]> git.zerfleddert.de Git - ms2-kexec/blob - kexec.c
update offsets to new european GB kernel, set software booting from USB
[ms2-kexec] / kexec.c
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 * This Edition is maintained by Matthew Veety (aliasxerog) <mveety@gmail.com>
5 *
6 * This source code is licensed under the GNU General Public License,
7 * Version 2. See the file COPYING for more details.
8 */
9
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsrelease.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/console.h>
34 #include <linux/vmalloc.h>
35
36 #include <asm/page.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/system.h>
40 #include <asm/sections.h>
41 #include <asm/unistd.h>
42
43 MODULE_LICENSE("GPL");
44
45 /* Syscall table */
46 void **sys_call_table;
47
48 /* original and new reboot syscall */
49 asmlinkage long (*original_reboot)(int magic1, int magic2, unsigned int cmd, void __user *arg);
50 extern asmlinkage long reboot(int magic1, int magic2, unsigned int cmd, void __user *arg);
51
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t* crash_notes;
54
55 /* vmcoreinfo stuff */
56 unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
57 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
58 size_t vmcoreinfo_size;
59 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
60
61 /* Location of the reserved area for the crash kernel */
62 struct resource crashk_res = {
63 .name = "Crash kernel",
64 .start = 0,
65 .end = 0,
66 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
67 };
68
69 int kexec_should_crash(struct task_struct *p)
70 {
71 if (in_interrupt() || !p->pid || is_global_init(p))
72 return 1;
73 return 0;
74 }
75
76 /*
77 * When kexec transitions to the new kernel there is a one-to-one
78 * mapping between physical and virtual addresses. On processors
79 * where you can disable the MMU this is trivial, and easy. For
80 * others it is still a simple predictable page table to setup.
81 *
82 * In that environment kexec copies the new kernel to its final
83 * resting place. This means I can only support memory whose
84 * physical address can fit in an unsigned long. In particular
85 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
86 * If the assembly stub has more restrictive requirements
87 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
88 * defined more restrictively in <asm/kexec.h>.
89 *
90 * The code for the transition from the current kernel to the
91 * the new kernel is placed in the control_code_buffer, whose size
92 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
93 * page of memory is necessary, but some architectures require more.
94 * Because this memory must be identity mapped in the transition from
95 * virtual to physical addresses it must live in the range
96 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
97 * modifiable.
98 *
99 * The assembly stub in the control code buffer is passed a linked list
100 * of descriptor pages detailing the source pages of the new kernel,
101 * and the destination addresses of those source pages. As this data
102 * structure is not used in the context of the current OS, it must
103 * be self-contained.
104 *
105 * The code has been made to work with highmem pages and will use a
106 * destination page in its final resting place (if it happens
107 * to allocate it). The end product of this is that most of the
108 * physical address space, and most of RAM can be used.
109 *
110 * Future directions include:
111 * - allocating a page table with the control code buffer identity
112 * mapped, to simplify machine_kexec and make kexec_on_panic more
113 * reliable.
114 */
115
116 /*
117 * KIMAGE_NO_DEST is an impossible destination address..., for
118 * allocating pages whose destination address we do not care about.
119 */
120 #define KIMAGE_NO_DEST (-1UL)
121
122 static int kimage_is_destination_range(struct kimage *image,
123 unsigned long start, unsigned long end);
124 static struct page *kimage_alloc_page(struct kimage *image,
125 gfp_t gfp_mask,
126 unsigned long dest);
127
128 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
129 unsigned long nr_segments,
130 struct kexec_segment __user *segments)
131 {
132 size_t segment_bytes;
133 struct kimage *image;
134 unsigned long i;
135 int result;
136
137 /* Allocate a controlling structure */
138 result = -ENOMEM;
139 image = kzalloc(sizeof(*image), GFP_KERNEL);
140 if (!image)
141 goto out;
142
143 image->head = 0;
144 image->entry = &image->head;
145 image->last_entry = &image->head;
146 image->control_page = ~0; /* By default this does not apply */
147 image->start = entry;
148 image->type = KEXEC_TYPE_DEFAULT;
149
150 /* Initialize the list of control pages */
151 INIT_LIST_HEAD(&image->control_pages);
152
153 /* Initialize the list of destination pages */
154 INIT_LIST_HEAD(&image->dest_pages);
155
156 /* Initialize the list of unusable pages */
157 INIT_LIST_HEAD(&image->unuseable_pages);
158
159 /* Read in the segments */
160 image->nr_segments = nr_segments;
161 segment_bytes = nr_segments * sizeof(*segments);
162 result = copy_from_user(image->segment, segments, segment_bytes);
163 if (result) {
164 result = -EFAULT;
165 goto out;
166 }
167
168 /*
169 * Verify we have good destination addresses. The caller is
170 * responsible for making certain we don't attempt to load
171 * the new image into invalid or reserved areas of RAM. This
172 * just verifies it is an address we can use.
173 *
174 * Since the kernel does everything in page size chunks ensure
175 * the destination addresses are page aligned. Too many
176 * special cases crop of when we don't do this. The most
177 * insidious is getting overlapping destination addresses
178 * simply because addresses are changed to page size
179 * granularity.
180 */
181 result = -EADDRNOTAVAIL;
182 for (i = 0; i < nr_segments; i++) {
183 unsigned long mstart, mend;
184
185 mstart = image->segment[i].mem;
186 mend = mstart + image->segment[i].memsz;
187 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
188 goto out;
189 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
190 goto out;
191 }
192
193 /* Verify our destination addresses do not overlap.
194 * If we alloed overlapping destination addresses
195 * through very weird things can happen with no
196 * easy explanation as one segment stops on another.
197 */
198 result = -EINVAL;
199 for (i = 0; i < nr_segments; i++) {
200 unsigned long mstart, mend;
201 unsigned long j;
202
203 mstart = image->segment[i].mem;
204 mend = mstart + image->segment[i].memsz;
205 for (j = 0; j < i; j++) {
206 unsigned long pstart, pend;
207 pstart = image->segment[j].mem;
208 pend = pstart + image->segment[j].memsz;
209 /* Do the segments overlap ? */
210 if ((mend > pstart) && (mstart < pend))
211 goto out;
212 }
213 }
214
215 /* Ensure our buffer sizes are strictly less than
216 * our memory sizes. This should always be the case,
217 * and it is easier to check up front than to be surprised
218 * later on.
219 */
220 result = -EINVAL;
221 for (i = 0; i < nr_segments; i++) {
222 if (image->segment[i].bufsz > image->segment[i].memsz)
223 goto out;
224 }
225
226 result = 0;
227 out:
228 if (result == 0)
229 *rimage = image;
230 else
231 kfree(image);
232
233 return result;
234
235 }
236
237 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
238 unsigned long nr_segments,
239 struct kexec_segment __user *segments)
240 {
241 int result;
242 struct kimage *image;
243
244 /* Allocate and initialize a controlling structure */
245 image = NULL;
246 result = do_kimage_alloc(&image, entry, nr_segments, segments);
247 if (result)
248 goto out;
249
250 *rimage = image;
251
252 /*
253 * Find a location for the control code buffer, and add it
254 * the vector of segments so that it's pages will also be
255 * counted as destination pages.
256 */
257 result = -ENOMEM;
258 image->control_code_page = kimage_alloc_control_pages(image,
259 get_order(KEXEC_CONTROL_PAGE_SIZE));
260 if (!image->control_code_page) {
261 printk(KERN_ERR "Could not allocate control_code_buffer\n");
262 goto out;
263 }
264
265 image->swap_page = kimage_alloc_control_pages(image, 0);
266 if (!image->swap_page) {
267 printk(KERN_ERR "Could not allocate swap buffer\n");
268 goto out;
269 }
270
271 result = 0;
272 out:
273 if (result == 0)
274 *rimage = image;
275 else
276 kfree(image);
277
278 return result;
279 }
280
281 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
282 unsigned long nr_segments,
283 struct kexec_segment __user *segments)
284 {
285 int result;
286 struct kimage *image;
287 unsigned long i;
288
289 image = NULL;
290 /* Verify we have a valid entry point */
291 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
292 result = -EADDRNOTAVAIL;
293 goto out;
294 }
295
296 /* Allocate and initialize a controlling structure */
297 result = do_kimage_alloc(&image, entry, nr_segments, segments);
298 if (result)
299 goto out;
300
301 /* Enable the special crash kernel control page
302 * allocation policy.
303 */
304 image->control_page = crashk_res.start;
305 image->type = KEXEC_TYPE_CRASH;
306
307 /*
308 * Verify we have good destination addresses. Normally
309 * the caller is responsible for making certain we don't
310 * attempt to load the new image into invalid or reserved
311 * areas of RAM. But crash kernels are preloaded into a
312 * reserved area of ram. We must ensure the addresses
313 * are in the reserved area otherwise preloading the
314 * kernel could corrupt things.
315 */
316 result = -EADDRNOTAVAIL;
317 for (i = 0; i < nr_segments; i++) {
318 unsigned long mstart, mend;
319
320 mstart = image->segment[i].mem;
321 mend = mstart + image->segment[i].memsz - 1;
322 /* Ensure we are within the crash kernel limits */
323 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
324 goto out;
325 }
326
327 /*
328 * Find a location for the control code buffer, and add
329 * the vector of segments so that it's pages will also be
330 * counted as destination pages.
331 */
332 result = -ENOMEM;
333 image->control_code_page = kimage_alloc_control_pages(image,
334 get_order(KEXEC_CONTROL_PAGE_SIZE));
335 if (!image->control_code_page) {
336 printk(KERN_ERR "Could not allocate control_code_buffer\n");
337 goto out;
338 }
339
340 result = 0;
341 out:
342 if (result == 0)
343 *rimage = image;
344 else
345 kfree(image);
346
347 return result;
348 }
349
350 static int kimage_is_destination_range(struct kimage *image,
351 unsigned long start,
352 unsigned long end)
353 {
354 unsigned long i;
355
356 for (i = 0; i < image->nr_segments; i++) {
357 unsigned long mstart, mend;
358
359 mstart = image->segment[i].mem;
360 mend = mstart + image->segment[i].memsz;
361 if ((end > mstart) && (start < mend))
362 return 1;
363 }
364
365 return 0;
366 }
367
368 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
369 {
370 struct page *pages;
371
372 pages = alloc_pages(gfp_mask, order);
373 if (pages) {
374 unsigned int count, i;
375 pages->mapping = NULL;
376 set_page_private(pages, order);
377 count = 1 << order;
378 for (i = 0; i < count; i++)
379 SetPageReserved(pages + i);
380 }
381
382 return pages;
383 }
384
385 static void kimage_free_pages(struct page *page)
386 {
387 unsigned int order, count, i;
388
389 order = page_private(page);
390 count = 1 << order;
391 for (i = 0; i < count; i++)
392 ClearPageReserved(page + i);
393 __free_pages(page, order);
394 }
395
396 static void kimage_free_page_list(struct list_head *list)
397 {
398 struct list_head *pos, *next;
399
400 list_for_each_safe(pos, next, list) {
401 struct page *page;
402
403 page = list_entry(pos, struct page, lru);
404 list_del(&page->lru);
405 kimage_free_pages(page);
406 }
407 }
408
409 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
410 unsigned int order)
411 {
412 /* Control pages are special, they are the intermediaries
413 * that are needed while we copy the rest of the pages
414 * to their final resting place. As such they must
415 * not conflict with either the destination addresses
416 * or memory the kernel is already using.
417 *
418 * The only case where we really need more than one of
419 * these are for architectures where we cannot disable
420 * the MMU and must instead generate an identity mapped
421 * page table for all of the memory.
422 *
423 * At worst this runs in O(N) of the image size.
424 */
425 struct list_head extra_pages;
426 struct page *pages;
427 unsigned int count;
428
429 count = 1 << order;
430 INIT_LIST_HEAD(&extra_pages);
431
432 /* Loop while I can allocate a page and the page allocated
433 * is a destination page.
434 */
435 do {
436 unsigned long pfn, epfn, addr, eaddr;
437
438 pages = kimage_alloc_pages(GFP_KERNEL, order);
439 if (!pages)
440 break;
441 pfn = page_to_pfn(pages);
442 epfn = pfn + count;
443 addr = pfn << PAGE_SHIFT;
444 eaddr = epfn << PAGE_SHIFT;
445 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
446 kimage_is_destination_range(image, addr, eaddr)) {
447 list_add(&pages->lru, &extra_pages);
448 pages = NULL;
449 }
450 } while (!pages);
451
452 if (pages) {
453 /* Remember the allocated page... */
454 list_add(&pages->lru, &image->control_pages);
455
456 /* Because the page is already in it's destination
457 * location we will never allocate another page at
458 * that address. Therefore kimage_alloc_pages
459 * will not return it (again) and we don't need
460 * to give it an entry in image->segment[].
461 */
462 }
463 /* Deal with the destination pages I have inadvertently allocated.
464 *
465 * Ideally I would convert multi-page allocations into single
466 * page allocations, and add everything to image->dest_pages.
467 *
468 * For now it is simpler to just free the pages.
469 */
470 kimage_free_page_list(&extra_pages);
471
472 return pages;
473 }
474
475 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
476 unsigned int order)
477 {
478 /* Control pages are special, they are the intermediaries
479 * that are needed while we copy the rest of the pages
480 * to their final resting place. As such they must
481 * not conflict with either the destination addresses
482 * or memory the kernel is already using.
483 *
484 * Control pages are also the only pags we must allocate
485 * when loading a crash kernel. All of the other pages
486 * are specified by the segments and we just memcpy
487 * into them directly.
488 *
489 * The only case where we really need more than one of
490 * these are for architectures where we cannot disable
491 * the MMU and must instead generate an identity mapped
492 * page table for all of the memory.
493 *
494 * Given the low demand this implements a very simple
495 * allocator that finds the first hole of the appropriate
496 * size in the reserved memory region, and allocates all
497 * of the memory up to and including the hole.
498 */
499 unsigned long hole_start, hole_end, size;
500 struct page *pages;
501
502 pages = NULL;
503 size = (1 << order) << PAGE_SHIFT;
504 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
505 hole_end = hole_start + size - 1;
506 while (hole_end <= crashk_res.end) {
507 unsigned long i;
508
509 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
510 break;
511 if (hole_end > crashk_res.end)
512 break;
513 /* See if I overlap any of the segments */
514 for (i = 0; i < image->nr_segments; i++) {
515 unsigned long mstart, mend;
516
517 mstart = image->segment[i].mem;
518 mend = mstart + image->segment[i].memsz - 1;
519 if ((hole_end >= mstart) && (hole_start <= mend)) {
520 /* Advance the hole to the end of the segment */
521 hole_start = (mend + (size - 1)) & ~(size - 1);
522 hole_end = hole_start + size - 1;
523 break;
524 }
525 }
526 /* If I don't overlap any segments I have found my hole! */
527 if (i == image->nr_segments) {
528 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
529 break;
530 }
531 }
532 if (pages)
533 image->control_page = hole_end;
534
535 return pages;
536 }
537
538
539 struct page *kimage_alloc_control_pages(struct kimage *image,
540 unsigned int order)
541 {
542 struct page *pages = NULL;
543
544 switch (image->type) {
545 case KEXEC_TYPE_DEFAULT:
546 pages = kimage_alloc_normal_control_pages(image, order);
547 break;
548 case KEXEC_TYPE_CRASH:
549 pages = kimage_alloc_crash_control_pages(image, order);
550 break;
551 }
552
553 return pages;
554 }
555
556 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
557 {
558 if (*image->entry != 0)
559 image->entry++;
560
561 if (image->entry == image->last_entry) {
562 kimage_entry_t *ind_page;
563 struct page *page;
564
565 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
566 if (!page)
567 return -ENOMEM;
568
569 ind_page = page_address(page);
570 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
571 image->entry = ind_page;
572 image->last_entry = ind_page +
573 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
574 }
575 *image->entry = entry;
576 image->entry++;
577 *image->entry = 0;
578
579 return 0;
580 }
581
582 static int kimage_set_destination(struct kimage *image,
583 unsigned long destination)
584 {
585 int result;
586
587 destination &= PAGE_MASK;
588 result = kimage_add_entry(image, destination | IND_DESTINATION);
589 if (result == 0)
590 image->destination = destination;
591
592 return result;
593 }
594
595
596 static int kimage_add_page(struct kimage *image, unsigned long page)
597 {
598 int result;
599
600 page &= PAGE_MASK;
601 result = kimage_add_entry(image, page | IND_SOURCE);
602 if (result == 0)
603 image->destination += PAGE_SIZE;
604
605 return result;
606 }
607
608
609 static void kimage_free_extra_pages(struct kimage *image)
610 {
611 /* Walk through and free any extra destination pages I may have */
612 kimage_free_page_list(&image->dest_pages);
613
614 /* Walk through and free any unusable pages I have cached */
615 kimage_free_page_list(&image->unuseable_pages);
616
617 }
618 static void kimage_terminate(struct kimage *image)
619 {
620 if (*image->entry != 0)
621 image->entry++;
622
623 *image->entry = IND_DONE;
624 }
625
626 #define for_each_kimage_entry(image, ptr, entry) \
627 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
628 ptr = (entry & IND_INDIRECTION)? \
629 phys_to_virt((entry & PAGE_MASK)): ptr +1)
630
631 static void kimage_free_entry(kimage_entry_t entry)
632 {
633 struct page *page;
634
635 page = pfn_to_page(entry >> PAGE_SHIFT);
636 kimage_free_pages(page);
637 }
638
639 static void kimage_free(struct kimage *image)
640 {
641 kimage_entry_t *ptr, entry;
642 kimage_entry_t ind = 0;
643
644 if (!image)
645 return;
646
647 kimage_free_extra_pages(image);
648 for_each_kimage_entry(image, ptr, entry) {
649 if (entry & IND_INDIRECTION) {
650 /* Free the previous indirection page */
651 if (ind & IND_INDIRECTION)
652 kimage_free_entry(ind);
653 /* Save this indirection page until we are
654 * done with it.
655 */
656 ind = entry;
657 }
658 else if (entry & IND_SOURCE)
659 kimage_free_entry(entry);
660 }
661 /* Free the final indirection page */
662 if (ind & IND_INDIRECTION)
663 kimage_free_entry(ind);
664
665 /* Handle any machine specific cleanup */
666 machine_kexec_cleanup(image);
667
668 /* Free the kexec control pages... */
669 kimage_free_page_list(&image->control_pages);
670 kfree(image);
671 }
672
673 static kimage_entry_t *kimage_dst_used(struct kimage *image,
674 unsigned long page)
675 {
676 kimage_entry_t *ptr, entry;
677 unsigned long destination = 0;
678
679 for_each_kimage_entry(image, ptr, entry) {
680 if (entry & IND_DESTINATION)
681 destination = entry & PAGE_MASK;
682 else if (entry & IND_SOURCE) {
683 if (page == destination)
684 return ptr;
685 destination += PAGE_SIZE;
686 }
687 }
688
689 return NULL;
690 }
691
692 static struct page *kimage_alloc_page(struct kimage *image,
693 gfp_t gfp_mask,
694 unsigned long destination)
695 {
696 /*
697 * Here we implement safeguards to ensure that a source page
698 * is not copied to its destination page before the data on
699 * the destination page is no longer useful.
700 *
701 * To do this we maintain the invariant that a source page is
702 * either its own destination page, or it is not a
703 * destination page at all.
704 *
705 * That is slightly stronger than required, but the proof
706 * that no problems will not occur is trivial, and the
707 * implementation is simply to verify.
708 *
709 * When allocating all pages normally this algorithm will run
710 * in O(N) time, but in the worst case it will run in O(N^2)
711 * time. If the runtime is a problem the data structures can
712 * be fixed.
713 */
714 struct page *page;
715 unsigned long addr;
716
717 /*
718 * Walk through the list of destination pages, and see if I
719 * have a match.
720 */
721 list_for_each_entry(page, &image->dest_pages, lru) {
722 addr = page_to_pfn(page) << PAGE_SHIFT;
723 if (addr == destination) {
724 list_del(&page->lru);
725 return page;
726 }
727 }
728 page = NULL;
729 while (1) {
730 kimage_entry_t *old;
731
732 /* Allocate a page, if we run out of memory give up */
733 page = kimage_alloc_pages(gfp_mask, 0);
734 if (!page)
735 return NULL;
736 /* If the page cannot be used file it away */
737 if (page_to_pfn(page) >
738 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
739 list_add(&page->lru, &image->unuseable_pages);
740 continue;
741 }
742 addr = page_to_pfn(page) << PAGE_SHIFT;
743
744 /* If it is the destination page we want use it */
745 if (addr == destination)
746 break;
747
748 /* If the page is not a destination page use it */
749 if (!kimage_is_destination_range(image, addr,
750 addr + PAGE_SIZE))
751 break;
752
753 /*
754 * I know that the page is someones destination page.
755 * See if there is already a source page for this
756 * destination page. And if so swap the source pages.
757 */
758 old = kimage_dst_used(image, addr);
759 if (old) {
760 /* If so move it */
761 unsigned long old_addr;
762 struct page *old_page;
763
764 old_addr = *old & PAGE_MASK;
765 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
766 copy_highpage(page, old_page);
767 *old = addr | (*old & ~PAGE_MASK);
768
769 /* The old page I have found cannot be a
770 * destination page, so return it if it's
771 * gfp_flags honor the ones passed in.
772 */
773 if (!(gfp_mask & __GFP_HIGHMEM) &&
774 PageHighMem(old_page)) {
775 kimage_free_pages(old_page);
776 continue;
777 }
778 addr = old_addr;
779 page = old_page;
780 break;
781 }
782 else {
783 /* Place the page on the destination list I
784 * will use it later.
785 */
786 list_add(&page->lru, &image->dest_pages);
787 }
788 }
789
790 return page;
791 }
792
793 static int kimage_load_normal_segment(struct kimage *image,
794 struct kexec_segment *segment)
795 {
796 unsigned long maddr;
797 unsigned long ubytes, mbytes;
798 int result;
799 unsigned char __user *buf;
800
801 result = 0;
802 buf = segment->buf;
803 ubytes = segment->bufsz;
804 mbytes = segment->memsz;
805 maddr = segment->mem;
806
807 result = kimage_set_destination(image, maddr);
808 if (result < 0)
809 goto out;
810
811 while (mbytes) {
812 struct page *page;
813 char *ptr;
814 size_t uchunk, mchunk;
815
816 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
817 if (!page) {
818 result = -ENOMEM;
819 goto out;
820 }
821 result = kimage_add_page(image, page_to_pfn(page)
822 << PAGE_SHIFT);
823 if (result < 0)
824 goto out;
825
826 ptr = kmap(page);
827 /* Start with a clear page */
828 clear_page(ptr);
829 ptr += maddr & ~PAGE_MASK;
830 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
831 if (mchunk > mbytes)
832 mchunk = mbytes;
833
834 uchunk = mchunk;
835 if (uchunk > ubytes)
836 uchunk = ubytes;
837
838 result = copy_from_user(ptr, buf, uchunk);
839 kunmap(page);
840 if (result) {
841 result = -EFAULT;
842 goto out;
843 }
844 ubytes -= uchunk;
845 maddr += mchunk;
846 buf += mchunk;
847 mbytes -= mchunk;
848 }
849 out:
850 return result;
851 }
852
853 static int kimage_load_crash_segment(struct kimage *image,
854 struct kexec_segment *segment)
855 {
856 /* For crash dumps kernels we simply copy the data from
857 * user space to it's destination.
858 * We do things a page at a time for the sake of kmap.
859 */
860 unsigned long maddr;
861 unsigned long ubytes, mbytes;
862 int result;
863 unsigned char __user *buf;
864
865 result = 0;
866 buf = segment->buf;
867 ubytes = segment->bufsz;
868 mbytes = segment->memsz;
869 maddr = segment->mem;
870 while (mbytes) {
871 struct page *page;
872 char *ptr;
873 size_t uchunk, mchunk;
874
875 page = pfn_to_page(maddr >> PAGE_SHIFT);
876 if (!page) {
877 result = -ENOMEM;
878 goto out;
879 }
880 ptr = kmap(page);
881 ptr += maddr & ~PAGE_MASK;
882 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
883 if (mchunk > mbytes)
884 mchunk = mbytes;
885
886 uchunk = mchunk;
887 if (uchunk > ubytes) {
888 uchunk = ubytes;
889 /* Zero the trailing part of the page */
890 memset(ptr + uchunk, 0, mchunk - uchunk);
891 }
892 result = copy_from_user(ptr, buf, uchunk);
893 kexec_flush_icache_page(page);
894 kunmap(page);
895 if (result) {
896 result = -EFAULT;
897 goto out;
898 }
899 ubytes -= uchunk;
900 maddr += mchunk;
901 buf += mchunk;
902 mbytes -= mchunk;
903 }
904 out:
905 return result;
906 }
907
908 static int kimage_load_segment(struct kimage *image,
909 struct kexec_segment *segment)
910 {
911 int result = -ENOMEM;
912
913 switch (image->type) {
914 case KEXEC_TYPE_DEFAULT:
915 result = kimage_load_normal_segment(image, segment);
916 break;
917 case KEXEC_TYPE_CRASH:
918 result = kimage_load_crash_segment(image, segment);
919 break;
920 }
921
922 return result;
923 }
924
925 /*
926 * Exec Kernel system call: for obvious reasons only root may call it.
927 *
928 * This call breaks up into three pieces.
929 * - A generic part which loads the new kernel from the current
930 * address space, and very carefully places the data in the
931 * allocated pages.
932 *
933 * - A generic part that interacts with the kernel and tells all of
934 * the devices to shut down. Preventing on-going dmas, and placing
935 * the devices in a consistent state so a later kernel can
936 * reinitialize them.
937 *
938 * - A machine specific part that includes the syscall number
939 * and the copies the image to it's final destination. And
940 * jumps into the image at entry.
941 *
942 * kexec does not sync, or unmount filesystems so if you need
943 * that to happen you need to do that yourself.
944 */
945 struct kimage *kexec_image;
946 struct kimage *kexec_crash_image;
947
948 static DEFINE_MUTEX(kexec_mutex);
949
950 asmlinkage long kexec_load(unsigned long entry, unsigned long nr_segments, struct kexec_segment __user *segments, unsigned long flags)
951 {
952 struct kimage **dest_image, *image;
953 int result;
954
955 /* We only trust the superuser with rebooting the system. */
956 if (!capable(CAP_SYS_BOOT))
957 return -EPERM;
958
959 /*
960 * Verify we have a legal set of flags
961 * This leaves us room for future extensions.
962 */
963 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
964 return -EINVAL;
965
966 /* Verify we are on the appropriate architecture */
967 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
968 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
969 return -EINVAL;
970
971 /* Put an artificial cap on the number
972 * of segments passed to kexec_load.
973 */
974 if (nr_segments > KEXEC_SEGMENT_MAX)
975 return -EINVAL;
976
977 image = NULL;
978 result = 0;
979
980 /* Because we write directly to the reserved memory
981 * region when loading crash kernels we need a mutex here to
982 * prevent multiple crash kernels from attempting to load
983 * simultaneously, and to prevent a crash kernel from loading
984 * over the top of a in use crash kernel.
985 *
986 * KISS: always take the mutex.
987 */
988 if (!mutex_trylock(&kexec_mutex))
989 return -EBUSY;
990
991 dest_image = &kexec_image;
992 if (flags & KEXEC_ON_CRASH)
993 dest_image = &kexec_crash_image;
994 if (nr_segments > 0) {
995 unsigned long i;
996
997 /* Loading another kernel to reboot into */
998 if ((flags & KEXEC_ON_CRASH) == 0)
999 result = kimage_normal_alloc(&image, entry,
1000 nr_segments, segments);
1001 /* Loading another kernel to switch to if this one crashes */
1002 else if (flags & KEXEC_ON_CRASH) {
1003 /* Free any current crash dump kernel before
1004 * we corrupt it.
1005 */
1006 kimage_free(xchg(&kexec_crash_image, NULL));
1007 result = kimage_crash_alloc(&image, entry,
1008 nr_segments, segments);
1009 }
1010 if (result)
1011 goto out;
1012
1013 if (flags & KEXEC_PRESERVE_CONTEXT)
1014 image->preserve_context = 1;
1015 result = machine_kexec_prepare(image);
1016 if (result)
1017 goto out;
1018
1019 for (i = 0; i < nr_segments; i++) {
1020 result = kimage_load_segment(image, &image->segment[i]);
1021 if (result)
1022 goto out;
1023 }
1024 kimage_terminate(image);
1025 }
1026 /* Install the new kernel, and Uninstall the old */
1027 image = xchg(dest_image, image);
1028
1029 out:
1030 mutex_unlock(&kexec_mutex);
1031 kimage_free(image);
1032
1033 return result;
1034 }
1035
1036 #ifdef CONFIG_COMPAT
1037 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1038 unsigned long nr_segments,
1039 struct compat_kexec_segment __user *segments,
1040 unsigned long flags)
1041 {
1042 struct compat_kexec_segment in;
1043 struct kexec_segment out, __user *ksegments;
1044 unsigned long i, result;
1045
1046 /* Don't allow clients that don't understand the native
1047 * architecture to do anything.
1048 */
1049 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1050 return -EINVAL;
1051
1052 if (nr_segments > KEXEC_SEGMENT_MAX)
1053 return -EINVAL;
1054
1055 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1056 for (i=0; i < nr_segments; i++) {
1057 result = copy_from_user(&in, &segments[i], sizeof(in));
1058 if (result)
1059 return -EFAULT;
1060
1061 out.buf = compat_ptr(in.buf);
1062 out.bufsz = in.bufsz;
1063 out.mem = in.mem;
1064 out.memsz = in.memsz;
1065
1066 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1067 if (result)
1068 return -EFAULT;
1069 }
1070
1071 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1072 }
1073 #endif
1074
1075 void crash_kexec(struct pt_regs *regs)
1076 {
1077 /* Take the kexec_mutex here to prevent sys_kexec_load
1078 * running on one cpu from replacing the crash kernel
1079 * we are using after a panic on a different cpu.
1080 *
1081 * If the crash kernel was not located in a fixed area
1082 * of memory the xchg(&kexec_crash_image) would be
1083 * sufficient. But since I reuse the memory...
1084 */
1085 if (mutex_trylock(&kexec_mutex)) {
1086 if (kexec_crash_image) {
1087 struct pt_regs fixed_regs;
1088 crash_setup_regs(&fixed_regs, regs);
1089 crash_save_vmcoreinfo();
1090 machine_crash_shutdown(&fixed_regs);
1091 machine_kexec(kexec_crash_image);
1092 }
1093 mutex_unlock(&kexec_mutex);
1094 }
1095 }
1096
1097 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1098 size_t data_len)
1099 {
1100 struct elf_note note;
1101
1102 note.n_namesz = strlen(name) + 1;
1103 note.n_descsz = data_len;
1104 note.n_type = type;
1105 memcpy(buf, &note, sizeof(note));
1106 buf += (sizeof(note) + 3)/4;
1107 memcpy(buf, name, note.n_namesz);
1108 buf += (note.n_namesz + 3)/4;
1109 memcpy(buf, data, note.n_descsz);
1110 buf += (note.n_descsz + 3)/4;
1111
1112 return buf;
1113 }
1114
1115 static void final_note(u32 *buf)
1116 {
1117 struct elf_note note;
1118
1119 note.n_namesz = 0;
1120 note.n_descsz = 0;
1121 note.n_type = 0;
1122 memcpy(buf, &note, sizeof(note));
1123 }
1124
1125 void crash_save_cpu(struct pt_regs *regs, int cpu)
1126 {
1127 struct elf_prstatus prstatus;
1128 u32 *buf;
1129
1130 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1131 return;
1132
1133 /* Using ELF notes here is opportunistic.
1134 * I need a well defined structure format
1135 * for the data I pass, and I need tags
1136 * on the data to indicate what information I have
1137 * squirrelled away. ELF notes happen to provide
1138 * all of that, so there is no need to invent something new.
1139 */
1140 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1141 if (!buf)
1142 return;
1143 memset(&prstatus, 0, sizeof(prstatus));
1144 prstatus.pr_pid = current->pid;
1145 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1146 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1147 &prstatus, sizeof(prstatus));
1148 final_note(buf);
1149 }
1150
1151 /*
1152 * parsing the "crashkernel" commandline
1153 *
1154 * this code is intended to be called from architecture specific code
1155 */
1156
1157
1158 /*
1159 * This function parses command lines in the format
1160 *
1161 * crashkernel=ramsize-range:size[,...][@offset]
1162 *
1163 * The function returns 0 on success and -EINVAL on failure.
1164 */
1165 static int __init parse_crashkernel_mem(char *cmdline,
1166 unsigned long long system_ram,
1167 unsigned long long *crash_size,
1168 unsigned long long *crash_base)
1169 {
1170 char *cur = cmdline, *tmp;
1171
1172 /* for each entry of the comma-separated list */
1173 do {
1174 unsigned long long start, end = ULLONG_MAX, size;
1175
1176 /* get the start of the range */
1177 start = memparse(cur, &tmp);
1178 if (cur == tmp) {
1179 pr_warning("crashkernel: Memory value expected\n");
1180 return -EINVAL;
1181 }
1182 cur = tmp;
1183 if (*cur != '-') {
1184 pr_warning("crashkernel: '-' expected\n");
1185 return -EINVAL;
1186 }
1187 cur++;
1188
1189 /* if no ':' is here, than we read the end */
1190 if (*cur != ':') {
1191 end = memparse(cur, &tmp);
1192 if (cur == tmp) {
1193 pr_warning("crashkernel: Memory "
1194 "value expected\n");
1195 return -EINVAL;
1196 }
1197 cur = tmp;
1198 if (end <= start) {
1199 pr_warning("crashkernel: end <= start\n");
1200 return -EINVAL;
1201 }
1202 }
1203
1204 if (*cur != ':') {
1205 pr_warning("crashkernel: ':' expected\n");
1206 return -EINVAL;
1207 }
1208 cur++;
1209
1210 size = memparse(cur, &tmp);
1211 if (cur == tmp) {
1212 pr_warning("Memory value expected\n");
1213 return -EINVAL;
1214 }
1215 cur = tmp;
1216 if (size >= system_ram) {
1217 pr_warning("crashkernel: invalid size\n");
1218 return -EINVAL;
1219 }
1220
1221 /* match ? */
1222 if (system_ram >= start && system_ram < end) {
1223 *crash_size = size;
1224 break;
1225 }
1226 } while (*cur++ == ',');
1227
1228 if (*crash_size > 0) {
1229 while (*cur && *cur != ' ' && *cur != '@')
1230 cur++;
1231 if (*cur == '@') {
1232 cur++;
1233 *crash_base = memparse(cur, &tmp);
1234 if (cur == tmp) {
1235 pr_warning("Memory value expected "
1236 "after '@'\n");
1237 return -EINVAL;
1238 }
1239 }
1240 }
1241
1242 return 0;
1243 }
1244
1245 /*
1246 * That function parses "simple" (old) crashkernel command lines like
1247 *
1248 * crashkernel=size[@offset]
1249 *
1250 * It returns 0 on success and -EINVAL on failure.
1251 */
1252 static int __init parse_crashkernel_simple(char *cmdline,
1253 unsigned long long *crash_size,
1254 unsigned long long *crash_base)
1255 {
1256 char *cur = cmdline;
1257
1258 *crash_size = memparse(cmdline, &cur);
1259 if (cmdline == cur) {
1260 pr_warning("crashkernel: memory value expected\n");
1261 return -EINVAL;
1262 }
1263
1264 if (*cur == '@')
1265 *crash_base = memparse(cur+1, &cur);
1266
1267 return 0;
1268 }
1269
1270 /*
1271 * That function is the entry point for command line parsing and should be
1272 * called from the arch-specific code.
1273 */
1274 int __init parse_crashkernel(char *cmdline,
1275 unsigned long long system_ram,
1276 unsigned long long *crash_size,
1277 unsigned long long *crash_base)
1278 {
1279 char *p = cmdline, *ck_cmdline = NULL;
1280 char *first_colon, *first_space;
1281
1282 BUG_ON(!crash_size || !crash_base);
1283 *crash_size = 0;
1284 *crash_base = 0;
1285
1286 /* find crashkernel and use the last one if there are more */
1287 p = strstr(p, "crashkernel=");
1288 while (p) {
1289 ck_cmdline = p;
1290 p = strstr(p+1, "crashkernel=");
1291 }
1292
1293 if (!ck_cmdline)
1294 return -EINVAL;
1295
1296 ck_cmdline += 12; /* strlen("crashkernel=") */
1297
1298 /*
1299 * if the commandline contains a ':', then that's the extended
1300 * syntax -- if not, it must be the classic syntax
1301 */
1302 first_colon = strchr(ck_cmdline, ':');
1303 first_space = strchr(ck_cmdline, ' ');
1304 if (first_colon && (!first_space || first_colon < first_space))
1305 return parse_crashkernel_mem(ck_cmdline, system_ram,
1306 crash_size, crash_base);
1307 else
1308 return parse_crashkernel_simple(ck_cmdline, crash_size,
1309 crash_base);
1310
1311 return 0;
1312 }
1313
1314
1315
1316 void crash_save_vmcoreinfo(void)
1317 {
1318 u32 *buf;
1319
1320 if (!vmcoreinfo_size)
1321 return;
1322
1323 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1324
1325 buf = (u32 *)vmcoreinfo_note;
1326
1327 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1328 vmcoreinfo_size);
1329
1330 final_note(buf);
1331 }
1332
1333 void vmcoreinfo_append_str(const char *fmt, ...)
1334 {
1335 va_list args;
1336 char buf[0x50];
1337 int r;
1338
1339 va_start(args, fmt);
1340 r = vsnprintf(buf, sizeof(buf), fmt, args);
1341 va_end(args);
1342
1343 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1344 r = vmcoreinfo_max_size - vmcoreinfo_size;
1345
1346 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1347
1348 vmcoreinfo_size += r;
1349 }
1350
1351 /*
1352 * provide an empty default implementation here -- architecture
1353 * code may override this
1354 */
1355 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1356 {}
1357
1358 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1359 {
1360 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1361 }
1362
1363 /*
1364 * Move into place and start executing a preloaded standalone
1365 * executable. If nothing was preloaded return an error.
1366 */
1367 int kernel_kexec(void)
1368 {
1369 int error = 0;
1370
1371 if (!mutex_trylock(&kexec_mutex))
1372 return -EBUSY;
1373 if (!kexec_image) {
1374 error = -EINVAL;
1375 goto Unlock;
1376 }
1377
1378 #ifdef CONFIG_KEXEC_JUMP
1379 if (kexec_image->preserve_context) {
1380 mutex_lock(&pm_mutex);
1381 pm_prepare_console();
1382 error = freeze_processes();
1383 if (error) {
1384 error = -EBUSY;
1385 goto Restore_console;
1386 }
1387 suspend_console();
1388 error = dpm_suspend_start(PMSG_FREEZE);
1389 if (error)
1390 goto Resume_console;
1391 /* At this point, dpm_suspend_start() has been called,
1392 * but *not* dpm_suspend_noirq(). We *must* call
1393 * dpm_suspend_noirq() now. Otherwise, drivers for
1394 * some devices (e.g. interrupt controllers) become
1395 * desynchronized with the actual state of the
1396 * hardware at resume time, and evil weirdness ensues.
1397 */
1398 error = dpm_suspend_noirq(PMSG_FREEZE);
1399 if (error)
1400 goto Resume_devices;
1401 error = disable_nonboot_cpus();
1402 if (error)
1403 goto Enable_cpus;
1404 local_irq_disable();
1405 error = syscore_suspend();
1406 if (error)
1407 goto Enable_irqs;
1408 } else
1409 #endif
1410 {
1411 kernel_restart_prepare(NULL);
1412 printk(KERN_EMERG "Starting new kernel\n");
1413 //machine_shutdown();
1414 }
1415
1416 machine_kexec(kexec_image);
1417
1418 #ifdef CONFIG_KEXEC_JUMP
1419 if (kexec_image->preserve_context) {
1420 syscore_resume();
1421 Enable_irqs:
1422 local_irq_enable();
1423 Enable_cpus:
1424 enable_nonboot_cpus();
1425 dpm_resume_noirq(PMSG_RESTORE);
1426 Resume_devices:
1427 dpm_resume_end(PMSG_RESTORE);
1428 Resume_console:
1429 resume_console();
1430 thaw_processes();
1431 Restore_console:
1432 pm_restore_console();
1433 mutex_unlock(&pm_mutex);
1434 }
1435 #endif
1436
1437 Unlock:
1438 mutex_unlock(&kexec_mutex);
1439 return error;
1440 }
1441
1442 unsigned long **find_sys_call_table(void) {
1443 unsigned long **sctable;
1444 unsigned long ptr;
1445 extern int loops_per_jiffy;
1446 sctable = NULL;
1447 for (ptr = (unsigned long)&unlock_kernel; ptr < (unsigned long)&loops_per_jiffy; ptr += sizeof(void *)) {
1448 unsigned long *p;
1449 p = (unsigned long *)ptr;
1450 if (p[__NR_close] == (unsigned long) sys_close) {
1451 sctable = (unsigned long **)p;
1452 return &sctable[0];
1453 }
1454 }
1455 return NULL;
1456 }
1457
1458 static int __init kexec_module_init(void)
1459 {
1460 #if 0
1461 sys_call_table=(void **)find_sys_call_table();
1462 if(sys_call_table==NULL) {
1463 printk(KERN_ERR "Cannot find the system call address\n");
1464 return -1; // do not load
1465 }
1466
1467 printk(KERN_INFO "kexec: Found sys_call_table at: %p\n", sys_call_table);
1468 #endif
1469
1470 sys_call_table=(void **)SYS_CALL_TABLE;
1471 printk(KERN_INFO "kexec: Force sys_call_table at: %p\n", sys_call_table);
1472
1473 /* Set kexec_load() syscall. */
1474 sys_call_table[__NR_kexec_load]=kexec_load;
1475
1476 /* Swap reboot() syscall and store original */
1477 original_reboot=sys_call_table[__NR_reboot];
1478 sys_call_table[__NR_reboot]=reboot;
1479
1480 /* crash_notes_memory_init */
1481 /* Allocate memory for saving cpu registers. */
1482 crash_notes = alloc_percpu(note_buf_t);
1483 if (!crash_notes) {
1484 printk("Kexec: Memory allocation for saving cpu register"
1485 " states failed\n");
1486 return -ENOMEM;
1487 }
1488
1489 /* crash_vmcoreinfo_init */
1490 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1491 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1492
1493 VMCOREINFO_SYMBOL(init_uts_ns);
1494 VMCOREINFO_SYMBOL(node_online_map);
1495
1496 #ifndef CONFIG_NEED_MULTIPLE_NODES
1497 VMCOREINFO_SYMBOL(mem_map);
1498 VMCOREINFO_SYMBOL(contig_page_data);
1499 #endif
1500 #ifdef CONFIG_SPARSEMEM
1501 VMCOREINFO_SYMBOL(mem_section);
1502 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1503 VMCOREINFO_STRUCT_SIZE(mem_section);
1504 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1505 #endif
1506 VMCOREINFO_STRUCT_SIZE(page);
1507 VMCOREINFO_STRUCT_SIZE(pglist_data);
1508 VMCOREINFO_STRUCT_SIZE(zone);
1509 VMCOREINFO_STRUCT_SIZE(free_area);
1510 VMCOREINFO_STRUCT_SIZE(list_head);
1511 VMCOREINFO_SIZE(nodemask_t);
1512 VMCOREINFO_OFFSET(page, flags);
1513 VMCOREINFO_OFFSET(page, _count);
1514 VMCOREINFO_OFFSET(page, mapping);
1515 VMCOREINFO_OFFSET(page, lru);
1516 VMCOREINFO_OFFSET(pglist_data, node_zones);
1517 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1518 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1519 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1520 #endif
1521 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1522 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1523 VMCOREINFO_OFFSET(pglist_data, node_id);
1524 VMCOREINFO_OFFSET(zone, free_area);
1525 VMCOREINFO_OFFSET(zone, vm_stat);
1526 VMCOREINFO_OFFSET(zone, spanned_pages);
1527 VMCOREINFO_OFFSET(free_area, free_list);
1528 VMCOREINFO_OFFSET(list_head, next);
1529 VMCOREINFO_OFFSET(list_head, prev);
1530 VMCOREINFO_OFFSET(vm_struct, addr);
1531 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1532 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1533 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1534 VMCOREINFO_NUMBER(PG_lru);
1535 VMCOREINFO_NUMBER(PG_private);
1536 VMCOREINFO_NUMBER(PG_swapcache);
1537
1538 arch_crash_save_vmcoreinfo();
1539
1540 return 0;
1541 }
1542
1543 module_init(kexec_module_init)
1544
Impressum, Datenschutz