNAL
GND

—

When this clock source is selected, start-up times are determined by the SUT Fuses as shown in

Table 6-15.
Table 6-14. Crystal Oscillator Clock Frequency
Nominal Frequency CKSEL3..0
0-20 MHz 0000

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 6-15. Start-up Times for the External Clock Selection

Start-up Time from Power- Additional Delay from
Power Conditions down and Power-save Reset (Ve = 5.0V) SUT1..0
BOD enabled 6 CK 14CK 00
Fast rising power 6 CK 14CK + 4.1 ms 01
Slowly rising power 6 CK 14CK + 65 ms 10
Reserved 11

When applying an external clock, it is required to avoid sudden changes in the applied clock fre-
quency to ensure stable operation of the MCU. A variation in frequency of more than 2% from
one clock cycle to the next can lead to unpredictable behavior. If changes of more than 2% is
required, ensure that the MCU is kept in Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the internal
clock frequency while still ensuring stable operation. Refer to "System Clock Prescaler” on page
38 for details.

6.9 Timer/Counter Oscillator

ATmegal64P/324P/644P uses the same type of crystal oscillator for Low-frequency Crystal
Oscillator and Timer/Counter Oscillator. See "Low Frequency Crystal Oscillator” on page 34 for
details on the oscillator and crystal requirements.

The device can operate its Timer/Counter2 from an external 32.768 kHz watch crystal or a exter-
nal clock source. See "Clock Source Connections” on page 31 for details.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is
written to logic one. See "The Output Compare Register B contains an 8-bit value that is contin-
uously compared with the counter value (TCNT2). A match can be used to generate an Output
Compare interrupt, or to generate a waveform output on the OC2B pin.” on page 157 for further
description on selecting external clock as input instead of a 32.768 kHz watch crystal.

6.10 Clock Output Buffer

The device can output the system clock on the CLKO pin. To enable the output, the CKOUT
Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other cir-
cuits on the system. The clock also will be output during reset, and the normal operation of I/O
pin will be overridden when the fuse is programmed. Any clock source, including the internal RC
Oscillator, can be selected when the clock is output on CLKO. If the System Clock Prescaler is
used, it is the divided system clock that is output.

6.11 System Clock Prescaler

The ATmegal64P/324P/644P has a system clock prescaler, and the system clock can be
divided by setting the "CLKPR — Clock Prescale Register” on page 40. This feature can be used
to decrease the system clock frequency and the power consumption when the requirement for
processing power is low. This can be used with all clock source options, and it will affect the
clock frequency of the CPU and all synchronous peripherals. clk;q, clkapc, Clkepy, and clkg asy
are divided by a factor as shown in Table 6-16 on page 41.

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occurs in the clock system. It also ensures that no intermediate frequency is higher than

ATMEL s

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

neither the clock frequency corresponding to the previous setting, nor the clock frequency corre-
sponding to the new setting.

The ripple counter that implements the prescaler runs at the frequency of the undivided clock,
which may be faster than the CPU's clock frequency. Hence, it is not possible to determine the
state of the prescaler - even if it were readable, and the exact time it takes to switch from one
clock division to the other cannot be exactly predicted. From the time the CLKPS values are writ-
ten, it takes between T1 + T2 and T1 + 2 * T2 before the new clock frequency is active. In this
interval, 2 active clock edges are produced. Here, T1 is the previous clock period, and T2 is the
period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in
CLKPR to zero.
2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure is
not interrupted.

ATMEL s

A\ T M egal164P/324P/644P

6.12 Register Description

6.12.1 OSCCAL - Oscillator Calibration Register

Bit 7 6 5 4 3 2 1 0

(0x66) | car | cae | caLs CAL4 CAL3 CAL2 CAL1 CALO | OsccAL
Read/Write R/W RIW R/W R/W RIW R/W RIW R/W

Initial Value Device Specific Calibration Value

e Bits 7:0 — CAL7:0: Oscillator Calibration Value

The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value is
automatically written to this register during chip reset, giving the Factory calibrated frequency as
specified in Table 25-4 on page 330. The application software can write this register to change
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 25-
4 on page 330. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.

The CALY bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
guency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CALS6..0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of Ox7F gives the highest frequency in the
range.

6.12.2 CLKPR - Clock Prescale Register

Bit 7 6 5 4 3 2 1 0

(0x61) ICLKPCE | - - - CLKPS3 CLKPS2 CLKPS1 CLKPSOI CLKPR
Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description

e Bit 7 - CLKPCE: Clock Prescaler Change Enable

The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the
CLKPCE hit.

* Bits 3:0 — CLKPS3:0: Clock Prescaler Select Bits 3-0

These bits define the division factor between the selected clock source and the internal system
clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-
nous peripherals is reduced when a division factor is used. The division factors are given in
Table 6-16 on page 41.

ATMEL i

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000". If CKDIV8 is programmed, CLKPS bits are reset to
“0011", giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present operat-
ing conditions. Note that any value can be written to the CLKPS bits regardless of the CKDIV8
Fuse setting. The Application software must ensure that a sufficient division factor is chosen if
the selected clock source has a higher frequency than the maximum frequency of the device at
the present operating conditions. The device is shipped with the CKDIV8 Fuse programmed.

Table 6-16. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPSO Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved
1 0 1 0 Reserved
1 0 1 1 Reserved
1 1 0 0 Reserved
1 1 0 1 Reserved
1 1 1 0 Reserved
1 1 1 1 Reserved

ATMEL i

A\ T M egal164P/324P/644P

7. Power Management and Sleep Modes

7.1 Overview

Sleep modes enable the application to shut down unused modules in the MCU, thereby saving-
power. The AVR provides various sleep modes allowing the user to tailor the power
consumption to the application’s requirements.

When enabled, the Brown-out Detector (BOD) actively monitors the power supply voltage during
the sleep periods. To further save power, it is possible to disable the BOD in some sleep modes.
See "BOD Disable” on page 43 for more details.

7.2 Sleep Modes

Figure 6-1 on page 29 presents the different clock systems in the ATmegal64P/324P/644P, and
their distribution. The figure is helpful in selecting an appropriate sleep mode. Table 7-1 shows
the different sleep modes, their wake up sources and BOD disable ability.

Table 7-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
3
© ° <
S [$) © g § QG:J g §
T o kel 8 S| & S S = 3 O| 2o
> 2 8} | © 8 @ . 9 o o E: = N — 8 = - g [a]
2 2 2 5 2l§zf B2 fosE EEn 8 & £ £8
Sleep Mode S| 3 3| B TS84 FH ZaFrs £ 64 < =| 6 8a
Idle X | X | X X X® | X | X| X| X | X| x| X
ADCNRM X | X X XA [X® X [X@] x| X | X
Power-down X® | X X
Power-save X X@ | x@| x | X X
Standby® X X® X X
Extended
2 2 (3)
Standby X X X X X X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.
2. If Timer/Counter2 is running in asynchronous mode.
3. For INTO, only level interrupt.

To enter any of the sleep modes, the SE bit in SMCR must be written to logic one and a SLEEP
instruction must be executed. The SM2, SM1, and SMO bits in the SMCR Register select which
sleep mode will be activated by the SLEEP instruction. See Table 7-2 on page 47 for a
summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File and
SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep mode,
the MCU wakes up and executes from the Reset Vector.

ATMEL i

80110-AVR-07/10

A\ T M egal164P/324P/644P

7.3 BOD Disable

7.4 Idle Mode

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses, Table 24-3 on page 294,
the BOD is actively monitoring the power supply voltage during a sleep period. To save power, it
is possible to disable the BOD by software for some of the sleep modes, see Table 7-1 on page
42. The sleep mode power consumption will then be at the same level as when BOD is globally
disabled by fuses. If BOD is disabled in software, the BOD function is turned off immediately
after entering the sleep mode. Upon wake-up from sleep, BOD is automatically enabled again.
This ensures safe operation in case the V. level has dropped during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately 60
Us to ensure that the BOD is working correctly before the MCU continues executing code.

BOD disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see
"MCUCR — MCU Control Register” on page 48. Writing this bit to one turns off the BOD in rele-
vant sleep modes, while a zero in this bit keeps BOD active. Default setting keeps BOD active,
that is, BODS set to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see "MCUCR —
MCU Control Register” on page 48.

When the SM2..0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the SPI, USART, Analog Comparator, ADC, 2-wire Serial
Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating. This sleep
mode basically halts clkep, and clkg asy, While allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register — ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

7.5 ADC Noise Reduction Mode

80110-AVR-07/10

When the SM2..0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, 2-wire
Serial Interface address match, Timer/Counter2 and the Watchdog to continue operating (if
enabled). This sleep mode basically halts clkl/O, clkCPU, and clkFLASH, while allowing the
other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements. If
the ADC is enabled, a conversion starts automatically when this mode is entered. Apart form the
ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog interrupt, a Brown-out Reset, a 2-wire serial interface interrupt, a Timer/Counter2
interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT7:4 or a pin
change interrupt can wakeup the MCU from ADC Noise Reduction mode.

ATMEL i

A\ T M egal164P/324P/644P

7.6 Power-down Mode

When the SM2..0 bits are written to 010, the SLEEP instruction makes the MCU enter Power-
down mode. In this mode, the external Oscillator is stopped, while the external interrupts, the 2-
wire Serial Interface, and the Watchdog continue operating (if enabled). Only an External Reset,
a Watchdog Reset, a Brown-out Reset, 2-wire Serial Interface address match, an external level
interrupt on PCINT7:4, an external interrupt on INT2:0, or a pin change interrupt can wake up
the MCU. This sleep mode basically halts all generated clocks, allowing operation of asynchro-
nous modules only.

Note that if a level triggered interrupt is used for wake-up from Power-down mode, the changed
level must be held for some time to wake up the MCU. Refer to "External Interrupts” on page 67
for details.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define the
Reset Time-out period, as described in "Clock Sources” on page 30.

7.7 Power-save Mode

When the SM2:0 bits are written to 011, the SLEEP instruction makes the MCU enter Power-
save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from
either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in
SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save
mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save
mode. If the Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is
stopped during sleep. If the Timer/Counter2 is not using the synchronous clock, the clock source
is stopped during sleep. Note that even if the synchronous clock is running in Power-save, this
clock is only available for the Timer/Counter2.

7.8 Standby Mode

When the SM2..0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to Power-down
with the exception that the Oscillator is kept running. From Standby mode, the device wakes up
in six clock cycles.

7.9 Extended Standby Mode

When the SM2..0 bits are 111 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to
Power-save mode with the exception that the Oscillator is kept running. From Extended Standby
mode, the device wakes up in six clock cycles.

ATMEL u

80110-AVR-07/10

A\ T M egal164P/324P/644P

7.10 Power Reduction Register

The Power Reduction Register(PRR), see "PRR — Power Reduction Register” on page 48, pro-
vides a method to stop the clock to individual peripherals to reduce power consumption. The
current state of the peripheral is frozen and the I/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a peripheral,
which is done by clearing the bit in PRR, puts the peripheral in the same state as before
shutdown.

Peripheral shutdown can be used in Idle mode and Active mode to significantly reduce the over-
all power consumption. In all other sleep modes, the clock is already stopped.

7.11 Minimizing Power Consumption

There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.

7.11.1 Analog to Digital Converter

If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to "ADC - Analog-to-digital Converter” on page
240 for details on ADC operation.

7.11.2 Analog Comparator

When entering Idle mode, the Analog Comparator should be disabled if not used. When entering
ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep modes,
the Analog Comparator is automatically disabled. However, if the Analog Comparator is set up
to use the Internal Voltage Reference as input, the Analog Comparator should be disabled in all
sleep modes. Otherwise, the Internal Voltage Reference will be enabled, independent of sleep
mode. Refer to "AC - Analog Comparator” on page 237 for details on how to configure the Ana-
log Comparator.

7.11.3 Brown-out Detector

If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to "Brown-out Detection” on page 53 for details
on how to configure the Brown-out Detector.

7.11.4 Internal Voltage Reference

The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power. When
turned on again, the user must allow the reference to start up before the output is used. If the
reference is kept on in sleep mode, the output can be used immediately. Refer to "Internal Volt-
age Reference” on page 54 for details on the start-up time.

ATMEL i

80110-AVR-07/10

A\ T M egal164P/324P/644P

7.11.5 Watchdog Timer

7.11.6 Port Pins

If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to "Interrupts” on page 61 for details on how to configure the Watchdog Timer.

When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the 1/O clock (clk,5) and the ADC clock (clk,pc) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section "Digital Input Enable and Sleep Modes” on page 76 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to V¢/2, the input buffer will use excessive power.

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to Vc/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDRO). Refer to "DIDR1 - Digital Input Disable Register 1" on page 239 and "DIDRO — Digital
Input Disable Register 0” on page 259 for details.

7.11.7 On-chip Debug System

80110-AVR-07/10

If the On-chip debug system is enabled by the OCDEN Fuse and the chip enters sleep mode,
the main clock source is enabled, and hence, always consumes power. In the deeper sleep
modes, this will contribute significantly to the total current consumption.

There are three alternative ways to disable the OCD system:

 Disable the OCDEN Fuse.
 Disable the JTAGEN Fuse.
* Write one to the JTD bit in MCUCR.

ATMEL i

A\ T M egal164P/324P/644P

7.12 Register Description
7.12.1 SMCR - Sleep Mode Control Register

The Sleep Mode Control Register contains control bits for power management.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) | - | - | - | - | sv2 | smi | smo | s | swmcr
Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 3,2,1 - SM2:0: Sleep Mode Select Bits 2,1, and 0
These bits select between the five available sleep modes as shown in Table 7-2.

Table 7-2. Sleep Mode Select

SM2 SM1 SMO Sleep Mode
0 0 0 Idle
0 0 1 ADC Noise Reduction
0 1 0 Power-down
0 1 1 Power-save
1 0 0 Reserved
1 0 1 Reserved
1 1 0 Standby®
1 1 1 Extended Standby®

Note: 1. Standby modes are only recommended for use with external crystals or resonators.

e Bit 0 — SE: Sleep Enable

The SE bit must be written to logic one to make the MCU enter the sleep mode when the SLEEP
instruction is executed. To avoid the MCU entering the sleep mode unless it is the programmer’s
purpose, it is recommended to write the Sleep Enable (SE) bit to one just before the execution of
the SLEEP instruction and to clear it immediately after waking up.

ATMEL i

80110-AVR-07/10

A\ T M egal164P/324P/644P

7.12.2 MCUCR — MCU Control Register

Bit 7 6 5 4 3 1 0

0x35 (0x55) I JTD BODS BODSE PUD IVSEL IVCE | MCUCR
Read/Write R/W R R R/IW R R/W R/W

Initial Value 0 0 0 0 0 0 0

* Bit 6 — BODS: BOD Sleep

The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table 7-1
on page 42. Writing to the BODS bit is controlled by a timed sequence and an enable bit,
BODSE in MCUCR. To disable BOD in relevant sleep modes, both BODS and BODSE must first
be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be set to

zero within four clock cycles.

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed
while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is

automatically cleared after three clock cycles.

e Bit5-BODSE: BOD Sleep Enable

BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD disable

is controlled by a timed sequence.

7.12.3 PRR — Power Reduction Register

Bit 7 6 5 4 3 1 0
(0x64) I PRTWI PRTIM2 PRTIMO PRUSART1 PRTIM1 PRUSARTO PRADC I PRR
Read/Write R/IW R/IW R/IW RIW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0

* Bit 7 - PRTWI: Power Reduction TWI

Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When
waking up the TWI again, the TWI should be re initialized to ensure proper operation.

* Bit 6 - PRTIM2: Power Reduction Timer/Counter2

Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode (AS2
is 0). When the Timer/Counter2 is enabled, operation will continue like before the shutdown.

¢ Bit5- PRTIMO: Power Reduction Timer/Counter0

Writing a logic one to this bit shuts down the Timer/Counter0 module. When the Timer/Counter0

is enabled, operation will continue like before the shutdown.

* Bit 4 - PRUSART1: Power Reduction USART1

Writing a logic one to this bit shuts down the USART1 by stopping the clock to the module.
When waking up the USART1 again, the USART1 should be reinitialized to ensure proper

operation.

* Bit 3 - PRTIM1: Power Reduction Timer/Counterl

Writing a logic one to this bit shuts down the Timer/Counterl module. When the Timer/Counterl

is enabled, operation will continue like before the shutdown.

ATMEL

80110-AVR-07/10

48

A\ T M egal164P/324P/644P

80110-AVR-07/10

e Bit 2 - PRSPI: Power Reduction Serial Peripheral Interface

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock to
the module. When waking up the SPI again, the SPI should be re initialized to ensure proper
operation.

* Bit 1 - PRUSARTO: Power Reduction USARTO

Writing a logic one to this bit shuts down the USARTO by stopping the clock to the module.
When waking up the USARTO again, the USARTO should be reinitialized to ensure proper
operation.

» Bit 0 - PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut down.
The analog comparator cannot use the ADC input MUX when the ADC is shut down.

ATMEL i

A\ T M egal164P/324P/644P

8. System Control and Reset

8.1 Resetting the AVR

During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. The instruction placed at the Reset Vector must be a JMP — Absolute
Jump — instruction to the reset handling routine. If the program never enables an interrupt
source, the Interrupt Vectors are not used, and regular program code can be placed at these
locations. This is also the case if the Reset Vector is in the Application section while the Interrupt
Vectors are in the Boot section or vice versa. The circuit diagram in Figure 8-1 on page 51
shows the reset logic. "System and Reset Characteristics” on page 331 defines the electrical
parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The time-out
period of the delay counter is defined by the user through the SUT and CKSEL Fuses. The dif-
ferent selections for the delay period are presented in "Clock Sources” on page 30.

8.2 Reset Sources

80110-AVR-07/10

The ATmegal64P/324P/644P has five sources of reset:

« Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset
threshold (Vpgr)-

« External Reset. The MCU is reset when a low level is present on the RESET pin for longer than
the minimum pulse length.

» Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the
Watchdog is enabled.

» Brown-out Reset. The MCU is reset when the supply voltage V. is below the Brown-out Reset
threshold (Vzor) and the Brown-out Detector is enabled.

* JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one
of the scan chains of the JTAG system. Refer to the section "IEEE 1149.1 (JTAG) Boundary-
scan” on page 266 for details.

ATMEL s

A\ T M egal164P/324P/644P

Figure 8-1. Reset Logic

DATA BUS
A

MCU Status
Register (MCUSR)

LL|
o
Q
il

PORF
JTRF

L
i
o)
=

EXTRF

vee Power-_on Beset
Circuit

Brown-out
BODLEVEL [2..0] Reset Circuit

[l] Pull-up Resistor
RESET SPIKE Reset Circuit s Q—

FILTER

11T
v

COUNTER RESET

INTERNAL RESET

[

JTAG Reset Watchdog
Register Timer

i

Watchdog

Oscillator
>

Clock CK | Delay Counters
Generator 4 TIMEOUT

~ K 4

<
<

CKSEL[3:0]
suti:0) — |

8.3 Power-on Reset

A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection level
is defined in "System and Reset Characteristics” on page 331. The POR is activated whenever
V¢ is below the detection level. The POR circuit can be used to trigger the start-up Reset, as
well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after V. rise. The RESET signal is activated again, without any delay,
when V. decreases below the detection level.

ATMEL 2

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 8-2. MCU Start-up, RESET Tied to V¢

1

-2~ Veor
e K

7Y
RESET J RST

TIME-OUT

INTERNAL
RESET

Figure 8-3. MCU Start-up, RESET Extended Externally

1
- A~ Veor
Vee J

1
1
| |
1 1
1 1,
- Ky
RESET) v RST
| |
1 1
1 1
1 «— t —>
TIME-OUT | | Tout
: :
1 1
1 1
1 1
1 1
INTERNAL I
RESET :

8.4 External Reset

An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see "System and Reset Characteristics” on page 331) will generate a
reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
When the applied signal reaches the Reset Threshold Voltage — Vgs — On its positive edge, the
delay counter starts the MCU after the Time-out period — t;o,;; — has expired.

Figure 8-4. External Reset During Operation

Vce
RESET | |
\ 1,
— A .VRST - -
1 1
1 1
1 1
1 1
1
] <— trour _’|
TIME-OUT ! -
1
1
1
:
INTERNAL |
RESET

ATMEL 52

80110-AVR-07/10

A\ T M egal164P/324P/644P

8.5 Brown-out Detection

ATmegal64P/324P/644P has an On-chip Brown-out Detection (BOD) circuit for monitoring the
V¢ level during operation by comparing it to a fixed trigger level. The trigger level for the BOD
can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis to ensure spike
free Brown-out Detection. The hysteresis on the detection level should be interpreted as Vggr, =
Veor + Viyst/2 and Vgor. = Vot - Viyst/2.

When the BOD is enabled, and V. decreases to a value below the trigger level (Vgor. in Figure
8-5 on page 53), the Brown-out Reset is immediately activated. When V. increases above the
trigger level (Vgors in Figure 8-5 on page 53), the delay counter starts the MCU after the Time-
out period tyor has expired.

The BOD circuit will only detect a drop in V. if the voltage stays below the trigger level for lon-
ger than tzop given in "System and Reset Characteristics” on page 331.

Figure 8-5. Brown-out Reset During Operation

Vee L e S VBor+
VBOT— - 7 T -

1 1
1 1
1 1
RESET : :
1 1
1 1
1 1
1 1
1 1

TIME-OUT ! < trout
| |
1 1
1 1
1
INTERNAL i
RESET |

8.6 Watchdog Reset

80110-AVR-07/10

When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration. On
the falling edge of this pulse, the delay timer starts counting the Time-out period t;o 7. Refer to
page 61 for details on operation of the Watchdog Timer.

Figure 8-6. Watchdog Reset During Operation

Vee
RESET
WDT —> [«— 1 CK Cycle
TIME-OUT ﬂ
o
[}
[}
RESET | trour —
TIME-OUT |
1

INTERNAL
RESET

ATMEL 5

A\ T M egal164P/324P/644P

8.7 Internal Voltage Reference

ATmegal64P/324P/644P features an internal bandgap reference. This reference is used for
Brown-out Detection, and it can be used as an input to the Analog Comparator or the ADC.

8.7.1 Voltage Reference Enable Signals and Start-up Time

80110-AVR-07/10

The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in "System and Reset Characteristics” on page 331. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuse).

2. When the bandgap reference is connected to the Analog Comparator (by setting the
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the three
conditions above to ensure that the reference is turned off before entering Power-down mode.

ATMEL 2

A\ T M egal164P/324P/644P

8.8

8.8.1

8.8.2

Watchdog Timer

Features

Overview

80110-AVR-07/10

* Clocked from separate On-chip Oscillator
* 3 Operating modes
— Interrupt
— System Reset
— Interrupt and System Reset
* Selectable Time-out period from 16 ms to 8s
* Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

ATmegal64P/324P/644P has an Enhanced Watchdog Timer (WDT). The WDT is a timer count-
ing cycles of a separate on-chip 128 kHz oscillator. The WDT gives an interrupt or a system
reset when the counter reaches a given time-out value. In normal operation mode, it is required
that the system uses the WDR - Watchdog Timer Reset - instruction to restart the counter before
the time-out value is reached. If the system doesn't restart the counter, an interrupt or system
reset will be issued.

Figure 8-7. Watchdog Timer

» WATCHDOG
128 kHz »” PRESCALER
SRR EENEEE
OO OB B[RO0 .y
OOOS%S%
YYVYVYYVYVYVYY
<—— WDPO
WDP1
WATCHDOG WDP2
RESET WDP3
WDE MCU RESET

WDIF D
WOIE INTERRUPT

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be used
to wake the device from sleep-modes, and also as a general system timer. One example is to
limit the maximum time allowed for certain operations, giving an interrupt when the operation
has run longer than expected. In System Reset mode, the WDT gives a reset when the timer
expires. This is typically used to prevent system hang-up in case of runaway code. The third
mode, Interrupt and System Reset mode, combines the other two modes by first giving an inter-
rupt and then switch to System Reset mode. This mode will for instance allow a safe shutdown
by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to Sys-
tem Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Interrupt
mode bit (WDIE) are locked to 1 and 0O respectively. To further ensure program security, altera-
tions to the Watchdog set-up must follow timed sequences. The sequence for clearing WDE and
changing time-out configuration is as follows:

ATMEL 5

80110-AVR-07/10

1. Inthe same operation, write a logic one to the Watchdog change enable bit (WDCE) and
WDE. A logic one must be written to WDE regardless of the previous value of the WDE

bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) as

desired, but with the WDCE bit cleared. This must be done in one operation.

A\ T M egal164P/324P/644P

The following code example shows one assembly and one C function for turning off the Watch-
dog Timer. The example assumes that interrupts are controlled (for example by disabling

interrupts globally) so that no interrupts will occur during the execution of these functions.

Assembly Code Example®

WDT off:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Clear WDRF in MCUSR
in rl6, MCUSR
andi 1rl6, (0xff & (0<<WDRF))
out MCUSR, rl6
; Write logical one to WDCE and WDE
; Keep old prescaler setting to prevent unintentional time-out
in rl6, WDTCSR
ori rlé, (1<<WDCE) | (1<<WDE)
out WDTCSR, rlé6
; Turn off WDT
1di rl6, (0<<WDE)
out WDTCSR, rlé6
; Turn on global interrupt
sei

ret

C Code Example®

void WDT off (void)
{
__disable interrupt () ;
__watchdog reset () ;
/* Clear WDRF in MCUSR */
MCUSR &= ~ (1<<WDRF) ;
/* Write logical one to WDCE and WDE */
/* Keep old prescaler setting to prevent unintentional time-out */
WDTCSR |= (1<<WDCE) | (1<<WDE) ;
/* Turn off WDT */
WDTCSR = 0x00;

__enable_interrupt () ;

}

Note: 1. The example code assumes that the part specific header file is included.

ATMEL

56

A\ T M egal164P/324P/644P

80110-AVR-07/10

Note: If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is not
set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. To avoid this
situation, the application software should always clear the Watchdog System Reset Flag
(WDRF) and the WDE control bit in the initialisation routine, even if the Watchdog is not in use.

The following code example shows one assembly and one C function for changing the time-out

value of the Watchdog Timer.

Assembly Code Example™®

WDT_Prescaler_ Change:
; Turn off global interrupt
cli
; Reset Watchdog Timer
wdr
; Start timed sequence
in rl6, WDTCSR
ori rlé, (1<<WDCE) | (1<<WDE)
out WDTCSR, rlé6

; Set new prescaler (time-out) value = 64K cycles (
1ldi rl6, (1<<WDE) | (1<<WDP2) | (1<<WDPO)

out WDTCSR, rlé6

; -- Finished setting new values, used 2 cycles -
; Turn on global interrupt

sei

ret

; -- Got four cycles to set the new values from here -
~0.5 s)

C Code Example®

void WDT Prescaler Change (void)
{
__disable interrupt () ;
__watchdog reset () ;
/* Start timed equence */
WDTCSR |= (1<<WDCE) | (1<<WDE);
/* Set new prescaler (time-out) value = 64K cycles
WDTCSR = (1<<WDE) | (1<<WDP2) | (1<<WDPO);

___enable interrupt();

}

(~0.5 8)

*/

Note: 1. The example code assumes that the part specific header file is included.
Note: The Watchdog Timer should be reset before any change of the WDP bits, since a change

in the WDP bits can result in a time-out when switching to a shorter time-out period.

ATMEL

57

A\ T M egal164P/324P/644P

8.9 Register Description
8.9.1 MCUSR — MCU Status Register

The MCU Status Register provides information on which reset source caused an MCU reset.

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) | = | = | = | JTRF | WDRF | BORF | EXTRF | PORF | MCUSR
Read/Write R R R R/W RIW RIW RIW R/W

Initial Value 0 0 0 See Bit Description

* Bit 4 - JTRF: JTAG Reset Flag

This bit is set if a reset is being caused by a logic one in the JTAG Reset Register selected by
the JTAG instruction AVR_RESET. This bit is reset by a Power-on Reset, or by writing a logic
zero to the flag.

« Bit 3—- WDRF: Watchdog Reset Flag

This bit is set if a Watchdog Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

« Bit 2 - BORF: Brown-out Reset Flag

This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

e Bit 1 - EXTRF: External Reset Flag

This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

* Bit 0 — PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

ATMEL s

80110-AVR-07/10

A\ T M egal164P/324P/644P

8.9.2 WDTCSR — Watchdog Timer Control Register

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0

(0x60) | wor | woiE | wor3 WDCE WDE WDP2 WDP1 wbPo | wDTCSR
Read/Write R/W RIW RIW R/W RIW RIW R/W RIW

Initial Value 0 0 0 0 X 0 0 0

e Bit 7 - WDIF: Watchdog Interrupt Flag

This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is config-
ured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit in
SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

« Bit 6 - WDIE: Watchdog Interrupt Enable

When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt is
enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Interrupt
Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer occurs.

If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. The first time-out in
the Watchdog Timer will set WDIF. Executing the corresponding interrupt vector will clear WDIE
and WDIF automatically by hardware (the Watchdog goes to System Reset Mode). This is use-
ful for keeping the Watchdog Timer security while using the interrupt. To stay in Interrupt and
System Reset Mode, WDIE must be set after each interrupt. This should however not be done
within the interrupt service routine itself, as this might compromise the safety-function of the
Watchdog System Reset mode. If the interrupt is not executed before the next time-out, a Sys-
tem Reset will be applied.

Table 8-1. Watchdog Timer Configuration
WDTON WDE WDIE Mode Action on Time-out

1 0 0 Stopped None

1 0 1 Interrupt Mode Interrupt

1 1 0 System Reset Mode Reset

1 1 1 Interrupt and System Reset Interrupt, then go to System

Mode Reset Mode
0 X X System Reset Mode Reset

e Bit 4 - WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE bit,
and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

e Bit 3- WDE: Watchdog System Reset Enable

WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during con-
ditions causing failure, and a safe start-up after the failure.

59

ATMEL

A\ T M egal164P/324P/644P

e Bit5, 2:0 - WDP3:0: Watchdog Timer Prescaler 3, 2,1 and 0

The WDP3:0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is run-
ning. The different prescaling values and their corresponding time-out periods are shown in
Table 8-2 on page 60.

Table 8-2. Watchdog Timer Prescale Select

Number of WDT Oscillator Typical Time-out at
WDP3 WDP2 WDP1 | WDPO Cycles Vee = 5.0V

0 0 0 0 2K (2048) cycles 16 ms

0 0 0 1 4K (4096) cycles 32ms

0 0 1 0 8K (8192) cycles 64 ms

0 0 1 1 16K (16384) cycles 0.125s

0 1 0 0 32K (32768) cycles 0.25s

0 1 0 1 64K (65536) cycles 0.5s

0 1 1 0 128K (131072) cycles 1.0s

0 1 1 1 256K (262144) cycles 2.0s

1 0 0 0 512K (524288) cycles 4.0s

1 0 0 1 1024K (1048576) cycles 8.0s

1 0 1 0

1 0 1 1

1 1 0 0

Reserved

1 1 0 1

1 1 1 0

1 1 1 1

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

9. Interrupts

9.1 Overview

This section describes the specifics of the interrupt handling as performed in
ATmegal64P/324P/644P. For a general explanation of the AVR interrupt handling, refer to
"Reset and Interrupt Handling” on page 15.

9.2 Interrupt Vectors in ATmegal64P/324P/644P

Table 9-1. Reset and Interrupt Vectors
Vector Program
No. Address® | Source Interrupt Definition
1| 800000 | RESET Watdhdog Reser and JTAG AVR Reset
2 $0002 INTO External Interrupt Request 0
3 $0004 INT1 External Interrupt Request 1
4 $0006 INT2 External Interrupt Request 2
5 $0008 PCINTO Pin Change Interrupt Request 0
6 $000A PCINT1 Pin Change Interrupt Request 1
7 $000C PCINT2 Pin Change Interrupt Request 2
8 $000E PCINT3 Pin Change Interrupt Request 3
9 $0010 WDT Watchdog Time-out Interrupt
10 $0012 TIMER2_COMPA Timer/Counter2 Compare Match A
11 $0014 TIMER2_COMPB Timer/Counter2 Compare Match B
12 $0016 TIMER2_OVF Timer/Counter2 Overflow
13 $0018 TIMER1_CAPT Timer/Counterl Capture Event
14 $001A TIMER1_COMPA Timer/Counterl Compare Match A
15 $001C TIMER1_COMPB Timer/Counterl Compare Match B
16 $001E TIMER1_OVF Timer/Counterl Overflow
17 $0020 TIMERO_COMPA Timer/Counter0 Compare Match A
18 $0022 TIMERO_COMPB Timer/CounterO0 Compare match B
19 $0024 TIMERO_OVF Timer/Counter0 Overflow
20 $0026 SPI_STC SPI Serial Transfer Complete
21 $0028 USARTO_RX USARTO Rx Complete
22 $002A USARTO_UDRE USARTO Data Register Empty
23 $002C USARTO_TX USARTO Tx Complete
24 $002E ANALOG_COMP Analog Comparator
25 $0030 ADC ADC Conversion Complete
26 $0032 EE_READY EEPROM Ready
27 $0034 TWI 2-wire Serial Interface

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 9-1. Reset and Interrupt Vectors (Continued)
Vector Program
No. Address® | Source Interrupt Definition
28 $0036 SPM_READY Store Program Memory Ready
29 $0038 USART1_RX USART1 Rx Complete
30 $003A USART1_UDRE USART1 Data Register Empty
31 $003C USART1_TX USART1 Tx Complete

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at
reset, see "Memory Programming” on page 293.
2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot
Flash Section. The address of each Interrupt Vector will then be the address in this table
added to the start address of the Boot Flash Section.

Table 9-2 shows reset and Interrupt Vectors placement for the various combinations of
BOOTRST and IVSEL settings. If the program never enables an interrupt source, the Interrupt
Vectors are not used, and regular program code can be placed at these locations. This is also
the case if the Reset Vector is in the Application section while the Interrupt Vectors are in the
Boot section or vice versa.

Table 9-2. Reset and Interrupt Vectors Placement®
BOOTRST IVSEL Reset Address Interrupt Vectors Start Address
1 0 0x0000 0x0002
1 1 0x0000 Boot Reset Address + 0x0002
0 0 Boot Reset Address 0x0002
0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 23-7 on page 288. For the BOOTRST Fuse “1”
means unprogrammed while “0” means programmed.

The most typical and general program setup for the Reset and Interrupt Vector Addresses in

ATmegal64P/324P/644P is:

Address Labels Code Comments

0x0000 jmp RESET ; Reset

0x0002 jmp INTO ; IRQO

0x0004 jmp INT1 ; IRQ1

0x0006 jmp INT2 ; IRQ2

0x0008 jmp PCINTO ; PCINTO

0x000A jmp PCINT1 ; PCINT1

0x000C jmp PCINT2 ; PCINT2

0x000E jmp PCINT3 ; PCINT3

0x0010 jmp WDT ; Watchdog Timeout
0x0012 jmp TIM2 COMPA ; Timer2 CompareA
0x0014 jmp TIM2 COMPB ; Timer2 CompareB
0x0016 jmp TIM2_ OVF ; Timer2 Overflow
0x0018 jmp TIM1 CAPT ; Timerl Capture
0x001A jmp TIM1 COMPA ; Timerl CompareA
0x001C jmp TIM1 COMPB ; Timerl CompareB
0x001E jmp TIM1 OVF ; Timerl Overflow
0x0020 jmp TIMO COMPA ; Timer0 CompareA

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

0x0022 jmp TIMO COMPB ; Timer0 CompareB
0x0024 jmp TIMO OVF ; Timer0 Overflow
0x0026 jmp SPI_STC ; SPI Transfer Complete
0x0028 jmp USARTO_RXC ; USARTO RX Complete
0x002A jmp USARTO_UDRE ; USARTO,UDR Empty
0x002C jmp USARTO_TXC ; USARTO TX Complete
0x002E jmp ANA COMP ; Analog Comparator
0x0030 jmp ADC ; ADC Conversion Complete
0x0032 jmp EE_RDY ; EEPROM Ready
0x0034 jmp TWI ; 2-wire Serial
0x0036 jmp SPM_RDY ; SPM Ready
0x0038 jmp USART1_RXC ; USART1 RX Complete
0x003A jmp USART1_UDRE ; USART1,UDR Empty
0x003C jmp USART1_TXC ; USART1 TX Complete
0x003E RESET: 1di rle, ; Main program start
high (RAMEND)
0x003F out SPH, rl6 ; Set Stack Pointer to
top of RAM
0x0040 1di rle,
low (RAMEND)
0x0041 out SPL,rle6
0x0042 sei ; Enable interrupts
0x0043 <instr> XXX

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 8 Kbytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and
general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments

0x00000 RESET: 1di rl6,high (RAMEND) ; Main program start

0x00001 out SPH,rlé6 ; Set Stack Pointer to top of RAM
0x00002 1di rlé6, low (RAMEND)

0x00003 out SPL, rlé6

0x00004 sel ; Enable interrupts

0x00005 <instrs> =xxx

I

.org 0x1F002

0x1F002 jmp EXT_INTO ; IRQO Handler
0x1F004 jmp EXT INT1 ; IRQ1 Handler
0x1FO36 jmp SPM_RDY ; SPM Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 8 Kbytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code Comments
.org 0x0002
0x00002 jmp EXT_INTO ; IRQO Handler

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

0x00004

0x00036
.org 0x1F000
0x1F000 RESET:

O0x1FO001
0x1F002

0x1F003
0x1F004

0x1F005

jmp

jmp

1di
out
1di

out
sei

EXT_ INT1 ;

SPM_RDY ;

IRQ1 Handler

SPM Ready Handler

rl6,high (RAMEND) ; Main program start

SPH, rlé6 7

rlé6, low (RAMEND)
SPL,rl6

1

<instr> xxx

Set Stack Pointer to top of RAM

Enable interrupts

When the BOOTRST Fuse is programmed, the Boot section size set to 8 Kbytes and the IVSEL
bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general
program setup for the Reset and Interrupt Vector Addresses is:

Address Labels Code

7

.org 0x1F000

0x1F000 jmp RESET ;
0x1F002 jmp EXT_INTO ;
0x1F004 jmp EXT INT1 ;
0x1F036 jmp SPM_RDY ;
0x1F03E RESET: 1di r16,high (RAMEND) ;
0x1F03F out SPH, rl6 ;
0x1F040 1di r16, low (RAMEND)
0x1F041 out SPL, rl6
0x1F042 sel i
0x1F043 <instr> xxx

9.2.1 Moving Interrupts Between Application and Boot Space

Comments

Reset handler
IRQO Handler

IRQ1 Handler

SPM Ready Handler

; Main program start

Set Stack Pointer to top of RAM

Enable interrupts

The General Interrupt Control Register controls the placement of the Interrupt Vector table.

80110-AVR-07/10

ATMEL

64

A\ T M egal164P/324P/644P

9.3 Register Description

9.3.1 MCUCR — MCU Control Register

Bit 7 6 5 4 3 2 1 0

0x35 (0X55) | oo | Bobs BODSE PUD = = IVSEL IVCE | MCUCR
Read/Write R/W R R R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 1 - IVSEL: Interrupt Vector Select

When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the Boot
Loader section of the Flash. The actual address of the start of the Boot Flash Section is deter-
mined by the BOOTSZ Fuses. Refer to the section "Memory Programming” on page 293 for
details. To avoid unintentional changes of Interrupt Vector tables, a special write procedure must
be followed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.
b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE.

Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled
in the cycle IVCE is set, and they remain disabled until after the instruction following the write to
IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status
Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed,
interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed
in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while
executing from the Boot Loader section. Refer to the section "Memory Programming” on page 293
for details on Boot Lock bits.

* Bit 0 — IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared by
hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will disable
interrupts, as explained in the IVSEL description above. See the following Code Example.

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

Assembly Code Example

Move_interrupts:
; Get MCUCR
in rl6, MCUCR
mov rl7, rlé
; Enable change of Interrupt Vectors
ori rl6, (1<<IVCE)
out MCUCR, rlé6
; Move interrupts to Boot Flash section
ori rl7, (1<<IVSEL)
out MCUCR, rl7

ret

C Code Example

void Move interrupts (void)
{
uchar temp;
/* GET MCUCR*/
temp = MCUCR;
/* Enable change of Interrupt Vectors */
MCUCR = temp]| (1<<IVCE) ;
/* Move interrupts to Boot Flash section */

MCUCR = temp]| (1<<IVSEL) ;

ATMEL

66

A\ T M egal164P/324P/644P

10. External Interrupts

10.1 Overview

The External Interrupts are triggered by the INT2:0 pin or any of the PCINT31:0 pins. Observe
that, if enabled, the interrupts will trigger even if the INT2:0 or PCINT31:0 pins are configured as
outputs. This feature provides a way of generating a software interrupt.

The Pin change interrupt PCI3 will trigger if any enabled PCINT31:24 pin toggle, Pin change
interrupt PCI2 will trigger if any enabled PCINT23:16 pin toggles, Pin change interrupt PCI1 if
any enabled PCINT15:8 toggles and Pin change interrupts PCIO will trigger if any enabled
PCINT7:0 pin toggles. PCMSK3, PCMSK2, PCMSK1 and PCMSKO Registers control which pins
contribute to the pin change interrupts. Pin change interrupts on PCINT31:0 are detected asyn-
chronously. This implies that these interrupts can be used for waking the part also from sleep
modes other than Idle mode.

The External Interrupts can be triggered by a falling or rising edge or a low level. This is set up
as indicated in the specification for the External Interrupt Control Registers — EICRA (INT2:0).
When the external interrupt is enabled and is configured as level triggered, the interrupt will trig-
ger as long as the pin is held low. Low level interrupts and the edge interrupt on INT2:0 are
detected asynchronously. This implies that these interrupts can be used for waking the part also
from sleep modes other than Idle mode. The 1/O clock is halted in all sleep modes except Idle
mode.

Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in "System Clock and Clock Options” on page 29.

10.2 Register Description

10.2.1 EICRA — External Interrupt Control Register A

80110-AVR-07/10

The External Interrupt Control Register A contains control bits for interrupt sense control.

Bit 7 6 5 4 3 2 1 0

(0x69) | - | - | 1sc1 | 1sceo | iscii | iscio | 1scol | 1Sscoo | EICRA
Read/Write R R R/W R/W RIW R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

* Bits 7:6 — Reserved
These bits are reserved in the ATmegal64P/324P/644P, and will always read as zero.

e Bits 5:0 — I1SC21, ISC20 - ISCO00, ISC00: External Interrupt 2 - 0 Sense Control Bits

The External Interrupts 2 - 0 are activated by the external pins INT2:0 if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in Table 10-1. Edges on INT2..INTO are registered asynchro-
nously. Pulses on INT2:0 pins wider than the minimum pulse width given in "External Interrupts
Characteristics” on page 331 will generate an interrupt. Shorter pulses are not guaranteed to
generate an interrupt. If low level interrupt is selected, the low level must be held until the com-

ATMEL o

A\ T M egal164P/324P/644P

10.2.2

10.2.3

80110-AVR-07/10

pletion of the currently executing instruction to generate an interrupt. If enabled, a level triggered
interrupt will generate an interrupt request as long as the pin is held low. When changing the
ISCn bit, an interrupt can occur. Therefore, it is recommended to first disable INTh by clearing its
Interrupt Enable bit in the EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn
interrupt flag should be cleared by writing a logical one to its Interrupt Flag bit (INTFn) in the
EIFR Register before the interrupt is re-enabled.

Table 10-1. Interrupt Sense Control®
ISCn1l ISCn0 | Description
0 0 The low level of INTn generates an interrupt request.
0 1 Any edge of INTn generates asynchronously an interrupt request.
1 0 The falling edge of INTnh generates asynchronously an interrupt request.
1 1 The rising edge of INTn generates asynchronously an interrupt request.

Note: 1. n=2,10r0.
When changing the ISCn1/ISCn0 bits, the interrupt must be disabled by clearing its Interrupt
Enable bit in the EIMSK Register. Otherwise an interrupt can occur when the bits are changed.

EIMSK — External Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0

ox1D (0x3D) | = = = = = INT2 INT1 IINTO]| EIMSK
Read/Write R R R R R R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 2:0 — INT2:0: External Interrupt Request 2 - 0 Enable

When an INTZ2:0 bit is written to one and the I-bit in the Status Register (SREG) is set (one), the
corresponding external pin interrupt is enabled. The Interrupt Sense Control bits in the External
Interrupt Control Register, EICRA, defines whether the external interrupt is activated on rising or
falling edge or level sensed. Activity on any of these pins will trigger an interrupt request even if
the pin is enabled as an output. This provides a way of generating a software interrupt.

EIFR —External Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) I - - - - - INTF2 INTF1 IINTFO | EIFR
Read/Write R/W R R R R R/IW R/W R/W

Initial Value 0 0 0 0 0 0 0 0

¢ Bits 2:0 — INTF2:0: External Interrupt Flags 2 - 0

When an edge or logic change on the INT2:0 pin triggers an interrupt request, INTF2:0 becomes
set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INT2:0 in EIMSK, are
set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine
is executed. Alternatively, the flag can be cleared by writing a logical one to it. These flags are
always cleared when INT2:0 are configured as level interrupt. Note that when entering sleep
mode with the INT2:0 interrupts disabled, the input buffers on these pins will be disabled. This
may cause a logic change in internal signals which will set the INTF2:0 flags. See "Digital Input
Enable and Sleep Modes” on page 76 for more information.

ATMEL o

A\ T M egal164P/324P/644P

10.2.4 PCICR — Pin Change Interrupt Control Register

Bit 7 6 5 4 3 2 1 0

(0x68) | = | = | = = PCIE3 PCIE2 PCIE1 PCIEO | PCICR
Read/Write R R R R RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 3- PCIE3: Pin Change Interrupt Enable 3

When the PCIE3 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 3 is enabled. Any change on any enabled PCINT31..24 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI3
Interrupt Vector. PCINT31..24 pins are enabled individually by the PCMSK3 Register.

e Bit 2 - PCIE2: Pin Change Interrupt Enable 2

When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT23..16 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI2
Interrupt Vector. PCINT23..16 pins are enabled individually by the PCMSK2 Register.

e Bit 1 - PCIEL: Pin Change Interrupt Enable 1

When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT15..8 pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT15..8 pins are enabled individually by the PCMSK1 Register.

« Bit 0 — PCIEO: Pin Change Interrupt Enable 0

When the PCIEO bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt O is enabled. Any change on any enabled PCINT7..0 pin will cause an interrupt.
The corresponding interrupt of Pin Change Interrupt Request is executed from the PCIO Interrupt
Vector. PCINT7..0 pins are enabled individually by the PCMSKO Register.

10.2.5 PCIFR — Pin Change Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) | | | = = PCIF3 PCIF2 PCIF1 PCIFO | PCIFR
Read/Write R R R R R/W RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

* Bit 3— PCIF3: Pin Change Interrupt Flag 3

When a logic change on any PCINT31..24 pin triggers an interrupt request, PCIF3 becomes set
(one). If the I-bit in SREG and the PCIE3 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

* Bit 2 - PCIF2: Pin Change Interrupt Flag 2

When a logic change on any PCINT23..16 pin triggers an interrupt request, PCIF2 becomes set
(one). If the I-bit in SREG and the PCIE2 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

e Bit 1 - PCIF1: Pin Change Interrupt Flag 1

When a logic change on any PCINT15..8 pin triggers an interrupt request, PCIF1 becomes set
(one). If the I-bit in SREG and the PCIEL1 bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

e Bit 0 — PCIFO: Pin Change Interrupt Flag O

When a logic change on any PCINT7..0 pin triggers an interrupt request, PCIFO becomes set
(one). If the I-bit in SREG and the PCIEOQ bit in EIMSK are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed. Alter-
natively, the flag can be cleared by writing a logical one to it.

10.2.6 PCMSK3 — Pin Change Mask Register 3

Bit 7 6 5 4 3 2 1 0
(0x73) | PCINT31 | PCINT30 | PCINT29 | PCINT28 | PCINT27 | PCINT26 | PCINT25 | PCINT24 | PCMSK3
Read/Write RIW RIW RIW RIW RIW RIW RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — PCINT31:24: Pin Change Enable Mask 31:24

Each PCINT31:24-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT31:24 is set and the PCIE2 bit in PCICR is set, pin change interrupt is enabled on
the corresponding 1/O pin. If PCINT31..24 is cleared, pin change interrupt on the corresponding
I/0O pin is disabled.

10.2.7 PCMSK2 — Pin Change Mask Register 2

Bit 7 6 5 4 3 2 1 0

(0x6D) I PCINT23 | PCINT22 | PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 I PCMSK2
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — PCINT23:16: Pin Change Enable Mask 23..16

Each PCINT23:16-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT23:16 is set and the PCIEZ2 bit in PCICR is set, pin change interrupt is enabled on
the corresponding 1/O pin. If PCINT23..16 is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

10.2.8 PCMSK1 — Pin Change Mask Register 1

Bit 7 6 5 4 3 2 1 0
(0x6C) I PCINT15 | PCINT14 | PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 I PCMSK1
Read/Write RIW R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — PCINT15:8: Pin Change Enable Mask 15..8

Each PCINT15:8-bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT15:8 is set and the PCIEL1 bit in EIMSK is set, pin change interrupt is enabled on the
corresponding I/O pin. If PCINT15:8 is cleared, pin change interrupt on the corresponding I/O
pin is disabled.

ATMEL 1

80110-AVR-07/10

A\ T M egal164P/324P/644P

10.2.9 PCMSKO - Pin Change Mask Register 0

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0

(0x6B) I PCINT7 | PCINT6 | PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINTO I PCMSKO
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:0 — PCINT7:0: Pin Change Enable Mask 7..0
Each PCINT7:0 bit selects whether pin change interrupt is enabled on the corresponding I/O pin.
If PCINT7:0 is set and the PCIEOQ bit in PCICR is set, pin change interrupt is enabled on the cor-

responding 1/O pin. If PCINT7..0 is cleared, pin change interrupt on the corresponding I/O pin is
disabled.

ATMEL m

A\ T M egal164P/324P/644P

11. I/O-Ports

11.1 Overview

All AVR ports have true Read-Modify-Write functionality when used as general digital I/O ports.
This means that the direction of one port pin can be changed without unintentionally changing
the direction of any other pin with the SBI and CBI instructions. The same applies when chang-
ing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as
input). Each output buffer has symmetrical drive characteristics with both high sink and source
capability. The pin driver is strong enough to drive LED displays directly. All port pins have indi-
vidually selectable pull-up resistors with a supply-voltage invariant resistance. All I/O pins have
protection diodes to both V- and Ground as indicated in Figure 11-1. Refer to "Electrical Char-
acteristics” on page 325 for a complete list of parameters.

Figure 11-1. 1/0O Pin Equivalent Schematic

pu

Logic

See Figure
"General Digital I/O" for
Details

§y)

All registers and bit references in this section are written in general form. A lower case “x” repre-
sents the numbering letter for the port, and a lower case “n” represents the bit number. However,
when using the register or bit defines in a program, the precise form must be used. For example,
PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The physical /O Regis-
ters and bit locations are listed in "Register Description” on page 91.

Three 1/O memory address locations are allocated for each port, one each for the Data Register
— PORTX, Data Direction Register — DDRXx, and the Port Input Pins — PINx. The Port Input Pins
I/0 location is read only, while the Data Register and the Data Direction Register are read/write.
However, writing a logic one to a bit in the PINx Register, will result in a toggle in the correspond-
ing bit in the Data Register. In addition, the Pull-up Disable — PUD bit in MCUCR disables the
pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in "Ports as General Digital I/O” on page
73. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in "Alternate Port
Functions” on page 78. Refer to the individual module sections for a full description of the alter-
nate functions.

ATMEL 7

80110-AVR-07/10

A\ T M egal164P/324P/644P

11.2 Ports as General Digital 1/0

11.2.1

Figure 11-2. General Digital 1/0Y

L -

DATA BUS

b PUD
]
Q D <
DDxn
e
I WDXx
RESET
ﬁ RDx
<>
pS 1>
| .
1>
/I
P Q D
- ~ PORTxn 1
3.9
I
RESET ‘ -
WRx WPx
SLEEP '\L— RRx
l/
SYNCHRONIZER
| —————— RPx
S~ ol o | l\[
II/ | PINxn | L
_| | r L g |'> a |
|_ _____ I clkyo
- WDx: WRITE DDRx
PUD: PULLUP DISABLE RDx: READ DDRx
SLEEP: SLEEP CONTROL WRx WRITE PORTX
oIk, /0 CLOCK RRx: READ PORTx REGISTER
RPX’ READ PORTX PIN
WPx WRITE PINx REGISTER

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkq,

SLEEP, and PUD are common to all ports.

Configuring the Pin

\/

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.

The ports are bi-directional 1/0O ports with optional internal pull-ups. Figure 11-2 shows a func-
tional description of one 1/0O-port pin, here generically called Pxn.

Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in "Register
Description” on page 91, the DDxn bits are accessed at the DDRXx I/O address, the PORTxn bits
at the PORTXx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input

pin.

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has to
be configured as an output pin. The port pins are tri-stated when reset condition becomes active,
even if no clocks are running.

80110-AVR-07/10

ATMEL

73

A\ T M egal164P/324P/644P

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is driven
high (one). If PORTxn is written logic zero when the pin is configured as an output pin, the port
pin is driven low (zero).

11.2.2 Toggling the Pin

Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of DDRxn.
Note that the SBI instruction can be used to toggle one single bit in a port.

11.2.3 Switching Between Input and Output

When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn, PORTxn}
= 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01) or output
low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully accept-
able, as a high-impedant environment will not notice the difference between a strong high driver
and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set to disable all
pull-ups in all ports.

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn, PORTxn}
=0b11) as an intermediate step.

Table 11-1 summarizes the control signals for the pin value.

Table 11-1. Port Pin Configurations

DDxn PORTxn (in I\igBCR) I/0 Pull-up | Comment
0 0 X Input No Tri-state (Hi-2)
0 1 0 Input Yes Pxn will source current if ext. pulled low.
0 1 1 Input No Tri-state (Hi-2)
1 0 X Output No Output Low (Sink)
1 1 X Output No Output High (Source)

11.2.4 Reading the Pin Value

80110-AVR-07/10

Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 11-2, the PINxn Register bit and the preceding latch con-
stitute a synchronizer. This is needed to avoid metastability if the physical pin changes value
near the edge of the internal clock, but it also introduces a delay. Figure 11-3 shows a timing dia-
gram of the synchronization when reading an externally applied pin value. The maximum and
minimum propagation delays are denoted tog nax and tyg i, respectively.

ATMEL z

A\ T M egal164P/324P/644P

Figure 11-3. Synchronization when Reading an Externally Applied Pin value

systTeMok _ [L LI L_
INSTRUCTIONS X _ix X xix X _nnrme X

SYNC LATCH v
PINXn :
r17 0xooé X OxFF
: tpd, max . =:
: tpd, min
R

Consider the clock period starting shortly after the first falling edge of the system clock. The latch
is closed when the clock is low, and goes transparent when the clock is high, as indicated by the
shaded region of the “SYNC LATCH?" signal. The signal value is latched when the system clock
goes low. It is clocked into the PINxn Register at the succeeding positive clock edge. As indi-
cated by the two arrows tpd,max and tpd,min, a single signal transition on the pin will be delayed
between %2 and 1% system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 11-4. The out instruction sets the “SYNC LATCH?” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 11-4. Synchronization when Reading a Software Assigned Pin Value

SYSTEM CLK

r16 : OXFF

INSTRUCTIONS % out PORTX, r16 >< nop >< inr17, PINx ><

SYNC LATCH |

PINxn

r17 P 0x00 : X oxFF

pd

A
B AR

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and define
the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The resulting pin
values are read back again, but as previously discussed, a nop instruction is included to be able
to read back the value recently assigned to some of the pins.

ATMEL s

80110-AVR-07/10

A\ T M egal164P/324P/644P

Assembly Code Example®

; Define pull-ups and set outputs high

; Define directions for port pins

1di 1r16, (1<<PB7) | (1<<PB6) | (1<<PB1) | (1<<PBO)

1di 117, (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO)
out PORTB,rlé6

out DDRB,rl7

; Insert nop for synchronization

nop

; Read port pins

in rl6,PINB

C Code Example

unsigned char i;

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)| (1<<PB6) | (1<<PB1) | (1<<PBO) ;
DDRB = (1<<DDB3) | (1<<DDB2) | (1<<DDB1) | (1<<DDBO) ;
/* Insert nop for synchronization*/
__no_operation() ;

/* Read port pins */

i = PINB;

Note: 1. Forthe assembly program, two temporary registers are used to minimize the time from pull-
ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 2 and bit
3 as low and redefining bit 0 and bitl as strong high drivers.

11.2.5 Digital Input Enable and Sleep Modes

As shown in Figure 11-2, the digital input signal can be clamped to ground at the input of the
schmitt-trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if
some input signals are left floating, or have an analog signal level close to V/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by various
other alternate functions as described in "Alternate Port Functions” on page 78.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external interrupt
is not enabled, the corresponding External Interrupt Flag will be set when resuming from the
above mentioned Sleep mode, as the clamping in these sleep mode produces the requested
logic change.

ATMEL 7

80110-AVR-07/10

A\ T M egal164P/324P/644P

11.2.6 Unconnected Pins

80110-AVR-07/10

If some pins are unused, it is recommended to ensure that these pins have a defined level. Even
though most of the digital inputs are disabled in the deep sleep modes as described above, float-
ing inputs should be avoided to reduce current consumption in all other modes where the digital
inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal pull-up.
In this case, the pull-up will be disabled during reset. If low power consumption during reset is
important, it is recommended to use an external pull-up or pull-down. Connecting unused pins
directly to V¢ or GND is not recommended, since this may cause excessive currents if the pin is
accidentally configured as an output.

ATMEL m

A\ T M egal164P/324P/644P

11.3 Alternate Port Functions

Most port pins have alternate functions in addition to being general digital 1/0s. Figure 11-5
shows how the port pin control signals from the simplified Figure 11-2 on page 73 can be over-
ridden by alternate functions. The overriding signals may not be present in all port pins, but the
figure serves as a generic description applicable to all port pins in the AVR microcontroller
family.

Figure 11-5. Alternate Port Functions

PUOExn A

o PUQOVxn
f
J C IE PUD
DDOExn
L I DDOVxn
b3 1
S
Q D :
DDxn
]
I WDx
PVOEXn RESET
RDx
PVOVxn |\[
l/
wn
1 2
Pxn om
PTOExn E
DIEOExn °I b 35
;_I—o<]— DIEOVxn RESET WRx
RRx
|\o— SLEEP ~
l/
SYNCHRONIZER
= T = RPx
> 5" al—JD o _I_| E
l/ | PINxn |
Lo T P .0
| | |
' |
______I clk yo
= » Dixn
4 AlOxn
PUOExn: Pxn PULL-UP OVERRIDE ENABLE PUD: PULLUP DISABLE
PUOVxn: Pxn PULL-UP OVERRIDE VALUE WDx: WRITE DDRx
DDOExn: Pxn DATA DIRECTION OVERRIDE ENABLE RDx: READ DDRx
DDOVxn: Pxn DATA DIRECTION OVERRIDE VALUE RRx: READ PORTx REGISTER
PVOExn: Pxn PORT VALUE OVERRIDE ENABLE WRx: WRITE PORTX
PVOVxn: Pxn PORT VALUE OVERRIDE VALUE RPx: READ PORTx PIN
DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE WPx: WRITE PINx
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE clkyo: /O CLOCK
SLEEP: SLEEP CONTROL DIxn: DIGITAL INPUT PIN n ON PORTx
PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE AlOxn: ANALOG INPUT/OUTPUT PIN n ON PORTx

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clk;q,
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.

ATMEL 7

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 11-2 summarizes the function of the overriding signals. The pin and port indexes from Fig-
ure 11-5 are not shown in the succeeding tables. The overriding signals are generated internally
in the modules having the alternate function.

Table 11-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

Pull-up Override If this signal is set, the pull-up enable is controlled by the PUOV

PUOE Enable signal. If this signal is cleared, the pull-up is enabled when
{DDxn, PORTxn, PUD} = 0b010.
Pull-up Override If PUOE is set, the pull-up is enabled/disabled when PUQV is
PUOV P set/cleared, regardless of the setting of the DDxn, PORTxn,

Value and PUD Register bits.

Data Direction If this signal is set, the Output Driver Enable is controlled by the
DDOE Override Enable DDOV signal. If this signal is cleared, the Output driver is
enabled by the DDxn Register bit.

N If DDOE is set, the Output Driver is enabled/disabled when
Data Direction

DDOV . DDOV is set/cleared, regardless of the setting of the DDxn
Override Value

Register bit.
If this signal is set and the Output Driver is enabled, the port
PVOE Port Value value is controlled by the PVOV signal. If PVOE is cleared, and
Override Enable the Output Driver is enabled, the port Value is controlled by the
PORTxn Register bit.
PVOV Port Value If PVOE is set, the port value is set to PVOV, regardless of the
Override Value setting of the PORTxn Register bit.
PTOE Port Toggle If PTOE is set, the PORTxn Register bit is inverted.
Override Enable
Digital Input If this bit is set, the Digital Input Enable is controlled by the
DIEOE Enable Override DIEQV signal. If this signal is cleared, the Digital Input Enable
Enable is determined by MCU state (Normal mode, sleep mode).
Digital Input If DIEOE is set, the Digital Input is enabled/disabled when
DIEOV Enable Override DIEQV is set/cleared, regardless of the MCU state (Normal
Value mode, sleep mode).

This is the Digital Input to alternate functions. In the figure, the
signal is connected to the output of the schmitt trigger but

DI Digital Input before the synchronizer. Unless the Digital Input is used as a
clock source, the module with the alternate function will use its
own synchronizer.

This is the Analog Input/output to/from alternate functions. The
signal is connected directly to the pad, and can be used bi-
directionally.

Analog

AIG Input/Output

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for further
details.

ATMEL 7

80110-AVR-07/10

A\ T M egal164P/324P/644P

11.31 Alternate Functions of Port A
The Port A pins with alternate functions are shown in Table 11-3.

Table 11-3. Port A Pins Alternate Functions

Port Pin Alternate Function
PA7 ADC7 (ADC input channel 7)
PCINT7 (Pin Change Interrupt 7)
PAG ADCE6 (ADC input channel 6)
PCINT6 (Pin Change Interrupt 6)
PAS ADCS5 (ADC input channel 5)
PCINT5 (Pin Change Interrupt 5)
PA4 ADC4 (ADC input channel 4)
PCINT4 (Pin Change Interrupt 4)
PA3 ADC3 (ADC input channel 3)
PCINT3 (Pin Change Interrupt 3)
PA2 ADC2 (ADC input channel 2)
PCINT2 (Pin Change Interrupt 2)
PAL ADC1 (ADC input channel 1)
PCINT1 (Pin Change Interrupt 1)
PAO ADCO (ADC input channel 0)
PCINTO (Pin Change Interrupt 0)

e ADC7:0/PCINT7:0 — Port A, Bit 7:0
ADCY7:0, Analog to Digital Converter, Channels 7:0.

PCINT7:0, Pin Change Interrupt source 7:0: The PA7:0 pins can serve as external interrupt
sources.

ATMEL 5

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

Table 11-4 on page 81 and Table 11-5 on page 81 relates the alternate functions of Port A to the

overriding signals shown in Figure 11-5 on page 78.

Table 11-4. Overriding Signals for Alternate Functions in PA7:PA4
Signal PA7/ADC7/ PAGB/ADC6/ PA5/ADC5/ PA4/ADCA4/
Name PCINT7 PCINT6 PCINTS PCINT4
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE 0 0 0 0
PVOV 0 0 0 0
DIEOE PCINT7 « PCIEO + PCINT6 « PCIEO + PCINT5 « PCIEO + PCINT4 « PCIEO +

ADC7D

ADC6D

ADC5D

ADC4D

DIEOV PCINT7 « PCIEO PCINT6 « PCIEO PCINTS « PCIEO PCINT4 « PCIEO

DI PCINT7 INPUT PCINT6 INPUT PCINTS INPUT PCINT4 INPUT

AlO ADC7 INPUT ADC6 INPUT ADCS5 INPUT ADC4 INPUT

Table 11-5. Overriding Signals for Alternate Functions in PA3:PAO

Signal PA3/ADC3/ PA2/ADC2/ PA1/ADC1/ PAO/ADCO/

Name PCINT3 PCINT2 PCINT1 PCINTO

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE PCINT3 « PCIEO + PCINT2 « PCIEO + PCINT1 « PCIEO + PCINTO « PCIEOQ +
ADC3D ADC2D ADC1D ADCOD

DIEOV PCINT3 « PCIEO PCINT2 « PCIEO PCINT1 « PCIEO PCINTO « PCIEO

DI PCINT3 INPUT PCINT2 INPUT PCINT1 INPUT PCINTO INPUT

AIO ADC3 INPUT ADC2 INPUT ADCL1 INPUT ADCO INPUT

ATMEL

81

A\ T M egal164P/324P/644P

11.3.2 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 11-6.

Table 11-6. Port B Pins Alternate Functions

Port Pin | Alternate Functions

SCK (SPI Bus Master clock input)

PBY PCINT15 (Pin Change Interrupt 15)

PB6 MISO (SPI Bus Master Input/Slave Output)
PCINT14 (Pin Change Interrupt 14)

PBS MOSI (SPI Bus Master Output/Slave Input)

PCINT13 (Pin Change Interrupt 13)

SS (SPI Slave Select input)
PB4 OCOB (Timer/Conter 0 Output Compare Match B Output)
PCINT12 (Pin Change Interrupt 12)

AIN1 (Analog Comparator Negative Input)
PB3 OCOA (Timer/Conter 0 Output Compare Match A Output)
PCINT11 (Pin Change Interrupt 11)

AINO (Analog Comparator Positive Input)
PB2 INT2 (External Interrupt 2 Input)
PCINT10 (Pin Change Interrupt 10)

T1 (Timer/Counter 1 External Counter Input)
PB1 CLKO (Divided System Clock Output)
PCINT9 (Pin Change Interrupt 9)

TO (Timer/Counter 0 External Counter Input)
PBO XCKO (USARTO External Clock Input/Output)
PCINT8 (Pin Change Interrupt 8)

The alternate pin configuration is as follows:

e SCK/PCINT15 - Port B, Bit 7

SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB7. When the SPIO is
enabled as a master, the data direction of this pin is controlled by DDB7. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTB7 bit.

PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external interrupt
source.

e MISO/PCINT14 — Port B, Bit 6

MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as a
master, this pin is configured as an input regardless of the setting of DDB6. When the SPI is
enabled as a slave, the data direction of this pin is controlled by DDB6. When the pin is forced to
be an input, the pull-up can still be controlled by the PORTBS6 bit.

PCINT14, Pin Change Interrupt source 14: The PB6 pin can serve as an external interrupt
source.

ATMEL 5

80110-AVR-07/10

A\ T M egal164P/324P/644P

* MOSI/PCINT13 — Port B, Bit 5

MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as a
slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a master, the data direction of this pin is controlled by DDB5. When the pin is forced
to be an input, the pull-up can still be controlled by the PORTBS5 bit.

PCINT13, Pin Change Interrupt source 13: The PB5 pin can serve as an external interrupt
source.

+ SS/OCOB/PCINT12 — Port B, Bit 4

SS: Slave Port Select input. When the SPI is enabled as a slave, this pin is configured as an
input regardless of the setting of DDB4. As a slave, the SPI is activated when this pin is driven
low. When the SPI is enabled as a master, the data direction of this pin is controlled by DDB4.
When the pin is forced to be an input, the pull-up can still be controlled by the PORTB4 bit.

OCO0B, Output Compare Match B output: The PB4 pin can serve as an external output for the
Timer/CounterO Output Compare. The pin has to be configured as an output (DDB4 set “one”) to
serve this function. The OCOB pin is also the output pin for the PWM mode timer function.

PCINT12, Pin Change Interrupt source 12: The PB4 pin can serve as an external interrupt
source.

* AIN1/OCOA/PCINT11, Bit 3
AIN1, Analog Comparator Negative input. This pin is directly connected to the negative input of
the Analog Comparator.

OCOA, Output Compare Match A output: The PB3 pin can serve as an external output for the
Timer/CounterO Output Compare. The pin has to be configured as an output (DDB3 set “one”) to
serve this function. The OCOA pin is also the output pin for the PWM mode timer function.

PCINT11, Pin Change Interrupt source 11: The PB3 pin can serve as an external interrupt
source.

« AINO/INT2/PCINT10, Bit 2
AINO, Analog Comparator Positive input. This pin is directly connected to the positive input of
the Analog Comparator.

INT2, External Interrupt source 2. The PB2 pin can serve as an External Interrupt source to the
MCU.

PCINT10, Pin Change Interrupt source 10: The PB2 pin can serve as an external interrupt
source.

« T1/CLKO/PCINTY9, Bit 1
T1, Timer/Counterl counter source.

CLKO, Divided System Clock: The divided system clock can be output on the PB1 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB1 and DDB1 settings. It will also be output during reset.

PCINT9, Pin Change Interrupt source 9: The PB1 pin can serve as an external interrupt source.

ATMEL 5

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

* TO/XCKO/PCINTS, Bit 0
TO, Timer/CounterQ counter source.

XCKO, USARTO External clock. The Data Direction Register (DDBO) controls whether the clock
is output (DDDO set “one”) or input (DDDO cleared). The XCKO pin is active only when the
USARTO operates in Synchronous mode.

PCINTS8, Pin Change Interrupt source 8: The PBO pin can serve as an external interrupt source.

Table 11-7 and Table 11-8 relate the alternate functions of Port B to the overriding signals
shown in Figure 11-5 on page 78. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the
MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT. .

Table 11-7. Overriding Signals for Alternate Functions in PB7:PB4
Signal PB7/SCK/ PB6/MISO/ PB5/MOSI/ PB4/SS/OCO0B/
Name PCINT15 PCINT14 PCINT13 PCINT12
PUOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
PUOV PORTB7 « PUD PORTB14 « PUD PORTB13 « PUD PORTB12 « PUD
DDOE SPE « MSTR SPE « MSTR SPE « MSTR SPE « MSTR
DDOV 0 0 0 0
PVOE SPE « MSTR SPE « MSTR SPE « MSTR OCOA ENABLE
PVOV SCK OUTPUT gE'T?DLUATV E SPI MSTR OUTPUT | OCOA
DIEOE | PCINT15« PCIE1 PCINT14 « PCIE1 PCINT13 « PCIE1 PCINT12 « PCIE1
DIEOV |1 1 1 1
DI SCK INPUT SPI MSTR INPUT SPI SLAVE INPUT | SPISS

PCINT17 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AlO - - - -

Table 11-8. Overriding Signals for Alternate Functions in PB3:PB0O
Signal PB3/AIN1/OCOB/ PB2/AINO/INT2/ PB1/T1/CLKO/PCIN | PBO/TO/XCK/
Name PCINT11 PCINT10 T9 PCINT8
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 CKOUT 0
DDOV 0 0 CKOUT 0
PVOE OCOB ENABLE 0 CKOUT 0
PVOV 0CoB 0 CLK I/0 0
DIEOE | PCINT11«PCIE1 ggﬁﬂ'fﬁgﬂ PCINT9 « PCIE1 PCINTS8 « PCIE1
DIEOV |1 1 1 1
IV s P o
AlO AIN1 INPUT AINO INPUT - -

ATMEL

84

A\ T M egal164P/324P/644P

11.3.3 Alternate Functions of Port C

The Port C pins with alternate functions are shown in Table 11-9.

Table 11-9. Port C Pins Alternate Functions

Port Pin | Alternate Function
PC7 TOSC2 (Timer Oscillator pin 2)
PCINT23 (Pin Change Interrupt 23)
PC6 TOSC1 (Timer Oscillator pin 1)
PCINT22 (Pin Change Interrupt 22)
PC5 TDI (JTAG Test Data Input)
PCINT21 (Pin Change Interrupt 21)
pC4 TDO (JTAG Test Data Output)
PCINT20 (Pin Change Interrupt 20)
PC3 TMS (JTAG Test Mode Select)
PCINT19 (Pin Change Interrupt 19)
PC2 TCK (JTAG Test Clock)
PCINT18 (Pin Change Interrupt 18)
PC1 SDA (2-wire Serial Bus Data Input/Output Line)
PCINT17 (Pin Change Interrupt 17)
PCO SCL (2-wire Serial Bus Clock Line)
PCINT16 (Pin Change Interrupt 16)

* TOSC2/PCINT23 — Port C, Bit 7

TOSC2, Timer Oscillator pin 2. The PC7 pin can serve as an external interrupt source to the
MCU.

PCINT23, Pin Change Interrupt source 23: The PC7 pin can serve as an external interrupt
source.

* TOSC1/PCINT22 — Port C, Bit 6

TOSC1, Timer Oscillator pin 1. The PC6 pin can serve as an external interrupt source to the
MCU.

PCINT22, Pin Change Interrupt source 22: The PC6 pin can serve as an external interrupt
source.

e TDI/PCINT21 - Port C, Bit 5

TDI, JTAG Test Data Input.

PCINT21, Pin Change Interrupt source 21: The PC5 pin can serve as an external interrupt
source.

« TDO/PCINT20 — Port C, Bit 4

TDO, JTAG Test Data Output.

PCINT20, Pin Change Interrupt source 20: The PC4 pin can serve as an external interrupt
source.

ATMEL L

80110-AVR-07/10

A\ T M egal164P/324P/644P

« TMS/PCINT19 - Port C, Bit 3
TMS, JTAG Test Mode Select.

PCINT19, Pin Change Interrupt source 19: The PC3 pin can serve as an external interrupt

source.

e TCK/PCINT18 - Port C, Bit 2
TCK, JTAG Test Clock.

PCINT18, Pin Change Interrupt source 18: The PC2 pin can serve as an external interrupt
source.

« SDA/PCINT17 — Port C, Bit 1
SDA, 2-wire Serial Bus Data Input/Output Line.

PCINT17, Pin Change Interrupt source 17: The PC1 pin can serve as an external interrupt
source.

e SCL/PCINT16 - Port C, Bit 0

SCL, 2-wire Serial Bus Clock Line.

PCINT16, Pin Change Interrupt source 16: The PCO pin can serve as an external interrupt
source.

Table 11-10 and Table 11-11 relate the alternate functions of Port C to the overriding signals
shown in Figure 11-5 on page 78.

Table 11-10. Overriding Signals for Alternate Functions in PC7:PC4

Signal PC7/TOSC2/ PC6/TOSC1/ PC5/TDI/ PC4/TDO/

Name PCINT23 PCINT22 PCINT21 PCINT20

PUOE AS2 « EXCLK AS2 JTAGEN JTAGEN

PUOV 0 0 1 1

DDOE AS2 « EXCLK AS2 JTAGEN JTAGEN

0oV o o : e

PVOE 0 0 0 JTAGEN

PVOV 0 0 0 TDO

DIEOE AS2 « EXCLK + AS2 + JTAGEN + JTAGEN +
PCINT23 « PCIE2 PCINT22 « PCIE2 | PCINT21 « PCIE2 PCINT20 « PCIE2

DIEOV AS2 EXCLK + AS2 JTAGEN JTAGEN

DI PCINT23 INPUT PCINT22 INPUT PCINT21 INPUT PCINT20 INPUT

AIO T/C2 OSC OUTPUT Kf;ﬁ?se TDI INPUT -

80110-AVR-07/10

ATMEL

86

A\ T M egal164P/324P/644P

11.3.4

80110-AVR-07/10

Table 11-11. Overriding Signals for Alternate Functions in PC3:PCO

Signal PC3/TMS/ PC2/TCK/ PC1/SDA/ PCO/SCL/
Name PCINT19 PCINT18 PCINT17 PCINT16

PUOE JTAGEN JTAGEN TWEN TWEN

PUOV 1 1 PORTC1 « PUD PORTCO « PUD
DDOE JTAGEN JTAGEN TWEN TWEN

DDOV 0 0 0 0

PVOE 0 0 TWEN TWEN

PVOV 0 0 SDA OUT SCL OUT
DIEOE ‘;I:Alﬁi\'gt PCIE2 ‘;I:AI(NBE';'SJ: PCIE? PCINT17 « PCIE2 PCINT16 « PCIE2
DIEOV JTAGEN JTAGEN 1 1

DI PCINT19 INPUT PCINT18 INPUT PCINT17 INPUT PCINT16 INPUT
AlO TMS INPUT TCK INPUT SDA INPUT SCL INPUT

Alternate Functions of Port D

The Port D pins with alternate functions are shown in Table 11-12.

Table 11-12. Port D Pins Alternate Functions

Port Pin

Alternate Function

PD7

OC2A (Timer/Counter2 Output Compare Match A Output)
PCINT31 (Pin Change Interrupt 31)

PD6

ICP1 (Timer/Counterl Input Capture Trigger)
OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT30 (Pin Change Interrupt 30)

PD5

OC1A (Timer/Counterl Output Compare Match A Output)
PCINT29 (Pin Change Interrupt 29)

PD4

OC1B (Timer/Counterl Output Compare Match B Output)
XCK1 (USART1 External Clock Input/Output)
PCINT28 (Pin Change Interrupt 28)

PD3

INT1 (External Interruptl Input)
TXD1 (USART1 Transmit Pin)
PCINT27 (Pin Change Interrupt 27)

PD2

INTO (External InterruptO Input)
RXD1 (USART1 Receive Pin)
PCINT26 (Pin Change Interrupt 26)

PD1

TXDO (USARTO Transmit Pin)
PCINT25 (Pin Change Interrupt 25)

PDO

RXDO0 (USARTO Receive Pin)
PCINT24 (Pin Change Interrupt 24)

ATMEL

87

A\ T M egal164P/324P/644P

80110-AVR-07/10

The alternate pin configuration is as follows:

+ OC2A/PCINT31 - Port D, Bit 7

OC2A, Output Compare Match A output: The PD7 pin can serve as an external output for the
Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDD7 set (one))
to serve this function. The OC2A pin is also the output pin for the PWM mode timer function.

PCINT31, Pin Change Interrupt Source 31:The PD7 pin can serve as an external interrupt
source.

+ ICP1/OC2B/PCINT30 - Port D, Bit 6
ICP1, Input Capture Pin 1: The PD6 pin can act as an input capture pin for Timer/Counterl.

OC2B, Output Compare Match B output: The PD6 pin can serve as an external output for the
Timer/Counter2 Output Compare B. The pin has to be configured as an output (DDD6 set (one))
to serve this function. The OC2B pin is also the output pin for the PWM mode timer function.

PCINT30, Pin Change Interrupt Source 30: The PD6 pin can serve as an external interrupt
source.

* OC1A/PCINT29 — Port D, Bit 5

OCI1A, Output Compare Match A output: The PD5 pin can serve as an external output for the
Timer/Counterl Output Compare A. The pin has to be configured as an output (DDDS5 set (one))
to serve this function. The OC1A pin is also the output pin for the PWM mode timer function.

PCINT29, Pin Change Interrupt Source 29: The PD5 pin can serve as an external interrupt
source.

* OC1B/XCK1/PCINT28 — Port D, Bit 4

OC1B, Output Compare Match B output: The PB4 pin can serve as an external output for the
Timer/Counterl Output Compare B. The pin has to be configured as an output (DDD4 set (one))
to serve this function. The OC1B pin is also the output pin for the PWM mode timer function.

XCK1, USART1 External clock. The Data Direction Register (DDB4) controls whether the clock
is output (DDD4 set “one”) or input (DDD4 cleared). The XCK4 pin is active only when the
USART1 operates in Synchronous mode.

PCINT28, Pin Change Interrupt Source 28: The PD4 pin can serve as an external interrupt
source.

e INT1/TXD1/PCINT27 — Port D, Bit 3

INT1, External Interrupt source 1. The PD3 pin can serve as an external interrupt source to the
MCU.

TXD1, Transmit Data (Data output pin for the USART1). When the USART1 Transmitter is
enabled, this pin is configured as an output regardless of the value of DDDS3.

PCINT27, Pin Change Interrupt Source 27: The PD3 pin can serve as an external interrupt
source.

ATMEL L

A\ T M egal164P/324P/644P

80110-AVR-07/10

* INTO/RXD1/PCINT26 — Port D, Bit 2
INTO, External Interrupt source 0. The PD2 pin can serve as an external interrupt source to the
MCU.

RXD1, RXDO, Receive Data (Data input pin for the USART1). When the USART1 receiver is
enabled this pin is configured as an input regardless of the value of DDD2. When the USART
forces this pin to be an input, the pull-up can still be controlled by the PORTD2 bit.

PCINT26, Pin Change Interrupt Source 26: The PD2 pin can serve as an external interrupt
source.

« TXDO/PCINT25 - Port D, Bit 1
TXDO, Transmit Data (Data output pin for the USARTO). When the USARTO Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD1.

PCINT25, Pin Change Interrupt Source 25: The PD1 pin can serve as an external interrupt
source.

+ RXDO/PCINT24 — Port D, Bit 0

RXDO, Receive Data (Data input pin for the USARTO). When the USARTO receiver is enabled
this pin is configured as an input regardless of the value of DDDO. When the USART forces this
pin to be an input, the pull-up can still be controlled by the PORTDO bit.

PCINT24, Pin Change Interrupt Source 24: The PDO pin can serve as an external interrupt
source.

Table 11-13 on page 89 and Table 11-14 on page 90 relates the alternate functions of Port D to
the overriding signals shown in Figure 11-5 on page 78.

Table 11-13. Overriding Signals for Alternate Functions PD7:PD4

PD6/ICP1/

PD7/0C2A/ oc2B/ PD5/OC1A/ PD4/OC1B/XCK1/
Signal Name PCINT31 PCINT30 PCINT29 PCINT28
PUOE 0 0 0 0
PUOV 0 0 0 0
DDOE 0 0 0 0
DDOV 0 0 0 0
PVOE OC2A ENABLE OC2B ENABLE OC1A ENABLE OC1B ENABLE
PVOV OCA2A 0OC2B OC1A oc1B
DIEOE PCINT31+PCIE3 | PCINT30+PCIE3 | PCINT29 « PCIE3 | PCINT28 « PCIE3
DIEOV 1 1 1 1
DI PCINT31 INPUT :DCCF;,{I'TN?)SLIJJPUT PCINT29 INPUT | PCINT28 INPUT
AIO - - - -

ATMEL 5

A\ T M egal164P/324P/644P

80110-AVR-07/10

Table 11-14. Overriding Signals for Alternate Functions in PD3:PDO®

PD3/INTL/TXD1/ | PD2/INTO/RXD1/ | PD1/TXDO/ PDO/RXDO/
Signal Name | PCINT27 PCINT26 PCINT25 PCINT27
PUOE TXEN1 RXEN1 TXENO RXEN1
PUOV 0 PORTD2 « PUD 0 PORTDO « PUD
DDOE TXEN1 RXEN1 TXENO RXEN1
DDOV 1 0 1 0
PVOE TXEN1 0 TXENO 0
PVOV TXD1 0 TXDO 0
DIEOE LNJEEQ'?.B:;E'ES g\gfﬁgfﬁggms PCINT25 « PCIE3 | PCINT24 « PCIE3
DIEOV 1 1 1 1

INTO INPUT

0
AIO - - - -

Note: 1. When enabled, the 2-wire Serial Interface enables Slew-Rate controls on the output pins PDO
and PD1. This is not shown in this table. In addition, spike filters are connected between the
AlO outputs shown in the port figure and the digital logic of the TWI module.

ATMEL

90

A\ T M egal164P/324P/644P

Register Description

11.35 MCUCR — MCU Control Register

Bit 7 6 5 4 3 2 1 0

0x35(0x55) | JTD | BODS BODSE PUD = = IVSEL IVCE | MCUCR
Read/Write RIW R R RIW R R RIW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 4 — PUD: Pull-up Disable

When this bit is written to one, the pull-ups in the 1/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See "Con-
figuring the Pin” on page 73 for more details about this feature.

11.3.6 PORTA — Port A Data Register

11.3.7 DDRA — Port A

11.3.8 PINA — Port A |

Bit 7 6 5 4 3 2 1 0
0x02 (0x22) I PORTA7 PORTAG PORTAS5 PORTA4 PORTA3 PORTA2 PORTA1 PORTAO I PORTA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x01 (0x21) I DDA7 | DDA6 DDAS5 DDA4 DDA3 DDA2 DDAl DDAO I DDRA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

nput Pins Address

Bit 7 6 5 4 3 2 1 0

0x00 (0x20) I PINA7 | PINAG6 PINAS PINA4 PINA3 PINA2 PINA1 PINAO I PINA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

11.39 PORTB — Port B Data Register

11.3.10 DDRB - Port B

11.3.11 PINB —Port B |

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) I PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTBO I PORTB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Data Direction Register

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) I DDB7 | DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDBO I DDRB
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

nput Pins Address

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) I PINB7 | PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO I PINB
Read/Write R/IW R/IW R/IW R/IW R/IW R/IW RIW R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATMEL o

A\ T M egal164P/324P/644P

11.3.12 PORTC - Port C Data Register

Bit 7 6 5 4 3 2 1 0
0x08 (0x28) I PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTCO I PORTC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

11.3.13 DDRC - Port C Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x07 (0x27) I DDC7 | DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDCO I DDRC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

11.3.14 PINC - Port C Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) I PINC7 | PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO I PINC
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

11.3.15 PORTD - Port D Data Register

Bit 7 6 5 4 3 2 1 0
0x0B (0x2B) I PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTDO I PORTD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

11.3.16 DDRD - Port D Data Direction Register

Bit 7 6 5 4 3 2 1 0
0x0A (0x2A) I DDD7 | DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO I DDRD
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

11.3.17 PIND — Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) I PIND7 | PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PINDO I PIND
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

ATMEL 0

80110-AVR-07/10

A\ T M egal164P/324P/644P

12. 8-bit Timer/CounterO with PWM

12.1 Features

12.2 Overview

12.21 Registers

80110-AVR-07/10

* Two Independent Output Compare Units

* Double Buffered Output Compare Registers

e Clear Timer on Compare Match (Auto Reload)

¢ Glitch Free, Phase Correct Pulse Width Modulator (PWM)

¢ Variable PWM Period

* Frequency Generator

e Three Independent Interrupt Sources (TOVO, OCFOA, and OCFOB)

Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Output
Compare Units, and with PWM support. It allows accurate program execution timing (event man-
agement) and wave generation.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 12-1. For the actual
placement of I/O pins, see "Pin Configurations” on page 2. CPU accessible 1/0 Registers, includ-
ing 1/0O bits and 1/O pins, are shown in bold. The device-specific /0O Register and bit locations
are listed in the "Register Description” on page 104.

Figure 12-1. 8-bit Timer/Counter Block Diagram

Count TOVn
. <
Clear c (Int.Req.)
ontrol Logic
Direction < clkr, Clock Select
Edge
TOP | BOTTOM
' ¥ A (From Prescaler)
A Timer/Counter 3
<-.>| TCNTn
= =0
*) * ocna
+ (Int.Req.)
A [}
—] o | Waveform oCnA
— I Generation
- 1----
Fixed ocnB
TOP
) # Value F(Im.ﬁeq.)
-]
m — - Wave!oltm ocnB
< Generation
=
<<
o
[TCCRnA | TCCRnB
' '
< / / >
\ D o

The Timer/Counter (TCNTO) and Output Compare Registers (OCROA and OCROB) are 8-bit
registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the
Timer Interrupt Flag Register (TIFRO). All interrupts are individually masked with the Timer Inter-
rupt Mask Register (TIMSKO). TIFRO and TIMSKO are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the TO pin. The Clock Select logic block controls which clock source and edge the Timer/Counter

ATMEL o

A\ T M egal164P/324P/644P

12.2.2 Definitions

uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clkyg).

The double buffered Output Compare Registers (OCROA and OCROB) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OCOA and
OCO0B). See Section “12.5” on page 95. for details. The Compare Match event will also set the
Compare Flag (OCFOA or OCFOB) which can be used to generate an Output Compare interrupt
request.

Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register or
bit defines in a program, the precise form must be used, that is, TCNTO for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 12-1 are also used extensively throughout the document.

Table 12-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCROA Register. The assignment is depen-
dent on the mode of operation.

12.3 Timer/Counter Clock Sources

12.4 Counter Unit

80110-AVR-07/10

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits
located in the Timer/Counter Control Register (TCCROB). For details on clock sources and pres-
caler, see "Timer/Counter Prescaler” on page 152.

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
12-2 shows a block diagram of the counter and its surroundings.

Figure 12-2. Counter Unit Block Diagram

TOVn

DATA BUS (Int.Req.)

-
Clock Select

count Edge ™
[clear clk Detector [
TCNTn <7 Control Logic [«—=
direction
-

(From Prescaler)
bottom T Ttop

-

Signal description (internal signals):

ATMEL o

A\ T M egal164P/324P/644P

count Increment or decrement TCNTO by 1.

direction Select between increment and decrement.

clear Clear TCNTO (set all bits to zero).

clky, Timer/Counter clock, referred to as clky, in the following.
top Signalize that TCNTO has reached maximum value.
bottom Signalize that TCNTO has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clkyy). clkrg can be generated from an external or internal clock source,
selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the
timer is stopped. However, the TCNTO value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGMO01 and WGMOO bits located in
the Timer/Counter Control Register (TCCROA) and the WGMO02 bit located in the Timer/Counter
Control Register B (TCCROB). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OCOA and OCOB.
For more details about advanced counting sequences and waveform generation, see "Modes of
Operation” on page 98.

The Timer/Counter Overflow Flag (TOVO) is set according to the mode of operation selected by
the WGMO02:0 bits. TOVO can be used for generating a CPU interrupt.

12.5 Output Compare Unit

80110-AVR-07/10

The 8-bit comparator continuously compares TCNTO with the Output Compare Registers
(OCROA and OCROB). Whenever TCNTO equals OCROA or OCROB, the comparator signals a
match. A match will set the Output Compare Flag (OCFOA or OCFOB) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location. The Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGMO02:0 bits and Compare Output mode (COMOx1:0) bits. The max
and bottom signals are used by the Waveform Generator for handling the special cases of the
extreme values in some modes of operation ("Modes of Operation” on page 98).

Figure 12-3 shows a block diagram of the Output Compare unit.

ATMEL o

A\ T M egal164P/324P/644P

Figure 12-3. Output Compare Unit, Block Diagram
DATA BUS

P !

OCRnNX TCNTn

| = (8-bit Comparator) |

OCFnx (Int.Req.)

tp

bottom | Waveform Generator

L]

WGMn1:0 COMnNX1:0

- OCnx

FOCn >

The OCROx Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the dou-
ble buffering is disabled. The double buffering synchronizes the update of the OCROx Compare
Registers to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCROx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCROx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCROXx directly.

1251 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCOX) bit. Forcing Compare Match will not set the
OCFOx Flag or reload/clear the timer, but the OCOx pin will be updated as if a real Compare
Match had occurred (the COMOx1.:0 bits settings define whether the OCOx pin is set, cleared or
toggled).

12.5.2 Compare Match Blocking by TCNTO Write

All CPU write operations to the TCNTO Register will block any Compare Match that occur in the
next timer clock cycle, even when the timer is stopped. This feature allows OCROx to be initial-
ized to the same value as TCNTO without triggering an interrupt when the Timer/Counter clock is
enabled.

12.5.3 Using the Output Compare Unit

Since writing TCNTO in any mode of operation will block all Compare Matches for one timer
clock cycle, there are risks involved when changing TCNTO when using the Output Compare
Unit, independently of whether the Timer/Counter is running or not. If the value written to TCNTO
equals the OCROx value, the Compare Match will be missed, resulting in incorrect waveform

ATMEL s

80110-AVR-07/10

A\ T M egal164P/324P/644P

generation. Similarly, do not write the TCNTO value equal to BOTTOM when the counter is
down-counting.

The setup of the OCOx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCOx value is to use the Force Output Com-
pare (FOCOx) strobe bits in Normal mode. The OCOx Registers keep their values even when
changing between Waveform Generation modes.

Be aware that the COMOx1:0 bits are not double buffered together with the compare value.
Changing the COMOx1:0 bits will take effect immediately.

12.6 Compare Match Output Unit

The Compare Output mode (COMOx1:0) bits have two functions. The Waveform Generator uses
the COMOx1:0 bits for defining the Output Compare (OCOx) state at the next Compare Match.
Also, the COMOx1:0 bits control the OCOx pin output source. Figure 12-4 shows a simplified
schematic of the logic affected by the COMO0x1:0 bit setting. The I/O Registers, 1/O bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COMOx1:0 bits are shown. When referring to the
OCOx state, the reference is for the internal OCOx Register, not the OCOx pin. If a system reset
occur, the OCOx Register is reset to “0".

Figure 12-4. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform
D Q
FOCn Generator
[OCnx|
OCnx Pin
A
»D Q
‘3 L
m PORT
<
ke
o »D Q
\ J DDR
clkyq

The general 1/0O port function is overridden by the Output Compare (OCO0x) from the Waveform
Generator if either of the COMOx1:0 bits are set. However, the OCOx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCOx pin (DDR_OCO0x) must be set as output before the OCOx value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OCOx state before the out-
put is enabled. Note that some COMOx1:0 bit settings are reserved for certain modes of
operation. See Section “12.9” on page 104.

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

12.6.1 Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMOx1.:0 bits differently in Normal, CTC, and PWM modes.
For all modes, setting the COMO0x1:0 = 0 tells the Waveform Generator that no action on the
OCOx Register is to be performed on the next Compare Match. For compare output actions in
the non-PWM modes refer to Table 12-2 on page 104. For fast PWM mode, refer to Table 12-3
on page 104, and for phase correct PWM refer to Table 12-4 on page 105.

A change of the COMOx1.:0 bits state will have effect at the first Compare Match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCOx strobe bits.

12.7 Modes of Operation

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGMO02:0) and Compare Out-
put mode (COMOx1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMOx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMOx1:0 bits control whether the output should be set, cleared, or toggled at a Compare
Match (See Section “13.8” on page 122.).

For detailed timing information see "Timer/Counter Timing Diagrams” on page 102.

12.7.1 Normal Mode

The simplest mode of operation is the Normal mode (WGMO02:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = OxFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOVO) will be set in the same
timer clock cycle as the TCNTO becomes zero. The TOVO Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOVO Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare Unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

12.7.2 Clear Timer on Compare Match (CTC) Mode

In Clear Timer on Compare or CTC mode (WGMO02:0 = 2), the OCROA Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNTO) matches the OCROA. The OCROA defines the top value for the counter, hence
also its resolution. This mode allows greater control of the Compare Match output frequency. It
also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 12-5. The counter value (TCNTO)
increases until a Compare Match occurs between TCNTO and OCROA, and then counter
(TCNTO) is cleared.

ATMEL o

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 12-5. CTC Mode, Timing Diagram

w VNV

OCn]
(Toggle) 1 L

OCnx Interrupt Flag Set

(COMnx1:0=1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCFOA Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCROA is lower than the current
value of TCNTO, the counter will miss the Compare Match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the Compare Match can
occur.

For generating a waveform output in CTC mode, the OCOA output can be set to toggle its logical
level on each Compare Match by setting the Compare Output mode bits to toggle mode
(COMOA1:0 = 1). The OCOA value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of fogo =
fox o2 when OCROA is set to zero (0x00). The waveform frequency is defined by the following
equation:

fo= Jok o
OCnx = 2.N.(1+OCRnx)

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVO Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

12.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMO02:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as OxFF when WGM2:0 = 3, and OCROA when WGM2:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OCOx) is cleared on the Compare Match
between TCNTO and OCROx, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on Compare Match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited
for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast

ATMEL o

80110-AVR-07/10

A\ T M egal164P/324P/644P

PWM mode is shown in Figure 12-6. The TCNTO value is in the timing diagram shown as a his-
togram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNTO slopes represent Com-
pare Matches between OCROx and TCNTO.

Figure 12-6. Fast PWM Mode, Timing Diagram

OCRnNXx Interrupt Flag Set

OCRnx Update and
TOVnN Interrupt Flag Set

y y y

TCNTn /

OCnx (COMNx1:0 = 2)

OCnx
Period |<—1 I 2~I I4I I e;l ;

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

AN
\\
N
AN
AN
~.

]

(COMNX1:0 = 3)

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OCOx pins.
Setting the COMO0x1.:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMO0x1:0 to three: Setting the COMOAL:0 bits to one allows
the OCOA pin to toggle on Compare Matches if the WGMO2 bit is set. This option is not available
for the OCOB pin (See Table 12-3 on page 104). The actual OCOx value will only be visible on
the port pin if the data direction for the port pin is set as output. The PWM waveform is gener-
ated by setting (or clearing) the OCOx Register at the Compare Match between OCROx and
TCNTO, and clearing (or setting) the OCOx Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ ok o

fOCnxPWM N-256

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCROA is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCROA equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COMOAL1:0
bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OCOx to toggle its logical level on each Compare Match (COMO0x1:0 = 1). The waveform
generated will have a maximum frequency of focq = f ;0/2 when OCROA is set to zero. This

AImEl@ 100

80110-AVR-07/10

A\ T M egal164P/324P/644P

feature is similar to the OCOA toggle in CTC mode, except the double buffer feature of the Out-
put Compare unit is enabled in the fast PWM mode.

12.7.4 Phase Correct PWM Mode

The phase correct PWM mode (WGMO02:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as OxFF when WGM2:0 = 1, and OCROA when WGM2:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OCOx) is cleared on the Compare Match
between TCNTO and OCROx while upcounting, and set on the Compare Match while down-
counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation
has lower maximum operation frequency than single slope operation. However, due to the sym-
metric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNTO value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 12-7. The TCNTO value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNTO slopes represent Compare Matches between OCROXx
and TCNTO.

Figure 12-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnx Update

TOVn Interrupt Flag Set

-t
¢
-t
¢
-t
¢

e S INS NN

OCnx |_| |_ (COMNx1:0 = 2)
OCnx |—| |—| |— (COMnx1:0 = 3)
Period I 1 I 2 I 3 I

The Timer/Counter Overflow Flag (TOVO) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OCOx pins. Setting the COMO0x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COMO0x1:0 to three: Setting the COMOAQO bits to

AImEl@ 101

80110-AVR-07/10

A\ T M egal164P/324P/644P

one allows the OCOA pin to toggle on Compare Matches if the WGMO2 bit is set. This option is
not available for the OCOB pin (See Table 12-4 on page 105). The actual OCOx value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-
form is generated by clearing (or setting) the OCOx Register at the Compare Match between
OCROx and TCNTO when the counter increments, and setting (or clearing) the OCOx Register at
Compare Match between OCROx and TCNTO when the counter decrements. The PWM fre-
quency for the output when using phase correct PWM can be calculated by the following
equation:

_ Jok o
fOCnxPCPWM - N-510

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCROA Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCROA is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 12-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match.

* OCROA changes its value from MAX, like in Figure 12-7. When the OCROA value is MAX the
OCn pin value is the same as the result of a down-counting Compare Match. To ensure
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-
counting Compare Match.

« The timer starts counting from a value higher than the one in OCROA, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way

up.

12.8 Timer/Counter Timing Diagrams

80110-AVR-07/10

The Timer/Counter is a synchronous design and the timer clock (clky) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set. Figure 12-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 12-8. Timer/Counter Timing Diagram, no Prescaling

SUS e N e S e H e B

clkg,

(clk,o/)

TCNTn >< MAX -1 MAX BOTTOM >< BOTTOM + 1

TOVn

Figure 12-9 shows the same timing data, but with the prescaler enabled.

AImEl@ 102

A\ T M egal164P/324P/644P

Figure 12-9. Timer/Counter Timing Diagram, with Prescaler (foy ,,0/8)

uuuuuun

clk,q

clk,
(clk,o/8)

TCNTn

TOVn

-

-

UL

-

LUTTUUUL

-

LUTUUUL

MAX -1

MAX

BOTTOM

BOTTOM + 1

Figure 12-10 shows the setting of OCFOB in all modes and OCFOA in all modes except CTC
mode and PWM mode, where OCROA is TOP.

Figure 12-10. Timer/Counter Timing Diagram, Setting of OCFOx, with Prescaler (foy ,0/8)

clk,o

clk,
(clk,o/8)

TCNTn

OCRnx

OCFnx

-

UL

-

Enn

-

UUUUUUUL

-

LUUIDIL

OCRnx - 1

OCRnx

OCRnx + 1

OCRnx + 2

OCRnx Value

Figure 12-11 shows the setting of OCFOA and the clearing of TCNTO in CTC mode and fast
PWM mode where OCROA is TOP.

Figure 12-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (fey_yo/8)

clk,o

clk,,
(clk,/8)

TCNTn
(CTC)

OCRnx

OCFnx

80110-AVR-07/10

Ii
.

-

LULTTITIUUUUuuL

-

LUUuuuuL

-

LUUTUUL

TOP - 1

TOP

BOTTOM

BOTTOM + 1

TOP

ATMEL

103

A\ T M egal164P/324P/644P

12.9 Register Description

12.9.1 TCCROA — Timer/Counter Control Register A

Bit 7 6 5 4 3 2 1 0
0x24 (0x44) | comoA1l | comoAo | comoBl | COMOBO - - WGMOL | wGMoo | TcCRoA
Read/Write RIW RIW R/W RIW R R RIW R/W
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:6 — COMOAL:0: Compare Match Output A Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COM0OA1:0
bits are set, the OCOA output overrides the normal port functionality of the 1/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOA pin
must be set in order to enable the output driver.

When OCOA is connected to the pin, the function of the COMOAL:0 bits depends on the
WGMO02:0 bit setting. Table 12-2 shows the COMOAL:0 bit functionality when the WGMO02:0 bits
are set to a normal or CTC mode (non-PWM).

Table 12-2. Compare Output Mode, hon-PWM Mode
COMOA1 COMOAO Description

0 0 Normal port operation, OCOA disconnected.

0 1 Toggle OCOA on Compare Match
1 0 Clear OCOA on Compare Match
1 1 Set OCOA on Compare Match

Table 12-3 shows the COMOAL:0 bit functionality when the WGMO01.:0 bits are set to fast PWM
mode.

Table 12-3. Compare Output Mode, Fast PWM Mode®

COMOAL1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO02 = 0: Normal Port Operation, OCOA Disconnected.

WGMO02 = 1: Toggle OCOA on Compare Match.

Clear OCOA on Compare Match, set OCOA at BOTTOM,
(non-inverting mode).

Set OCOA on Compare Match, clear OCOA at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCROA equals TOP and COMOAL1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See "Fast PWM Mode” on
page 99 for more details.

Table 12-4 on page 105 shows the COMOAL:0 bit functionality when the WGMO02:0 bits are set

to phase correct PWM mode.

AImEl@ 104

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 12-4. Compare Output Mode, Phase Correct PWM Mode™
COMOA1 COMOAO Description
0 0 Normal port operation, OCOA disconnected.
0 1 WGMO02 = 0: Normal Port Operation, OCOA Disconnected.
WGMO02 = 1: Toggle OCOA on Compare Match.
Clear OCOA on Compare Match when up-counting. Set OCOA on
1 0 .
Compare Match when down-counting.
Set OCOA on Compare Match when up-counting. Clear OCOA on
1 1 .
Compare Match when down-counting.
Note: 1. A special case occurs when OCROA equals TOP and COMOAL1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode” on
page 101 for more details.

e Bits 5:4 — COMO0OB1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OCOB) behavior. If one or both of the COM0B1:0
bits are set, the OCOB output overrides the normal port functionality of the 1/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOB pin
must be set in order to enable the output driver.

When OCOB is connected to the pin, the function of the COMOB1:0 bits depends on the
WGMO02:0 bit setting. Table 12-2 on page 104 shows the COMOAZ1:0 bit functionality when the
WGMO02:0 bits are set to a normal or CTC mode (hon-PWM).

Table 12-5. Compare Output Mode, non-PWM Mode
COMOB1 COMOBO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Toggle OCOB on Compare Match
1 0 Clear OCOB on Compare Match
1 1 Set OCOB on Compare Match
Table 12-6 shows the COMOB1:0 bit functionality when the WGMO02:0 bits are set to fast PWM
mode.
Table 12-6. Compare Output Mode, Fast PWM Mode™®
CcOomoB1 COMOBO Description
0 0 Normal port operation, OCOB disconnected.
0 1 Reserved
1 0 CIear_OCOB on Compare Match, set OCOB at BOTTOM,
(non-inverting mode).
1 1 S_et O_COB on Compare Match, clear OCOB at BOTTOM,
(inverting mode).
Note: 1. A special case occurs when OCROB equals TOP and COMOBL1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done atBOTTOM. See "Fast PWM Mode” on page
99 for more details.

ATMEL

105
80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

Table 12-7 on page 106 shows the COMOB1.:0 bit functionality when the WGMO02:0 bits are set
to phase correct PWM mode.
Table 12-7. Compare Output Mode, Phase Correct PWM Mode™
COMOB1 COMOBO Description

0 0

Normal port operation, OCOB disconnected.

0 1 Reserved

Clear OCOB on Compare Match when up-counting. Set OCOB on

1 0 Compare Match when down-counting.

Set OCOB on Compare Match when up-counting. Clear OCOB on
Compare Match when down-counting.

Note: 1. A special case occurs when OCROB equals TOP and COMOBL1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode” on
page 101 for more details.

» Bits 3:2 — Res: Reserved Bits
These bits are reserved bits in the ATmegal64P/324P/644P and will always read as zero.

e Bits 1:0 - WGMO01:0: Waveform Generation Mode

Combined with the WGMO02 bit found in the TCCROB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 12-8 on page 106. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode,
and two types of Pulse Width Modulation (PWM) modes (see "Modes of Operation” on page
123).

Table 12-8. Waveform Generation Mode Bit Description

Timer/Counter
Mode of Update of TOV Fla?
Mode | WGM2 | WGM1 | WGMO | Operation TOP OCRX at Set onM®)

0 0 0 0 Normal OxFF Immediate MAX

1 0 0 1 PWM, Phase OXFF TOP BOTTOM
Correct

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM OxXFF BOTTOM MAX

4 1 0 0 Reserved - - -

5 1 0 1 PWM, Phase OCRA TOP BOTTOM
Correct

6 1 1 0 Reserved - - -

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = OxFF

2. BOTTOM = 0x00

AImEl@ 106

A\ T M egal164P/324P/644P

12.9.2 TCCROB — Timer/Counter Control Register B

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) | FocoAa | Focos | - - WGMO02 CS02 Cso1 csoo | Tccros
Read/Write w w R R RIW RIW RIW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCOA: Force Output Compare A
The FOCOA bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCROB is written when operating in PWM mode. When writing a logical one to the FOCOA bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OCOA output is
changed according to its COMOA1:0 bits setting. Note that the FOCOA bit is implemented as a
strobe. Therefore it is the value present in the COMOAL:0 bits that determines the effect of the
forced compare.

A FOCOA strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCROA as TOP.

The FOCOA bit is always read as zero.

e Bit 6 - FOCOB: Force Output Compare B
The FOCOB bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCROB is written when operating in PWM mode. When writing a logical one to the FOCOB bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OCOB output is
changed according to its COMOB1.:0 bits setting. Note that the FOCOB bit is implemented as a
strobe. Therefore it is the value present in the COMOB1:0 bits that determines the effect of the
forced compare.

A FOCOB strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCROB as TOP.

The FOCOB bit is always read as zero.

* Bits 5:4 — Res: Reserved Bits
These bits are reserved bits and will always read as zero.

e Bit 3—-WGMO02: Waveform Generation Mode
See the description in the "TCCROA — Timer/Counter Control Register A” on page 104.

AImEl@ 107

80110-AVR-07/10

A\ T M egal164P/324P/644P

* Bits 2:0 — CS02:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter.

Table 12-9. Clock Select Bit Description

CS02 Cso1 CS00 | Description
0 0 0 No clock source (Timer/Counter stopped)
0 0 1 clk;,o/(No prescaling)
0 1 0 clk;,o/8 (From prescaler)
0 1 1 clk,,o/64 (From prescaler)
1 0 0 clk,,o/256 (From prescaler)
1 0 1 clk;,0/1024 (From prescaler)
1 1 0 External clock source on TO pin. Clock on falling edge.
1 1 1 External clock source on TO pin. Clock on rising edge.

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

12.9.3 TCNTO — Timer/Counter Register

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) | TCNTO[7:0]] Townto
Read/Write R/W RIW R/W R/W RIW R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a Compare Match between TCNTO and the OCROx Registers.

1294 OCROA — Output Compare Register A

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) I OCROA[7:0] I OCROA
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOA pin.

AImEl@ 108

80110-AVR-07/10

A\ T M egal164P/324P/644P

12.95 OCROB — Output Compare Register B

Bit 7 6 5 4 3 2 1 0
ox28 (0x48) | OCROB[7:0] | ocros
Read/Write R/W RIW RIW R/W RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOB pin.

12.9.6 TIMSKO — Timer/Counter Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
(OX6E) | - | - | - - - OCIEOB | OCIEOA TOIEO | TIMsKo
Read/Write R R R R R R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

» Bits 7:3 — Res: Reserved Bits
These bits are reserved bits and will always read as zero.

* Bit 2 - OCIEOB: Timer/Counter Output Compare Match B Interrupt Enable

When the OCIEOB bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed if
a Compare Match in Timer/Counter occurs, that is, when the OCFOB bit is set in the
Timer/Counter Interrupt Flag Register — TIFRO.

« Bit 1 - OCIEOA: Timer/Counter0 Output Compare Match A Interrupt Enable

When the OCIEOA bit is written to one, and the I-bit in the Status Register is set, the
Timer/CounterO Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/CounterO occurs, that is, when the OCFOA bit is set in the
Timer/Counter 0 Interrupt Flag Register — TIFRO.

* Bit 0 — TOIEO: Timer/Counter0 Overflow Interrupt Enable

When the TOIEO bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0Q Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, that is, when the TOVO bit is set in the Timer/Counter O Inter-
rupt Flag Register — TIFRO.

12.9.7 TIFRO — Timer/Counter 0O Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) | - | - | - OCFOB OCFO0A TOv0 | TIFRO
Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

» Bits 7:3 — Res: Reserved Bits
These bits are reserved bits in the ATmegal64P/324P/644P and will always read as zero.

AImEl@ 109

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

e Bit 2 - OCFOB: Timer/Counter 0 Output Compare B Match Flag

The OCFOB bit is set when a Compare Match occurs between the Timer/Counter and the data in
OCROB - Output Compare Register0 B. OCFOB is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCFOB is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIEOB (Timer/Counter Compare B Match Interrupt Enable),
and OCFOB are set, the Timer/Counter Compare Match Interrupt is executed.

e Bit 1 - OCFOA: Timer/Counter 0 Output Compare A Match Flag

The OCFOA bit is set when a Compare Match occurs between the Timer/CounterO and the data
in OCROA — Output Compare Register0. OCFOA is cleared by hardware when executing the cor-
responding interrupt handling vector. Alternatively, OCFOA is cleared by writing a logic one to
the flag. When the I-bit in SREG, OCIEOQA (Timer/CounterO Compare Match Interrupt Enable),
and OCFOA are set, the Timer/Counter0O Compare Match Interrupt is executed.

¢ Bit 0 — TOVO: Timer/Counter0 Overflow Flag

The bit TOVO is set when an overflow occurs in Timer/Counter0. TOVO is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOVO is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIEO (Timer/Counter0 Overflow Interrupt
Enable), and TOVO are set, the Timer/CounterO Overflow interrupt is executed.

The setting of this flag is dependent of the WGMO02:0 bit setting. Refer to Table 12-8, "Waveform
Generation Mode Bit Description” on page 106.

AImEl@ 110

A\ T M egal164P/324P/644P

13. 16-bit Timer/Counterl with PWM

13.1 Features

e True 16-bit Design (that is, allows 16-bit PWM)

e Two independent Output Compare Units

* Double Buffered Output Compare Registers

* One Input Capture Unit

* Input Capture Noise Canceler

e Clear Timer on Compare Match (Auto Reload)

* Glitch-free, Phase Correct Pulse Width Modulator (PWM)
* Variable PWM Period

e Frequency Generator

* External Event Counter

* Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

13.2 Overview

The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement.

Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “X” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must be
used, that is, TCNTL1 for accessing Timer/Counterl counter value and so on.

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 13-1. For the actual
placement of I/O pins, see "Pin Configurations” on page 2. CPU accessible I/O Registers, includ-
ing 1/0O bits and 1/O pins, are shown in bold. The device-specific /0O Register and bit locations
are listed in the "Register Description” on page 132.

The PRTIM1 bit in "PRR — Power Reduction Register” on page 48 must be written to zero to
enable Timer/Counterl module.

AImEl@ 111

80110-AVR-07/10

A\ T M egal164P/324P/644P

13.2.1

Registers

80110-AVR-07/10

Figure 13-1. 16-bit Timer/Counter Block Diagram®°te)

Count TOVn
-
Clear c (Int.Req.)
ontrol Logic
Direction 9 clky, Clock Select
Edge
4 A Detector [Tn

TOP | BOTTOM

'y v V /__?\

(From Prescaler)

A Timer/Counter A
TCNTn | | | (=0]
* A ocnA
: (Int.Req.)
|
—] Waveform -
|$ 1 Generation OCnA
OCRnA 2 ;
: Fred ocCnB
n ' TOP (Int.Req.)
) 1 |_Values Wavef
= X aveform
a - H "| Generation OCnB
< I
<Di |
- OCRnB : (From Analog
1 Comparator Ouput)
1 ICFn (Int.Req.)
- ‘ HI
1)
Edge Noise
IC:Rn H Detector [Canceler
| 1 ICPn
| TCCRnA | | TCCRnB |

Note: Refer to Figure 1-1 on page 2 and "Alternate Port Functions” on page 78 for Timer/Counterl pin
placement and description.

The Timer/Counter (TCNTn), Output Compare Registers (OCRnA/B/C), and Input Capture Reg-
ister (ICRn) are all 16-bit registers. Special procedures must be followed when accessing the 16-
bit registers. These procedures are described in the section "Accessing 16-bit Registers” on
page 113. The Timer/Counter Control Registers (TCCRnA/B/C) are 8-bit registers and have no
CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all
visible in the Timer Interrupt Flag Register (TIFRn). All interrupts are individually masked with
the Timer Interrupt Mask Register (TIMSKn). TIFRn and TIMSKn are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on
the Tn pin. The Clock Select logic block controls which clock source and edge the Timer/Counter
uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source
is selected. The output from the Clock Select logic is referred to as the timer clock (clk,).

The double buffered Output Compare Registers (OCRNnA/B/C) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform Gener-
ator to generate a PWM or variable frequency output on the Output Compare pin (OCnA/B/C).

AImEl@ 112

A\ T M egal164P/324P/644P

13.2.2

Definitions

See Section “13.7” on page 120.. The compare match event will also set the Compare Match
Flag (OCFnA/B/C) which can be used to generate an Output Compare interrupt request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge trig-
gered) event on either the Input Capture pin (ICPn) or on the Analog Comparator pins (See
Section “19.” on page 237.) The Input Capture unit includes a digital filtering unit (Noise Can-
celer) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined
by either the OCRNA Register, the ICRn Register, or by a set of fixed values. When using
OCRNA as TOP value in a PWM mode, the OCRNnA Register can not be used for generating a
PWM output. However, the TOP value will in this case be double buffered allowing the TOP
value to be changed in run time. If a fixed TOP value is required, the ICRn Register can be used
as an alternative, freeing the OCRnA to be used as PWM output.

The following definitions are used extensively throughout the section:

Table 13-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes OXFFFF (decimal 65535).

The counter reaches the TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be assigned to be one of the fixed values: OXO0FF, Ox01FF,
or OxO3FF, or to the value stored in the OCRNA or ICRn Register. The assignment is
dependent of the mode of operation.

TOP

13.3 Accessing 16-bit Registers

80110-AVR-07/10

The TCNTn, OCRnA/B/C, and ICRn are 16-bit registers that can be accessed by the AVR CPU
via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write opera-
tions. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-
bit access. The same temporary register is shared between all 16-bit registers within each 16-bit
timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a
16-bit register is written by the CPU, the high byte stored in the temporary register, and the low
byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of
a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the tempo-
rary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCRnA/B/C
16-bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low
byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for accessing
the OCRNA/B/C and ICRn Registers. Note that when using “C”, the compiler handles the 16-bit
access.

AImEl@ 113

A\ T M egal164P/324P/644P

80110-AVR-07/10

Assembly Code Examples®

; Set TCNTn to O0xO01FF
1dirl7,0x01

1di rl6, OXFF

out TCNThH, r17

out TCNTNL, rlé6

; Read TCNTh into rl7:rlé6
in rlé6,TCNTNL

in r17,TCNTNnH

C Code Examples®

unsigned int i;

/* Set TCNTn to 0x01FF */
TCNTNn = Ox1FF;

/* Read TCNTn into i */
i = TCNTn;

Note: 1. The example code assumes that the part specific header file is included.
For 1/0 Registers located in extended 1/0 map, “IN”, “OUT”", “SBIS”, “SBIC”", “CBI", and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR".

The assembly code example returns the TCNTn value in the r17:r16 register pair.

It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must disable
the interrupts during the 16-bit access.

AImEl@ 114

A\ T M egal164P/324P/644P

The following code examples show how to do an atomic read of the TCNTn Register contents.
Reading any of the OCRNA/B/C or ICRn Registers can be done by using the same principle.

Assembly Code Example®

TIM16_ ReadTCNTN:
; Save global interrupt flag
in rl18,SREG
; Disable interrupts
cli
; Read TCNTn into rl7:rlé
in rl6,TCNTNL
in rl7,TCNTNH
; Restore global interrupt flag
out SREG, r1l8

ret
C Code Example®

unsigned int TIM16_ ReadTCNTNn(wvoid)

{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNTn into i */

i = TCNTn;

/* Restore global interrupt flag */
SREG = sreg;

return 1i;

Note: 1. The example code assumes that the part specific header file is included.
For 1/0 Registers located in extended 1/0 map, “IN”, “OUT”", “SBIS”, “SBIC”, “CBI", and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

The assembly code example returns the TCNTn value in the r17:r16 register pair.

AImEl@ 115

80110-AVR-07/10

A\ T M egal164P/324P/644P

The following code examples show how to do an atomic write of the TCNTn Register contents.
Writing any of the OCRNA/B/C or ICRn Registers can be done by using the same principle.

Assembly Code Example®

TIM16_ WriteTCNTN:
; Save global interrupt flag
in rl18,SREG
; Disable interrupts
cli
; Set TCNTn to rl7:rlé6
out TCNTNH, r17
out TCNTNL, rl6
; Restore global interrupt flag
out SREG, r1l8

ret

C Code Example®

void TIM16 WriteTCNTNn(unsigned int i)
unsigned char sreg;
unsigned int i;
/* Save global interrupt flag */
sreg = SREG;

/* Disable interrupts */

_CLI();
/* Set TCNTn to i */
TCNTNh = 1i;

/* Restore global interrupt flag */
SREG = sreg;

Note: 1. The example code assumes that the part specific header file is included.
For 1/0 Registers located in extended 1/0 map, “IN”, “OUT”, “SBIS”, “SBIC", “CBI", and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR".

The assembly code example requires that the r17:r16 register pair contains the value to be writ-

ten to TCNTn.

13.3.1 Reusing the Temporary High Byte Register

If writing to more than one 16-bit register where the high byte is the same for all registers written,
then the high byte only needs to be written once. However, note that the same rule of atomic
operation described previously also applies in this case.

13.4 Timer/Counter Clock Sources

The Timer/Counter can be clocked by an internal or an external clock source. The clock source
is selected by the Clock Select logic which is controlled by the Clock Select (CSn2:0) bits
located in the Timer/Counter control Register B (TCCRnNB). For details on clock sources and
prescaler, see "Timer/Counter Prescaler” on page 152.

AImEl@ 116

80110-AVR-07/10

A\ T M egal164P/324P/644P

13.5 Counter Unit

The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit.
Figure 13-2 shows a block diagram of the counter and its surroundings.

Figure 13-2. Counter Unit Block Diagram

- DATA BUS (s-bit) > o
n
(Int.Req.)
Clock Select
P Count Edge ™
[TonTaH(8bity | TCNTaL(sbit) | | Clear | o, Detector [
<+ Control Logic [«
TCNTn (16-bit Counter) & Drection
(From Prescaler)
TTOP TBOTTOM
Signal description (internal signals):
Count Increment or decrement TCNTn by 1.
Direction Select between increment and decrement.
Clear Clear TCNTn (set all bits to zero).
clky, Timer/Counter clock.
TOP Signalize that TCNTn has reached maximum value.
BOTTOM Signalize that TCNTn has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper eight bits of the counter, and Counter Low (TCNTnL) containing the lower eight
bits. The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH 1/O location, the CPU accesses the high byte temporary register (TEMP).
The temporary register is updated with the TCNTnH value when the TCNTnL is read, and
TCNTnH is updated with the temporary register value when TCNTnL is written. This allows the
CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus.
It is important to notice that there are special cases of writing to the TCNTn Register when the
counter is counting that will give unpredictable results. The special cases are described in the
sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). The clk;, can be generated from an external or internal clock source,
selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 = 0) the
timer is stopped. However, the TCNTn value can be accessed by the CPU, independent of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see "Modes of Operation” on page 123.

AImEl@ 117

80110-AVR-07/10

A\ T M egal164P/324P/644P

The Timer/Counter Overflow Flag (TOVn) is set according to the mode of operation selected by
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.

13.6 Input Capture Unit

The Timer/Counter incorporates an Input Capture unit that can capture external events and give
them a time-stamp indicating time of occurrence. The external signal indicating an event, or mul-
tiple events, can be applied via the ICPn pin or alternatively, via the analog-comparator unit. The
time-stamps can then be used to calculate frequency, duty-cycle, and other features of the sig-
nal applied. Alternatively the time-stamps can be used for creating a log of the events.

The Input Capture unit is illustrated by the block diagram shown in Figure 13-3. The elements of
the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 13-3. Input Capture Unit Block Diagram
DATA BUS (s-bit)

= t)\ >
[TEMP @by |
[icRaH@bity | 1CRnL(8-bi) | | TONTRH @by | TCNTAL (8-bit
- WRITE ICRn (16-bit Register) TCNTn (16-bit Counter)
+ ACO* ACIC* ICNC ICES
_ Analog ¢ ¢
Comparator o -
Noise Edge
Canceler ™ Detector - ICFn (Int.Req.)
ICPn >

When a change of the logic level (an event) occurs on the Input Capture pin (ICPn), alternatively
on the Analog Comparator output (ACO), and this change confirms to the setting of the edge
detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter
(TCNTN) is written to the Input Capture Register (ICRn). The Input Capture Flag (ICFn) is set at
the same system clock as the TCNTn value is copied into ICRn Register. If enabled (ICIEn = 1),
the Input Capture Flag generates an Input Capture interrupt. The ICFn Flag is automatically
cleared when the interrupt is executed. Alternatively the ICFn Flag can be cleared by software
by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICRn) is done by first reading the low
byte (ICRnL) and then the high byte (ICRnH). When the low byte is read the high byte is copied
into the high byte temporary register (TEMP). When the CPU reads the ICRnH I/O location it will
access the TEMP Register.

The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter’s TOP value. In these cases the Waveform Genera-

AImEl@ 118

80110-AVR-07/10

A\ T M egal164P/324P/644P

tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH 1/O location
before the low byte is written to ICRnNL.

For more information on how to access the 16-bit registers refer to "Accessing 16-bit Registers”
on page 113.

13.6.1 Input Capture Trigger Source

The main trigger source for the Input Capture unit is the Input Capture pin (ICPn).
Timer/Counterl can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICPn) and the Analog Comparator output (ACO) inputs are sampled
using the same technique as for the Tn pin (Figure 13-1 on page 112). The edge detector is also
identical. However, when the noise canceler is enabled, additional logic is inserted before the
edge detector, which increases the delay by four system clock cycles. Note that the input of the
noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Wave-
form Generation mode that uses ICRn to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICPn pin.
13.6.2 Noise Canceler

The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing the
output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRNB). When enabled the noise canceler introduces addi-
tional four system clock cycles of delay from a change applied to the input, to the update of the
ICRn Register. The noise canceler uses the system clock and is therefore not affected by the
prescaler.

13.6.3 Using the Input Capture Unit

The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will be
overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.

Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICRn
Register has been read. After a change of the edge, the Input Capture Flag (ICFn) must be

AImEl@ 119

80110-AVR-07/10

A\ T M egal164P/324P/644P

cleared by software (writing a logical one to the I/O bit location). For measuring frequency only,
the clearing of the ICFn Flag is not required (if an interrupt handler is used).

13.7 Output Compare Units

The 16-bit comparator continuously compares TCNTn with the Output Compare Register
(OCRnXx). If TCNT equals OCRnx the comparator signals a match. A match will set the Output
Compare Flag (OCFnx) at the next timer clock cycle. If enabled (OCIEnx = 1), the Output Com-
pare Flag generates an Output Compare interrupt. The OCFnx Flag is automatically cleared
when the interrupt is executed. Alternatively the OCFnx Flag can be cleared by software by writ-
ing a logical one to its 1/O bit location. The Waveform Generator uses the match signal to
generate an output according to operating mode set by the Waveform Generation mode
(WGMn3:0) bits and Compare Output mode (COMnx1:0) bits. The TOP and BOTTOM signals
are used by the Waveform Generator for handling the special cases of the extreme values in
some modes of operation (See Section “13.9” on page 123.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that
is, counter resolution). In addition to the counter resolution, the TOP value defines the period
time for waveforms generated by the Waveform Generator.

Figure 13-4 shows a block diagram of the Output Compare unit. The small “n” in the register and
bit names indicates the device number (n = n for Timer/Counter n), and the “X” indicates Output
Compare unit (A/B/C). The elements of the block diagram that are not directly a part of the Out-
put Compare unit are gray shaded.

Figure 13-4. Output Compare Unit, Block Diagram

DATA BUS (s-bit
I W \ i = >

TEMP (8-bit)

— ¥ ¥

[ocRnxH Buf. (8-bit) | OCRnxL Buf. (8-bit) | [TONTnH(sbity | TCNTL (8-bit
OCRnx Buffer (16-bit Register) TCNTn (16-bit Counter)
|
—Y ‘

OCRnxH (8-bit)y | OCRnxL (8-bit) |
OCRnXx (16-bit Register)

J L

| = (16-bit Comparator) |

——m OCFnx (Int.Req.)
4

TOP ——p]
BOTTOM ———»

Waveform Generator » OCnx

7

WGMn3:0 COMnx1:0

The OCRnx Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCRnx Com-
pare Register to either TOP or BOTTOM of the counting sequence. The synchronization

AImEl@ 120

80110-AVR-07/10

A\ T M egal164P/324P/644P

prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCRnx Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCRnx Buffer Register, and if double buffering is dis-
abled the CPU will access the OCRnx directly. The content of the OCR1x (Buffer or Compare)
Register is only changed by a write operation (the Timer/Counter does not update this register
automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte
temporary register (TEMP). However, it is a good practice to read the low byte first as when
accessing other 16-bit registers. Writing the OCRnx Registers must be done via the TEMP Reg-
ister since the compare of all 16 bits is done continuously. The high byte (OCRnxH) has to be
written first. When the high byte I/O location is written by the CPU, the TEMP Register will be
updated by the value written. Then when the low byte (OCRnxL) is written to the lower eight bits,
the high byte will be copied into the upper 8-bits of either the OCRnx buffer or OCRnx Compare
Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to "Accessing 16-bit Registers”
on page 113.

13.7.1 Force Output Compare

In non-PWM Waveform Generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOCnx) bit. Forcing compare match will not set the
OCFnx Flag or reload/clear the timer, but the OCnx pin will be updated as if a real compare
match had occurred (the COMnN1:0 bits settings define whether the OCnx pin is set, cleared or
toggled).

13.7.2 Compare Match Blocking by TCNTn Write

All CPU writes to the TCNTn Register will block any compare match that occurs in the next timer
clock cycle, even when the timer is stopped. This feature allows OCRnx to be initialized to the
same value as TCNTn without triggering an interrupt when the Timer/Counter clock is enabled.

13.7.3 Using the Output Compare Unit

Since writing TCNTn in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNTn when using any of the Output Compare
channels, independent of whether the Timer/Counter is running or not. If the value written to
TCNTn equals the OCRnx value, the compare match will be missed, resulting in incorrect wave-
form generation. Do not write the TCNTn equal to TOP in PWM modes with variable TOP
values. The compare match for the TOP will be ignored and the counter will continue to OxFFFF.
Similarly, do not write the TCNTn value equal to BOTTOM when the counter is downcounting.

The setup of the OCnx should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OCnx value is to use the Force Output Com-
pare (FOCnx) strobe bits in Normal mode. The OCnx Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COMnx1:0 bits are not double buffered together with the compare value.
Changing the COMnx1:0 bits will take effect immediately.

AImEl@ 121

80110-AVR-07/10

A\ T M egal164P/324P/644P

13.8 Compare Match Output Unit

80110-AVR-07/10

The Compare Output mode (COMnx1:0) bits have two functions. The Waveform Generator uses
the COMnNx1:0 bits for defining the Output Compare (OCnx) state at the next compare match.
Secondly the COMnx1:0 bits control the OCnx pin output source. Figure 13-5 shows a simplified
schematic of the logic affected by the COMnx1:0 bit setting. The I/O Registers, 1/O bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COMnx1:0 bits are shown. When referring to the
OCnx state, the reference is for the internal OCnx Register, not the OCnx pin. If a system reset
occur, the OCnx Register is reset to “0".

Figure 13-5. Compare Match Output Unit, Schematic

—

COMnx1
COMnx0 Waveform
D Q
FOChnx Generator
p
| OCnx
N OCnx 0 = Pin
»D Q
3
m PORT
<
=
o »D Q
Y DDR
clk,q

The general 1/0O port function is overridden by the Output Compare (OCnx) from the Waveform
Generator if either of the COMnx1:0 bits are set. However, the OCnx pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction
Register bit for the OCnx pin (DDR_OCnhx) must be set as output before the OCnx value is visi-
ble on the pin. The port override function is generally independent of the Waveform Generation
mode, but there are some exceptions. Refer to Table 13-2, Table 13-3 and Table 13-4 for
details.

The design of the Output Compare pin logic allows initialization of the OCnx state before the out-
put is enabled. Note that some COMnx1:0 bit settings are reserved for certain modes of
operation. See Section “13.11” on page 132.

The COMnx1:0 bits have no effect on the Input Capture unit.

AImEl@ 122

A\ T M egal164P/324P/644P

13.8.1

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COMnx1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COMnx1:0 = 0 tells the Waveform Generator that no action on the
OCnx Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 13-2 on page 132. For fast PWM mode refer to Table 13-3 on
page 133, and for phase correct and phase and frequency correct PWM refer to Table 13-4 on
page 133.

A change of the COMnx1:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOCnx strobe bits.

13.9 Modes of Operation

13.9.1

13.9.2

Normal Mode

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGMn3:0) and Compare Out-
put mode (COMnNx1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COMnx1:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COMnx1:0 bits control whether the output should be set, cleared or toggle at a compare
match (See Section “13.8” on page 122.)

For detailed timing information refer to "Timer/Counter Timing Diagrams” on page 130.

The simplest mode of operation is the Normal mode (WGMn3:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = OXFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOVn) will be set in
the same timer clock cycle as the TCNTn becomes zero. The TOVn Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOVn Flag, the timer resolution can be increased by soft-
ware. There are no special cases to consider in the Normal mode, a new counter value can be
written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the interval
between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

80110-AVR-07/10

In Clear Timer on Compare or CTC mode (WGMn3:0 = 4 or 12), the OCRNA or ICRn Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when
the counter value (TCNTn) matches either the OCRnA (WGMn3:0 = 4) or the ICRn (WGMn3:0 =
12). The OCRnNA or ICRn define the top value for the counter, hence also its resolution. This
mode allows greater control of the compare match output frequency. It also simplifies the opera-
tion of counting external events.

AImEl@ 123

A\ T M egal164P/324P/644P

The timing diagram for the CTC mode is shown in Figure 13-6. The counter value (TCNTn)
increases until a compare match occurs with either OCRNA or ICRn, and then counter (TCNTn)
is cleared.

Figure 13-6. CTC Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set

i (Interrupt on TOP)
A A _
_ Y
TCNTn / e
3533@ ___ (COMNA1:0 = 1)
Period I 1 I 2 I 3 I 4 I

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCFnA or ICFn Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. How-
ever, changing the TOP to a value close to BOTTOM when the counter is running with none or a
low prescaler value must be done with care since the CTC mode does not have the double buff-
ering feature. If the new value written to OCRNA or ICRn is lower than the current value of
TCNTNn, the counter will miss the compare match. The counter will then have to count to its max-
imum value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur.
In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode
using OCRnNA for defining TOP (WGMn3:0 = 15) since the OCRNA then will be double buffered.

For generating a waveform output in CTC mode, the OCnA output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COMNAL:0 = 1). The OCnA value will not be visible on the port pin unless the data direction for
the pin is set to output (DDR_OCNA = 1). The waveform generated will have a maximum fre-
quency of focna = fak 110/2 when OCRNA is set to zero (0x0000). The waveform frequency is
defined by the following equation:

[= Jeik o
0Cnd = 2. N.(1+OCRnA)

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOVn Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x0000.

13.9.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGMn3:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is cleared
on the compare match between TCNTn and OCRnx, and set at BOTTOM. In inverting Compare
Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope
operation, the operating frequency of the fast PWM mode can be twice as high as the phase cor-

AImEl@ 124

80110-AVR-07/10

A\ T M egal164P/324P/644P

rect and phase and frequency correct PWM modes that use dual-slope operation. This high
frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC
applications. High frequency allows physically small sized external components (coils, capaci-
tors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICRn
or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and the
maximum resolution is 16-bit (ICRn or OCRNA set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

2 _ log(TOP +1)
FPWM |Og(2)

In fast PWM mode the counter is incremented until the counter value matches either one of the
fixed values Ox00FF, 0xO1FF, or 0XO3FF (WGMn3:0 =5, 6, or 7), the value in ICRn (WGMn3:0 =
14), or the value in OCRnA (WGMn3:0 = 15). The counter is then cleared at the following timer
clock cycle. The timing diagram for the fast PWM mode is shown in Figure 13-7. The figure
shows fast PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the
timing diagram shown as a histogram for illustrating the single-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn
slopes represent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will
be set when a compare match occurs.

Figure 13-7. Fast PWM Mode, Timing Diagram

OCRNx/TOP Update and
TOVnN Interrupt Flag Set and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

v

[—

- VU

L LU
OCnx |_|_|_|_|_|_|_|_|

e

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches TOP. In addition
the OCnA or ICFn Flag is set at the same timer clock cycle as TOVn is set when either OCRnA
or ICRn is used for defining the TOP value. If one of the interrupts are enabled, the interrupt han-
dler routine can be used for updating the TOP and compare values.

(COMNx1:0 = 2)

-
L

(COMNX1:0 = 3)

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCRNX Registers are written.

The procedure for updating ICRn differs from updating OCRnA when used for defining the TOP
value. The ICRn Register is not double buffered. This means that if ICRn is changed to a low

AImEl@ 125

80110-AVR-07/10

A\ T M egal164P/324P/644P

value when the counter is running with none or a low prescaler value, there is a risk that the new
ICRn value written is lower than the current value of TCNTn. The result will then be that the
counter will miss the compare match at the TOP value. The counter will then have to count to the
MAX value (OxFFFF) and wrap around starting at 0x0000 before the compare match can occur.
The OCRNA Register however, is double buffered. This feature allows the OCRnA 1/O location
to be written anytime. When the OCRNA 1/O location is written the value written will be put into
the OCRnNA Buffer Register. The OCRnA Compare Register will then be updated with the value
in the Buffer Register at the next timer clock cycle the TCNTn matches TOP. The update is done
at the same timer clock cycle as the TCNTn is cleared and the TOVn Flag is set.

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRnN, the OCRNA Register is free to be used for generating a PWM output on OCnA. However,
if the base PWM frequency is actively changed (by changing the TOP value), using the OCRnA
as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins.
Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COMnx1:0 to three (see Table on page 133). The actual OCnx
value will only be visible on the port pin if the data direction for the port pin is set as output
(DDR_0OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Register at
the compare match between OCRnx and TCNTn, and clearing (or setting) the OCnx Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

P _ _ Jekuo

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the fast PWM mode. If the OCRnx is set equal to BOTTOM (0x0000) the out-
put will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCRnx equal to TOP
will result in a constant high or low output (depending on the polarity of the output set by the
COMnNx1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OChA to toggle its logical level on each compare match (COMnA1:0 = 1). This applies only
if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have
a maximum frequency of focna = Tk 1o/2 Wwhen OCRNA is set to zero (0x0000). This feature is
similar to the OCnA toggle in CTC mode, except the double buffer feature of the Output Com-
pare unit is enabled in the fast PWM mode.

13.9.4 Phase Correct PWM Mode

The phase correct Pulse Width Modulation or phase correct PWM mode (WGMn3:0 =1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dual-
slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from
TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OCnx) is
cleared on the compare match between TCNTn and OCRnx while upcounting, and set on the
compare match while downcounting. In inverting Output Compare mode, the operation is
inverted. The dual-slope operation has lower maximum operation frequency than single slope

AImEl@ 126

80110-AVR-07/10

A\ T M egal164P/324P/644P

operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes
are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or
defined by either ICRn or OCRnA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set
to 0x0003), and the maximum resolution is 16-bit (ICRn or OCRnA set to MAX). The PWM reso-
lution in bits can be calculated by using the following equation:

R _ log(TOP +1)

PCPWM — |Og(2)

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0xO0FF, Ox01FF, or OXx03FF (WGMn3:0 = 1, 2, or 3), the value in ICRn
(WGMnN3:0 = 10), or the value in OCRnA (WGMn3:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNTn value will be equal to TOP for one timer clock
cycle. The timing diagram for the phase correct PWM mode is shown on Figure 13-8. The figure
shows phase correct PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn
value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The
diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on
the TCNTn slopes represent compare matches between OCRnx and TCNTn. The OCnx Inter-
rupt Flag will be set when a compare match occurs.

Figure 13-8. Phase Correct PWM Mode, Timing Diagram

OCRNx/TOP Update and
OCnA Interrupt Flag Set

or ICFn Interrupt Flag Set
(Interrupt on TOP)

TOVnN Interrupt Flag Set
(Interrupt on Bottom)

7]
/ \ \
TCNTn N

OCnx (COMNX1:0 = 2)
OCnx (COMNX1:0 = 3)
Period I 1 J 2] 3) 4)

The Timer/Counter Overflow Flag (TOVn) is set each time the counter reaches BOTTOM. When
either OCRNA or ICRn is used for defining the TOP value, the OCnA or ICFn Flag is set accord-
ingly at the same timer clock cycle as the OCRnx Registers are updated with the double buffer
value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter
reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the

AImEl@ 127

80110-AVR-07/10

A\ T M egal164P/324P/644P

OCRnNx Registers are written. As the third period shown in Figure 13-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCRnx Reg-
ister. Since the OCRnx update occurs at TOP, the PWM period starts and ends at TOP. This
implies that the length of the falling slope is determined by the previous TOP value, while the
length of the rising slope is determined by the new TOP value. When these two values differ the
two slopes of the period will differ in length. The difference in length gives the unsymmetrical
result on the output.

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and an inverted
PWM output can be generated by setting the COMnx1:0 to three (See Table on page 133). The
actual OCnx value will only be visible on the port pin if the data direction for the port pin is set as
output (DDR_OCnx). The PWM waveform is generated by setting (or clearing) the OCnx Regis-
ter at the compare match between OCRnx and TCNTn when the counter increments, and
clearing (or setting) the OCnx Register at compare match between OCRnx and TCNTnh when
the counter decrements. The PWM frequency for the output when using phase correct PWM can
be calculated by the following equation:

_ Jek o
TocnxpcPwm = 5N TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCRI1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output
will toggle with a 50% duty cycle.

13.9.5 Phase and Frequency Correct PWM Mode

The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM
mode (WGMn3:0 = 8 or 9) provides a high resolution phase and frequency correct PWM wave-
form generation option. The phase and frequency correct PWM mode is, like the phase correct
PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the
Output Compare (OCnx) is cleared on the compare match between TCNTn and OCRnx while
upcounting, and set on the compare match while downcounting. In inverting Compare Output
mode, the operation is inverted. The dual-slope operation gives a lower maximum operation fre-
quency compared to the single-slope operation. However, due to the symmetric feature of the
dual-slope PWM modes, these modes are preferred for motor control applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCRnx Register is updated by the OCRnx Buffer Register, (see Figure 13-
8 and Figure 13-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICRn or OCRNA. The minimum resolution allowed is 2-bit (ICRn or OCRNA set to 0x0003), and

AImEl@ 128

80110-AVR-07/10

A\ T M egal164P/324P/644P

the maximum resolution is 16-bit (ICRn or OCRnNA set to MAX). The PWM resolution in bits can
be calculated using the following equation:

R _ log(TOP +1)

PFCPWM — |0g(2)

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICRn (WGMn3:0 = 8), or the value in OCRnA (WGMn3:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNTn value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency
correct PWM mode is shown on Figure 13-9. The figure shows phase and frequency correct
PWM mode when OCRNA or ICRn is used to define TOP. The TCNTn value is in the timing dia-
gram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNTn slopes repre-
sent compare matches between OCRnx and TCNTn. The OCnx Interrupt Flag will be set when a
compare match occurs.

Figure 13-9. Phase and Frequency Correct PWM Mode, Timing Diagram

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

OCRNx/TOP Updateand
¥ TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnx (COMnNx1:0 = 2)
OCnx (COMnNx1:0 = 3)
Period I 1 I 2 I 3 | 4 |

The Timer/Counter Overflow Flag (TOVn) is set at the same timer clock cycle as the OCRnx
Registers are updated with the double buffer value (at BOTTOM). When either OCRNA or ICRn
is used for defining the TOP value, the OCnA or ICFn Flag set when TCNTn has reached TOP.
The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the
TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNTn and the OCRnx.

As Figure 13-9 shows the output generated is, in contrast to the phase correct mode, symmetri-
cal in all periods. Since the OCRnx Registers are updated at BOTTOM, the length of the rising
and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore
frequency correct.

AImEl@ 129

80110-AVR-07/10

A\ T M egal164P/324P/644P

Using the ICRn Register for defining TOP works well when using fixed TOP values. By using
ICRnN, the OCRNA Register is free to be used for generating a PWM output on OCnhA. However,
if the base PWM frequency is actively changed by changing the TOP value, using the OCRnA as
TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM wave-
forms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM and
an inverted PWM output can be generated by setting the COMnx1:0 to three (See Table on
page 133). The actual OCnx value will only be visible on the port pin if the data direction for the
port pin is set as output (DDR_OCnx). The PWM waveform is generated by setting (or clearing)
the OCnx Register at the compare match between OCRnx and TCNTn when the counter incre-
ments, and clearing (or setting) the OCnx Register at compare match between OCRnx and
TCNTn when the counter decrements. The PWM frequency for the output when using phase
and frequency correct PWM can be calculated by the following equation:

= Jowuo

fOCnxPFCPWM 2.N-TOP

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCRnx Register represents special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCRnx is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be set to high for non-
inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A
is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle
with a 50% duty cycle.

13.10 Timer/Counter Timing Diagrams

80110-AVR-07/10

The Timer/Counter is a synchronous design and the timer clock (clky,,) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCRnx Register is updated with the OCRnx buffer value (only for
modes utilizing double buffering). Figure 13-10 shows a timing diagram for the setting of OCFnx.

Figure 13-10. Timer/Counter Timing Diagram, Setting of OCFnx, no Prescaling

clk,o

clk;,,
(clk,o/1)
TCNTn —X OCRnx -1 X OCRnNx OCRnx + 1 X OCRNnx + 2
OCRnNx OCRnx Value

OCFnx

Figure 13-11 shows the same timing data, but with the prescaler enabled.

AImEl@ 130

ATmegal64P/324P/644P

Figure 13-11. Timer/Counter Timing Diagram, Setting of OCFnx, with Prescaler (fgy ;,0/8)

o TR AT A
(cﬂﬁ/”s) F F F F

TCNTnN X OCRNnx -1 OCRNX OCRnx + 1 X OCRNx + 2
OCRnNX OCRnNXx Value
OCFnx

Figure 13-12 shows the count sequence close to TOP in various modes. When using phase and
frequency correct PWM mode the OCRnx Register is updated at BOTTOM. The timing diagrams
will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1 and so on.
The same renaming applies for modes that set the TOVn Flag at BOTTOM.

Figure 13-12. Timer/Counter Timing Diagram, no Prescaling

clk

110

clk,
(clk,/1)

(CTCT;ZI-II:—QWW X TOP -1 TOP BOTTOM BOTTOM + 1

TCNTn T
(PC and PEC PWM) _>< TOP -1 TOP TOP -1 TOP -2

TOVn (FPWM)
and ICFn (if used
as TOP)

(Up,g?ez?;(op) Old OCRnx Value New OCRnx Value
! i

Figure 13-13 shows the same timing data, but with the prescaler enabled.

AImEl@ 131

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 13-13. Timer/Counter Timing Diagram, with Prescaler (foy ,,0/8)

R RS
N T
(clk48)
TCNTn |
(CTC and FPWM) _X TOP -1 TOP BOTTOM BOTTOM + 1
TCNTn |]
(PC and PFC PWM)_X ToP-1 TOP TOP-1 TOP -2
TOVN(FPWM)
and ICFn(if used
as TOP)
OCRnNx
(Update at TOP) Old OCRnx Value New OCRnx Value
I I
13.11 Register Description
13.11.1 TCCR1A —Timer/Counterl Control Register A
Bit 7 6 5 4 3 2 1 0
(0x80) | comiar | comiao | comiBi | comiBo - - WGM11 WGM10 | TCCRIA
Read/Write RIW RIW R/W RIW R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — COMnA1:0: Compare Output Mode for Channel A

e Bit 5:4 — COMnB1:0: Compare Output Mode for Channel B

The COMnA1:0 and COMnB1:0 control the Output Compare pins (OCnA and OCnB respec-
tively) behavior. If one or both of the COMnA1:0 bits are written to one, the OCnA output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COMNB1:0 bit are written to one, the OCnB output overrides the normal port functionality of the
I/0 pin it is connected to. However, note that the Data Direction Register (DDR) bit correspond-
ing to the OCnA or OCnB pin must be set in order to enable the output driver.

When the OCnA or OCnB is connected to the pin, the function of the COMnx1:0 bits is depen-
dent of the WGMn3:0 bits setting. Table 13-2 on page 132 shows the COMnx1:0 bit functionality
when the WGMn3:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 13-2. Compare Output Mode, nhon-PWM
COMnA1/COMnB1 COMNnAO/COMNBO Description

0 0 Normal port operation, OCnA/OCnB disconnected.

0 1 Toggle OCnA/OCnB on Compare Match.

1 0 Clear OCnA/OCnB on Compare Match (Set output to
low level).

1 1 Set OCnA/OCnB on Compare Match (Set output to
high level).

80110-AVR-07/10

132

A\ T M egal164P/324P/644P

80110-AVR-07/10

Table 13-3 on page 133 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to
the fast PWM mode.

Table 13-3. Compare Output Mode, Fast PWM®
COMnA1/COMnB1 COMNnAO/COMNnBO Description

0 0 Normal port operation, OCnA/OCnB disconnected.

WGMnN3:0 = 14 or 15: Toggle OC1A on Compare
Match, OC1B disconnected (normal port operation).

0 L For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

1 0 Clear OCnA/OCnB on Compare Match, set
OCnA/OCnB at BOTTOM (non-inverting mode)

1 1 Set OCnA/OCnB on Compare Match, clear

OCnA/OCnB at BOTTOM (inverting mode)

Note: 1. A special case occurs when OCRnA/OCRnNB equals TOP and COMnA1/COMNBL is set. In
this case the compare match is ignored, but the set or clear is done at BOTTOM. See Section
“13.9.3” on page 124. for more details.

Table 13-4 on page 133 shows the COMnx1:0 bit functionality when the WGMn3:0 bits are set to
the phase correct or the phase and frequency correct, PWM mode.

Table 13-4. Compare Output Mode, Phase Correct and Phase and Frequency Correct
PWM®

COMnA1/COMnB1 COMNnAO/COMNBO Description

0 0 Normal port operation, OCnA/OCnB disconnected.

WGMn3:0 =9 or 11: Toggle OCnA on Compare
Match, OCnB disconnected (normal port operation).
For all other WGM1 settings, normal port operation,
OC1A/OC1B disconnected.

Clear OCnA/OCnB on Compare Match when up-
1 0 counting. Set OCnA/OCnB on Compare Match when
downcounting.

Set OCnA/OCnB on Compare Match when up-
1 1 counting. Clear OCnA/OCnB on Compare Match
when downcounting.

Note: 1. A special case occurs when OCRnA/OCRNB equals TOP and COMnA1/COMnNBL1 is set. See
Section “13.9.4” on page 126. for more details.

e Bit 1:0 —- WGMn1:0: Waveform Generation Mode

Combined with the WGMn3:2 bits found in the TCCRnB Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 13-5 on page 134. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode,
and three types of Pulse Width Modulation (PWM) modes. (See Section “13.9” on page 123.).

AImEl@ 133

A\ T M egal164P/324P/644P

Table 13-5. Waveform Generation Mode Bit Description®
WGMn2 WGMn1l WGMnNO | Timer/Counter Mode of Update of | TOVn Flag
Mode | WGMn3 (CTCn) (PWMn1l) | (PWMnO) | Operation TOP OCRnNX at Set on

0 0 0 0 0 Normal OXFFFF Immediate | MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit Ox00FF TOP BOTTOM
2 0 0 1 0 PWM, Phase Correct, 9-bit Ox01FF TOP BOTTOM
3 0 0 1 1 PWM, Phase Correct, 10-bit Ox03FF TOP BOTTOM
4 0 1 0 0 CTC OCRNA Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit OxO00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit Ox01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit Ox03FF BOTTOM TOP

8 1 0 0 0 E\(’)\ir'\g’cfhase and Frequency |\ pn BOTTOM | BOTTOM
9 1 0 0 1 E\c’)\%éfhase and Frequency | ocppa | BOTTOM | BOTTOM
10 1 0 1 0 PWM, Phase Correct ICRnN TOP BOTTOM
11 1 0 1 1 PWM, Phase Correct OCRnNA TOP BOTTOM
12 1 1 0 0 CTC ICRn Immediate MAX

13 1 1 0 1 (Reserved) - - -

14 1 1 1 0 Fast PWM ICRn BOTTOM TOP

15 1 1 1 1 Fast PWM OCRnA BOTTOM TOP

Note: 1. The CTCn and PWMn1:0 bit definition names are obsolete. Use the WGMn2:0 definitions. However, the functionality and

13.11.2

location of these bits are compatible with previous versions of the timer.
TCCR1B - Timer/Counter1 Control Register B

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0

(0x81) I ICNC1 | ICES1 | - WGM13 WGM12 CSs12 Cs11 CS10 | TCCR1B
Read/Write R/W R/IW R/W RIW R/W R/W R/IW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7—ICNCn: Input Capture Noise Canceler

Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is
activated, the input from the Input Capture pin (ICPn) is filtered. The filter function requires four
successive equal valued samples of the ICPn pin for changing its output. The Input Capture is
therefore delayed by four Oscillator cycles when the noise canceler is enabled.

« Bit 6 — ICESN: Input Capture Edge Select

This bit selects which edge on the Input Capture pin (ICPn) that is used to trigger a capture
event. When the ICESn bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICESn bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICESn setting, the counter value is copied into the
Input Capture Register (ICRn). The event will also set the Input Capture Flag (ICFn), and this
can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

ATMEL

134

A\ T M egal164P/324P/644P

When the ICRn is used as TOP value (see description of the WGMn3:0 bits located in the
TCCRnNA and the TCCRnB Register), the ICPn is disconnected and consequently the Input Cap-
ture function is disabled.

e Bit 5 - Reserved Bit
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be
written to zero when TCCRnNB is written.

¢ Bit 4:3 -WGMn3:2: Waveform Generation Mode
See TCCRnNA Register description.

* Bit 2:0 - CSn2:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure
13-10 and Figure 13-11.

Table 13-6. Clock Select Bit Description

CSn2 CSnl CSn0 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk,o/1 (No prescaling)
0 1 0 clk,o/8 (From prescaler)
0 1 1 clk,o/64 (From prescaler)
1 0 0 clk,o/256 (From prescaler)
1 0 1 clk,0/1024 (From prescaler)
1 1 0 External clock source on Tn pin. Clock on falling edge.
1 1 1 External clock source on Tn pin. Clock on rising edge.

If external pin modes are used for the Timer/Countern, transitions on the Tn pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

13.11.3 TCCRI1C - Timer/Counterl Control Register C

Bit 7 6 5 4 3 2 1 0
(0x82) | FOC1A | FOC1B | - - | TCCRI1C
Read/Write R/W R/W R R R R R R
Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOCnA: Force Output Compare for Channel A

« Bit 6 - FOCnB: Force Output Compare for Channel B

The FOCNnA/FOCNB bits are only active when the WGMn3:0 bits specifies a non-PWM mode.
However, for ensuring compatibility with future devices, these bits must be set to zero when
TCCRnNA is written when operating in a PWM mode. When writing a logical one to the
FOCNnA/FOCnNB bit, an immediate compare match is forced on the Waveform Generation unit.
The OCnA/OCnB output is changed according to its COMnx1:0 bits setting. Note that the
FOCNnA/FOCNB bits are implemented as strobes. Therefore it is the value present in the
COMnNx1:0 bits that determine the effect of the forced compare.

AImEl@ 135

80110-AVR-07/10

A\ T M egal164P/324P/644P

A FOCNnA/FOCnB strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCRnA as TOP.

The FOCnA/FOCNB bits are always read as zero.

13.11.4 TCNT1H and TCNT1L —Timer/Counterl

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H
(0x84) TCNT1[7:0] TCNTI1L
Read/Write R/IW RIW R/W R/W RIW R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The two Timer/Counter 1/O locations (TCNTnH and TCNTnL, combined TCNTn) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Register
(TEMP). This temporary register is shared by all the other 16-bit registers. See Section “13.3" on
page 113.

Modifying the counter (TCNTn) while the counter is running introduces a risk of missing a com-
pare match between TCNTn and one of the OCRnx Registers.

Writing to the TCNTn Register blocks (removes) the compare match on the following timer clock
for all compare units.

13.11.5 OCR1AH and OCR1AL - Output Compare Register 1 A

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH
(0x88) OCR1A[7:0] OCR1AL
Read/Write R/IW RIW R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

13.11.6 OCR1BH and OCR1BL — Output Compare Register 1 B

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1BJ[15:8] OCR1BH
(0x8A) OCR1B([7:0] OCR1BL
Read/Write R/IW RIW R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNTn). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCnx pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are
written simultaneously when the CPU writes to these registers, the access is performed using an
8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other
16-bit registers. See Section “13.3” on page 113.

AImEl@ 136

A\ T M egal164P/324P/644P

13.11.7 ICR1H and ICRL1L — Input Capture Register 1

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H
(0x86) ICR1[7:0] ICR1L
Read/Write R/IW R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

The Input Capture is updated with the counter (TCNTn) value each time an event occurs on the
ICPn pin (or optionally on the Analog Comparator output for Timer/Counterl). The Input Capture
can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read
simultaneously when the CPU accesses these registers, the access is performed using an 8-bit
temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit
registers. See Section “13.3” on page 113.

13.11.8 TIMSK1 - Timer/Counterl Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
(OX6F) | - | - HEE - - OCIEIB | OCIE1A TOIE1L | TIMSK1
Read/Write R R RIW R R R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — Res: Reserved Bits
These bits are unused bits in the ATmegal64P/324P/644P, and will always read as zero.

e Bit 5—-ICIEL: Timer/Counterl, Input Capture Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counterl Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 61) is executed when the ICF1 Flag, located in TIFR1, is set.

» Bit 4:3 — Res: Reserved Bits
These bits are unused bits in the ATmegal64P/324P/644P, and will always read as zero.

e Bit 2- OCIE1B: Timer/Counterl, Output Compare B Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counterl Output Compare B Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 61) is executed when the OCF1B Flag, located in
TIFR1, is set.

e Bit 1 - OCIE1A: Timer/Counterl, Output Compare A Match Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counterl Output Compare A Match interrupt is enabled. The corresponding
Interrupt Vector (see “Interrupts” on page 61) is executed when the OCF1A Flag, located in
TIFR1, is set.

e Bit 0 — TOIEL: Timer/Counterl, Overflow Interrupt Enable

When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counterl Overflow interrupt is enabled. The corresponding Interrupt Vector
(See Section “8.8” on page 55.) is executed when the TOV1 Flag, located in TIFRL, is set.

AImEl@ 137

80110-AVR-07/10

A\ T M egal164P/324P/644P

13.11.9 TIFR1 - Timer/Counterl Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
0x16 (0x36) | - | - | IcF1 - - OCF1B OCF1A Tovi | TIFRL
Read/Write R R R/W R R R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 7:6 — Res: Reserved Bits
These bits are unused bits in the ATmegal64P/324P/644P, and will always read as zero.

e Bit 5-ICFL1: Timer/Counterl, Input Capture Flag

This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGMn3:0 to be used as the TOP value, the ICF1 Flag is set when the coun-
ter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively,
ICF1 can be cleared by writing a logic one to its bit location.

* Bit 4:3 — Res: Reserved Bits
These bits are unused bits in the ATmegal64P/324P/644P, and will always read as zero.

e Bit 2 - OCF1B: Timer/Counterl, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

e Bit 1 - OCF1A: Timer/Counterl, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

e Bit 0— TOV1: Timer/Counterl, Overflow Flag

The setting of this flag is dependent of the WGMn3:0 bits setting. In Normal and CTC modes,
the TOV1 Flag is set when the timer overflows. Refer to Table 13-5 on page 134 for the TOV1
Flag behavior when using another WGMn3:0 bit setting.

TOV1 is automatically cleared when the Timer/Counterl Overflow Interrupt Vector is executed.
Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

AImEl@ 138

80110-AVR-07/10

A\ T M egal164P/324P/644P

14. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

14.1 Features

¢ Single Channel Counter

e Clear Timer on Compare Match (Auto Reload)

* Glitch-free, Phase Correct Pulse Width Modulator (PWM)

* Frequency Generator

* 10-bit Clock Prescaler

¢ Overflow and Compare Match Interrupt Sources (TOV2, OCF2A and OCF2B)

* Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock
14.2 Overview

Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module.

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 13-12.. For the actual
placement of I/O pins, see "Pin Configurations” on page 2. CPU accessible I/0O Registers, includ-
ing 1/0 bits and 1/O pins, are shown in bold. The device-specific /0 Register and bit locations
are listed in the "Register Description” on page 152.

The Power Reduction Timer/Counter2 bit, PRTIM2, in "PRR — Power Reduction Register” on
page 48 must be written to zero to enable Timer/Counter2 module.

Figure 14-1. 8-bit Timer/Counter Block Diagram

Count - TOVn
Clear (Int.Req.)
Control Logic
Direction clkg, - TOSC1
T
Y l Oscillator
Prescaler |#—— - TOSC2
TOP | BOTTOM
[e— clk
Y vy
A Timer/Counter 3
<} TCNTn
L = =0
* ‘ * OCnA
Il (Int.Req.)
\ [}
— [} Waveform
- ﬁ ™ Generation | OCnA
(> ochm fq----
Fixed ocnB
ToP (Int.Req.)
wn i R Value -neq.
]
) = e »|ocnB
eneration
<
8
.
Synchronized Status flags le— clk
Y J - Synchronization Unit o
[e—— clk,q,
A
Y asynchronous mode “
Status flags select (ASn)
ASSRn
[TCCRnA | TCCRnB |
< A A Y _
Il Lol
\

AImEl@ 139

80110-AVR-07/10

A\ T M egal164P/324P/644P

14.2.1 Registers

14.2.2 Definitions

The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit reg-
isters. Interrupt request (abbreviated to Int.Req.) signals are all visible in the Timer Interrupt Flag
Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register
(TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from
the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by
the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock
source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inac-
tive when no clock source is selected. The output from the Clock Select logic is referred to as the
timer clock (clky,).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pins (OC2A and
OC2B). See Section “14.5” on page 141. for details. The compare match event will also set the
Compare Flag (OCF2A or OCF2B) which can be used to generate an Output Compare interrupt
request.

Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, that is, TCNT2 for accessing
Timer/Counter2 counter value and so on.

The definitions in Table 14-1 are also used extensively throughout the section.

Table 14-1. Definitions
BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes OxFF (decimal 255).

TOP The counter reaches the TOP when it becomes equal to the highest value in the
count sequence. The TOP value can be assigned to be the fixed value OxFF
(MAX) or the value stored in the OCR2A Register. The assignment is depen-
dent on the mode of operation.

14.3 Timer/Counter Clock Sources

80110-AVR-07/10

The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clky, is by default equal to the MCU clock, clk;,o. When the AS2
bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter
Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see "ASSR
— Asynchronous Status Register” on page 157. For details on clock sources and prescaler, see
"Timer/Counter Prescaler” on page 152.

AImEl@ 140

A\ T M egal164P/324P/644P

14.4 Counter Unit

The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure
14-2 shows a block diagram of the counter and its surrounding environment.

Figure 14-2. Counter Unit Block Diagram

TOVn

—»
(Int.Req.)
DATA BUS > ed

t |——| TOSC1

count

TIC

clk "
clear Tn Oscillator

TCNTn d Control Logic [Prescaler
direction

bottom T Ttop

—® TOSC2

clko

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clky, Timer/Counter clock, referred to as clky, in the following.
top Signalizes that TCNT2 has reached maximum value.
bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each timer clock (clky,). clkr, can be generated from an external or internal clock source,
selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the
timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of
whether clky, is present or not. A CPU write overrides (has priority over) all counter clear or
count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in
the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Counter
Control Register B (TCCR2B). There are close connections between how the counter behaves
(counts) and how waveforms are generated on the Output Compare outputs OC2A and OC2B.
For more details about advanced counting sequences and waveform generation, see "Modes of
Operation” on page 144.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by
the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.

14.5 Output Compare Unit

80110-AVR-07/10

The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a
match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is exe-
cuted. Alternatively, the Output Compare Flag can be cleared by software by writing a logical
one to its I/O bit location. The Waveform Generator uses the match signal to generate an output

AImEl@ 141

A\ T M egal164P/324P/644P

according to operating mode set by the WGM22:0 bits and Compare Output mode (COM2x1:0)
bits. The max and bottom signals are used by the Waveform Generator for handling the special
cases of the extreme values in some modes of operation ("Modes of Operation” on page 144).

Figure 13-10 on page 130 shows a block diagram of the Output Compare unit.

Figure 14-3. Output Compare Unit, Block Diagram
DATA BUS

- t t .
OCRnNx TCNTn

JL Ll

I = (8-bit Comparator) |

OCFnx (Int.Req.)

top >

bottom] Waveform Generator

L]

WGMn1:0 COMNX1:0

-1 OCnx

FOCn >

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffering
is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is dis-
abled the CPU will access the OCR2x directly.

145.1 Force Output Compare

In non-PWM waveform generation modes, the match output of the comparator can be forced by
writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set the
OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real compare
match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set, cleared or
toggled).

14.5.2 Compare Match Blocking by TCNT2 Write

All CPU write operations to the TCNT2 Register will block any compare match that occurs in the
next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be initial-
ized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is
enabled.

AImEl@ 142

80110-AVR-07/10

A\ T M egal164P/324P/644P

14.5.3 Using the Output Compare Unit

Since writing TCNTZ2 in any mode of operation will block all compare matches for one timer clock
cycle, there are risks involved when changing TCNT2 when using the Output Compare channel,
independently of whether the Timer/Counter is running or not. If the value written to TCNT2
equals the OCR2x value, the compare match will be missed, resulting in incorrect waveform
generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is
downcounting.

The setup of the OC2x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2x value is to use the Force Output Com-
pare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value.
Changing the COM2x1.:0 bits will take effect immediately.

14.6 Compare Match Output Unit

80110-AVR-07/10

The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator uses
the COM2x1.:0 bits for defining the Output Compare (OC2x) state at the next compare match.
Also, the COM2x1:0 bits control the OC2x pin output source. Figure 14-4 shows a simplified
schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, 1/O bits, and 1/0
pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers
(DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to the
OC2x state, the reference is for the internal OC2x Register, not the OC2x pin.

Figure 14-4. Compare Match Output Unit, Schematic

—

COMnx1
COMnNx0 Waveform D Q
FOCnx Generator
1
| OCnx
N OCnx 0 = Pin
»D Q
3
m PORT
<
<
 J DDR
clk,q

The general 1/O port function is overridden by the Output Compare (OC2x) from the Waveform
Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or out-
put) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction

AImEl@ 143

A\ T M egal164P/324P/644P

14.6.1

Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is visi-
ble on the pin. The port override function is independent of the Waveform Generation mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before the out-
put is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of
operation. See "Register Description” on page 152.

Compare Output Mode and Waveform Generation

The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM modes.
For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action on the
OC2x Register is to be performed on the next compare match. For compare output actions in the
non-PWM modes refer to Table 14-5 on page 154. For fast PWM mode, refer to Table 14-6 on
page 154, and for phase correct PWM refer to Table 14-7 on page 154.

A change of the COM2x1.:0 bits state will have effect at the first compare match after the bits are
written. For non-PWM modes, the action can be forced to have immediate effect by using the
FOC2x strobe bits.

14.7 Modes of Operation

1471

14.7.2

Normal Mode

The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM22:0) and Compare Out-
put mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting sequence,
while the Waveform Generation mode bits do. The COM2x1.:0 bits control whether the PWM out-
put generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes
the COM2x1.:0 bits control whether the output should be set, cleared, or toggled at a compare
match (See Section “14.6” on page 143.).

For detailed timing information refer to "Timer/Counter Timing Diagrams” on page 148.

The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = OxFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same
timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth
bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt
that automatically clears the TOV2 Flag, the timer resolution can be increased by software.
There are no special cases to consider in the Normal mode, a new counter value can be written
anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the Out-
put Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

Clear Timer on Compare Match (CTC) Mode

80110-AVR-07/10

In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter
value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence
also its resolution. This mode allows greater control of the compare match output frequency. It
also simplifies the operation of counting external events.

AImEl@ 144

A\ T M egal164P/324P/644P

The timing diagram for the CTC mode is shown in Table 14-5 on page 145. The counter value
(TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then coun-
ter (TCNT2) is cleared.

Figure 14-5. CTC Mode, Timing Diagram

w SV

OCnx]
(Toggle) 1 L

OCnx Interrupt Flag Set

-

(COMNx1:0 = 1)

Period I 1 I 2 I 3 I 4 I

An interrupt can be generated each time the counter value reaches the TOP value by using the
OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating
the TOP value. However, changing TOP to a value close to BOTTOM when the counter is run-
ning with none or a low prescaler value must be done with care since the CTC mode does not
have the double buffering feature. If the new value written to OCR2A is lower than the current
value of TCNT2, the counter will miss the compare match. The counter will then have to count to
its maximum value (OxFF) and wrap around starting at 0x00 before the compare match can
occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical
level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for
the pin is set to output. The waveform generated will have a maximum frequency of foc,s =
foax 1o/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following
equation:

P Jek 1o
OCnx = 2.N.(1+OCRnx)

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the
counter counts from MAX to 0x00.

14.7.3 Fast PWM Mode

The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option by
its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOT-
TOM. TOP is defined as OxFF when WGM22:0 = 3, and OCR2A when MGM22:0 = 7. In non-
inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match
between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode, the out-
put is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the
operating frequency of the fast PWM mode can be twice as high as the phase correct PWM
mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited

AImEl@ 145

80110-AVR-07/10

A\ T M egal164P/324P/644P

for power regulation, rectification, and DAC applications. High frequency allows physically small
sized external components (coils, capacitors), and therefore reduces total system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 14-6 on page 146. The TCNT2 value is in the timing diagram
shown as a histogram for illustrating the single-slope operation. The diagram includes non-
inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes repre-
sent compare matches between OCR2x and TCNT2.

Figure 14-6. Fast PWM Mode, Timing Diagram

OCRnX Interrupt Flag Set

OCRnNx Update and
TOVn Interrupt Flag Set

A /
/ / VAR /]
OCnx (COMNXL:0 = 2)

OCnx |_| (COMNx1:0 = 3)
Periodl-—1l2l°l4lclel7—-|

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the inter-
rupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin.
Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output
can be generated by setting the COM2x1:0 to three. TOP is defined as OxFF when WGM2:0 = 3,
and OCR2A when WGM2:0 = 7 (See Table 14-3 on page 153). The actual OC2x value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-
form is generated by setting (or clearing) the OC2x Register at the compare match between
OCR2x and TCNTZ2, and clearing (or setting) the OC2x Register at the timer clock cycle the
counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

_ Jak o

fOCnxPWM N-256

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result
in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0

bits.)
AImEl@ 146

80110-AVR-07/10

A\ T M egal164P/324P/644P

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by set-
ting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The waveform
generated will have a maximum frequency of f,., = f, ,o/2 when OCR2A is set to zero. This fea-
ture is similar to the OC2A toggle in CTC mode, exce_pt the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

14.7.4 Phase Correct PWM Mode

80110-AVR-07/10

The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as OxFF when WGM22:0 = 1, and OCR2A when MGM22:0 = 5. In non-
inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare match
between TCNT2 and OCR2x while upcounting, and set on the compare match while downcount-
ing. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has
lower maximum operation frequency than single slope operation. However, due to the symmet-
ric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT2 value will be equal
to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown
on Figure 14-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating
the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The
small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2x
and TCNT2.

Figure 14-7. Phase Correct PWM Mode, Timing Diagram

OCnx Interrupt Flag Set

OCRnNx Update

TOVn Interrupt Flag Set

-t
¢
-t
¢

e /ININATN

OCnx |_| |_ (COMnNx1:0 = 2)
OCnx |_| |_| |— (COMnNx1:0 = 3)
Period I 1 ~I 2 ~I 3 ~I

The Timer/Counter Overflow Flag (TOV?2) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM
value.

AImEl@ 147

A\ T M egal164P/324P/644P

In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2x pin. Setting the COM2x1.:0 bits to two will produce a non-inverted PWM. An inverted PWM
output can be generated by setting the COM2x1:0 to three. TOP is defined as OxFF when
WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 14-4 on page 153). The actual OC2x
value will only be visible on the port pin if the data direction for the port pin is set as output. The
PWM waveform is generated by clearing (or setting) the OC2x Register at the compare match
between OCR2x and TCNT2 when the counter increments, and setting (or clearing) the OC2x
Register at compare match between OCR2x and TCNT2 when the counter decrements. The
PWM frequency for the output when using phase correct PWM can be calculated by the follow-
ing equation:

_ Jok o

fOCnxPCPWM N-510

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 14-7 on page 147 OCnx has a transition from high to low
even though there is no Compare Match. The point of this transition is to guarantee symmetry
around BOTTOM. There are two cases that give a transition without Compare Match.

« OCR2A changes its value from MAX, like in Figure 14-7 on page 147. When the OCR2A value
is MAX the OCn pin value is the same as the result of a down-counting compare match. To
ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an
up-counting Compare Match.

« The timer starts counting from a value higher than the one in OCR2A, and for that reason
misses the Compare Match and hence the OCn change that would have happened on the way

up.

14.8 Timer/Counter Timing Diagrams

80110-AVR-07/10

The following figures show the Timer/Counter in synchronous mode, and the timer clock (clky,)
is therefore shown as a clock enable signal. In asynchronous mode, clk;5 should be replaced by
the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are
set. Figure 14-8 on page 149 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

AImEl@ 148

A\ T M egal164P/324P/644P

Figure 14-8. Timer/Counter Timing Diagram, no Prescaling

clkyo

clky,

(clkyo/1)

TCNTn X MAX -1 X MAX BOTTOM X BOTTOM + 1

TOVn

Figure 14-9 on page 149 shows the same timing data, but with the prescaler enabled.

Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (foy ,,0/8)

o (|| TIIUUYUUTTITOGUUUUUUG IOl
(c(I:ILE/”B) F F F F

TCNTn X MAX -1 MAX BOTTOM BOTTOM + 1

TOVn

Figure 14-10 on page 149 shows the setting of OCF2A in all modes except CTC mode.

Figure 14-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (f ,0/8)

o TR
(c?ll.l,:/% F F F F

TCNTn >< OCRNnx -1

——

OCRNX OCRnx +1 X OCRnx + 2

OCRnNX OCRnNx Value

OCFnx

AImEl@ 149

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 14-11 on page 150 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Pres-
caler (foy_yo/8)

o TN ATY
s F F F F

TCNTn |
(CTC)

X TOP -1 X TOP BOTTOM X BOTTOM + 1

OCRnNx TOP

OCFnx

14.9 Asynchronous Operation of Timer/Counter2

When Timer/Counter2 operates asynchronously, some considerations must be taken.

« Warning: When switching between asynchronous and synchronous clocking of
Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A safe
procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIEZ2.

Select clock source by setting AS2 as appropriate.

Write new values to TCNT2, OCR2x, and TCCR2x.

To switch to asynchronous operation: Wait for TCN2UB, OCR2xUB, and TCR2xUB.

Clear the Timer/Counter2 Interrupt Flags.

f. Enable interrupts, if needed.

« The CPU main clock frequency must be more than four times the Oscillator frequency.

* When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to a
temporary register, and latched after two positive edges on TOSC1. The user should not write
a new value before the contents of the temporary register have been transferred to its
destination. Each of the five mentioned registers have their individual temporary register, which
means that, for example, writing to TCNT2 does not disturb an OCR2x write in progress. To
detect that a transfer to the destination register has taken place, the Asynchronous Status
Register — ASSR has been implemented.

© 20 T

* When entering Power-save or ADC Noise Reduction mode after having written to TCNT2,
OCR2x, or TCCR2x, the user must wait until the written register has been updated if
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode
before the changes are effective. This is particularly important if any of the Output Compare2
interrupt is used to wake up the device, since the Output Compare function is disabled during
writing to OCR2x or TCNT?2. If the write cycle is not finished, and the MCU enters sleep mode

AImEl@ 150

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

before the corresponding OCR2xUB bit returns to zero, the device will never receive a
compare match interrupt, and the MCU will not wake up.

If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction
mode, precautions must be taken if the user wants to re-enter one of these modes: The
interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and re-
entering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device
will fail to wake up. If the user is in doubt whether the time before re-entering Power-save or
ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that
one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.
b. Wait until the corresponding Update Busy Flag in ASSR returns to zero.
c. Enter Power-save or ADC Noise Reduction mode.

When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is
always running, except in Power-down and Standby modes. After a Power-up Reset or wake-
up from Power-down or Standby mode, the user should be aware of the fact that this Oscillator
might take as long as one second to stabilize. The user is advised to wait for at least one
second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby
mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up
from Power-down or Standby mode due to unstable clock signal upon start-up, no matter
whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin.

Description of wake up from Power-save or ADC Noise Reduction mode when the timer is
clocked asynchronously: When the interrupt condition is met, the wake up process is started
on the following cycle of the timer clock, that is, the timer is always advanced by at least one
before the processor can read the counter value. After wake-up, the MCU is halted for four
cycles, it executes the interrupt routine, and resumes execution from the instruction following
SLEEP.

Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be
done through a register synchronized to the internal I1/0O clock domain. Synchronization takes
place for every rising TOSC1 edge. When waking up from Power-save mode, and the 1/O clock
(clk,0) again becomes active, TCNT2 will read as the previous value (before entering sleep)
until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Power-
save mode is essentially unpredictable, as it depends on the wake-up time. The recommended
procedure for reading TCNT2 is thus as follows:

a. Write any value to either of the registers OCR2x or TCCR2x.
b. Wait for the corresponding Update Busy Flag to be cleared.
c. Read TCNT2.

During asynchronous operation, the synchronization of the Interrupt Flags for the
asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore
advanced by at least one before the processor can read the timer value causing the setting of
the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not
synchronized to the processor clock.

AImEl@ 151

A\ T M egal164P/324P/644P

14.10 Timer/Counter Prescaler

Figure 14-12. Prescaler for Timer/Counter2

cIkI/O —> cIszs
Clear 10-BIT T/C PRESCALER
TOSC1 —> A © o < © © <
A) © rel N
q v Ty D] =]
] f R |z |2 <
S X |x - = Q
AS2 S R A =
Q
PSRASY 0
i A Yy YVY
CS20 ;l
cs21 A
Ccs22

TIMER/COUNTER2 CLOCK SOURCE
clky,

The clock source for Timer/Counter2 is named clk,s. Clkr,g iS by default connected to the main
system I/O clock clk,q. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously
clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter
(RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can
then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock
source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal. By set-
ting the EXCLK bit in the ASSR a 32 kHz external clock can be applied. See "ASSR —
Asynchronous Status Register” on page 157 for details.

For Timer/Counter2, the possible prescaled selections are: clk,5/8, clky,5/32, clky,5/64,
clky,5/128, clky,5/256, and clk;,5/1024. Additionally, clkr,s as well as O (stop) may be selected.
Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to operate with a
predictable prescaler.

14.11 Register Description

14.11.1 TCCR2A —Timer/Counter Control Register A

Bit 7 6 5 4 3 2 1 0
(0xBO) | COM2A1 | COM2A0 | COM2B1 | COM2BO - - WGM21 WGM20 | TCCR2A
Read/Write RIW RIW RIW RIW R R RIW RIW
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:6 — COM2A1:0: Compare Match Output A Mode

These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0
bits are set, the OC2A output overrides the normal port functionality of the 1/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2A pin
must be set in order to enable the output driver.

AImEl@ 152

80110-AVR-07/10

A\ T M egal164P/324P/644P

When OC2A is connected to the pin, the function of the COM2AL1:0 bits depends on the
WGM22:0 bit setting. Table 14-2 shows the COM2A1:0 bit functionality when the WGM22:0 bits

are set to a normal or CTC mode (non-PWM).

Table 14-2. Compare Output Mode, nhon-PWM Mode
COM2A1 COM2A0 Description
0 0 Normal port operation, OCOA disconnected.
0 1 Toggle OC2A on Compare Match
1 0 Clear OC2A on Compare Match
1 1 Set OC2A on Compare Match

Table 14-3 shows the COM2AL1:0 bit functionality when the WGM21.:0 bits are set to fast PWM

mode.
Table 14-3. Compare Output Mode, Fast PWM Mode®
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 WGM22 = 0: Normal Port Operation, OCOA Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.
1 0 Clear OC2A on Compare Match, set OC2A at BOTTOM,
(non-inverting mode).
1 1 Set OC2A on Compare Match, clear OC2A at BOTTOM,
(inverting mode).
Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at BOTTOM. See "Fast PWM Mode” on
page 145 for more details.
Table 14-4 shows the COM2AL1:0 bit functionality when the WGM22:0 bits are set to phase cor-
rect PWM mode.

Table 14-4. Compare Output Mode, Phase Correct PWM Mode®
COM2A1 COM2A0 Description
0 0 Normal port operation, OC2A disconnected.
0 1 WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.
Clear OC2A on Compare Match when up-counting. Set OC2A on
1 0 .
Compare Match when down-counting.
Set OC2A on Compare Match when up-counting. Clear OC2A on
1 1 .
Compare Match when down-counting.
Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode” on
page 147 for more details.

e Bits 5:4 — COM2B1:0: Compare Match Output B Mode

These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0
bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OC2B pin
must be set in order to enable the output driver.

AImEl@ 153

80110-AVR-07/10

A\ T M egal164P/324P/644P

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. Table 14-5 shows the COM2B1:0 bit functionality when the WGM22:0 bits

are set to a normal or CTC mode (non-PWM).

Table 14-5. Compare Output Mode, non-PWM Mode
COM2B1 COM2BO Description
0 0 Normal port operation, OC2B disconnected.
0 1 Toggle OC2B on Compare Match
1 0 Clear OC2B on Compare Match
1 1 Set OC2B on Compare Match
Table 14-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM
mode.
Table 14-6. Compare Output Mode, Fast PWM Mode®
COM2B1 COM2BO Description
0 0 Normal port operation, OC2B disconnected.
0 1 Reserved
1 0 Clear.OC2!3 on Compare Match, set OC2B at BOTTOM,
(non-inverting mode).
1 1 S_et O_CZB on Compare Match, clear OC2B at BOTTOM,
(inverting mode).
Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at BOTTOM. See "Fast PWM Mode” on

page 145 for more details.
Table 14-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase cor-
rect PWM mode.

Table 14-7. Compare Output Mode, Phase Correct PWM Mode®
COM2B1 COM2BO Description
0 0 Normal port operation, OC2B disconnected.
0 1 Reserved
Clear OC2B on Compare Match when up-counting. Set OC2B on
1 0 .
Compare Match when down-counting.
Set OC2B on Compare Match when up-counting. Clear OC2B on
1 1 .
Compare Match when down-counting.

Note:

1. A special case occurs when OCR2B equals TOP and COM2BL1 is set. In this case, the Com-

pare Match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode” on

page 147 for more details.

* Bits 3:2 — Res: Reserved Bits
These bits are reserved bits in the ATmegal64P/324P/644P and will always read as zero.

AImEl@ 154

80110-AVR-07/10

A\ T M egal164P/324P/644P

14.11.2

80110-AVR-07/10

» Bits 1:0 - WGM21:0: Waveform Generation Mode

Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of wave-
form generation to be used, see Table 14-8. Modes of operation supported by the Timer/Counter
unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode, and two types of
Pulse Width Modulation (PWM) modes (see "Modes of Operation” on page 144).

Table 14-8. Waveform Generation Mode Bit Description

Timer/Counter
Mode of Update of TOV Fla?
Mode | WGM2 | WGM1 | WGMO | Operation TOP OCRX at Set onM®

0 0 0 0 Normal OxFF Immediate MAX

1 0 0 1 PWM, Phase OXFF TOP BOTTOM
Correct

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM OXFF BOTTOM MAX

4 1 0 0 Reserved - - -

5 1 0 1 PWM, Phase OCRA TOP BOTTOM
Correct

6 1 1 0 Reserved - - -

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX= OxFF
2. BOTTOM= 0x00

TCCR2B - Timer/Counter Control Register B

Bit 7 6 5 4 3 2 1 0

(0xB1) | rocaa | Foczs | - - WGM22 cs22 cs21 cs20 | TCcR2B
Read/Write W W R R R/IW R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC2A output is
changed according to its COM2A1.:0 bits setting. Note that the FOC2A bit is implemented as a
strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the
forced compare.

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

AImEl@ 155

A\ T M egal164P/324P/644P

* Bit 6 - FOC2B: Force Output Compare B
The FOC2B bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B bit,
an immediate Compare Match is forced on the Waveform Generation unit. The OC2B output is
changed according to its COM2B1.:0 bits setting. Note that the FOC2B bit is implemented as a
strobe. Therefore it is the value present in the COM2B1:0 bits that determines the effect of the
forced compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2B as TOP.

The FOC2B bit is always read as zero.

* Bits 5:4 — Res: Reserved Bits
These bits are reserved bits in the ATmegal64P/324P/644P and will always read as zero.

e Bit 3-WGM22: Waveform Generation Mode
See the description in the "TCCR2A — Timer/Counter Control Register A” on page 152.

* Bit 2:0 - CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table
14-9 on page 156.

Table 14-9. Clock Select Bit Description

CS22 Ccs21 CS20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkog/(No prescaling)
0 1 0 clkr,5/8 (From prescaler)
0 1 1 clk,5/32 (From prescaler)
1 0 0 clk,5/64 (From prescaler)
1 0 1 clkr,5/128 (From prescaler)
1 1 0 clky,5/256 (From prescaler)
1 1 1 clky,5/1024 (From prescaler)

If external pin modes are used for the Timer/Counter0, transitions on the TO pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

14.11.3 TCNT2 - Timer/Counter Register

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0
(0xB2) | TCNT2[7:0] | Tont2
Read/Write RIW RIW R/W R/W RIW R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Compare

AImEl@ 156

A\ T M egal164P/324P/644P

Match on the following timer clock. Modifying the counter (TCNTZ2) while the counter is running,
introduces a risk of missing a Compare Match between TCNT2 and the OCR2x Registers.

14.11.4 OCR2A — Output Compare Register A

14.11.5

14.11.6

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0

(0xB3) | OCR2A[7:0] | OCR2A
Read/Write R/W RIW R/W R/W RIW RIW R/W RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2A pin.

OCR2B - Output Compare Register B

Bit 7 6 5 4 3 2 1 0

(0xB4) | OCR2B([7:0] | ocres
Read/Write R/W R/W R/W R/W RIW R/W R/W RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register B contains an 8-bit value that is continuously compared with the
counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC2B pin.

ASSR - Asynchronous Status Register

Bit 7 6 5 4 3 2 1 0
(0xB6) | - | excik | As2 | TCcN2uB | OCR2AUB OCR2BUB TCR2AUB | TCR2BUB | Assr
Read/Write R R/W R/W R R R R R
Initial Value 0 0 0 0 0 0 0 0

* Bit 6 — EXCLK: Enable External Clock Input

When EXCLK is written to one, and asynchronous clock is selected, the external clock input buf-
fer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a
32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected.
Note that the crystal Oscillator will only run when this bit is zero.

* Bit 5 - AS2: Asynchronous Timer/Counter2

When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clk;,o. When AS2 is
written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscil-
lator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A,
OCR2B, TCCR2A and TCCR2B might be corrupted.

e Bit4-TCN2UB: Timer/Counter2 Update Busy

When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value.

* Bit 3— OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value.

AImEl@ 157

A\ T M egal164P/324P/644P

¢ Bit 2 - OCR2BUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set.
When OCR2B has been updated from the temporary storage register, this bit is cleared by hard-
ware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new value.

e Bit 1 - TCR2AUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

e Bit 0 — TCR2BUB: Timer/Counter Control Register2 Update Busy

When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set.
When TCCR2B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new
value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different.
When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B, TCCR2A
and TCCR2B the value in the temporary storage register is read.

14.11.7 TIMSK2 — Timer/Counter2 Interrupt Mask Register

Bit 7 6 5 4 3 2 1 0
(0x70) | - | - | - | - OCIE2B OCIE2A TOIE2 | TIMSK2
Read/Write R R R R R R/W RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 2 - OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable

When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, that is, when the OCF2B bit is set in the
Timer/Counter 2 Interrupt Flag Register — TIFR2.

¢ Bit 1 — OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable

When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed
if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the
Timer/Counter 2 Interrupt Flag Register — TIFR2.

¢ Bit 0 — TOIE2: Timer/Counter2 Overflow Interrupt Enable

When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Inter-
rupt Flag Register — TIFR2.

AImEl@ 158

80110-AVR-07/10

A\ T M egal164P/324P/644P

14.11.8 TIFR2 — Timer/Counter2 Interrupt Flag Register

Bit 7 6 5 4 3 2 1 0
0x17 (0x37) | - | - | - - - OCF2B OCF2A Tov2 | TIFR2
Read/Write R R R R R R/W RIW R/W

Initial Value 0 0 0 0 0 0 0 0

* Bit 2 - OCF2B: Output Compare Flag 2 B

The OCF2B hit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2B — Output Compare Register2. OCF2B is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Interrupt
Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is executed.

e Bit 1 - OCF2A: Output Compare Flag 2 A

The OCF2A hit is set (one) when a compare match occurs between the Timer/Counter2 and the
data in OCR2A — Output Compare Register2. OCF2A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt
Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed.

e Bit 0 — TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hard-
ware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared
by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Inter-
rupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In
PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00.

14.11.9 GTCCR - General Timer/Counter Control Register

Bit 7 6 5 4 3 2 1 0
0x23(0x43) | TSM | = | = | = PSRASY | PSRSYNC | GTCCR
Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - TSM: Timer/Counter Synchronization mode

Writing the TSM bit to one, activates the Timer/Counter Synchronization mode. In this mode, the
value that is written to the PSRASY and PSRSYNC bits is kept, hence keepeing the correspond-
ing prescaler reset sighals asserted. This ensures that the corresponding Timer/Counters are
halted and can be configured to the same value without the risk of one of them advancing during
configuration. When the TSM bit is written to zero, the PSRASY and PSRSYNC bits are cleared
by hardware, and the Timer/Counters start counting simultaneously.

* Bit 1 - PSRASY: Prescaler Reset Timer/Counter2

When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous
mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by
hardware if the TSM bit is set. Refer to the description of the “Bit 7 — TSM: Timer/Counter Syn-
chronization Mode” on page 136 for a description of the Timer/Counter Synchronization mode.

AImEl@ 159

80110-AVR-07/10

A\ T M egal164P/324P/644P

* Bit 0- PSRSYNC: Prescaler Reset

When this bit is one, Timer/Counterl and Timer/CounterO prescaler will be Reset. This bit is nor-
mally cleared immediately by hardware, except ifthe TSM bit is set. Note that Timer/Counterl
and Timer/Counter0O share the same prescaler and a reset of this prescaler will affect both
timers.

80110-AVR-07/10

A\ T M egal164P/324P/644P

15. SPI — Serial Peripheral Interface

15.1 Features

* Full-duplex, Three-wire Synchronous Data Transfer
* Master or Slave Operation

e LSB First or MSB First Data Transfer

* Seven Programmable Bit Rates

* End of Transmission Interrupt Flag

* Write Collision Flag Protection

* Wake-up from Idle Mode

* Double Speed (CK/2) Master SPI Mode

15.2 Overview

The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the
ATmegal64P/324P/644P and peripheral devices or between several AVR devices.

USART can also be used in Master SPI mode, see “USART in SPI Mode” on page 198.
The Power Reduction SPI bit, PRSPI, in "PRR — Power Reduction Register” on page 48 on page

50 must be written to zero to enable SPI module.

Figure 15-1. SPI Block Diagram®

| =
MISO
y sd
M MOSI
XTAL MSB LSB O -
TR <@ s O
l 8 BIT SHIFT REGISTER s
READ DATA BUFFER 4
DIVIDER 4
121418/16/32/64/128 E
A 4 (@]
o
Y v v v CLOCK =z
SPI CLOCK (MASTER T
SELECT CLOCK S ScK
LOGIC
BE | =
E E ¥ A A A g
IR -
x [m)]
=l ow| &
25 8
> MSTR
SPI CONTROL <+ SPE
I QO x| 4 < « o
e}
= 8 g o B & S & & & g &
o = B o| o o] 2 O O o ©
A A
| SPI STATUS REGISTER | | SPI CONTROL REGISTER
- 8 8,
A
v v

SPIINTERRUPT INTERNAL
REQUEST DATA BUS

Note: 1. Referto Figure 1-1 on page 2, and Table 11-6 on page 82 for SPI pin placement.

AImEl@ 161

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

The interconnection between Master and Slave CPUs with SPI is shown in Figure 15-2. The sys-
tem consists of two shift Registers, and a Master clock generator. The SPI Master initiates the
communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and
Slave prepare the data to be sent in their respective shift Registers, and the Master generates
the required clock pulses on the SCK line to interchange data. Data is always shifted from Mas-
ter to Slave on the Master Out — Slave In, MOSI, line, and from Slave to Master on the Master In
— Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling
high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing a
byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight
bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of
Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an
interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or
signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be
kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long
as the SS pin is driven high. In this state, software may update the contents of the SPI Data
Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin
until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission
Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt
is requested. The Slave may continue to place new data to be sent into SPDR before reading
the incoming data. The last incoming byte will be kept in the Buffer Register for later use.

Figure 15-2. SPI Master-slave Interconnection
MSB MASTER LSB MISO MISO MSB SLAVE LSB
—|8 BIT SHIFT REGISTER ‘ : 8 BIT SHIFT REGISTERH

, MOSI MOSI
SHIFT
| ENABLE
SPI fSCK SCK?
CLOCK GENERATOR > L
55 55

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must be
read from the SPI Data Register before the next character has been completely shifted in. Oth-
erwise, the first byte is lost.

In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:

Low period: longer than 2 CPU clock cycles.

High period: longer than 2 CPU clock cycles.

AImEl@ 162

A\ T M egal164P/324P/644P

80110-AVR-07/10

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden
according to Table 15-1. For more details on automatic port overrides, refer to "Alternate Port
Functions” on page 78.

Table 15-1. SPI Pin Overrides?

Pin Direction, Master SPI Direction, Slave SPI
MOSI User Defined Input
MISO Input User Defined

SCK User Defined Input

Ss User Defined Input

Note: 1. See "Alternate Functions of Port B” on page 82 for a detailed description of how to define the
direction of the user defined SPI pins.

The following code examples show how to initialize the SPI as a Master and how to perform a

simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction

Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the

actual data direction bits for these pins. For example if MOSI is placed on pin PB5, replace

DD_MOSI with DDB5 and DDR_SPI with DDRB.

AImEl@ 163

A\ T M egal164P/324P/644P

80110-AVR-07/10

Assembly Code Example®

SPI_MasterInit:
; Set MOSI and SCK output, all others input
1di r17, (1<<DD_MOSI) | (1<<DD_SCK)
out DDR_SPI,rl7
; Enable SPI, Master, set clock rate fck/16
1di rl7, (1<<SPE) | (1<<MSTR) | (1<<SPRO)
out SPCR,rl7

ret

SPI_MasterTransmit:
; Start transmission of data (rlé)
out SPDR,rleée

Wait Transmit:

; Wait for transmission complete
sbis SPSR, SPIF
rjmp Wait Transmit

ret

C Code Example®

void SPI_MasterInit (void)

{

/* Set MOSI and SCK output, all others input */
DDR_SPI = (1<<DD MOSI) | (1<<DD_SCK) ;

/* Enable SPI, Master, set clock rate fck/16 */
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPRO) ;

void SPI MasterTransmit (char cData)
/* Start transmission */
SPDR = cData;
/* Wait for transmission complete */

while (! (SPSR & (1<<SPIF)))

’

Note: 1. See “About Code Examples” on page 8.

ATMEL

164

A\ T M egal164P/324P/644P

80110-AVR-07/10

The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Assembly Code Example®

SPI SlavelInit:
; Set MISO output, all others input
1ldi 117, (1<<DD_MISO)
out DDR_SPI,rl7
; Enable SPI
1di r17, (1<<SPE)
out SPCR,rl7

ret

SPI_SlaveReceive:
; Wait for reception complete
sbis SPSR, SPIF
rjmp SPI_SlaveReceive
; Read received data and return
in rl6, SPDR

ret

C Code Example®

void SPI SlavelInit (void)
/* Set MISO output, all others input */
DDR_SPI = (1<<DD_MISO) ;
/* Enable SPI */
SPCR = (1<<SPE) ;

char SPI_SlaveReceive (void)

{

/* Wait for reception complete */
while (! (SPSR & (1<<SPIF)))

/* Return Data Register */
return SPDR;

Note: 1. See “About Code Examples” on page 8.

AImEl@ 165

A\ T M egal164P/324P/644P

15.3 SS Pin Functionality

15.3.1 Slave Mode

15.3.2 Master Mode

15.4 Data Modes

80110-AVR-07/10

When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SP! is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS pin
is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS pin
is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the following
actions:

1. The MSTR bitin SPCR is cleared and the SPI system becomes a Slave. As a result of
the SPI becoming a Slave, the MOSI and SCK pins become inputs.
2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG is
set, the interrupt routine will be executed.
Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a possi-
bility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If the
MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI Master
mode.

There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Figure
15-3 on page 167 and Figure 15-4 on page 167. Data bits are shifted out and latched in on
opposite edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is
clearly seen by summarizing Table 15-3 on page 168 and Table 15-4 on page 168, as done in
Table 15-2 on page 167

AImEl@ 166

A\ T M egal164P/324P/644P

Table 15-2. SPI Modes
SPI Mode Conditions Leading Edge Trailing Edge
0 CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)
1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)
2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)
3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)

Figure 15-3. SPI Transfer Format with CPHA =0

SCK (CPOL = 0)
mode 0
SCK (CPOL = 1)
mode 2

SAMPLE |
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

Hgiigh
LT
OO

i)

L L L
L L
X H_
H Il

L

ul

]
A

L

ul

L6
I

SS

-
‘<
[\

i

MSB first (DORD = 0)
LSB first (DORD = 1)

MSB
LSB

Bit 6
Bit 1

Bit5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit5

Figure 15-4. SPI Transfer Format with CPHA =1

SCK (CPOL = 0)
mode 1
SCK (CPOL = 1)
mode 3

SAMPLE |
MOSI/MISO

Bit 1
Bit6

L L L L
JEREEEENEN

MSB

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

L L
L L L
__<
A

2
s

2
3

A
H_ KA

SS

[\

\\('\

MSB first (DORD = 0)
LSB first (DORD = 1)

MSB
LSB

Bit 6
Bit 1

ATMEL

80110-AVR-07/10

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

167

A\ T M egal164P/324P/644P

15.5 Register Description

155.1 SPCR - SPI Control Register

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) | SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO | SPCR
Read/Write R/IW RIW R/IW R/IW R/W R/IW R/IW R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 - SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the if
the Global Interrupt Enable bit in SREG is set.

* Bit 6 — SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

* Bit 5—-DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

* Bit 4 — MSTR: Master/Slave Select

This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be cleared,
and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable SPI Mas-
ter mode.

e Bit 3—- CPOL: Clock Polarity

When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is low
when idle. Refer to Figure 15-3 and Figure 15-4 for an example. The CPOL functionality is sum-
marized below:

Table 15-3. CPOL Functionality
CPOL Leading Edge Trailing Edge
0 Rising Falling
1 Falling Rising

* Bit 2 - CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first) or
trailing (last) edge of SCK. Refer to Figure 15-3 and Figure 15-4 for an example. The CPOL

functionality is summarized below:

Table 15-4. CPHA Functionality
CPHA Leading Edge Trailing Edge
0 Sample Setup
1 Setup Sample

80110-AVR-07/10

ATMEL

168

A\ T M egal164P/324P/644P

155.2

80110-AVR-07/10

» Bits 1:0 — SPR1, SPRO: SPI Clock Rate Select 1 and 0

These two bits control the SCK rate of the device configured as a Master. SPR1 and SPRO have
no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency f is
shown in the following table:

Table 15-5. Relationship Between SCK and the Oscillator Frequency

SPI2X SPR1 SPRO SCK Frequency
0 foscl4

osc
fosc/16
fosc/64
f /128

osc
fosc/2
fosc/8
f /32

0sC

f.s/64

|| O 0O |O

P |k |O O |k |k | OO
P O |O |k | O|Fr |O

1

SPSR — SPI Status Register

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) [SPIF WCOL - - - - - SP2x | SPSR
Read/Write R R R R/W

Initial Value 0 0 0 0 0 0 0 0

e Bit 7 — SPIF: SPI Interrupt Flag

When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI is
in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first reading the
SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

e Bit 6 — WCOL: Write COLlision Flag

The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL set,
and then accessing the SPI Data Register.

e Bit 5:1 — Res: Reserved Bits
These bits are reserved bits in the ATmegal64P/324P/644P and will always read as zero.

e Bit 0 — SPI2X: Double SPI Speed Bit

When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the SPI
is in Master mode (see Table 15-5). This means that the minimum SCK period will be two CPU
clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at f../4
or lower.

The SPI interface on the ATmegal64P/324P/644P is also used for program memory and
EEPROM downloading or uploading. See page 308 for serial programming and verification.

AImEl@ 169

A\ T M egal164P/324P/644P

15.5.3 SPDR - SPI Data Register

Bit 7 6 5 4 3 2 1 0

Ox2E (0x4E) | MSB tse | sPDrR
Read/Write R/W RIW R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the regis-
ter causes the Shift Register Receive buffer to be read.

AImEl@ 170

80110-AVR-07/10

A\ T M egal164P/324P/644P

16. USART

16.1 Features

* Full Duplex Operation (Independent Serial Receive and Transmit Registers)
e Asynchronous or Synchronous Operation

* Master or Slave Clocked Synchronous Operation

* High Resolution Baud Rate Generator

* Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits

* Odd or Even Parity Generation and Parity Check Supported by Hardware

* Data OverRun Detection

* Framing Error Detection

* Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
* Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
¢ Multi-processor Communication Mode

* Double Speed Asynchronous Communication Mode

16.2 USART1 and USARTO

16.3 Overview

80110-AVR-07/10

The ATmegal64P/324P/644P has two USART’s, USARTO and USART1.

The functionality for all USART's is described below, most register and bit references in this sec-
tion are written in general form. A lower case “n” replaces the USART number.

USARTO and USART1 have different I/O registers as shown in "Register Summary” on page
413.

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device.

A simplified block diagram of the USART Transmitter is shown in Figure 16-1 on page 172. CPU
accessible 1/0 Registers and I/O pins are shown in bold.

The Power Reducion USARTO bit, PRUSARTO, in "PRR — Power Reduction Register” on page
48 must be disabled by writing a logical zero to it.

The Power Reducion USART1 bit, PRUSART1, in "PRR — Power Reduction Register” on page
48 must be disabled by writing a logical zero to it.

AImEl@ 171

A\ T M egal164P/324P/644P

Figure 16-1. USART Block Diagram®

| 1 Clock Generator |
I UBRR[H:L] I
| osc |
| Y |
| |
| BAUD RATE GENERATOR | I
| v |
I [syNC LoGIC PIN I
I Y »| conTrRoL [*1*] XCK
| |
FrhrF—e—— e e e e e e e e e e — —_
I Transmltter_iI
TX
: UDR (Transmit) CONTROL |
7 PARITY |
%] B GENERATOR |
of | PIN |
af | TRANSMIT SHIFT REGISTER CONTROL IV TxD
< -
A ____1
all ! Receiver |
I » CcLOCK RX I
| RECOVERY CONTROL |
| |
I DATA PIN I
| RECEIVE SHIFT REGISTER RECOVERY [* controL [+ RxP
| |
| Y |
: PARITY
: UDR (Receive) CHECKER :
[r- - ___ |
UCSRA UCSRB UCSRC

Note: 1. See Figure 1-1 on page 2 and "Alternate Port Functions” on page 78 for USART pin
placement.

The dashed boxes in the block diagram separate the three main parts of the USART (listed from
the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all units.
The Clock Generation logic consists of synchronization logic for external clock input used by
synchronous slave operation, and the baud rate generator. The XCKn (Transfer Clock) pin is
only used by synchronous transfer mode. The Transmitter consists of a single write buffer, a
serial Shift Register, Parity Generator and Control logic for handling different serial frame for-
mats. The write buffer allows a continuous transfer of data without any delay between frames.
The Receiver is the most complex part of the USART module due to its clock and data recovery
units. The recovery units are used for asynchronous data reception. In addition to the recovery
units, the Receiver includes a Parity Checker, Control logic, a Shift Register and a two level
receive buffer (UDRnN). The Receiver supports the same frame formats as the Transmitter, and
can detect Frame Error, Data OverRun and Parity Errors.

16.4 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USARTN supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART
Control and Status Register C (UCSRNC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the

AImEl@ 172

80110-AVR-07/10

16.4.1

80110-AVR-07/10

ATmegal64P/324P/644P

UCSRNA Register. When using synchronous mode (UMSELnN = 1), the Data Direction Register
for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode) or
external (Slave mode). The XCKn pin is only active when using synchronous mode.

Figure 16-2 shows a block diagram of the clock generation logic.

Figure 16-2. Clock Generation Logic, Block Diagram

UBRR
u2Xx
fosc

peconmer [T 2] e »)
A
OSC — txclk
DDR_XCK
Y ;
xcki |’> ngi:er o DStdegc?or 0
XCK UMSEL
Pin | xcko v ‘1
DDR_XCK UCPOL
rxclk
Signal description:
txclk Transmitter clock (Internal Signal).
rxclk Receiver base clock (Internal Signal).
xcKi Input from XCK pin (internal Signal). Used for synchronous slave
operation.
xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.
fosc XTAL pin frequency (System Clock).

Internal Clock Generation — The Baud Rate Generator

Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 16-2 on page 173.

The USART Baud Rate Register (UBRRnN) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc)s is loaded with the UBRRnN value each time the counter has counted down to zero or when
the UBRRLnN Register is written. A clock is generated each time the counter reaches zero. This
clock is the baud rate generator clock output (= f,.o/(UBRRn+1)). The Transmitter divides the
baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate generator out-
put is used directly by the Receiver’s clock and data recovery units. However, the recovery units
use a state machine that uses 2, 8 or 16 states depending on mode set by the state of the
UMSELN, U2Xn and DDR_XCKn bits.

Table 16-1 on page 174 contains equations for calculating the baud rate (in bits per second) and
for calculating the UBRRn value for each mode of operation using an internally generated clock
source.

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)
BAUD Baud rate (in bits per second, bps)

AImEl@ 173

A\ T M egal164P/324P/644P

Table 16-1. Equations for Calculating Baud Rate Register Setting

Equation for Calculating Baud Equation for Calculating UBRR
Operating Mode Rate® Value
UBRRn = —J05C_ _q
16BAUD
Asynchronous Normal _ fOSC
mode (U2Xn = 0) BAUD = 16(UBRRn + 1)
UBRRn = J0SC_ _4
8BAUD
Asynchronous Double _ fosc
Speed mode (U2Xn = 1) BAUD = 8(UBRRn +1)
UBRRn = _](’;SQ__ -1
2BAUD
Synchronous Master _ fosc
mode BAUD = —————
2(UBRRn +1)
fosc System Oscillator clock frequency
UBRRN Contents of the UBRRHN and UBRRLnN Registers, (0-4095)

Some examples of UBRRnN values for some system clock frequencies are found in Table 16-9 on
page 194.

16.4.2 Double Speed Operation (U2Xn)

The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required when
this mode is used. For the Transmitter, there are no downsides.

16.4.3 External Clock

External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 16-2 on page 173 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize the
chance of meta-stability. The output from the synchronization register must then pass through
an edge detector before it can be used by the Transmitter and Receiver. This process intro-

AImEl@ 174

80110-AVR-07/10

A\ T M egal164P/324P/644P

duces a two CPU clock period delay and therefore the maximum external XCKn clock frequency
is limited by the following equation:

beC

fxck <=4

Note that f .. depends on the stability of the system clock source. It is therefore recommended to
add some margin to avoid possible loss of data due to frequency variations.

16.4.4 Synchronous Clock Operation

When synchronous mode is used (UMSELnN = 1), the XCKn pin will be used as either clock input
(Slave) or clock output (Master). The dependency between the clock edges and data sampling
or data change is the same. The basic principle is that data input (on RxDn) is sampled at the
opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 16-3. Synchronous Mode XCKn Timing.

UCPOL =1 XCK

womo X Y Y Y

Sample

UCPOL =0 XCK

w00 X Y Y Y

Sample

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which is
used for data change. As Figure 16-3 on page 175 shows, when UCPOLn is zero the data will
be changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data
will be changed at falling XCKn edge and sampled at rising XCKn edge.

16.5 Frame Formats

A serial frame is defined to be one character of data bits with synchronization bits (start and stop
bits), and optionally a parity bit for error checking. The USART accepts all 30 combinations of
the following as valid frame formats:

* 1 start bit

« 5,6, 7,8, or 9 data bits

* no, even or odd parity bit

e 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data bits,
up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the parity bit
is inserted after the data bits, before the stop bits. When a complete frame is transmitted, it can
be directly followed by a new frame, or the communication line can be set to an idle (high) state.
Figure 16-4 on page 176 illustrates the possible combinations of the frame formats. Bits inside

brackets are optional.
ATMEL 175
Y ©)

80110-AVR-07/10

A\ T M egal164P/324P/644P

Figure 16-4. Frame Formats
l

| FRAME |

(IDLE) \St/ 0 X 1 X 2 X 3 X 4 X[5]X[6]X[7]X[8]X[P] /Sp1 [sz]\ (St/IDLE)

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line
must be high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRNB and UCSRnNC. The Receiver and Transmitter use the same setting. Note that changing
the setting of any of these bits will corrupt all ongoing communication for both the Receiver and
Transmitter.

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection between
one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver ignores
the second stop bit. An FE (Frame Error) will therefore only be detected in the cases where the
first stop bit is zero.

16.5.1 Parity Bit Calculation

The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as

follows::
oven = 4,19 .. @d3®d, ®d; ©dy®0
P;=d, _19..0d;0d,®d, ®d;®1
Peven Parity bit using even parity
Podd Parity bit using odd parity
d, Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

16.6 USART Initialization

The USART has to be initialized before any communication can take place. The initialization pro-
cess normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation, the
Global Interrupt Flag should be cleared and the USART interrupts should be disabled.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are no
ongoing transmissions during the period the registers are changed. The TXCn Flag can be used
to check that the Transmitter has completed all transfers, and the RXC Flag can be used to

AImEl@ 176

80110-AVR-07/10

A\ T M egal164P/324P/644P

check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using polling
(no interrupts enabled) and a fixed frame format. The baud rate is given as a function parameter.
For the assembly code, the baud rate parameter is assumed to be stored in the r17:r16
Registers.

Assembly Code Example®

USART Init:
; Set baud rate
out UBRRHn, rl7
out UBRRLn, rlé6
; Enable receiver and transmitter
1di rl6, (1<<RXENn) | (1<<TXENn)
out UCSRnB,rlé6
; Set frame format: 8data, 2stop bit
1di 1rle6, (1<<USBSn) | (3<<UCSZn0)
out UCSRnC,rlé6

ret

C Code Example®

void USART Init(unsigned int baud)

{
/* Set baud rate */
UBRRHn = (unsigned char) (baud>>8) ;
UBRRLn = (unsigned char)baud;
/* Enable receiver and transmitter */
UCSRnB = (1<<RXENn)|(l<<TXENn);
/* Set frame format: 8data, 2stop bit */
UCSRnC = (1<<USBSn) | (3<<UCSZno0) ;

Note: 1. See “About Code Examples” on page 8.

More advanced initialization routines can be made that include frame format as parameters, dis-
able interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed directly
in the main routine, or be combined with initialization code for other /O modules.

16.7 Data Transmission — The USART Transmitter

The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is overrid-
den by the USART and given the function as the Transmitter’'s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If syn-
chronous operation is used, the clock on the XCKn pin will be overridden and used as
transmission clock.

AImEl@ 177

80110-AVR-07/10

A\ T M egal164P/324P/644P

16.7.1 Sending Frames with 5 to 8 Data Bit

A data transmission is initiated by loading the transmit buffer with the data to be transmitted. The
CPU can load the transmit buffer by writing to the UDRnN I/O location. The buffered data in the
transmit buffer will be moved to the Shift Register when the Shift Register is ready to send a new
frame. The Shift Register is loaded with new data if it is in idle state (no ongoing transmission) or
immediately after the last stop bit of the previous frame is transmitted. When the Shift Register is
loaded with new data, it will transfer one complete frame at the rate given by the Baud Register,
U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDREN) Flag. When using frames with less than eight bits, the most sig-
nificant bits written to the UDRn are ignored. The USART has to be initialized before the function
can be used. For the assembly code, the data to be sent is assumed to be stored in Register
R16

Assembly Code Example®

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART Transmit
; Put data (rlé) into buffer, sends the data
out UDRn,rlé

ret

C Code Example®

void USART Transmit (unsigned char data)
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn)))
/* Put data into buffer, sends the data */
UDRn = data;

Note: 1. See “About Code Examples” on page 8.

The function simply waits for the transmit buffer to be empty by checking the UDREnN Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is utilized,
the interrupt routine writes the data into the buffer.

16.7.2 Sending Frames with 9 Data Bit

If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in
UCSRnNB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.

AImEl@ 178

80110-AVR-07/10

A\ T M egal164P/324P/644P

Assembly Code Example®®

USART_Transmit:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART Transmit
; Copy 9th bit from rl7 to TXBS8
cbi UCSRnB, TXB8
sbrc rl17,0
sbi UCSRnB, TXBS8
; Put LSB data (rlé) into buffer, sends the data
out UDRn,rleé

ret

C Code Example¥®

void USART Transmit (unsigned int data)
{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn))))
/* Copy 9th bit to TXB8 */
UCSRnB &= ~(1<<TXBS8) ;
if (data & 0x0100)
UCSRnB |= (1<<TXB8);
/* Put data into buffer, sends the data */
UDRn = data;

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the con-
tents of the UCSRNB is static. For example, only the TXB8 bit of the UCSRnB Register is used
after initialization.

2. See “About Code Examples” on page 8.

The ninth bit can be used for indicating an address frame when using multi processor communi-

cation mode or for other protocol handling as for example synchronization.

16.7.3 Transmitter Flags and Interrupts

The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREN) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDRERN) Flag indicates whether the transmit buffer is ready to receive
new data. This bit is set when the transmit buffer is empty, and cleared when the transmit buffer
contains data to be transmitted that has not yet been moved into the Shift Register. For compat-
ibility with future devices, always write this bit to zero when writing the UCSRNA Register.

When the Data Register Empty Interrupt Enable (UDRIEN) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDRERn is set (provided that
global interrupts are enabled). UDRERn is cleared by writing UDRn. When interrupt-driven data

AImEl@ 179

80110-AVR-07/10

A\ T M egal164P/324P/644P

transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREN or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buffer.
The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed, or it
can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex commu-
nication interfaces (like the RS-485 standard), where a transmitting application must enter
receive mode and free the communication bus immediately after completing the transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn Flag, this is done automatically when the interrupt
is executed.

16.7.4 Parity Generator

The Parity Generator calculates the parity bit for the serial frame data. When parity bit is enabled
(UPMnN1 = 1), the transmitter control logic inserts the parity bit between the last data bit and the
first stop bit of the frame that is sent.

16.7.5 Disabling the Transmitter

The disabling of the Transmitter (setting the TXEN to zero) will not become effective until ongo-
ing and pending transmissions are completed, that is, when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmitter
will no longer override the TxDn pin.

16.8 Data Reception — The USART Receiver

The USART Receiver is enabled by writing the Receive Enable (RXENN) bit in the

UCSRNB Register to one. When the Receiver is enabled, the normal pin operation of the RxDn
pin is overridden by the USART and given the function as the Receiver’s serial input. The baud
rate, mode of operation and frame format must be set up once before any serial reception can
be done. If synchronous operation is used, the clock on the XCKn pin will be used as transfer
clock.

16.8.1 Receiving Frames with 5 to 8 Data Bits

The Receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Register
until the first stop bit of a frame is received. A second stop bit will be ignored by the Receiver.
When the first stop bit is received, that is, a complete serial frame is present in the Receive Shift
Register, the contents of the Shift Register will be moved into the receive buffer. The receive
buffer can then be read by reading the UDRn 1/O location.

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most significant
bits of the data read from the UDRn will be masked to zero. The USART has to be initialized
before the function can be used.

AImEl@ 180

80110-AVR-07/10

A\ T M egal164P/324P/644P

Assembly Code Example®

USART_Receive:
; Wait for data to be received

sbis UCSRnA, RXCn

rjmp USART Receive

; Get and return received data from buffer

in rl6, UDRn

ret

C Code Example®

unsigned char USART Receive(wvoid)

{

/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)))
/* Get and return received data from buffer */

return UDRn;

Note: 1. See “About Code Examples” on page 8.
The function simply waits for data to be present in the receive buffer by checking the RXCn Flag,
before reading the buffer and returning the value.

16.8.2 Receiving Frames with 9 Data Bits

80110-AVR-07/10

If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in
UCSRnNB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and
UPEn Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the
UDRn /O location will change the state of the receive buffer FIFO and consequently the TXB8n,
FEn, DORn and UPERN bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine bit
characters and the status bits.

AImEl@ 181

A\ T M egal164P/324P/644P

Assembly Code Example®

USART_Receive:
; Wait for data to be received
sbis UCSRnA, RXCn
rjmp USART Receive
; Get status and 9th bit, then data from buffer
in rl8, UCSRnA
in rl7, UCSRnB
in rl6, UDRn
; If error, return -1
andi rl18, (1<<FEn) | (1<<DORn) | (L<<UPEn)
breq USART ReceiveNoError
1di rl7, HIGH(-1)
1ldi rl6, LOW(-1)
USART_ReceiveNoError:
; Filter the 9th bit, then return
l1sr rl17
andi rl17, 0x01

ret

C Code Example®

unsigned int USART Receive(void)
{
unsigned char status, resh, resl;
/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)))
/* Get status and 9th bit, then data */
/* from buffer */
status = UCSRnA;
resh = UCSRnB;
resl = UDRn;

/* If error, return -1 */

if (status & (1<<FEn) | (1<<DORn) | (1<<UPEn))
return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

Note: 1. See “About Code Examples” on page 8.
The receive function example reads all the 1/0O Registers into the Register File before any com-
putation is done. This gives an optimal receive buffer utilization since the buffer location read will
be free to accept new data as early as possible.

AImEl@ 182

80110-AVR-07/10

A\ T M egal164P/324P/644P

16.8.3 Receive Compete Flag and Interrupt

The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buf-
fer. This flag is one when unread data exist in the receive buffer, and zero when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn =
0), the receive buffer will be flushed and consequently the RXCn bit will become zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive
Complete interrupt will be executed as long as the RXCn Flag is set (provided that global inter-
rupts are enabled). When interrupt-driven data reception is used, the receive complete routine
must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new inter-
rupt will occur once the interrupt routine terminates.

16.8.4 Receiver Error Flags

The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEN). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRN), since reading the UDRnN /O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnNA is written for upward
compatibility of future USART implementations. None of the Error Flags can generate interrupts.

The Frame Error (FENn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one),
and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for
detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn
Flag is not affected by the setting of the USBSn bit in UCSRNC since the Receiver ignores all,
except for the first, stop bits. For compatibility with future devices, always set this bit to zero
when writing to UCSRNA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character wait-
ing in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there
was one or more serial frame lost between the frame last read from UDRn, and the next frame
read from UDRnN. For compatibility with future devices, always write this bit to zero when writing
to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from
the Shift Register to the receive buffer.

The Parity Error (UPEN) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see "Parity Bit Calculation” on page 176 and "Parity Checker” on page 183.

16.8.5 Parity Checker
The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of Par-
ity Check to be performed (odd or even) is selected by the UPMnO bit. When enabled, the Parity

Checker calculates the parity of the data bits in incoming frames and compares the result with
the parity bit from the serial frame. The result of the check is stored in the receive buffer together

AImEl@ 183

80110-AVR-07/10

A\ T M egal164P/324P/644P

with the received data and stop bits. The Parity Error (UPEN) Flag can then be read by software
to check if the frame had a Parity Error.

The UPERN bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit is
valid until the receive buffer (UDRN) is read.

16.8.6 Disabling the Receiver

In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (that is, the RXENnN is set to zero) the Receiver
will no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will be
flushed when the Receiver is disabled. Remaining data in the buffer will be lost

16.8.7 Flushing the Receive Buffer

The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn 1/O location until the RXCn Flag
is cleared. The following code example shows how to flush the receive buffer.

Assembly Code Example®

USART_ Flush:
sbis UCSRnA, RXCn
ret
in rl6, UDRn
rjmp USART Flush

C Code Example®

void USART Flush(void)

{

unsigned char dummy;

while (UCSRnA & (1<<RXCn)) dummy = UDRn;

}

Note: 1. See “About Code Examples” on page 8.
16.9 Asynchronous Data Reception

The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery logic is used for synchronizing the internally generated baud rate
clock to the incoming asynchronous serial frames at the RxDn pin. The data recovery logic sam-
ples and low pass filters each incoming bit, thereby improving the noise immunity of the
Receiver. The asynchronous reception operational range depends on the accuracy of the inter-
nal baud rate clock, the rate of the incoming frames, and the frame size in number of bits.

16.9.1 Asynchronous Clock Recovery

The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 16-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16 times
the baud rate for Normal mode, and eight times the baud rate for Double Speed mode. The hor-
izontal arrows illustrate the synchronization variation due to the sampling process. Note the

AImEl@ 184

80110-AVR-07/10

ATmegal64P/324P/644P

larger time variation when using the Double Speed mode (U2Xn = 1) of operation. Samples
denoted zero are samples done when the RxDn line is idle (that is, no communication activity).

Figure 16-5. Start Bit Sampling

RxD IDLE START BIT O

Sample T T I‘i’l T

(U2x =0) o 0o 1 2 3
2

Sample T I<—T—>|

(U2X = 1) 0 1

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line, the
start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as shown in
the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode, and sam-
ples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes on the
figure), to decide if a valid start bit is received. If two or more of these three samples have logical
high levels (the majority wins), the start bit is rejected as a noise spike and the Receiver starts
looking for the next high to low-transition. If however, a valid start bit is detected, the clock recov-

ery logic is synchronized and the data recovery can begin. The synchronization process is
repeated for each start bit.

16.9.2 Asynchronous Data Recovery

When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 16-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.

Figure 16-6. Sampling of Data and Parity Bit

RxD >< BITn ><
Sttt Pttt

(U2x =0) 12 4 6 7 [8]J9J1o]1 12 13 14 15 16 1

r
i T I A A

(U2x =1) 1

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are emphasized
on the figure by having the sample number inside boxes. The majority voting process is done as
follows: If two or all three samples have high levels, the received bit is registered to be a logic 1.
If two or all three samples have low levels, the received bit is registered to be a logic 0. This
majority voting process acts as a low pass filter for the incoming signal on the RxDn pin. The
recovery process is then repeated until a complete frame is received. Including the first stop bit.
Note that the Receiver only uses the first stop bit of a frame.

N — 00—

Figure 16-7 on page 186 shows the sampling of the stop bit and the earliest possible beginning
of the start bit of the next frame.

AImEl@ 185

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 16-7. Stop Bit Sampling and Next Start Bit Sampling

RxD STOP1 (A ®) ©)

B

5 6 7 [8] 9J10]ot o1 o1
3

SR

The same majority voting is done to the stop bit as done for the other bits in the frame. If the stop
bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set.

Sample T
(U2X = 0) 1 2

Sample I<—T—>|

(U2x = 1) 1

!
!

A new high to low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For Normal Speed mode, the first low level sample can be at
point marked (A) in Figure 16-7 on page 186. For Double Speed mode the first low level must be
delayed to (B). (C) marks a stop bit of full length. The early start bit detection influences the
operational range of the Receiver.

16.9.3 Asynchronous Operational Range

The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or too
slow bit rates, or the internally generated baud rate of the Receiver does not have a similar (see
Table 16-2 on page 187) base frequency, the Receiver will not be able to synchronize the
frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

R = _(D+1)S R = _(D+2)S
slow = §—1+D-85+5, Jast = (D+1)S+5),

Sum of character size and parity size (D =5 to 10 hit)

Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed

mode.

S First sample number used for majority voting. Sg = 8 for normal speed and S =4
for Double Speed mode.

Sm Middle sample number used for majority voting. Sy, = 9 for normal speed and
Sy = 5 for Double Speed mode.

Reiow is the ratio of the slowest incoming data rate that can be accepted in relation to the

receiver baud rate. Ry, is the ratio of the fastest incoming data rate that can be
accepted in relation to the receiver baud rate.

Table 16-2 on page 187 and Table 16-3 on page 187 list the maximum receiver baud rate error
that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate
variations.

AImEl@ 186

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 16-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode

(U2Xn =0)

D Recommended Max
(Data+Parity Bit) Riow (%0) Riast (%0) Max Total Error (%) Receiver Error (%)

5 93.20 106.67 +6.67/-6.8 +3.0

6 94.12 105.79 +5.79/-5.88 +2.5

7 94.81 105.11 +5.11/-5.19 +2.0

8 95.36 104.58 +4.58/-4.54 +2.0

9 95.81 104.14 +4.14/-4.19 +1.5

10 96.17 103.78 +3.78/-3.83 +1.5

Table 16-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode

(U2Xn =1)

D Recommended Max
(Data+Parity Bit) Rgiow (%0) Riast (%0) Max Total Error (%) Receiver Error (%)

5 94.12 105.66 +5.66/-5.88 +2.5

6 94.92 104.92 +4.92/-5.08 +2.0

7 95.52 104,35 +4.35/-4.48 +1.5

8 96.00 103.90 +3.90/-4.00 +1.5

9 96.39 103.53 +3.53/-3.61 1.5

10 96.70 103.23 +3.23/-3.30 +1.0

The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the tempera-
ture range. When using a crystal to generate the system clock, this is rarely a problem, but for a
resonator the system clock may differ more than 2% depending of the resonators tolerance. The
second source for the error is more controllable. The baud rate generator can not always do an
exact division of the system frequency to get the baud rate wanted. In this case an UBRR value
that gives an acceptable low error can be used if possible.

16.10 Multi-processor Communication Mode

Setting the Multi-processor Communication mode (MPCMn) bit in UCSRNA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the MPCMn
setting, but has to be used differently when it is a part of a system utilizing the Multi-processor
Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit indi-
cates if the frame contains data or address information. If the Receiver is set up for frames with
nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames. When

AImEl@ 187

80110-AVR-07/10

A\ T M egal164P/324P/644P

16.10.1 Using MPCMn

80110-AVR-07/10

the frame type bit (the first stop or the ninth bit) is one, the frame contains an address. When the
frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7). The
ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data frame
(TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit character
frame format.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in UCSRnA is

set).
2. The Master MCU sends an address frame, and all slaves receive and read this frame. In

the Slave MCUs, the RXCn Flag in UCSRnA will be set as nhormal.
3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If so,

it clears the MPCMn bit in UCSRnNA, otherwise it waits for the next address byte and

keeps the MPCMn setting.
4. The addressed MCU will receive all data frames until a new address frame is received.

The other Slave MCUSs, which still have the MPCMn bit set, will ignore the data frames.
5. When the last data frame is received by the addressed MCU, the addressed MCU sets

the MPCMn bit and waits for a new address frame from master. The process then

repeats from 2.
Using any of the 5-bit to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes full-
duplex operation difficult since the Transmitter and Receiver uses the same character size set-
ting. If 5-bit to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.

AImEl@ 188

A\ T M egal164P/324P/644P

16.11 Register Description

16.11.1 UDRnN — USART I/O Data Register n

Bit 7 6 5 4 3 2 1 0
RXB[7:0] UDRn (Read)
TXB[7:0] UDRn (Write)
Read/Write R/W RIW R/W R/IW R/IW R/W R/W R/W
Initial Value 0 0 0 0 0 0 0 0

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share the
same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer Reg-
ister (TXB) will be the destination for data written to the UDRn Register location. Reading the
UDRnN Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-bit, 6-bit, or 7-bit characters the upper unused bits will be ignored by the Transmitter and
set to zero by the Receiver.

The transmit buffer can only be written when the UDREnN Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREnN Flag is not set, will be ignored by the USART Transmit-
ter. When data is written to the transmit buffer, and the Transmitter is enabled, the Transmitter
will load the data into the Transmit Shift Register when the Shift Register is empty. Then the
data will be serially transmitted on the TxDn pin.

The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Modify-
Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

16.11.2 UCSRNA — USART Control and Status Register A

Bit 7 6 5 4 3 2 1 0

| RXcn | Txcn | UDREn | FEn DORnN UPEn u2xn MPCMn | UCSRnA
Read/Write R R/W R R R R RIW RIW
Initial Value 0 0 1 0 0 0 0 0

¢ Bit 7 — RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag
can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

e Bit 6 — TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

¢ Bit 5 - UDREnN: USART Data Register Empty
The UDREN Flag indicates if the transmit buffer (UDRN) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREN Flag can generate a

AImEl@ 189

80110-AVR-07/10

A\ T M egal164P/324P/644P

Data Register Empty interrupt (see description of the UDRIEnN bit).UDRERN is set after a reset to
indicate that the Transmitter is ready.

e Bit 4 — FEn: Frame Error

This bit is set if the next character in the receive buffer had a Frame Error when received, that is,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until the
receive buffer (UDRN) is read. The FEn bit is zero when the stop bit of received data is one.
Always set this bit to zero when writing to UCSRnA.

e Bit 3—- DORnN: Data OverRun

This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the receive
buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a
new start bit is detected. This bit is valid until the receive buffer (UDRn) is read. Always set this
bit to zero when writing to UCSRNA.

e Bit 2 - UPEn: USART Parity Error

This bit is set if the next character in the receive buffer had a Parity Error when received and the
Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive buffer
(UDRN) is read. Always set this bit to zero when writing to UCSRnA.

e Bit 1 -U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively dou-
bling the transfer rate for asynchronous communication.

e Bit 0 — MPCMn: Multi-processor Communication Mode

This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address infor-
mation will be ignored. The Transmitter is unaffected by the MPCMn setting. For more detailed
information see "Multi-processor Communication Mode” on page 187.

16.11.3 UCSRnB — USART Control and Status Register n B

Bit 7 6 5 4 3 2 1 0

| RXCEEn | TXCIEn | UDRIEn | RXENn TXENn uUCSzn2 RXB8n TxB8n | UCSRnB
Read/Write R/W R/W RIW R/W RIW R/W R RIW
Initial Value 0 0 0 0 0 0 0 0

* Bit 7 — RXCIEn: RX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRNA is set.

e Bit 6 — TXCIEn: TX Complete Interrupt Enable n

Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRNA is set.

AImEl@ 190

80110-AVR-07/10

A\ T M egal164P/324P/644P

e Bit 5 - UDRIENn: USART Data Register Empty Interrupt Enable n

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty interrupt will
be generated only if the UDRIEN bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDRER bit in UCSRnA is set.

» Bit 4 — RXENnN: Receiver Enable n

Writing this bit to one enables the USART Receiver. The Receiver will override normal port oper-
ation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORN, and UPEn Flags.

» Bit 3— TXENnN: Transmitter Enable n

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, that is,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

* Bit 2 -UCSZn2: Character Size n
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRNC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

e Bit 1 - RXB8n: Receive Data Bit 8 n
RXB8n is the ninth data bit of the received character when operating with serial frames with nine
data bits. Must be read before reading the low bits from UDRn.

e Bit 0 — TXB8n: Transmit Data Bit 8 n
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

16.11.4 UCSRNC — USART Control and Status Register n C

Bit 7 6 5 4 3 2 1 0
| UMSELn1 | UMSELnO | UPMn1 | UPMnO | USBSn | UCSZnl | UCSZn0 | UCPOLn | UCSRnC

Read/Write RIW RIW R/W R/W RIW R/W RIW R/W

Initial Value 0 0 0 0 0 1 1 0

e Bits 7:6 — UMSELN1:0 USART Mode Select
These bits select the mode of operation of the USARTN as shown in Table 16-4..

Table 16-4. UMSELn Bits Settings

UMSELNn1 UMSELNO Mode
0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)
1 1 Master SPI (MSPIM)®

Note: 1. See "USART in SPI Mode” on page 198 for full description of the Master SPI Mode (MSPIM)
operation

AImEl@ 191

80110-AVR-07/10

A\ T M egal164P/324P/644P

¢ Bits 5:4 — UPMn1:0: Parity Mode

These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMn setting.
If a mismatch is detected, the UPEnN Flag in UCSRNnA will be set.

Table 16-5. UPMn Bits Settings

UPMn1 UPMnNO Parity Mode
0 0 Disabled
0 1 Reserved
1 0 Enabled, Even Parity
1 1 Enabled, Odd Parity

e Bit 3— USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores

this setting.
Table 16-6. USBS Bit Settings
USBSn Stop Bit(s)
0 1-bit
1 2-bit

e Bit 2:1 — UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRNB sets the number of data bits

(Character SiZe) in a frame the Receiver and Transmitter use.

Table 16-7. UCSZn Bits Settings

UCSZn2 UCSznl UCSzn0 Character Size
0 0 0 5-bit

6-bit

7-bit

8-bit

Reserved

Reserved

Reserved
9-bit

0
0
0
1
1
1
1

Pk, |Oo|lOo|r|r|O
R |lolr|lO|kRr|O|R

AImEl@ 192

80110-AVR-07/10

A\ T M egal164P/324P/644P

e Bit 0 — UCPOLnN: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLn bit sets the relationship between data output change and data input sample,
and the synchronous clock (XCKn).

Table 16-8.

UCPOLn Bit Settings

UCPOLN

Transmitted Data Changed (Output of
TxDn Pin)

Received Data Sampled (Input on RxDn

Pin)

0

Rising XCKn Edge

Falling XCKn Edge

1

Falling XCKn Edge

Rising XCKn Edge

16.11.5 UBRRnNL and UBRRnH — USART Baud Rate Registers

Bit

Read/Write

Initial Value

15 14 13 12 11 10 9 8
- | - | - | - | UBRR[11:8] UBRRHnN
UBRR[7:0] UBRRLN
7 6 5 4 3 2 1 0
R R R R/W R/W RIW RIW
RIW RIW R/W RIW RIW R/W R/W RIW
0 0 0 0 0
0 0 0 0

¢ Bit 15:12 — Reserved Bits

These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRH is written.

e Bit 11:0 - UBRR11:0: USART Baud Rate Register
This is a 12-bit register which contains the USART baud rate. The UBRRH contains the four
most significant bits, and the UBRRL contains the eight least significant bits of the USART baud
rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the baud rate is
changed. Writing UBRRL will trigger an immediate update of the baud rate prescaler.

80110-AVR-07/10

ATMEL

193

A\ T M egal164P/324P/644P

16.12 Examples of Baud Rate Setting

For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRR settings in Table 16-9 to Table 16-12.
UBRR values which yield an actual baud rate differing less than 0.5% from the target baud rate,
are bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise
resistance when the error ratings are high, especially for large serial frames (see "Asynchronous
Operational Range” on page 186). The error values are calculated using the following equation:

BaUdRateCIosest Match _
BaudRate

Error[%] = (1) ¢ 100%

Table 16-9. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

fosc = 1.0000 MHz fosc = 1.8432 MHz fysc = 2.0000 MHz
i:f: U2Xn =0 U2xn =1 U2Xn =0 U2xn =1 U2Xn =0 u2xn =1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%
4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%
9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%
14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%
19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%
28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%
38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%
57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%
76.8k - - 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%
115.2k - - 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%
230.4k - - - - - - 0 0.0% - - - -
250k - - - - - - - - - - 0 0.0%
Max. & 62.5 Kbps 125 Kbps 115.2 Kbps 230.4 Kbps 125 Kbps 250 Kbps
1. UBRR =0, Error = 0.0%

AImEl@ 194

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 16-10. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 3.6864 MHz fosc = 4.0000 MHz fosc = 7.3728 MHz

i:;Jed u2xXn =0 uz2xXn=1 uz2xXn=0 uz2xn=1 U2xXn =0 uz2xn=1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%
4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%
9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%
14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%
19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%
28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%
38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%
57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%
76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%
115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%
230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%
250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%
0.5M - - 0 -7.8% - - 0 0.0% 0 -7.8% 1 -7.8%
M - - - - - - - - - - 0 -7.8%
Max. & 230.4 Kbps 460.8 Kbps 250 Kbps 0.5 Mbps 460.8 Kbps 921.6 Kbps

1. UBRR =0, Error = 0.0%

AImEl@ 195

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 16-11. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

f,sc = 8.0000 MHz fec = 11.0592 MHz focc = 14.7456 MHz
i:;Jed uz2xXn=0 uz2xXn=1 u2xXn =0 uz2xXn=1 u2xXn =20 uz2xXn=1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%
4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%
9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%
14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%
19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%
28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%
38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%
57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%
76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%
115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%
230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%
250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%
0.5M 0 0.0% 1 0.0% - - 2 -7.8% 1 -7.8% 3 -7.8%
1M - - 0 0.0% - - - - 0 -7.8% 1 -7.8%
Max. & 0.5 Mbps 1 Mbps 691.2 Kbps 1.3824 Mbps 921.6 Kbps 1.8432 Mbps
1. UBRR =0, Error = 0.0%

AImEl@ 196

80110-AVR-07/10

A\ T M egal164P/324P/644P

Table 16-12. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

fosc = 16.0000 MHz fosc = 18.4320 MHz fosc = 20.0000 MHz

i:;Jed uz2xXn=0 uz2xXn=1 u2xXn =0 uz2xXn=1 u2xXn =20 uz2xXn=1
(bps) UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error UBRR Error
2400 416 -0.1% 832 0.0% 479 0.0% 959 0.0% 520 0.0% 1041 0.0%
4800 207 0.2% 416 -0.1% 239 0.0% 479 0.0% 259 0.2% 520 0.0%
9600 103 0.2% 207 0.2% 119 0.0% 239 0.0% 129 0.2% 259 0.2%
14.4k 68 0.6% 138 -0.1% 79 0.0% 159 0.0% 86 -0.2% 173 -0.2%
19.2k 51 0.2% 103 0.2% 59 0.0% 119 0.0% 64 0.2% 129 0.2%
28.8k 34 -0.8% 68 0.6% 39 0.0% 79 0.0% 42 0.9% 86 -0.2%
38.4k 25 0.2% 51 0.2% 29 0.0% 59 0.0% 32 -1.4% 64 0.2%
57.6k 16 2.1% 34 -0.8% 19 0.0% 39 0.0% 21 -1.4% 42 0.9%
76.8k 12 0.2% 25 0.2% 14 0.0% 29 0.0% 15 1.7% 32 -1.4%
115.2k 8 -3.5% 16 2.1% 9 0.0% 19 0.0% 10 -1.4% 21 -1.4%
230.4k 3 8.5% 8 -3.5% 4 0.0% 9 0.0% 4 8.5% 10 -1.4%
250k 3 0.0% 7 0.0% 4 -7.8% 8 2.4% 4 0.0% 9 0.0%
0.5M 1 0.0% 3 0.0% - - 4 -7.8% - - 4 0.0%
1M 0 0.0% 1 0.0% - - - - - - - —
Max. & 1 Mbps 2 Mbps 1.152 Mbps 2.304 Mbps 1.25 Mbps 2.5 Mbps

1. UBRR =0, Error = 0.0%

AImEl@ 197

80110-AVR-07/10

A\ T M egal164P/324P/644P

17. USART in SPI Mode

17.1 Features

e Full Duplex, Three-wire Synchronous Data Transfer

* Master Operation

* Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
* LSB First or MSB First Data Transfer (Configurable Data Order)
* Queued Operation (Double Buffered)

* High Resolution Baud Rate Generator

* High Speed Operation (fXCKmax = fCK/2)

* Flexible Interrupt Generation

17.2 Overview

The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can be
set to a master SPI compliant mode of operation.

Setting both UMSELN1.:0 bits to one enables the USART in MSPIM logic. In this mode of opera-
tion the SPI master control logic takes direct control over the USART resources. These
resources include the transmitter and receiver shift register and buffers, and the baud rate gen-
erator. The parity generator and checker, the data and clock recovery logic, and the RX and TX
control logic is disabled. The USART RX and TX control logic is replaced by a common SPI
transfer control logic. However, the pin control logic and interrupt generation logic is identical in
both modes of operation.

The 1/O register locations are the same in both modes. However, some of the functionality of the
control registers changes when using MSPIM.

17.3 Clock Generation

The Clock Generation logic generates the base clock for the Transmitter and Receiver. For
USART MSPIM mode of operation only internal clock generation (that is master operation) is
supported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set to
one (that is as output) for the USART in MSPIM to operate correctly. Preferably the DDR_XCKn
should be set up before the USART in MSPIM is enabled (that is TXENn and RXENR bit set to
one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous mas-
ter mode. The baud rate or UBRRn setting can therefore be calculated using the same
equations, see Table 17-1:

Table 17-1. Equations for Calculating Baud Rate Register Setting

Equation for Calculating Baud Equation for Calculating UBRRn
Operating Mode Rate® Value
Synchronous Master
Synct BAUD = —Josc___ UBRRn = —105C__
2(UBRRn +1) 2BAUD

AImEl@ 198

80110-AVR-07/10

A\ T M egal164P/324P/644P

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD Baud rate (in bits per second, bps)
fosc System Oscillator clock frequency
UBRRN Contents of the UBRRnH and UBRRnNL Registers, (0-4095)

17.4 SPI Data Modes and Timing

There are four combinations of XCKn (SCK) phase and polarity with respect to serial data, which
are determined by control bits UCPHANn and UCPOLnN. The data transfer timing diagrams are
shown in Figure 17-1. Data bits are shifted out and latched in on opposite edges of the XCKn
signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and UCPHAn function-
ality is summarized in Table 17-2. Note that changing the setting of any of these bits will corrupt
all ongoing communication for both the Receiver and Transmitter.

Table 17-2. UCPOLn and UCPHAN Functionality-

UCPOLnN UCPHAN SPI Mode Leading Edge Trailing Edge
0 0 0 Sample (Rising) Setup (Falling)
0 1 1 Setup (Rising) Sample (Falling)
1 0 2 Sample (Falling) Setup (Rising)
1 1 3 Setup (Falling) Sample (Rising)

Figure 17-1. UCPHAnN and UCPOLnN data transfer timing diagrams.

UCPOL=0 UCPOL=1

4 xeK L L XCK L L
I

E-) Data setup (TXD) :X:X:X:X: Data setup (TXD) :X:X:X:X:
= Data sample (RXD) T T T T Data sample (RXD) T T T T
(=)

I xox L L XCK L L L L
EE) Data setup (TXD) 4X_X_X__X Data setup (TXD) 4X_X_X__X
> Data sample (RXD) T T T T Data sample (RXD) T T T T

17.5 Frame Formats

A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in MSPIM
mode has two valid frame formats:

« 8-bit data with MSB first

« 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of
eight, are succeeding, ending with the most or least significant bit accordingly. When a complete

frame is transmitted, a new frame can directly follow it, or the communication line can be set to
an idle (high) state.

AImEl@ 199

80110-AVR-07/10

A\ T M egal164P/324P/644P

The UDORDN bit in UCSRNC sets the frame format used by the USART in MSPIM mode. The
Receiver and Transmitter use the same setting. Note that changing the setting of any of these
bits will corrupt all ongoing communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit com-
plete interrupt will then signal that the 16-bit value has been shifted out.

1751 USART MSPIM Initialization

80110-AVR-07/10

The USART in MSPIM mode has to be initialized before any communication can take place. The
initialization process normally consists of setting the baud rate, setting master mode of operation
(by setting DDR_XCKn to one), setting frame format and enabling the Transmitter and the
Receiver. Only the transmitter can operate independently. For interrupt driven USART opera-
tion, the Global Interrupt Flag should be cleared (and thus interrupts globally disabled) when
doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the
UBRRnN must then be written to the desired value after the transmitter is enabled, but before the
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not neces-
sary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure that

there is no ongoing transmissions during the period the registers are changed. The TXCn Flag

can be used to check that the Transmitter has completed all transfers, and the RXCn Flag can

be used to check that there are no unread data in the receive buffer. Note that the TXCn Flag

must be cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume polling (no interrupts enabled). The
baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:rl6 registers.

AImEl@ 200

A\ T M egal164P/324P/644P

Assembly Code Example®

USART Init:
clr rl8
out UBRRnH, rl8
out UBRRnL,rl8
; Setting the XCKn port pin as output, enables master mode.
sbi XCKn DDR, XCKn
; Set MSPI mode of operation and SPI data mode 0.
1di rl8, (1<<UMSELnl) | (1<<UMSELnO) | (0<<UCPHAn) | (0<<UCPOLn)
out UCSRnC,rl8
; Enable receiver and transmitter.
1di r18, (1<<RXENn) | (1<<TXENn)
out UCSRnB,rl8
; Set baud rate.
; IMPORTANT: The Baud Rate must be set after the transmitter is enabled!
out UBRRnH, rl7
out UBRRnL, rl8

ret

C Code Example®

void USART Init(unsigned int baud)
{
UBRRn = 0;
/* Setting the XCKn port pin as output, enables master mode. */
XCKn_DDR |= (1<<XCKn);
/* Set MSPI mode of operation and SPI data mode 0. */
UCSRnC = (1<<UMSELnl) | (1<<UMSELnO) | (0<<UCPHAn) | (0<<UCPOLn) ;
/* Enable receiver and transmitter. */
UCSRNB = (1<<RXENn) | (1<<TXENn) ;
/* Set baud rate. */
/* IMPORTANT: The Baud Rate must be set after the transmitter is enabled
*/
UBRRn = baud;

Note: 1. See “About Code Examples” on page 8.
17.6 Data Transfer

Using the USART in MSPI mode requires the Transmitter to be enabled, that is, the TXENnN bit in
the UCSRnNB register is set to one. When the Transmitter is enabled, the normal port operation
of the TxDn pin is overridden and given the function as the Transmitter's serial output. Enabling
the receiver is optional and is done by setting the RXENnN bit in the UCSRnNB register to one.
When the receiver is enabled, the normal pin operation of the RxDn pin is overridden and given
the function as the Receiver's serial input. The XCKn will in both cases be used as the transfer
clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by writ-
ing to the UDRnN 1/O location. This is the case for both sending and receiving data since the

AImEl@ 201

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

transmitter controls the transfer clock. The data written to UDRnN is moved from the transmit buf-
fer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register must
be read once for each byte transmitted. The input buffer operation is identical to normal USART
mode, that is, if an overflow occurs the character last received will be lost, not the first data in the
buffer. This means that if four bytes are transferred, byte 1 first, then byte 2, byte 3, and byte 4,
and the UDRn is not read before all transfers are completed, then byte 3 to be received will be lost,
and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based on

polling of the Data Register Empty (UDREnN) Flag and the Receive Complete (RXCn) Flag. The

USART has to be initialized before the function can be used. For the assembly code, the data to

be sent is assumed to be stored in Register R16 and the data received will be available in the

same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREnN Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value..

Assembly Code Example®

USART MSPIM Transfer:
; Wait for empty transmit buffer
sbis UCSRnA, UDREn
rjmp USART MSPIM Transfer
; Put data (rlé6) into buffer, sends the data
out UDRn,rlé6
; Wait for data to be received
USART MSPIM Wait RXCn:
sbis UCSRnA, RXCn
rjmp USART MSPIM Wait RXCn
; Get and return received data from buffer
in rl16, UDRn

ret

C Code Example®

unsigned char USART Receive(void)
{
/* Wait for empty transmit buffer */
while (! (UCSRnA & (1<<UDREn)));
/* Put data into buffer, sends the data */
UDRn = data;
/* Wait for data to be received */
while (! (UCSRnA & (1<<RXCn)));
/* Get and return received data from buffer */

return UDRn;

Note: 1. See “About Code Examples” on page 8.

AImEl@ 202

A\ T M egal164P/324P/644P

17.6.1 Transmitter and Receiver Flags and Interrupts

The RXCn, TXCn, and UDRERN flags and corresponding interrupts in USART in MSPIM mode
are identical in function to the normal USART operation. However, the receiver error status flags
(FE, DOR, and PE) are not in use and is always read as zero.

17.6.2 Disabling the Transmitter or Receiver

The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to
the normal USART operation.

17.7 AVR USART MSPIM vs. AVR SPI

The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

» Master mode timing diagram.

* The UCPOLn bit functionality is identical to the SPI CPOL bit.

« The UCPHAnN bit functionality is identical to the SPI CPHA bit.

» The UDORDRN bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of the
USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences of
the control register bits, and that only master operation is supported by the USART in MSPIM
mode, the following features differ between the two modules:

e The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no
buffer.

* The USART in MSPIM mode receiver includes an additional buffer level.

* The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

* The SPI double speed mode (SPI2X) bit is not included. However, the same effect is achieved
by setting UBRRn accordingly.

« Interrupt timing is not compatible.
« Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 17-3 on page
203.

Table 17-3. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM SPI Comment
TxDn MOSI Master Out only
RxDn MISO Master In only
XCKn SCK (Functionally identical)
(N/A) SS Not supported by USART in MSPIM

AImEl@ 203

80110-AVR-07/10

A\ T M egal164P/324P/644P

17.8 Register Description

The following section describes the registers used for SPI operation using the USART.

17.8.1 UDRnN — USART MSPIM I/O Data Register

The function and bit description of the USART data register (UDRN) in MSPI mode is identical to
normal USART operation. See “UDRn — USART I/O Data Register n” on page 189.

17.8.2 UCSRnNA — USART MSPIM Control and Status Register n A

Bit 7 6 5 4 3 2 1 0
| rxcn TXCn UDREN - - - - - | ucsrna

Read/Write R/W R/W RIW R R R R

Initial Value 0 0 0 0 0 1 1 0

e Bit 7 - RXCn: USART Receive Complete

This flag bit is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (that is, does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn Flag
can be used to generate a Receive Complete interrupt (see description of the RXCIEn bit).

e Bit 6 - TXCn: USART Transmit Complete

This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out and
there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit is auto-
matically cleared when a transmit complete interrupt is executed, or it can be cleared by writing
a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt (see
description of the TXCIEn bit).

e Bit5- UDREN: USART Data Register Empty

The UDRERN Flag indicates if the transmit buffer (UDRnN) is ready to receive new data. If UDREn
is one, the buffer is empty, and therefore ready to be written. The UDREN Flag can generate a
Data Register Empty interrupt (see description of the UDRIE bit). UDRERN is set after a reset to
indicate that the Transmitter is ready.

* Bit 4:0 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRNA is written.

17.8.3 UCSRnB — USART MSPIM Control and Status Register n B

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0

| Rrxcien TXCIEn UDRIE RXENN TXENn - - - | ucsrns
Read/Write R/W R/W R/W R/W R/W R R
Initial Value 0 0 0 0 0 1 1 0

* Bit 7 - RXCIEn: RX Complete Interrupt Enable

Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete interrupt
will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the RXCn bit in UCSRNA is set.

AImEl@ 204

A\ T M egal164P/324P/644P

e Bit 6 - TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete interrupt
will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the TXCn bit in UCSRNA is set.

e Bit 5- UDRIE: USART Data Register Empty Interrupt Enable

Writing this bit to one enables interrupt on the UDREnN Flag. A Data Register Empty interrupt will
be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is written
to one and the UDRERn bit in UCSRnA is set.

» Bit 4 - RXENn: Receiver Enable

Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will override
normal port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer. Only enabling the receiver in MSPI mode (that is, setting RXENn=1 and
TXENN=0) has no meaning since it is the transmitter that controls the transfer clock and since
only master mode is supported.

* Bit 3- TXENnN: Transmitter Enable

Writing this bit to one enables the USART Transmitter. The Transmitter will override normal port
operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn to
zero) will not become effective until ongoing and pending transmissions are completed, that is,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

» Bit 2:0 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRnNB is written.

17.8.4 UCSRNC — USART MSPIM Control and Status Register n C

Bit 7 6 5 4 3 2 1 0
| umseELni UMSELnO | - [- | - | UDORDn | UCPHAn | UCPOLn | UCSRnC

Read/Write RIW R/W R R R R/W RIW RIW

Initial Value 0 0 0 0 0 1 1 0

e Bit 7:6 - UMSELN1:0: USART Mode Select

These bits select the mode of operation of the USART as shown in Table 17-4. See "UCSRNC —
USART Control and Status Register n C” on page 191 for full description of the normal USART
operation. The MSPIM is enabled when both UMSELn bits are set to one. The UDORDnN,
UCPHAnN, and UCPOLN can be set in the same write operation where the MSPIM is enabled.

Table 17-4. UMSELRnN Bits Settings

UMSELN1 UMSELNO Mode

0 0 Asynchronous USART
0 1 Synchronous USART
1 0 (Reserved)

1 1 Master SPI (MSPIM)

AImEl@ 205

80110-AVR-07/10

A\ T M egal164P/324P/644P

» Bit 5:3 - Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future devices,
these bits must be written to zero when UCSRNC is written.

» Bit 2 - UDORDnN: Data Order
When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the
data word is transmitted first. Refer to the Frame Formats section page 4 for details.

e Bit 1- UCPHAnN: Clock Phase
The UCPHAnN bit setting determine if data is sampled on the leasing edge (first) or tailing (last)
edge of XCKn. Refer to the SPI Data Modes and Timing section page 4 for details.

e Bit 0 - UCPOLn: Clock Polarity

The UCPOLnN bit sets the polarity of the XCKn clock. The combination of the UCPOLnN and
UCPHAN bit settings determine the timing of the data transfer. Refer to the SPI Data Modes and
Timing section page 4 for details.

17.8.5 UBRRNL and UBRRnH —USART MSPIM Baud Rate Registers

80110-AVR-07/10

The function and bit description of the baud rate registers in MSPI mode is identical to normal
USART operation. See "UBRRnL and UBRRnH — USART Baud Rate Registers” on page 193.

AImEl@ 206

A\ T M egal164P/324P/644P

18. 2-wire Serial Interface

18.1 Features

e Simple Yet Powerful and Flexible Communication Interface, only two Bus Lines Needed
* Both Master and Slave Operation Supported

* Device can Operate as Transmitter or Receiver

* 7-bit Address Space Allows up to 128 Different Slave Addresses

* Multi-master Arbitration Support

¢ Up to 400 kHz Data Transfer Speed

e Slew-rate Limited Output Drivers

* Noise Suppression Circuitry Rejects Spikes on Bus Lines

* Fully Programmable Slave Address with General Call Support

* Address Recognition Causes Wake-up When AVR is in Sleep Mode

18.2 2-wire Serial Interface Bus Definition

The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using only
two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external hard-
ware needed to implement the bus is a single pull-up resistor for each of the TWI bus lines. All
devices connected to the bus have individual addresses, and mechanisms for resolving bus
contention are inherent in the TWI protocol.

Figure 18-1. TWI Bus Interconnection

cC

Device 1 Device 2 Device 3 | Device n R1 R2

SDA

A
\/

SCL

A
\/

18.2.1 TWI Terminology
The following definitions are frequently encountered in this section.

Table 18-1. TWI Terminology

Term Description

The device that initiates and terminates a transmission. The Master also generates the
Master

SCL clock.
Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.

AImEl@ 207

80110-AVR-07/10

A\ T M egal164P/324P/644P

The Power Reduction TWI bit, PRTWI bit in "PRR — Power Reduction Register” on page 48 must
be written to zero to enable the 2-wire Serial Interface.

18.2.2 Electrical Interconnection

As depicted in Figure 18-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collector.
This implements a wired-AND function which is essential to the operation of the interface. A low
level on a TWI bus line is generated when one or more TWI devices output a zero. A high level
is output when all TWI devices trim-state their outputs, allowing the pull-up resistors to pull the
line high. Note that all AVR devices connected to the TWI bus must be powered in order to allow
any bus operation.

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in "SPI Timing Characteristics” on page 332. Two different sets of
specifications are presented there, one relevant for bus speeds below 100 kHz, and one valid for
bus speeds up to 400 kHz.

18.3 Data Transfer and Frame Format
18.3.1 Transferring Bits

Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The level
of the data line must be stable when the clock line is high. The only exception to this rule is for
generating start and stop conditions.

Figure 18-2. Data Validity

SDA

SCL

Data Stable Data Stable

Data Change
18.3.2 START and STOP Conditions

The Master initiates and terminates a data transmission. The transmission is initiated when the
Master issues a START condition on the bus, and it is terminated when the Master issues a
STOP condition. Between a START and a STOP condition, the bus is considered busy, and no
other master should try to seize control of the bus. A special case occurs when a new START
condition is issued between a START and STOP condition. This is referred to as a REPEATED
START condition, and is used when the Master wishes to initiate a new transfer without relin-
quishing control of the bus. After a REPEATED START, the bus is considered busy until the next
STOP. This is identical to the START behavior, and therefore START is used to describe both
START and REPEATED START for the remainder of this datasheet, unless otherwise noted. As

AImEl@ 208

80110-AVR-07/10

A\ T M egal164P/324P/644P

depicted below, START and STOP conditions are signalled by changing the level of the SDA
line when the SCL line is high.

Figure 18-3. START, REPEATED START and STOP conditions

START STOP START REPEATED START STOP
18.3.3 Address Packet Format

All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits, one
READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read opera-
tion is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL
(ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the Mas-
ter's request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission. An
address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R or
SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by the
designer, but the address 0000 000 is reserved for a general call.

When a general call is issued, all slaves should respond by pulling the SDA line low in the ACK
cycle. A general call is used when a Master wishes to transmit the same message to several
slaves in the system. When the general call address followed by a Write bit is transmitted on the
bus, all slaves set up to acknowledge the general call will pull the SDA line low in the ack cycle.
The following data packets will then be received by all the slaves that acknowledged the general
call. Note that transmitting the general call address followed by a Read bit is meaningless, as
this would cause contention if several slaves started transmitting different data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 18-4. Address Packet Format

Addr MSB AddrLSB R/W ACK

son X
Sct SSM S

START

AImEl@ 209

80110-AVR-07/10

A\ T M egal164P/324P/644P

Data Packet Format

All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START and
STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted first.

Figure 18-5. Data Packet Format

|
Data MSB DataLSB ACK !

Aggregate
SDA N\

I
I
I
I
I
I
I
I
I
|
SDAfrom |
Transmitter \ |
I

I

T

I

I

I

I

I

I

I

I

I

I

B

=

|
4
|
|
|
|

SDA from

|
Receiver / i
|
|
SCL from i
Master { o

| |

| ! 2 7 8 ° | STOP, REPEATED

SLA+R/W ; Data Byte ; START or Next

| |

Data Byte

Combining Address and Data Packets into a Transmission

80110-AVR-07/10

A transmission basically consists of a START condition, a SLA+R/W, one or more data packets
and a STOP condition. An empty message, consisting of a START followed by a STOP condi-
tion, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The Slave
extending the SCL low period will not affect the SCL high period, which is determined by the
Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolonging the
SCL duty cycle.

Figure 18-6 on page 210 shows a typical data transmission. Note that several data bytes can be
transmitted between the SLA+R/W and the STOP condition, depending on the software protocol
implemented by the application software.

Figure 18-6. Typical Data Transmission

Addr MSB AddrLSB RW ACK Data MSB DataLSB ACK
)

SLA+R/W Data Byte

AImEl@ 210

A\ T M egal164P/324P/644P

18.4 Multi-master Bus Systems, Arbitration and Synchronization

The TWI protocol allows bus systems with several masters. Special concerns have been taken
in order to ensure that transmissions will proceed as normal, even if two or more masters initiate
a transmission at the same time. Two problems arise in multi-master systems:

 An algorithm must be implemented allowing only one of the masters to complete the
transmission. All other masters should cease transmission when they discover that they have
lost the selection process. This selection process is called arbitration. When a contending
master discovers that it has lost the arbitration process, it should immediately switch to Slave
mode to check whether it is being addressed by the winning master. The fact that multiple
masters have started transmission at the same time should not be detectable to the slaves,
that is, the data being transferred on the bus must not be corrupted.

« Different masters may use different SCL frequencies. A scheme must be devised to
synchronize the serial clocks from all masters, in order to let the transmission proceed in a
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks from
all masters will be wired-ANDed, yielding a combined clock with a high period equal to the one
from the Master with the shortest high period. The low period of the combined clock is equal to
the low period of the Master with the longest low period. Note that all masters listen to the SCL
line, effectively starting to count their SCL high and low time-out periods when the combined
SCL line goes high or low, respectively.

Figure 18-7. SCL Synchronization Between Multiple Masters

| TA low } | TA high }
I I I I
| S l J
SCL from ! L,/ ! !
Master A | L/ | |
! !
I I
,,,,,, | I,
SCL from | S L/ ! N
Master B \ \ /| | |\
[[| I
| ! | |
SCL Bus | L ‘ |
Line | /| | |
[1 } ! I
| | |
\ By } } TBhigh }
\ Masters Start \ Masters Start
Counting Low Period Counting High Period

Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it has
lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA value
while another Master outputs a low value. The losing Master should immediately go to Slave
mode, checking if it is being addressed by the winning Master. The SDA line should be left high,
but losing masters are allowed to generate a clock signal until the end of the current data or
address packet. Arbitration will continue until only one Master remains, and this may take many

AImEl@ 211

80110-AVR-07/10

A\ T M egal164P/324P/644P

bits. If several masters are trying to address the same Slave, arbitration will continue into the
data packet.

Figure 18-8. Arbitration Between Two Masters
START Master A Loses

SDA f | rbitration, SDA,# SDA
rom

Master A

SDA from
Master B \ / \ / \

Synchronized
|| |

Note that arbitration is not allowed between:

« A REPEATED START condition and a data bit.
* A STOP condition and a data bit.
« A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same composi-
tion of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.

AImEl@ 212

80110-AVR-07/10

A\ T M egal164P/324P/644P

18.5 Overview of the TWI Module

185.1

18.5.2

80110-AVR-07/10

The TWI module is comprised of several submodules, as shown in Figure 18-9. All registers
drawn in a thick line are accessible through the AVR data bus.

Figure 18-9. Overview of the TWI Module

SCL and SDA Pins

SCL

Slew-rate
Control

Spike
Filter

A

SDA
Slew-rate Spike
Control Filter

A

Bus Interface Unit

START / STOP
Control

Spike Suppression

Bit Rate Generator

Prescaler

Arbitration detection

Address/Data Shift
Register (TWDR)

Ack

Bit Rate Register
(TWBR)

A
/

Address Match Unit

Address Register
(TWAR)

J
A

Control Unit

Address Comparator

Status Register
(TWSR)

Control Register
(TWCR)

State Machine and

Status control

TWI Unit

These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain a
slew-rate limiter in order to conform to the TWI specification. The input stages contain a spike
suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in the AVR
pads can be enabled by setting the PORT bits corresponding to the SCL and SDA pins, as
explained in the I/O Port section. The internal pull-ups can in some systems eliminate the need
for external ones.

Bit Rate Generator Unit

This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI Status
Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the
CPU clock frequency in the Slave must be at least 16 times higher than the SCL frequency. Note
that slaves may prolong the SCL low period, thereby reducing the average TWI bus clock
period. The SCL frequency is generated according to the following equation:

AImEl@ 213

A\ T M egal164P/324P/644P

CPU Clock frequency

SCL frequency = e
16 +2(TWBR) - 4

* TWBR = Value of the TWI Bit Rate Register.
« TWPS = Value of the prescaler bits in the TWI Status Register.

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive bus
line load. See 2-wire Serial Bus Requirements in Table 25-10 on page 333 for value of pull-up
resistor.

18.5.3 Bus Interface Unit

This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted,
or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface Unit also
contains a register containing the (N)ACK bit to be transmitted or received. This (N)ACK Regis-
ter is not directly accessible by the application software. However, when receiving, it can be set
or cleared by manipulating the TWI Control Register (TWCR). When in Transmitter mode, the
value of the received (N)ACK bit can be determined by the value in the TWSR.

The START/STOP Controller is responsible for generation and detection of START, REPEATED
START, and STOP conditions. The START/STOP controller is able to detect START and STOP
conditions even when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up
if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has lost
an arbitration, the Control Unit is informed. Correct action can then be taken and appropriate
status codes generated.

18.5.4 Address Match Unit

The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in the
TWAR is written to one, all incoming address bits will also be compared against the General Call
address. Upon an address match, the Control Unit is informed, allowing correct action to be
taken. The TWI may or may not acknowledge its address, depending on settings in the TWCR.
The Address Match unit is able to compare addresses even when the AVR MCU is in sleep
mode, enabling the MCU to wake up if addressed by a Master.

If another interrupt (for example, INTO) occurs during TWI Power-down address match and
wakes up the CPU, the TWI aborts operation and return to it's idle state. If this cause any prob-
lems, ensure that TWI Address Match is the only enabled interrupt when entering Power-
down.®

Note: 1. This only applies to ATmegal64P revision A to C, ATmega324P revision A to D, and all
ATmega644P revisions.

18.5.5 Control Unit

The Control unit monitors the TWI bus and generates responses corresponding to settings in the
TWI Control Register (TWCR). When an event requiring the attention of the application occurs
on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the TWI Sta-
tus Register (TWSR) is updated with a status code identifying the event. The TWSR only
contains relevant status information when the TWI Interrupt Flag is asserted. At all other times,

AImEl@ 214

80110-AVR-07/10

A\ T M egal164P/324P/644P

the TWSR contains a special status code indicating that no relevant status information is avail-
able. As long as the TWINT Flag is set, the SCL line is held low. This allows the application
software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

« After the TWI has transmitted a START/REPEATED START condition.

« After the TWI has transmitted SLA+R/W.

 After the TWI has transmitted an address byte.

* After the TWI has lost arbitration.

« After the TWI has been addressed by own slave address or general call.

 After the TWI has received a data byte.

« After a STOP or REPEATED START has been received while still addressed as a Slave.
* When a bus error has occurred due to an illegal START or STOP condition.

18.6 Using the TWI

The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,
the application software is free to carry on other operations during a TWI byte transfer. Note that
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in
order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current
state of the TWI bus. The application software can then decide how the TWI should behave in
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 18-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is quite
abstract, a more detailed explanation follows later in this section. A simple code example imple-
menting the desired behavior is also presented.

AImEl@ 215

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 18-10. Interfacing the Application to the TWI in a Typical Transmission

1. Application
writes to TWCR to
initiate
transmission of
START

Application
Action

3. Check TWSR to see if START was
sent. Application loads SLA+W into
TWDR, and loads appropriate control
signals into TWCR, makin sure that
TWINT is written to one,
and TWSTA is written to zero.

5. Check TWSR to see if SLA+W was
sent and ACK received.
Application loads data into TWDR, and
loads appropriate control signals into
TWCR, making sure that TWINT is
written to one

7.Check TWSR to see if data was sent
and ACK received.
Application loads appropriate control
signals to send STOP into TWCR,
making sure that TWINT is written to one

80110-AVR-07/10

-

START SLA+W A

TWI bus Data A STOP ‘

Indicates

4. TWINT set. TWINT set

Status code indicates
SLA+W sent, ACK
received

2. TWINT set.
Status code indicates
START condition sent

6. TWINT set.
Status code indicates
data sent, ACK received

TWI
Hardware
Action

The first step in a TWI transmission is to transmit a START condition. This is done by
writing a specific value into TWCR, instructing the TWI hardware to transmit a START
condition. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the
application has cleared TWINT, the TWI will initiate transmission of the START condition.

When the START condition has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the START condition has success-
fully been sent.

The application software should now examine the value of TWSR, to make sure that the
START condition was successfully transmitted. If TWSR indicates otherwise, the applica-
tion software might take some special action, like calling an error routine. Assuming that
the status code is as expected, the application must load SLA+W into TWDR. Remember
that TWDR is used both for address and data. After TWDR has been loaded with the
desired SLA+W, a specific value must be written to TWCR, instructing the TWI hardware
to transmit the SLA+W present in TWDR. Which value to write is described later on.
However, it is important that the TWINT bit is set in the value written. Writing a one to
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit in
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initiate
transmission of the address packet.

When the address packet has been transmitted, the TWINT Flag in TWCR is set, and
TWSR is updated with a status code indicating that the address packet has successfully
been sent. The status code will also reflect whether a Slave acknowledged the packet or
not.

The application software should now examine the value of TWSR, to make sure that the
address packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must load a data packet into TWDR. Subsequently, a specific value must be
written to TWCR, instructing the TWI hardware to transmit the data packet present in
TWDR. Which value to write is described later on. However, it is important that the
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will

ATMEL

216

A\ T M egal164P/324P/644P

not start any operation as long as the TWINT bit in TWCR is set. Imnmediately after the
application has cleared TWINT, the TWI will initiate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and TWSR
is updated with a status code indicating that the data packet has successfully been sent.
The status code will also reflect whether a Slave acknowledged the packet or not.

7. The application software should now examine the value of TWSR, to make sure that the
data packet was successfully transmitted, and that the value of the ACK bit was as
expected. If TWSR indicates otherwise, the application software might take some special
action, like calling an error routine. Assuming that the status code is as expected, the
application must write a specific value to TWCR, instructing the TWI hardware to transmit
a STOP condition. Which value to write is described later on. However, it is important that
the TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI
will not start any operation as long as the TWINT bit in TWCR is set. Immediately after
the application has cleared TWINT, the TWI will initiate transmission of the STOP condi-
tion. Note that TWINT is NOT set after a STOP condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.

These can be summarized as follows:

« When the TWI has finished an operation and expects application response, the TWINT Flag is
set. The SCL line is pulled low until TWINT is cleared.

* When the TWINT Flag is set, the user must update all TWI Registers with the value relevant for
the next TWI bus cycle. As an example, TWDR must be loaded with the value to be transmitted
in the next bus cycle.

- After all TWI Register updates and other pending application software tasks have been
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a one
to TWINT clears the flag. The TWI will then commence executing whatever operation was
specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.

Assembly Code Example C Example Comments

1di (L<<TWINT) | (L<<TWSTA) | TWCR = (1<<TWINT) | (L<<TWSTA) |

1 (1<<TWEN) Send START condition
out
waitl: while (! (TWCR & (1<<TWINT)))
in . Wait for TWINT Flag set. This

2 ' indicates that the START condition
sbrs has been transmitted
rjmp
in if ((TWSR & OxF8) != START) Check value of TWI Status
andi ERROR () ; Register. Mask prescaler bits. If
cpi status different from START go to
b ERROR

3 rne
1di TWDR = SLA W;
out TWCR = (1<<TWINT) | (l<<TwEN); |-020 SLA_Winto TWDR Register.

) Clear TWINT bit in TWCR to start
1di (1<<TWINT) | (1<<TWEN) transmission of address
out
— ATTNEL 217
80110-AVR-07/10 I ©

A\ T M egal164P/324P/644P

Assembly Code Example C Example Comments
wait2: while (!(TWCR & (1<<TWINT))) |\nait for TWINT Flag set. This
4 in rle6, TWCR H indicates that the SLA+W has been
sbrs rl6, TWINT transmitted, and ACK/NACK has
. . been received.
rjmp walit2
in rle,TWSR if ((TWSR & OxF8) != Check value of TWI Status
andi rlé6, OxF8 MT_SLA_ACK) Register. Mask prescaler bits. If
cpi rlé, MT SLA ACK ERROR () ; status different from MT_SLA_ACK
5 brne ERROR go to ERROR
1di rl16, DATA TWDR = DATA;
out TWDR, rlé TWCR = (1<<TWINT) | (1<<TWEN); Load DATA into TWDR Register.
. Clear TWINT bit in TWCR to start
1di rl6, (1<<TWINT) | (1<<TWEN) transmission of data
out TWCR, rlé6
wait3: while (!(TWCR & (1<<TWINT))) |\nait for TWINT Flag set. This
6 in rle,TWCR ; indicates that the DATA has been
sbrs r16, TWINT transmitted, and ACK/NACK has
: : been received.
rjmp wait3
in rl6,TWSR if ((TWSR & OxF8) != Check value of TWI Status
andi rlé6, OxF8 MT_DATA_ACK) Register. Mask prescaler bits. If
cpi 1rlé, MT DATA ACK ERROR () ; status different from
7 brne ERROR MT_DATA_ACK go to ERROR
1di rl6, (1<<TWINT) | (1<<TWEN) | TWCR = (1<<TWINT) | (1<<TWEN) |
(1<<TWSTO) (1<<TWSTO) ; Transmit STOP condition
out TWCR, rlé

18.7 Transmission Modes

The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to write
data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other masters
are present in the system, some of these might transmit data to the TWI, and then SR mode
would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)
Data: 8-bit data byte

P: STOP condition

AImEl@ 218

80110-AVR-07/10

A\ T M egal164P/324P/644P

SLA: Slave Address

In Figure 18-12 on page 221 to Figure 18-18 on page 230, circles are used to indicate that the
TWINT Flag is set. The numbers in the circles show the status code held in TWSR, with the
prescaler bits masked to zero. At these points, actions must be taken by the application to con-
tinue or complete the TWI transfer. The TWI transfer is suspended until the TWINT Flag is
cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate soft-
ware action. For each status code, the required software action and details of the following serial
transfer are given in Table 18-2 on page 220 to Table 18-5 on page 229. Note that the prescaler
bits are masked to zero in these tables.

18.7.1 Master Transmitter Mode

In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 18-11 on page 219). In order to enter a Master mode, a START condition must be
transmitted. The format of the following address packet determines whether Master Transmitter
or Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if
SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

Figure 18-11. Data Transfer in Master Transmitter Mode

CcC

TRANSMITTER RECEIVER

Device 1 Device 2 .
MASTER SLAVE Device 3 | Device n R1 R2

SDA A

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to trans-
mit a START condition and TWINT must be written to one to clear the TWINT Flag. The TWI will
then test the 2-wire Serial Bus and generate a START condition as soon as the bus becomes
free. After a START condition has been transmitted, the TWINT Flag is set by hardware, and the
status code in TWSR will be 0x08 (see Table 18-2 on page 220). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT bit
should be cleared (by writing it to one) to continue the transfer. This is accomplished by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master

AImEl@ 219

80110-AVR-07/10

A\ T M egal164P/324P/644P

mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these status codes
is detailed in Table 18-2 on page 220.

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If not,
the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR Regis-
ter. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to continue the
transfer. This is accomplished by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

This scheme is repeated until the last byte has been sent and the transfer is ended by generat-
ing a STOP condition or a repeated START condition. A STOP condition is generated by writing
the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
value 1 X 0 1 X 1 0 X
A REPEATED START condition is generated by writing the following value to TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN = TWIE
value 1 X 1 0 X 1 0 X

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control of the bus.

Table 18-2. Status codes for Master Transmitter Mode
Status Code Application Software Response
(TWSR) Status of the 2-wire Serial Bus
Prescaler Bits and 2-wire Serial Interface Hard- Toffrom TWDR To TWCR
are 0 ware STA STO TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+W 0 0 1 X SLA+W will be transmitted;
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+W or 0 0 1 X SLA+W will be transmitted;
has been transmitted ACK or NOT ACK will be received
Load SLA+R 0 0 1 X SLA+R will be transmitted;
Logic will switch to Master Receiver mode
0x18 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x20 SLA+W has been transmitted; Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

80110-AVR-07/10

ATMEL

220

A\ T M egal164P/324P/644P

Table 18-2. Status codes for Master Transmitter Mode
0x28 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x30 Data byte has been transmitted; | Load data byte or 0 0 1 X Data byte will be transmitted and ACK or NOT ACK will
NOT ACK has been received be received
No TWDR action or 1 0 1 X Repeated START will be transmitted
No TWDR action or 0 1 1 X STOP condition will be transmitted and
TWSTO Flag will be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x38 Arbitration lost in SLA+W or data | No TWDR action or 0 0 1 X 2-wire Serial Bus will be released and not addressed
bytes Slave mode entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus be-
comes free

80110-AVR-07/10

Figure 18-12. Formats and States in the Master Transmitter Mode

MT
Successfull R
transmission S | SLA W A DATA A P |
to a slave -0
receiver
$08 $18 $28
Next transfer !
started with a Rs | SLA ' w
repeated start
condition
Not acknowledge R
received after the A P
slave address
MR
Not acknowledge
received after a data A P
byte
Arbitration lost in slave Other master Other master
address or data byte AorA | continues AorA continues
$38 $38
Arbitration lost and Other master
addressed as slave A continues
To corresponding
states in slave mode
- Any number of data bytes
I:I From master to slave DATA and their associated acknowledge bits
I:I From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero
Y ©)

A\ T M egal164P/324P/644P

18.7.2 Master Receiver Mode

In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(Slave see Figure 18-13 on page 222). In order to enter a Master mode, a START condition
must be transmitted. The format of the following address packet determines whether Master
Transmitter or Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is
entered, if SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this
section assume that the prescaler bits are zero or are masked to zero.

Figure 18-13. Data Transfer in Master Receiver Mode

cc

Device 1 Device 2 .)
MASTER SLAVE Device 3 | Device n R1 R2
RECEIVER TRANSMITTER

SDA A

SCL

A START condition is sent by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 1 0 X 1 0 X

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 18-2 on page 220). In order to enter
MR mode, SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the
TWINT bit should be cleared (by writing it to one) to continue the transfer. This is accomplished
by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 0 X 1 0 X

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT is
set again and a number of status codes in TWSR are possible. Possible status codes in Master
mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these status codes
is detailed in Table 18-3 on page 223. Received data can be read from the TWDR Register
when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte has
been received. After the last byte has been received, the MR should inform the ST by sending a
NACK after the last received data byte. The transfer is ended by generating a STOP condition or
a repeated START condition. A STOP condition is generated by writing the following value to

TWCR:
TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 1 X 0 1 X 1 0 X

AImEl@ 222

80110-AVR-07/10

A\ T M egal164P/324P/644P

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR
value

TWINT

TWEA

TWSTA

TWSTO

TWWC TWEN - TWIE

1

X 1

X 1 0 X

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the same
Slave again, or a new Slave without transmitting a STOP condition. Repeated START enables
the Master to switch between Slaves, Master Transmitter mode and Master Receiver mode with-
out losing control over the bus.

Table 18-3. Status codes for Master Receiver Mode
Status Code Application Software Response
(TWSR) Status of the 2-wire Serial Bus
Prescaler Bits and 2-wire Serial Interface Hard- To/from TWDR To TWCR
are 0 ware STA STO TWINT | TWEA | Next Action Taken by TWI Hardware
0x08 A START condition has been | Load SLA+R 0 0 1 X SLA+R will be transmitted
transmitted ACK or NOT ACK will be received
0x10 A repeated START condition | Load SLA+R or 0 0 1 X SLA+R will be transmitted
has been transmitted ACK or NOT ACK will be received
Load SLA+W 0 0 1 X SLA+W will be transmitted
Logic will switch to Master Transmitter mode
0x38 Arbitration lost in SLA+R or NOT | No TWDR action or 0 0 1 X 2-wire Serial Bus will be released and not addressed
ACK bit Slave mode will be entered
No TWDR action 1 0 1 X A START condition will be transmitted when the bus
becomes free
0x40 SLA+R has been transmitted; No TWDR action or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been received returned
No TWDR action 0 0 1 1 Data byte will be received and ACK will be returned
0x48 SLA+R has been transmitted; No TWDR action or 1 0 1 X Repeated START will be transmitted
NOT ACK has been received No TWDR action or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
No TWDR action 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset
0x50 Data byte has been received; Read data byte or 0 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
Read data byte 0 0 1 1 Data byte will be received and ACK will be returned
0x58 Data byte has been received; Read data byte or 1 1 X Repeated START will be transmitted
NOT ACK has been returned Read data byte or 0 1 1 X STOP condition will be transmitted and TWSTO Flag will
be reset
Read data byte 1 1 1 X STOP condition followed by a START condition will be
transmitted and TWSTO Flag will be reset

80110-AVR-07/10

ATMEL

223

18.7.3

ATmegal64P/324P/644P

Figure 18-14. Formats and States in the Master Receiver Mode

MR

Successfull
reception

A | DATA A | DATA | R

from a slave
receiver

Next transfer
started with a
repeated start
condition

Not acknowledge
received after the

slave address

Arbitration lost in slave
address or data byte

Arbitration lost and
addressed as slave

$40 $58

w
IS P |
$48
MT
Oth t Oth te
AorK | Ohernester A | Onernaser
$38 $38

Other master
continues

To corresponding
states in slave mode

[]
]

Slave Receiver Mode

From master to slave |

Any number of data bytes
and their associated acknowledge bits

From slave to master

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 18-15). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 18-15. Data transfer in Slave Receiver mode

cc
Device 1 Device 2 . .
SLAVE MASTER Device3 | Device n R1 R2
RECEIVER TRANSMITTER
A Iy
SDA Y
scL Y

To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

TWAR

value

80110-AVR-07/10

TWAG \

TWAS

| TWA4 | TWA3 \ TWA2 \ TWA1 \ TWAO TWGCE

Device’s Own Slave Address

ATMEL

224

A\ T M egal164P/324P/644P

80110-AVR-07/10

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 18-4 on
page 226. The Slave Receiver mode may also be entered if arbitration is lost while the TWI is in
the Master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the 2-wire Serial Bus is still monitored and address recognition may resume
at any time by setting TWEA. This implies that the TWEA bit may be used to temporarily isolate
the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is cleared (by
writing it to one). Further data reception will be carried out as normal, with the AVR clocks run-
ning as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may be
held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register —- TWDR does not reflect the last byte present
on the bus when waking up from these Sleep modes.

AImEl@ 225

A\ T M egal164P/324P/644P

Table 18-4. Status Codes for Slave Receiver Mode
Status Code Application Software Response
(TWSR) Status of the 2-wire Serial Bus and To TWCR
Prescaler Bits 2-wire Serial Interface Hardware Tolfrom TWDR
are 0 STA STO | TWINT | TWEA | Next Action Taken by TWI Hardware
0x60 Own SLA+W has been received; No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x68 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; own SLA+W has been returned
received; ACK has been returned | No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x70 General call address has been No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
received; ACK has been returned returned
No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
0x78 Arbitration lost in SLA+R/W as | No TWDR action or X 0 1 0 Data byte will be received and NOT ACK will be
Master; General call address has returned
been received; ACK has been No TWDR action X 0 1 1 Data byte will be received and ACK will be returned
returned
0x80 Previously addressed with own | Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
SLA+W; data has been received; returned
ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x88 Previously addressed with own | Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
SLA+W; data has been received; no recognition of own SLA or GCA
NOT ACK has been returned Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0x90 Previously addressed with Read data byte or X 0 1 0 Data byte will be received and NOT ACK will be
general call; data has been re- returned
ceived; ACK has been returned Read data byte X 0 1 1 Data byte will be received and ACK will be returned
0x98 Previously addressed with Read data byte or 0 0 1 0 Switched to the not addressed Slave mode;
general call; data has been no recognition of own SLA or GCA
received; NOT ACK has been Read data byte or 0 0 1 1 Switched to the not addressed Slave mode;
returned own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Read data byte or 1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
Read data byte 1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free
0xAO0 A STOP condition or repeated | No action 0 0 1 0 Switched to the not addressed Slave mode;
START condition has been no recognition of own SLA or GCA
received while still addressed as 0 0 1 1 Switched to the not addressed Slave mode;
Slave own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
1 0 1 0 Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus
becomes free
1 0 1 1 Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “17;
a START condition will be transmitted when the bus
becomes free

226

ATMEL

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 18-16. Formats and States in the Slave Receiver Mode

Reception of the own ¥ T
slave address and one or S SLA W A DATA A DATA A PorS
more data bytes. All are I
acknowledged
$60 $80 $80 $A0
Last data byte received
is not acknowledged A
$88
Arbitration lost as master
and addressed as slave A
$68
Reception of the general call -
address and one or more data General Call A DATA A DATA A PorS

bytes
$90 $90 $A0

Last data byte received is
not acknowledged A

$98

Arbitration lost as master and

addressed as slave by general call A

$78
- Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
I:I From slave to master This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The

prescaler bits are zero or masked to zero

18.7.4 Slave Transmitter Mode

In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver
(see Figure 18-17). All the status codes mentioned in this section assume that the prescaler bits
are zero or are masked to zero.

Figure 18-17. Data Transfer in Slave Transmitter Mode

VCC
Device 1 Device 2 . .
SLAVE MASTER Device3 | Device n R1 R2
TRANSMITTER RECEIVER
A A
SDA Y
scL Y

AImEl@ 227

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

TWAR TWAG \ TWA5 | TWA4 | TWA3 \ TWA2 \ TWA1 \ TWAO TWGCE
value Device’s Own Slave Address

The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address (0x00),
otherwise it will ignore the general call address.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE
value 0 1 0 0 0 1 0 X

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to enable
the acknowledgement of the device’s own slave address or the general call address. TWSTA
and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered. After
its own slave address and the write bit have been received, the TWINT Flag is set and a valid
status code can be read from TWSR. The status code is used to determine the appropriate soft-
ware action. The appropriate action to be taken for each status code is detailed in Table 18-5 on
page 229. The Slave Transmitter mode may also be entered if arbitration is lost while the TWI is
in the Master mode (see state 0xBO0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the trans-
fer. State OxCO or state OxC8 will be entered, depending on whether the Master Receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver receives
all “1” as serial data. State 0xC8 is entered if the Master demands additional data bytes (by
transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero and expect-
ing NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting TWEA.
This implies that the TWEA bit may be used to temporarily isolate the TWI from the 2-wire Serial
Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address by
using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep and
the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is cleared
(by writing it to one). Further data transmission will be carried out as normal, with the AVR clocks
running as normal. Observe that if the AVR is set up with a long start-up time, the SCL line may
be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register — TWDR does not reflect the last byte present
on the bus when waking up from these sleep modes.

AImEl@ 228

A\ T M egal164P/324P/644P

Table 18-5.

Status Codes for Slave Transmitter Mode

Status Code
(TWSR)
Prescaler Bits
are 0

Status of the 2-wire Serial Bus and
2-wire Serial Interface Hardware

Application Software Response

To/from TWDR

To TWCR

STA

STO | TWINT

TWEA

Next Action Taken by TWI Hardware

0xA8 Own SLA+R has been received;

ACK has been returned

Load data byte or

Load data byte

X

0 1

0 1

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xBO Arbitration lost in SLA+R/W as
Master; own SLA+R has been

received; ACK has been returned

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xB8 Data byte in TWDR has been
transmitted; ACK has been

received

Load data byte or

Load data byte

Last data byte will be transmitted and NOT ACK should
be received

Data byte will be transmitted and ACK should be re-
ceived

0xCO Data byte in TWDR has been
transmitted; NOT ACK has been

received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

0xC8 Last data byte in TWDR has been
transmitted (TWEA = “0”); ACK

has been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “1”

Switched to the not addressed Slave mode;

no recognition of own SLA or GCA;

a START condition will be transmitted when the bus
becomes free

Switched to the not addressed Slave mode;

own SLA will be recognized;

GCA will be recognized if TWGCE = “17;

a START condition will be transmitted when the bus
becomes free

80110-AVR-07/10

ATMEL

229

ATmegal64P/324P/644P

Figure 18-18. Formats and States in the Slave Transmitter Mode

Reception of the own

slave address and one or S | SLA . R A DATA | A | DATA A | PorS |
more data bytes EE—
Arbitration lost as master
and addressed as slave A
$BO
Last data byte transmitted. - ’v -
Switched to not addressed A | All 1's | PorS |

slave (TWEA ='0")

$C8

This number (contained in TWSR) corresponds
to a defined state of the Two-Wire Serial Bus. The
prescaler bits are zero or masked to zero

o7 Any number of data bytes
From master to slave DATA A and their associated acknowledge bits
I:l From slave to master @

18.7.5 Miscellaneous States

Table 18-6.

There are two status codes that do not correspond to a defined TWI state, see Table 18-6.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format frame.
Examples of such illegal positions are during the serial transfer of an address byte, a data byte,
or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a bus error, the
TWSTO Flag must set and TWINT must be cleared by writing a logic one to it. This causes the
TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no other bits in
TWCR are affected). The SDA and SCL lines are released, and no STOP condition is
transmitted.

Miscellaneous States

Status Code

Application Software Response

(TWSR) Status of the 2-wire Serial Bus To TWCR

Prescaler Bits and 2-wire Serial Interface Hard- Tolfrom TWDR

are 0 ware STA | STO | TWINT ‘ TWEA | Next Action Taken by TWI Hardware

0xF8 No relevant state information | No TWDR action No TWCR action Wait or proceed current transfer
available; TWINT = “0”

0x00 Bus error due to an illegal | No TWDR action 0 1 1 X Only the internal hardware is affected, no STOP condi-
START or STOP condition tion is sent on the bus. In all cases, the bus is released

and TWSTO is cleared.

18.7.6 Combining Several TWI Modes

In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.
3. The reading must be performed.

4. The transfer must be finished.

80110-AVR-07/10

ATMEL

230

A\ T M egal164P/324P/644P

Note that data is transmitted both from Master to Slave and vice versa. The Master must instruct
the Slave what location it wants to read, requiring the use of the MT mode. Subsequently, data
must be read from the Slave, implying the use of the MR mode. Thus, the transfer direction must
be changed. The Master must keep control of the bus during all these steps, and the steps
should be carried out as an atomical operation. If this principle is violated in a multimaster sys-
tem, another Master can alter the data pointer in the EEPROM between steps 2 and 3, and the
Master will read the wrong data location. Such a change in transfer direction is accomplished by
transmitting a REPEATED START between the transmission of the address byte and reception
of the data. After a REPEATED START, the Master keeps ownership of the bus. The following
figure shows the flow in this transfer.

Figure 18-19. Combining Several TWI Modes to Access a Serial EEPROM

Master Transmitter Master Receiver
— —
S SLA+W A ADDRESS A | Rs SLA+R A DATA Al P
S = START Rs = REPEATED START P = STOP
Transmitted from master to slave Transmitted from slave to master

18.8 Multi-master Systems and Arbitration

80110-AVR-07/10

If multiple masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no data
will be lost in the process. An example of an arbitration situation is depicted below, where two
masters are trying to transmit data to a Slave Receiver.

Figure 18-20. An Arbitration Example

VCC
Device 1 Device 2 Device 3 .
MASTER MASTER SLAVE | weeennen Device n R1 R2
TRANSMITTER TRANSMITTER RECEIVER
l T A
SDA y >
A A »

SCL =

Several different scenarios may arise during arbitration, as described below:

« Two or more masters are performing identical communication with the same Slave. In this
case, neither the Slave nor any of the masters will know about the bus contention.

« Two or more masters are accessing the same Slave with different data or direction bit. In this
case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The masters trying
to output a one on SDA while another Master outputs a zero will lose the arbitration. Losing
masters will switch to not addressed Slave mode or wait until the bus is free and transmit a new
START condition, depending on application software action.

AImEl@ 231

A\ T M egal164P/324P/644P

« Two or more masters are accessing different slaves. In this case, arbitration will occur in the
SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will lose
the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if they are
being addressed by the winning Master. If addressed, they will switch to SR or ST mode,
depending on the value of the READ/WRITE bit. If they are not being addressed, they will
switch to not addressed Slave mode or wait until the bus is free and transmit a new START
condition, depending on application software action.

This is summarized in Figure 18-21. Possible status values are given in circles.

Figure 18-21. Possible Status Codes Caused by Arbitration

START SLA Data STOP

Arbitration lost in SLA Arbitration lost in Data

Address /OGWennera| Call No 38 ' TWI bus will be released and not addressed slave mode will be entered
'\LSTART condition will be transmitted when the bus becomes free

received

Yes

Orection~. Write ‘ 68/7\8,‘ __[Data byte will be received and NOT ACK wil be returned
'@a byte will be received and ACK will be returned

Read JGSI data byte will be transmitted and NOT ACK should be received
@(y'@a byte will be transmitted and ACK should be received

18.9 Register Description

18.9.1 TWBR — TWI Bit Rate Register

Bit 7 6 5 4 3 2 1 0

(0xB8) I TWBR7 TWBR6 TWBRS5 TWBR4 TWBR3 TWBR2 TWBR1 TWBRO I TWBR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

e Bits 7:0 — TWI Bit Rate Register

TWBR selects the division factor for the bit rate generator. The bit rate generator is a frequency
divider which generates the SCL clock frequency in the Master modes. See "Bit Rate Generator
Unit” on page 213 for calculating bit rates.

18.9.2 TWCR — TWI Control Register

Bit 7 6 5 4 3 2 1 0

(0xBC) I TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE I TWCR
Read/Write R/IW R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate a
Master access by applying a START condition to the bus, to generate a Receiver acknowledge,
to generate a stop condition, and to control halting of the bus while the data to be written to the

AImEl@ 232

80110-AVR-07/10

A\ T M egal164P/324P/644P

bus are written to the TWDR. It also indicates a write collision if data is attempted written to
TWDR while the register is inaccessible.

e Bit 7 - TWINT: TWI Interrupt Flag

This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The TWINT
Flag must be cleared by software by writing a logic one to it. Note that this flag is not automati-
cally cleared by hardware when executing the interrupt routine. Also note that clearing this flag
starts the operation of the TWI, so all accesses to the TWI Address Register (TWAR), TWI Sta-
tus Register (TWSR), and TWI Data Register (TWDR) must be complete before clearing this
flag.

* Bit 6 - TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device's own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode.

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial
Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

* Bit 5 - TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire
Serial Bus. The TWI hardware checks if the bus is available, and generates a START condition
on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition is
detected, and then generates a new START condition to claim the bus Master status. TWSTA
must be cleared by software when the START condition has been transmitted.

e Bit4 - TWSTO: TWI STOP Condition Bit

Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error condition.
This will not generate a STOP condition, but the TWI returns to a well-defined unaddressed
Slave mode and releases the SCL and SDA lines to a high impedance state.

e Bit 3—- TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register —- TWDR when TWINT is
low. This flag is cleared by writing the TWDR Register when TWINT is high.

* Bit2—-TWEN: TWI Enable Bit

The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written to
one, the TWI takes control over the 1/0O pins connected to the SCL and SDA pins, enabling the
slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and all TWI
transmissions are terminated, regardless of any ongoing operation.

* Bit 1 - Res: Reserved Bit
This bit is a reserved bit and will always read as zero.

AImEl@ 233

80110-AVR-07/10

A\ T M egal164P/324P/644P

18.9.3

18.9.4

80110-AVR-07/10

e Bit 0 — TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be acti-
vated for as long as the TWINT Flag is high.

TWSR — TWI Status Register

Bit 7 6 5 4 3 2 1 0

(0xB9) I TWS7 TWS6 TWS5 TWS4 TWS3 - TWPS1 TWPS0 I TWSR
Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0

* Bits 7:3 - TWS: TWI Status

These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status
codes are described "Transmission Modes” on page 218. Note that the value read from TWSR
contains both the 5-bit status value and the 2-bit prescaler value. The application designer
should mask the prescaler bits to zero when checking the Status bits. This makes status check-
ing independent of prescaler setting. This approach is used in this datasheet, unless otherwise
noted.

* Bit 2 — Res: Reserved Bit
This bit is reserved and will always read as zero.

e Bits 1:0 — TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Table 18-7. TWI Bit Rate Prescaler

TWPS1 TWPSO0 Prescaler Value
0 0 1

0 1 4

1 0 16

1 1 64

To calculate bit rates, see "Bit Rate Generator Unit” on page 213. The value of TWPS1..0 is
used in the equation.

TWDR — TWI Data Register

Bit 7 6 5 4 3 2 1 0

(0xBB) I TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWDO I TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the TWDR
contains the last byte received. It is writable while the TWI is not in the process of shifting a byte.
This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the Data Regis-
ter cannot be initialized by the user before the first interrupt occurs. The data in TWDR remains
stable as long as TWINT is set. While data is shifted out, data on the bus is simultaneously
shifted in. TWDR always contains the last byte present on the bus, except after a wake up from
a sleep mode by the TWI interrupt. In this case, the contents of TWDR is undefined. In the case

AImEl@ 234

A\ T M egal164P/324P/644P

of a lost bus arbitration, no data is lost in the transition from Master to Slave. Handling of the
ACK bit is controlled automatically by the TWI logic, the CPU cannot access the ACK bit directly.

e Bits 7:0 — TWD: TWI Data Register

These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

18.9.5 TWAR — TWI (Slave) Address Register

Bit 7 6 5 4 3 2 1 0

(0xBA) I TWA6 TWAS TWA4 TWA3 TWA2 TWA1 TWAO TWGCE I TWAR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multimaster systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is an
associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

e Bits 7:1 — TWA: TWI (Slave) Address Register
These seven bits constitute the slave address of the TWI unit.

e Bit 0 - TWGCE: TWI General Call Recognition Enable Bit
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

18.9.6 TWAMR — TWI (Slave) Address Mask Register

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0
(0xBD) | TWAM[6:0] - | Twawr
Read/Write R/W RIW R/W R/W R/W R/W R/W R
Initial Value 0 0 0 0 0 0 0 0

e Bits 7:1 — TWAM: TWI Address Mask

The TWAMR can be loaded with a 7-bit Slave Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bit in the TWI Address Register (TWAR). If the mask
bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 18-22 shows the address match logic in
detail.

AImEl@ 235

80110-AVR-07/10

ATmegal64P/324P/644P

Figure 18-22. TWI Address Match Logic, Block Diagram

I 1
I 1
N\ 1
TWARO ;) |
1
: Y : ° Address
| J Match

Address !
Bit 0 , l
I 1
I 1
1
TWAMRO ['
3 Address Bit Comparator O |
,,,,,,,,,,,, R

[]

« Bit 0 — Res: Reserved Bit
This bit is reserved and will always read as zero.

AImEl@ 236

A\ T M egal164P/324P/644P

19. AC - Analog Comparator

19.1 Overview

The Analog Comparator compares the input values on the positive pin AINO and negative pin
AIN1. When the voltage on the positive pin AINO is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trigger
the Timer/Counterl Input Capture function. In addition, the comparator can trigger a separate
interrupt, exclusive to the Analog Comparator. The user can select Interrupt triggering on com-
parator output rise, fall or toggle. A block diagram of the comparator and its surrounding logic is
shown in Figure 19-1.

The Power Reduction ADC bit, PRADC, in "PRR — Power Reduction Register” on page 48 must
be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 19-1. Analog Comparator Block Diagram®

BANDGAP
REFERENCE vee
ACBG l
ACD —>
ACIE
AINO b
A ANALOG
INTERRUPT COMPARATOR
/ SELECT IRQ
| ACI
ACIST ACISO AcCIC
TO T/C1 CAPTURE
TRIGGER MUX
ADC MULTIPLEXER ACO >
OUTPUT®

Pl

Notes: 1. See Table 19-1 on page 237.
2. Refer to Figure 1-1 on page 2 and Table 11-5 on page 81 for Analog Comparator pin
placement.

19.2 Analog Comparator Multiplexed Input

80110-AVR-07/10

It is possible to select any of the ADC7..0 pins to replace the negative input to the Analog Com-
parator. The ADC multiplexer is used to select this input, and consequently, the ADC must be
switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit (ACME in
ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2..0 in ADMUX
select the input pin to replace the negative input to the Analog Comparator, as shown in Table
19-1 on page 237. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input to the
Analog Comparator.

Table 19-1. Analog Comparator Mulitiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input
0 X XXX AIN1
1 1 XXX AIN1
1 0 000 ADCO

AImEl@ 237

A\ T M egal164P/324P/644P

Table 19-1. Analog Comparator Mulitiplexed Input

ACME ADEN MUX2..0 Analog Comparator Negative Input
1 0 001 ADC1
1 0 010 ADC2
1 0 011 ADC3
1 0 100 ADC4
1 0 101 ADC5
1 0 110 ADC6
1 0 111 ADC7

19.3 Register Description

ADCSRB — ADC Control and Status Register B

Bit 7 6 5 4 3 2 1 0
(0x7B) | = | ACME | = = - ADTS2 ADTS1 ADTSO | ADCSRB
Read/Write R RIW R R R RIW RIW RIW

Initial Value 0 0 0 0 0 0 0 0

* Bit 6 — ACME: Analog Comparator Multiplexer Enable

When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see "Analog Comparator Multiplexed Input” on page 237.

ACSR — Analog Comparator Control and Status Register

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0
0x30 (0x50) | Aco | Acee | Aco | Ac ACIE ACIC ACIS1 ACISO | ACSR
Read/Write R/W R/W R RIW RIW R/W RIW RIW

Initial Value 0 0 N/A 0 0 0 0 0

* Bit 7 - ACD: Analog Comparator Disable

When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption in
Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must be
disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

e Bit 6 — ACBG: Analog Comparator Bandgap Select

When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Analog
Comparator. When this bit is cleared, AINO is applied to the positive input of the Analog Compar-
ator. When bandgap reference is used as input to the Analog Comparator, it will take a certain
time for the voltage to stabilize. If not stabilized, the first conversion may give wrong value. See
"Internal Voltage Reference” on page 54.

e Bit 5- ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO. The
synchronization introduces a delay of 1 - 2 clock cycles.

AImEl@ 238

A\ T M egal164P/324P/644P

* Bit 4 — ACI: Analog Comparator Interrupt Flag

This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACISO. The Analog Comparator interrupt routine is executed if the ACIE bit is set
and the I-bit in SREG is set. ACl is cleared by hardware when executing the corresponding inter-
rupt handling vector. Alternatively, ACl is cleared by writing a logic one to the flag.

e Bit 3—- ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog Com-
parator interrupt is activated. When written logic zero, the interrupt is disabled.

e Bit 2 - ACIC: Analog Comparator Input Capture Enable

When written logic one, this bit enables the input capture function in Timer/Counterl to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to the
input capture front-end logic, making the comparator utilize the noise canceler and edge select
features of the Timer/Counterl Input Capture interrupt. When written logic zero, no connection
between the Analog Comparator and the input capture function exists. To make the comparator
trigger the Timer/Counterl Input Capture interrupt, the ICIEL bit in the Timer Interrupt Mask
Register (TIMSK1) must be set.

e Bits 1:0 — ACIS1:ACISO: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt. The
different settings are shown in Table 19-2.

Table 19-2. ACIS1/ACISO Settings

ACIS1 ACISO Interrupt Mode
0 0 Comparator Interrupt on Output Toggle.
0 1 Reserved
1 0 Comparator Interrupt on Falling Output Edge.
1 1 Comparator Interrupt on Rising Output Edge.

When changing the ACIS1/ACISO bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when the
bits are changed.

DIDR1 - Digital Input Disable Register 1

80110-AVR-07/10

Bit 7 6 5 4 3 2 1 0
(0X7F) | = | = = = = = AIN1D AINOD | DIDR1
Read/Write R R R R R R RIW RIW

Initial Value 0 0 0 0 0 0 0 0

e Bit 1:0 — AIN1D:AINOD: AIN1:AINO Digital Input Disable

When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The corre-
sponding PIN Register bit will always read as zero when this bit is set. When an analog signal is
applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit should be writ-
ten logic one to reduce power consumption in the digital input buffer.

AImEl@ 239

A\ T M egal164P/324P/644P

20. ADC - Analog-to-digital Converter

20.1 Features

¢ 10-bit Resolution

* 0.5 LSB Integral Non-linearity

e +2 LSB Absolute Accuracy

e 13 us - 260 pys Conversion Time

* Up to 15 kSPS at Maximum Resolution

* 8 Multiplexed Single Ended Input Channels

» Differential mode with selectable gain at 1x, 10x or 200x
* Optional Left adjustment for ADC Result Readout

* 0OV -V.c ADC Input Voltage Range

* 2.7V - V¢ Differential ADC Voltage Range

* Selectable 2.56V or 1.1V ADC Reference Voltage

* Free Running or Single Conversion Mode

* ADC Start Conversion by Auto Triggering on Interrupt Sources
¢ Interrupt on ADC Conversion Complete

* Sleep Mode Noise Canceler

Note: 1. The differential input channels are not tested for devices in PDIP Package. This feature is only
guaranteed to work for devices in TQFP and VQFN/QFN/MLF Packages.

20.2 Overview

The ATmegal64P/324P/644P features a 10-bit successive approximation ADC. The ADC is
connected to an 8-channel Analog Multiplexer which allows 8 single-ended voltage inputs con-
structed from the pins of Port A. The single-ended voltage inputs refer to OV (GND).

The device also supports 16 differential voltage input combinations. Two of the differential inputs
(ADC1, ADCO and ADC3, ADC?2) are equipped with a programmable gain stage. This provides
amplification steps of 0 dB (1x), 20 dB (10x), or 46 dB (200x) on the differential input voltage
before the A/D conversion. Seven differential analog input channels share a common negative
terminal (ADC1), while any other ADC input can be selected as the positive input terminal. If 1x
or 10x gain is used, 8-bit resolution can be expected. If 200x gain is used, 6-bit resolution can be
expected. Note that internal references of 1.1V should not be used on 10x and 200x gain.

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC is
held at a constant level during conversion. A block diagram of the ADC is shown in Figure 20-1
on page 241.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than
+0.3 V from V.. See the paragraph "ADC Noise Canceler” on page 248 on how to connect this

pin.

Internal reference voltages of nhominally 1.1V, 2.56V or AVCC are provided On-chip. The voltage
reference may be externally decoupled at the AREF pin by a capacitor for better noise perfor-
mance. If V¢ is below 2.1V, internal voltage reference of 1.1V should not be used on single
ended channels.

AImEl@ 240

80110-AVR-07/10

A\ T M egal164P/324P/644P

Figure 20-1. Analog-to-digital Converter Block Schematic

ADC CONVERSION
COMPLETE IRQ

INTERRUPT
FLAGS

ADTS[2:0]

.
-

_ 8-BIT DATABUS
¢

ADIE

i Y i
y ' y 15 0

ADC MULTIPLEXER ’ ADC CTRL & STATUS ’ ADC CTRL & STATUS ’ ADC DATA REGISTER

ADIF

SELECT (ADMUX) REGISTER B (ADCSRB) REGISTER A (ADCSRA) (ADCH/ADCL)
]
@2 x| 2 < < @ Q3 v o)
& = 2 3
TRIGGER <
- SELECT
Y A <
TART
MUX DECODER PRESCALER (¢——
8 - vy Y Y ¥
5 2
AVCC é g CONVERSION LOGIC
» z y
INTERNAL o <
4 O
REFERENCE z =
(11V/2.56V) z L \
AREF » 10-bit DAC
.
SAMPLE & HOLD
\i COMPARATOR
A\
ADC[2:0] ”\’\“EST :
MUX >
GAIN
AMPLIFIER
ADCI[7:0] \i
BANDGAP (1.1V) POS ADC
REFERENCE INPUT » MULTIPLEXER
MoX OUTPUT
e e

20.3 Operation

The ADC converts an analog input voltage to a 10-bit digital value through successive approxi-
mation. The minimum value represents GND and the maximum value represents the voltage on
the AREF pin minus 1 LSB. Optionally, AVCC or an internal 2.56V reference voltage may be
connected to the AREF pin by writing to the REFSh bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.

The analog input channel and differential gain are selected by writing to the MUX bits in
ADMUX. Any of the ADC input pins, as well as GND and a fixed bandgap voltage reference, can
be selected as single ended inputs to the ADC. A selection of ADC input pins can be selected as
positive and negative inputs to the differential gain amplifier.

AImEl@ 241

80110-AVR-07/10

A\ T M egal164P/324P/644P

If differential channels are selected, the differential gain stage amplifies the voltage difference
between the selected input channel pair by the selected gain factor. This amplified value then
becomes the analog input to the ADC. If single ended channels are used, the gain amplifier is
bypassed altogether.

The ADC is enabled by setting the ADC Enable bit, ADEN in ADCSRA. Voltage reference and
input channel selections will not go into effect until ADEN is set. The ADC does not consume
power when ADEN is cleared, so it is recommended to switch off the ADC before entering power
saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.

If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Registers
is blocked. This means that if ADCL has been read, and a conversion completes before ADCH is
read, neither register is updated and the result from the conversion is lost. When ADCH is read,
ADC access to the ADCH and ADCL Registers is re-enabled.

The ADC has its own interrupt which can be triggered when a conversion completes. When ADC
access to the Data Registers is prohibited between reading of ADCH and ADCL, the interrupt
will trigger even if the result is lost.

20.4 Starting a Conversion

80110-AVR-07/10

A single conversion is started by writing a logical one to the ADC Start Conversion bit, ADSC.
This bit stays high as long as the conversion is in progress and will be cleared by hardware
when the conversion is completed. If a different data channel is selected while a conversion is in
progress, the ADC will finish the current conversion before performing the channel change.

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering is
enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source is
selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (see description of the ADTS
bits for a list of the trigger sources). When a positive edge occurs on the selected trigger signal,
the ADC prescaler is reset and a conversion is started. This provides a method of starting con-
versions at fixed intervals. If the trigger signal still is set when the conversion completes, a new
conversion will not be started. If another positive edge occurs on the trigger signal during con-
version, the edge will be ignored. Note that an Interrupt Flag will be set even if the specific
interrupt is disabled or the global interrupt enable bit in SREG is cleared. A conversion can thus
be triggered without causing an interrupt. However, the Interrupt Flag must be cleared in order to
trigger a new conversion at the next interrupt event.

AImEl@ 242

A\ T M egal164P/324P/644P

Figure 20-2. ADC Auto Trigger Logic

ADTS[2:0]
—— P PRESCALER
START CLK ypc
ADIF e ADATE
SOURCE1 — I_
----- 5 } CONVERSION
..... LOGIC
----- EDGE
SOURCE n DETECTOR
ADSC

Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as soon
as the ongoing conversion has finished. The ADC then operates in Free Running mode, con-
stantly sampling and updating the ADC Data Register. The first conversion must be started by
writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform successive
conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA to
one. ADSC can also be used to determine if a conversion is in progress. The ADSC hit will be
read as one during a conversion, independently of how the conversion was started.

20.5 Prescaling and Conversion Timing

Figure 20-3. ADC Prescaler

ADEN
START Reset
7-BIT ADC PRESCALER

CK —»
[o0)
NEERERERE
>4 IR B4 B v B4 IR
O| O] ©| & & O] &
YV V VYV VY Y
ADPS0
ADPS1
ADPS2
ADC CLOCK SOURCE

By default, the successive approximation circuitry requires an input clock frequency between 50
kHz and 200 kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200 kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100 kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN bit

AImEl@ 243

80110-AVR-07/10

A\ T M egal164P/324P/644P

80110-AVR-07/10

in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is continuously
reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. See "Differential Gain Channels” on
page 246 for details on differential conversion timing.

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is switched
on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the analog circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for
the voltage to stabilize. If not stabilized, the first value read after the first conversion may be
wrong.

The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal conver-
sion and 13.5 ADC clock cycles after the start of a first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In single conversion
mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a new
conversion will be initiated on the first rising ADC clock edge.

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This assures
a fixed delay from the trigger event to the start of conversion. In this mode, the sample-and-hold
takes place 2 ADC clock cycles after the rising edge on the trigger source signal. Three addi-
tional CPU clock cycles are used for synchronization logic.

When using Differential mode, along with Auto Trigging from a source other than the ADC Con-
version Complete, each conversion will require 25 ADC clocks. This is because the ADC must
be disabled and re-enabled after every conversion.

In Free Running mode, a new conversion will be started immediately after the conversion com-
pletes, while ADSC remains high. For a summary of conversion times, see Table 20-1 on page
246.

Figure 20-4. ADC Timing Diagram, First Conversion (Single Conversion Mode)

Next

First Conversion Conversion

|
:12\ 13] 14] 15| 16| 17| 18] 19| 20| 21| 22| 23| 24| 25 | |1]2]s

|
Cycle Number ‘ 1 \ 2 :
| ! ' '
ADC Clock SEaEpEp2piigiginipipiinEnEninipberyEniy!
‘ i | ‘ ‘ ‘
ADEN 1 | : | L
‘
T
ADSC | | M !
L |
ADIF ‘ L : [
| ! |] L
ADCH /] Lo /;)< MiSB of Resut

\) , L
ADCL T V////7///////////////}<LSBofResult

I | | |
\ MUX and REFS \ Sample & Hold Conversion _f)

Update Complete MUX and REFS
Update

AImEl@ 244

80110-AVR-07/10

Figure 20-5. ADC Timing Diagram, Single Conversion

One Conversion

A\ T M egal164P/324P/644P

_Next Conversion

1‘32‘ 3‘ 4‘ 5‘ 6‘ 7‘ 8‘ 9‘ 10‘ 11‘ 12

Cycle Number ‘ ‘ 13‘ ‘ 1 ‘ 2‘ 3
ADC Clock

ADSC /o VI

ADIF 1 1 .

ADCH / / /)}(MSB of Result
ADCL / / /p(8B of Resul

Conversion />

Complete

(K f\ Sample & Hold
MUX and REFS

Update

Figure 20-6. ADC Timing Diagram, Auto Triggered Conversion

One Conversion

MUX and REFS
Update

Next Conversion

Cycle Number cltl 2l s 4 5] 6| 7] 8] 9f 10 1] 12 13| 2
ADC Clock ‘

Trigger : ‘ : ‘ ‘

Source 4/‘ : : V /(

ADATE ‘ : ‘ : ‘

ADIF L : | 1

ADCH / s / /}»(MSE of Result
ADCL T 7] K LSB of Result

/" ‘\ Sample & Hold Conversion /) ' ‘\ Prescaler
grescaler Complete Reset
eset MUX and REFS
Update

Figure 20-7. ADC Timing Diagram, Free Running Conversion
One Conversion Next Conversion

<
><

Cycle Number " ‘ 12‘ 1SI 1 ‘ :2 ‘ 8 ‘ 4 ‘
ADC Clock
ADSC I I
ADIF l \
ADCH WK MSB (lbf Result
ADCL M LSB oif Result
Conversion /-) \ \ Sample & Hold
Complete MUX and REFS

Update

ATMEL

245

A\ T M egal164P/324P/644P

20.5.1

20.6 Changing Channel or Reference Selection

80110-AVR-07/10

Table 20-1. ADC Conversion Time

Sample & Hold (Cycles

Condition from Start of Conversion) | Conversion Time (Cycles)
First conversion 14.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 135

Normal conversions, differential 1.5/2.5 13/14

Differential Gain Channels

When using differential gain channels, certain aspects of the conversion need to be taken into
consideration. Note that the differential channels should not be used with an AREF < 2V.

Differential conversions are synchronized to the internal clock CK,pc, equal to half the ADC
clock. This synchronization is done automatically by the ADC interface in such a way that the
sample-and-hold occurs at a specific phase of CK,pc,. A conversion initiated by the user (that is,
all single conversions, and the first free running conversion) when CK,p, is low will take the
same amount of time as a single ended conversion (13 ADC clock cycles from the next pres-
caled clock cycle). A conversion initiated by the user when CK,p, is high will take 14 ADC clock
cycles due to the synchronization mechanism. In Free Running mode, a hew conversion is initi-
ated immediately after the previous conversion completes, and since CK,p, is high at this time,
all automatically started (that is, all but the first) free running conversions will take 14 ADC clock

cycles.

The gain stage is optimized for a bandwidth of 4 kHz at all gain settings. Higher frequencies may
be subjected to non-linear amplification. An external low-pass filter should be used if the input
signal contains higher frequency components than the gain stage bandwidth. Note that the ADC
clock frequency is independent of the gain stage bandwidth limitation. For example, the ADC
clock period may be 6 ps, allowing a channel to be sampled at 12 kSPS, regardless of the band-

width of this channel.

If differential gain channels are used and conversions are started by Auto Triggering, the ADC
must be switched off between conversions. When Auto Triggering is used, the ADC prescaler is
reset before the conversion is started. Since the gain stage is dependent of a stable ADC clock
prior to the conversion, this conversion will not be valid. By disabling and then re-enabling the
ADC between each conversion (writing ADEN in ADCSRA to “0” then to “1"), only extended con-
versions are performed. The result from the extended conversions will be valid. See "Prescaling
and Conversion Timing” on page 243 for timing details.

The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.

ATMEL

246

A\ T M egal164P/324P/644P

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

1. When ADATE or ADEN is cleared.
2. During conversion, minimum one ADC clock cycle after the trigger event.
3. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

Special care should be taken when changing differential channels. Once a differential channel
has been selected, the gain stage may take as much as 125 us to stabilize to the new value.
Thus conversions should not be started within the first 125 us after selecting a new differential
channel. Alternatively, conversion results obtained within this period should be discarded.

The same settling time should be observed for the first differential conversion after changing
ADC reference (by changing the REFS1:0 bits in ADMUX).

20.6.1 ADC Input Channels

When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.

In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.

When switching to a differential gain channel, the first conversion result may have a poor accu-
racy due to the required settling time for the automatic offset cancellation circuitry. The user
should preferably disregard the first conversion result.

20.6.2 ADC Voltage Reference

The reference voltage for the ADC (Vggg) indicates the conversion range for the ADC. Single
ended channels that exceed Vzge Will result in codes close to 0x3FF. Vi can be selected as
either AVCC, internal 2.56V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 2.56V reference is gener-
ated from the internal bandgap reference (Vgg) through an internal amplifier. In either case, the
external AREF pin is directly connected to the ADC, and the reference voltage can be made
more immune to noise by connecting a capacitor between the AREF pin and ground. Vgge can
also be measured at the AREF pin with a high impedant voltmeter. Note that Vgge is a high
impedant source, and only a capacitive load should be connected in a system.

AImEl@ 247

80110-AVR-07/10

A\ T M egal164P/324P/644P

If the user has a fixed voltage source connected to the AREF pin, the user may not use the other
reference voltage options in the application, as they will be shorted to the external voltage. If no
external voltage is applied to the AREF pin, the user may switch between AVCC and 2.56V as
reference selection. The first ADC conversion result after switching reference voltage source
may be inaccurate, and the user is advised to discard this result.

If differential channels are used, the selected reference should not be closer to AVCC than
indicated in Table 25-11 on page 335.

20.7 ADC Noise Canceler

The ADC features a noise canceler that enables conversion during sleep mode to reduce noise
induced from the CPU core and other I/O peripherals. The noise canceler can be used with ADC
Noi