]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
Speedup Mifare Plus Attack v1
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
8ce3e4b4 4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Implements a card only attack based on crypto text (encrypted nonces
9// received during a nested authentication) only. Unlike other card only
10// attacks this doesn't rely on implementation errors but only on the
11// inherent weaknesses of the crypto1 cypher. Described in
12// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14// Computer and Communications Security, 2015
15//-----------------------------------------------------------------------------
16
8ce3e4b4 17#include <stdlib.h>
3130ba4b 18#include <stdio.h>
8ce3e4b4 19#include <string.h>
20#include <pthread.h>
0d5ee8e2 21#include <locale.h>
8ce3e4b4 22#include <math.h>
23#include "proxmark3.h"
24#include "cmdmain.h"
25#include "ui.h"
26#include "util.h"
27#include "nonce2key/crapto1.h"
3130ba4b 28#include "nonce2key/crypto1_bs.h"
f8ada309 29#include "parity.h"
3130ba4b 30#ifdef __WIN32
31 #include <windows.h>
32#endif
ac36c577 33// don't include for APPLE/mac which has malloc stuff elsewhere.
34#ifndef __APPLE__
35 #include <malloc.h>
36#endif
3130ba4b 37#include <assert.h>
8ce3e4b4 38
f8ada309 39#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
81ba7ee8 40#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
41
42#define END_OF_LIST_MARKER 0xFFFFFFFF
8ce3e4b4 43
44static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
45 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
70 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
72 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
73 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
74 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
75 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
76 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
77 0.0290 };
8ce3e4b4 78
79typedef struct noncelistentry {
80 uint32_t nonce_enc;
81 uint8_t par_enc;
82 void *next;
83} noncelistentry_t;
84
85typedef struct noncelist {
86 uint16_t num;
87 uint16_t Sum;
88 uint16_t Sum8_guess;
89 uint8_t BitFlip[2];
90 float Sum8_prob;
91 bool updated;
92 noncelistentry_t *first;
a531720a 93 float score1, score2;
8ce3e4b4 94} noncelist_t;
95
3130ba4b 96static size_t nonces_to_bruteforce = 0;
97static noncelistentry_t *brute_force_nonces[256];
810f5379 98static uint32_t cuid = 0;
8ce3e4b4 99static noncelist_t nonces[256];
fe8042f2 100static uint8_t best_first_bytes[256];
8ce3e4b4 101static uint16_t first_byte_Sum = 0;
102static uint16_t first_byte_num = 0;
103static uint16_t num_good_first_bytes = 0;
f8ada309 104static uint64_t maximum_states = 0;
105static uint64_t known_target_key;
0d5ee8e2 106static bool write_stats = false;
107static FILE *fstats = NULL;
8ce3e4b4 108
109
110typedef enum {
111 EVEN_STATE = 0,
112 ODD_STATE = 1
113} odd_even_t;
114
115#define STATELIST_INDEX_WIDTH 16
116#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
117
118typedef struct {
119 uint32_t *states[2];
120 uint32_t len[2];
121 uint32_t *index[2][STATELIST_INDEX_SIZE];
122} partial_indexed_statelist_t;
123
124typedef struct {
125 uint32_t *states[2];
126 uint32_t len[2];
127 void* next;
128} statelist_t;
129
130
f8ada309 131static partial_indexed_statelist_t partial_statelist[17];
132static partial_indexed_statelist_t statelist_bitflip;
f8ada309 133static statelist_t *candidates = NULL;
8ce3e4b4 134
057d2e91
GG
135static bool generate_candidates(uint16_t, uint16_t);
136static bool brute_force(void);
137
8ce3e4b4 138static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
139{
140 uint8_t first_byte = nonce_enc >> 24;
141 noncelistentry_t *p1 = nonces[first_byte].first;
142 noncelistentry_t *p2 = NULL;
143
144 if (p1 == NULL) { // first nonce with this 1st byte
145 first_byte_num++;
f8ada309 146 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 147 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
148 // nonce_enc,
149 // par_enc,
150 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 151 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 152 }
153
154 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
155 p2 = p1;
156 p1 = p1->next;
157 }
158
159 if (p1 == NULL) { // need to add at the end of the list
160 if (p2 == NULL) { // list is empty yet. Add first entry.
161 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
162 } else { // add new entry at end of existing list.
163 p2 = p2->next = malloc(sizeof(noncelistentry_t));
164 }
165 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
166 if (p2 == NULL) { // need to insert at start of list
167 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
168 } else {
169 p2 = p2->next = malloc(sizeof(noncelistentry_t));
170 }
171 } else { // we have seen this 2nd byte before. Nothing to add or insert.
172 return (0);
173 }
174
175 // add or insert new data
176 p2->next = p1;
177 p2->nonce_enc = nonce_enc;
178 p2->par_enc = par_enc;
179
3130ba4b 180 if(nonces_to_bruteforce < 256){
181 brute_force_nonces[nonces_to_bruteforce] = p2;
182 nonces_to_bruteforce++;
183 }
184
8ce3e4b4 185 nonces[first_byte].num++;
f8ada309 186 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 187 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
188
189 return (1); // new nonce added
190}
191
0d5ee8e2 192static void init_nonce_memory(void)
193{
194 for (uint16_t i = 0; i < 256; i++) {
195 nonces[i].num = 0;
196 nonces[i].Sum = 0;
197 nonces[i].Sum8_guess = 0;
198 nonces[i].Sum8_prob = 0.0;
199 nonces[i].updated = true;
200 nonces[i].first = NULL;
201 }
202 first_byte_num = 0;
203 first_byte_Sum = 0;
204 num_good_first_bytes = 0;
205}
206
0d5ee8e2 207static void free_nonce_list(noncelistentry_t *p)
208{
209 if (p == NULL) {
210 return;
211 } else {
212 free_nonce_list(p->next);
213 free(p);
214 }
215}
216
0d5ee8e2 217static void free_nonces_memory(void)
218{
219 for (uint16_t i = 0; i < 256; i++) {
220 free_nonce_list(nonces[i].first);
221 }
222}
223
8ce3e4b4 224static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
225{
226 uint16_t sum = 0;
227 for (uint16_t j = 0; j < 16; j++) {
228 uint32_t st = state;
229 uint16_t part_sum = 0;
230 if (odd_even == ODD_STATE) {
231 for (uint16_t i = 0; i < 5; i++) {
232 part_sum ^= filter(st);
233 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
234 }
f8ada309 235 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 236 } else {
237 for (uint16_t i = 0; i < 4; i++) {
238 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
239 part_sum ^= filter(st);
240 }
241 }
242 sum += part_sum;
243 }
244 return sum;
245}
246
fe8042f2 247// static uint16_t SumProperty(struct Crypto1State *s)
248// {
249 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
250 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
251 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
252// }
8ce3e4b4 253
8ce3e4b4 254static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
255{
256 // for efficient computation we are using the recursive definition
257 // (K-k+1) * (n-k+1)
258 // P(X=k) = P(X=k-1) * --------------------
259 // k * (N-K-n+k)
260 // and
261 // (N-K)*(N-K-1)*...*(N-K-n+1)
262 // P(X=0) = -----------------------------
263 // N*(N-1)*...*(N-n+1)
264
265 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
266 if (k == 0) {
267 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
268 double log_result = 0.0;
269 for (int16_t i = N-K; i >= N-K-n+1; i--) {
270 log_result += log(i);
271 }
272 for (int16_t i = N; i >= N-n+1; i--) {
273 log_result -= log(i);
274 }
275 return exp(log_result);
276 } else {
277 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
278 double log_result = 0.0;
279 for (int16_t i = k+1; i <= n; i++) {
280 log_result += log(i);
281 }
282 for (int16_t i = K+1; i <= N; i++) {
283 log_result -= log(i);
284 }
285 return exp(log_result);
286 } else { // recursion
287 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
288 }
289 }
290}
3130ba4b 291
8ce3e4b4 292static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
293{
294 const uint16_t N = 256;
8ce3e4b4 295
4b2e63be 296 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 297
4b2e63be 298 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
299 double p_S_is_K = p_K[K];
300 double p_T_is_k = 0;
301 for (uint16_t i = 0; i <= 256; i++) {
302 if (p_K[i] != 0.0) {
303 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 304 }
4b2e63be 305 }
306 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 307}
308
a531720a 309
310static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
311{
312 static const uint_fast8_t common_bits_LUT[256] = {
313 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
322 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
323 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
324 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
325 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
326 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
327 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
328 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
329 };
330
331 return common_bits_LUT[bytes_diff];
332}
333
8ce3e4b4 334static void Tests()
335{
fe8042f2 336 // printf("Tests: Partial Statelist sizes\n");
337 // for (uint16_t i = 0; i <= 16; i+=2) {
338 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
339 // }
340 // for (uint16_t i = 0; i <= 16; i+=2) {
341 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
342 // }
8ce3e4b4 343
344 // #define NUM_STATISTICS 100000
8ce3e4b4 345 // uint32_t statistics_odd[17];
f8ada309 346 // uint64_t statistics[257];
8ce3e4b4 347 // uint32_t statistics_even[17];
348 // struct Crypto1State cs;
349 // time_t time1 = clock();
350
351 // for (uint16_t i = 0; i < 257; i++) {
352 // statistics[i] = 0;
353 // }
354 // for (uint16_t i = 0; i < 17; i++) {
355 // statistics_odd[i] = 0;
356 // statistics_even[i] = 0;
357 // }
358
359 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
360 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
361 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
362 // uint16_t sum_property = SumProperty(&cs);
363 // statistics[sum_property] += 1;
364 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
365 // statistics_even[sum_property]++;
366 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
367 // statistics_odd[sum_property]++;
368 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
369 // }
370
371 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
372 // for (uint16_t i = 0; i < 257; i++) {
373 // if (statistics[i] != 0) {
374 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
375 // }
376 // }
377 // for (uint16_t i = 0; i <= 16; i++) {
378 // if (statistics_odd[i] != 0) {
379 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
380 // }
381 // }
382 // for (uint16_t i = 0; i <= 16; i++) {
383 // if (statistics_odd[i] != 0) {
384 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
385 // }
386 // }
387
388 // printf("Tests: Sum Probabilities based on Partial Sums\n");
389 // for (uint16_t i = 0; i < 257; i++) {
390 // statistics[i] = 0;
391 // }
392 // uint64_t num_states = 0;
393 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
394 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
395 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
396 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
397 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
398 // }
399 // }
400 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
401 // for (uint16_t i = 0; i < 257; i++) {
402 // if (statistics[i] != 0) {
403 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
404 // }
405 // }
406
407 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
408 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
409 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
410 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
411 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
412 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
413 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
414
fe8042f2 415 // struct Crypto1State *pcs;
416 // pcs = crypto1_create(0xffffffffffff);
417 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
418 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
419 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
420 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
421 // best_first_bytes[0],
422 // SumProperty(pcs),
423 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
424 // //test_state_odd = pcs->odd & 0x00ffffff;
425 // //test_state_even = pcs->even & 0x00ffffff;
426 // crypto1_destroy(pcs);
427 // pcs = crypto1_create(0xa0a1a2a3a4a5);
428 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
429 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
430 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
431 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
432 // best_first_bytes[0],
433 // SumProperty(pcs),
434 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
435 // //test_state_odd = pcs->odd & 0x00ffffff;
436 // //test_state_even = pcs->even & 0x00ffffff;
437 // crypto1_destroy(pcs);
438 // pcs = crypto1_create(0xa6b9aa97b955);
439 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
440 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
441 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
442 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
443 // best_first_bytes[0],
444 // SumProperty(pcs),
445 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 446 //test_state_odd = pcs->odd & 0x00ffffff;
447 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 448 // crypto1_destroy(pcs);
8ce3e4b4 449
450
fe8042f2 451 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 452
cd777a05 453 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
454 // for (uint16_t i = 0; i < 256; i++) {
455 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
456 // if (i % 8 == 7) {
457 // printf("\n");
458 // }
459 // }
8ce3e4b4 460
cd777a05 461 // printf("\nTests: Sorted First Bytes:\n");
462 // for (uint16_t i = 0; i < 256; i++) {
463 // uint8_t best_byte = best_first_bytes[i];
464 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
465 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
466 // i, best_byte,
467 // nonces[best_byte].num,
468 // nonces[best_byte].Sum,
469 // nonces[best_byte].Sum8_guess,
470 // nonces[best_byte].Sum8_prob * 100,
471 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
472 // //nonces[best_byte].score1,
473 // //nonces[best_byte].score2
474 // );
475 // }
f8ada309 476
477 // printf("\nTests: parity performance\n");
478 // time_t time1p = clock();
479 // uint32_t par_sum = 0;
480 // for (uint32_t i = 0; i < 100000000; i++) {
481 // par_sum += parity(i);
482 // }
483 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
484
485 // time1p = clock();
486 // par_sum = 0;
487 // for (uint32_t i = 0; i < 100000000; i++) {
488 // par_sum += evenparity32(i);
489 // }
490 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
491
8ce3e4b4 492
f8ada309 493}
494
f8ada309 495static void sort_best_first_bytes(void)
496{
fe8042f2 497 // sort based on probability for correct guess
8ce3e4b4 498 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 499 uint16_t j = 0;
8ce3e4b4 500 float prob1 = nonces[i].Sum8_prob;
f8ada309 501 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 502 while (prob1 < prob2 && j < i) {
8ce3e4b4 503 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
504 }
fe8042f2 505 if (j < i) {
506 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 507 best_first_bytes[k] = best_first_bytes[k-1];
508 }
fe8042f2 509 }
8ce3e4b4 510 best_first_bytes[j] = i;
511 }
f8ada309 512
fe8042f2 513 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 514 uint16_t num_good_nonces = 0;
fe8042f2 515 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 516 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 517 ++num_good_nonces;
518 }
519 }
520
521 uint16_t best_first_byte = 0;
522
523 // select the best possible first byte based on number of common bits with all {b'}
524 // uint16_t max_common_bits = 0;
525 // for (uint16_t i = 0; i < num_good_nonces; i++) {
526 // uint16_t sum_common_bits = 0;
527 // for (uint16_t j = 0; j < num_good_nonces; j++) {
528 // if (i != j) {
529 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
530 // }
531 // }
532 // if (sum_common_bits > max_common_bits) {
533 // max_common_bits = sum_common_bits;
534 // best_first_byte = i;
535 // }
536 // }
537
538 // select best possible first byte {b} based on least likely sum/bitflip property
539 float min_p_K = 1.0;
540 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
541 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
542 float bitflip_prob = 1.0;
543 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
544 bitflip_prob = 0.09375;
545 }
a531720a 546 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
f8ada309 547 if (p_K[sum8] * bitflip_prob <= min_p_K) {
548 min_p_K = p_K[sum8] * bitflip_prob;
f8ada309 549 }
550 }
551
a531720a 552
f8ada309 553 // use number of commmon bits as a tie breaker
554 uint16_t max_common_bits = 0;
555 for (uint16_t i = 0; i < num_good_nonces; i++) {
556 float bitflip_prob = 1.0;
557 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
558 bitflip_prob = 0.09375;
559 }
560 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
561 uint16_t sum_common_bits = 0;
562 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 563 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 564 }
a531720a 565 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 566 if (sum_common_bits > max_common_bits) {
567 max_common_bits = sum_common_bits;
568 best_first_byte = i;
569 }
570 }
571 }
572
a531720a 573 // swap best possible first byte to the pole position
f8ada309 574 uint16_t temp = best_first_bytes[0];
575 best_first_bytes[0] = best_first_bytes[best_first_byte];
576 best_first_bytes[best_first_byte] = temp;
577
8ce3e4b4 578}
579
8ce3e4b4 580static uint16_t estimate_second_byte_sum(void)
581{
8ce3e4b4 582
583 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
584 float Sum8_prob = 0.0;
585 uint16_t Sum8 = 0;
586 if (nonces[first_byte].updated) {
587 for (uint16_t sum = 0; sum <= 256; sum++) {
588 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
589 if (prob > Sum8_prob) {
590 Sum8_prob = prob;
591 Sum8 = sum;
592 }
593 }
594 nonces[first_byte].Sum8_guess = Sum8;
595 nonces[first_byte].Sum8_prob = Sum8_prob;
596 nonces[first_byte].updated = false;
597 }
598 }
599
600 sort_best_first_bytes();
601
602 uint16_t num_good_nonces = 0;
fe8042f2 603 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 604 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
8ce3e4b4 605 ++num_good_nonces;
606 }
607 }
608
609 return num_good_nonces;
610}
611
8ce3e4b4 612static int read_nonce_file(void)
613{
614 FILE *fnonces = NULL;
ddaecc08 615 uint8_t trgBlockNo = 0;
616 uint8_t trgKeyType = 0;
8ce3e4b4 617 uint8_t read_buf[9];
ddaecc08 618 uint32_t nt_enc1 = 0, nt_enc2 = 0;
619 uint8_t par_enc = 0;
8ce3e4b4 620 int total_num_nonces = 0;
621
622 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
623 PrintAndLog("Could not open file nonces.bin");
624 return 1;
625 }
626
627 PrintAndLog("Reading nonces from file nonces.bin...");
841d7af0 628 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
629 if ( bytes_read == 0) {
8ce3e4b4 630 PrintAndLog("File reading error.");
631 fclose(fnonces);
632 return 1;
633 }
634 cuid = bytes_to_num(read_buf, 4);
635 trgBlockNo = bytes_to_num(read_buf+4, 1);
636 trgKeyType = bytes_to_num(read_buf+5, 1);
637
638 while (fread(read_buf, 1, 9, fnonces) == 9) {
639 nt_enc1 = bytes_to_num(read_buf, 4);
640 nt_enc2 = bytes_to_num(read_buf+4, 4);
641 par_enc = bytes_to_num(read_buf+8, 1);
642 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
643 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
644 add_nonce(nt_enc1, par_enc >> 4);
645 add_nonce(nt_enc2, par_enc & 0x0f);
646 total_num_nonces += 2;
647 }
648 fclose(fnonces);
649 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 650 return 0;
651}
652
a531720a 653static void Check_for_FilterFlipProperties(void)
654{
655 printf("Checking for Filter Flip Properties...\n");
656
0d5ee8e2 657 uint16_t num_bitflips = 0;
658
a531720a 659 for (uint16_t i = 0; i < 256; i++) {
660 nonces[i].BitFlip[ODD_STATE] = false;
661 nonces[i].BitFlip[EVEN_STATE] = false;
662 }
663
664 for (uint16_t i = 0; i < 256; i++) {
665 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
666 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
667 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
668
669 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
670 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 671 num_bitflips++;
a531720a 672 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
673 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 674 num_bitflips++;
a531720a 675 }
676 }
0d5ee8e2 677
678 if (write_stats) {
679 fprintf(fstats, "%d;", num_bitflips);
680 }
681}
682
0d5ee8e2 683static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
684{
1f1929a4 685 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 686 // init cryptostate with key:
687 for(int8_t i = 47; i > 0; i -= 2) {
688 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
689 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
690 }
691
692 *par_enc = 0;
693 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
694 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
695 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
696 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
697 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
698 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
699 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
700 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
701 }
702
703}
704
0d5ee8e2 705static void simulate_acquire_nonces()
706{
707 clock_t time1 = clock();
708 bool filter_flip_checked = false;
709 uint32_t total_num_nonces = 0;
710 uint32_t next_fivehundred = 500;
711 uint32_t total_added_nonces = 0;
712
713 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
714 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
715
716 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
717 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
718
719 do {
720 uint32_t nt_enc = 0;
721 uint8_t par_enc = 0;
722
723 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
724 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
725 total_added_nonces += add_nonce(nt_enc, par_enc);
726 total_num_nonces++;
727
728 if (first_byte_num == 256 ) {
729 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
730 if (!filter_flip_checked) {
731 Check_for_FilterFlipProperties();
732 filter_flip_checked = true;
733 }
734 num_good_first_bytes = estimate_second_byte_sum();
735 if (total_num_nonces > next_fivehundred) {
736 next_fivehundred = (total_num_nonces/500+1) * 500;
737 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
738 total_num_nonces,
739 total_added_nonces,
740 CONFIDENCE_THRESHOLD * 100.0,
741 num_good_first_bytes);
742 }
743 }
744
745 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
746
b112787d 747 time1 = clock() - time1;
748 if ( time1 > 0 ) {
0d5ee8e2 749 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
750 total_num_nonces,
b112787d 751 ((float)time1)/CLOCKS_PER_SEC,
752 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
753 }
0d5ee8e2 754 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
755
a531720a 756}
757
f8ada309 758static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 759{
760 clock_t time1 = clock();
761 bool initialize = true;
762 bool field_off = false;
763 bool finished = false;
a531720a 764 bool filter_flip_checked = false;
8ce3e4b4 765 uint32_t flags = 0;
766 uint8_t write_buf[9];
767 uint32_t total_num_nonces = 0;
768 uint32_t next_fivehundred = 500;
769 uint32_t total_added_nonces = 0;
057d2e91 770 uint32_t idx = 1;
8ce3e4b4 771 FILE *fnonces = NULL;
772 UsbCommand resp;
773
774 printf("Acquiring nonces...\n");
775
776 clearCommandBuffer();
777
778 do {
779 flags = 0;
780 flags |= initialize ? 0x0001 : 0;
781 flags |= slow ? 0x0002 : 0;
782 flags |= field_off ? 0x0004 : 0;
783 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
784 memcpy(c.d.asBytes, key, 6);
785
786 SendCommand(&c);
787
788 if (field_off) finished = true;
789
790 if (initialize) {
791 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
792 if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
793
794 cuid = resp.arg[1];
795 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
796 if (nonce_file_write && fnonces == NULL) {
797 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
798 PrintAndLog("Could not create file nonces.bin");
799 return 3;
800 }
801 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
802 num_to_bytes(cuid, 4, write_buf);
803 fwrite(write_buf, 1, 4, fnonces);
804 fwrite(&trgBlockNo, 1, 1, fnonces);
805 fwrite(&trgKeyType, 1, 1, fnonces);
806 }
807 }
808
809 if (!initialize) {
810 uint32_t nt_enc1, nt_enc2;
811 uint8_t par_enc;
812 uint16_t num_acquired_nonces = resp.arg[2];
813 uint8_t *bufp = resp.d.asBytes;
814 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
815 nt_enc1 = bytes_to_num(bufp, 4);
816 nt_enc2 = bytes_to_num(bufp+4, 4);
817 par_enc = bytes_to_num(bufp+8, 1);
818
819 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
820 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
821 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
822 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
823
8ce3e4b4 824 if (nonce_file_write) {
825 fwrite(bufp, 1, 9, fnonces);
826 }
827
828 bufp += 9;
829 }
830
831 total_num_nonces += num_acquired_nonces;
832 }
833
834 if (first_byte_num == 256 ) {
835 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
a531720a 836 if (!filter_flip_checked) {
837 Check_for_FilterFlipProperties();
838 filter_flip_checked = true;
839 }
8ce3e4b4 840 num_good_first_bytes = estimate_second_byte_sum();
841 if (total_num_nonces > next_fivehundred) {
842 next_fivehundred = (total_num_nonces/500+1) * 500;
843 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
844 total_num_nonces,
845 total_added_nonces,
846 CONFIDENCE_THRESHOLD * 100.0,
847 num_good_first_bytes);
057d2e91
GG
848
849 if (total_added_nonces > (2500*idx)) {
850 clock_t time1 = clock();
851 field_off = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
852 time1 = clock() - time1;
853 if ( time1 > 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
854 if (known_target_key != -1) brute_force();
855 idx++;
856 }
8ce3e4b4 857 }
858 if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
859 field_off = true; // switch off field with next SendCommand and then finish
860 }
057d2e91
GG
861
862 if (field_off) {
863 field_off = finished = brute_force();
864 }
8ce3e4b4 865 }
866
867 if (!initialize) {
1a4b6738 868 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
869 fclose(fnonces);
870 return 1;
871 }
872 if (resp.arg[0]) {
873 fclose(fnonces);
874 return resp.arg[0]; // error during nested_hard
875 }
8ce3e4b4 876 }
877
878 initialize = false;
879
880 } while (!finished);
881
882
883 if (nonce_file_write) {
884 fclose(fnonces);
885 }
886
b112787d 887 time1 = clock() - time1;
888 if ( time1 > 0 ) {
81ba7ee8 889 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
890 total_num_nonces,
891 ((float)time1)/CLOCKS_PER_SEC,
892 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
b112787d 893 );
894 }
8ce3e4b4 895 return 0;
896}
897
8ce3e4b4 898static int init_partial_statelists(void)
899{
f8ada309 900 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
8ce3e4b4 901 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
902
903 printf("Allocating memory for partial statelists...\n");
904 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
905 for (uint16_t i = 0; i <= 16; i+=2) {
906 partial_statelist[i].len[odd_even] = 0;
907 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
908 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
909 if (partial_statelist[i].states[odd_even] == NULL) {
910 PrintAndLog("Cannot allocate enough memory. Aborting");
911 return 4;
912 }
913 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
914 partial_statelist[i].index[odd_even][j] = NULL;
915 }
916 }
917 }
918
919 printf("Generating partial statelists...\n");
920 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
921 uint32_t index = -1;
922 uint32_t num_of_states = 1<<20;
923 for (uint32_t state = 0; state < num_of_states; state++) {
924 uint16_t sum_property = PartialSumProperty(state, odd_even);
925 uint32_t *p = partial_statelist[sum_property].states[odd_even];
926 p += partial_statelist[sum_property].len[odd_even];
927 *p = state;
928 partial_statelist[sum_property].len[odd_even]++;
929 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
930 if ((state & index_mask) != index) {
931 index = state & index_mask;
932 }
933 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
934 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
935 }
936 }
937 // add End Of List markers
938 for (uint16_t i = 0; i <= 16; i += 2) {
939 uint32_t *p = partial_statelist[i].states[odd_even];
940 p += partial_statelist[i].len[odd_even];
81ba7ee8 941 *p = END_OF_LIST_MARKER;
8ce3e4b4 942 }
943 }
944
945 return 0;
946}
8ce3e4b4 947
948static void init_BitFlip_statelist(void)
949{
950 printf("Generating bitflip statelist...\n");
951 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
952 uint32_t index = -1;
953 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
954 for (uint32_t state = 0; state < (1 << 20); state++) {
955 if (filter(state) != filter(state^1)) {
956 if ((state & index_mask) != index) {
957 index = state & index_mask;
958 }
959 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
960 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
961 }
962 *p++ = state;
963 }
964 }
965 // set len and add End Of List marker
966 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
81ba7ee8 967 *p = END_OF_LIST_MARKER;
8ce3e4b4 968 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
969}
8ce3e4b4 970
a531720a 971static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 972{
973 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
974
975 if (p == NULL) return NULL;
a531720a 976 while (*p < (state & mask)) p++;
81ba7ee8 977 if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match
8ce3e4b4 978 if ((*p & mask) == (state & mask)) return p; // found a match.
979 return NULL; // no match
980}
981
a531720a 982static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 983{
a531720a 984 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
985 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
986 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
987 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
988 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
989 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
990 return !all_diff;
991}
992
a531720a 993static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
994{
995 uint_fast8_t j_bit_mask = 0x01 << bit;
996 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
997 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
998 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
999 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
1000 return all_diff;
1001}
1002
a531720a 1003static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
1004{
1005 if (odd_even) {
1006 // odd bits
1007 switch (num_common_bits) {
1008 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
1009 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
1010 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
1011 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
1012 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
1013 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
1014 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
1015 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 1016 }
a531720a 1017 } else {
1018 // even bits
1019 switch (num_common_bits) {
1020 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1021 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1022 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1023 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1024 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1025 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1026 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1027 }
8ce3e4b4 1028 }
1029
1030 return true; // valid state
1031}
1032
8ce3e4b4 1033static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1034{
1035 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1036 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1037 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1038 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1039 uint32_t mask = 0xfffffff0;
1040 if (odd_even == ODD_STATE) {
a531720a 1041 mask >>= j/2;
8ce3e4b4 1042 } else {
a531720a 1043 mask >>= (j+1)/2;
8ce3e4b4 1044 }
1045 mask &= 0x000fffff;
1046 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1047 bool found_match = false;
1048 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1049 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1050 if (r*(16-s) + (16-r)*s == sum_a8) {
1051 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1052 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1053 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1054 if (p != NULL) {
81ba7ee8 1055 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1056 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1057 found_match = true;
1058 // if ((odd_even == ODD_STATE && state == test_state_odd)
1059 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1060 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1061 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1062 // }
1063 break;
1064 } else {
1065 // if ((odd_even == ODD_STATE && state == test_state_odd)
1066 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1067 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1068 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1069 // }
1070 }
1071 p++;
1072 }
1073 } else {
1074 // if ((odd_even == ODD_STATE && state == test_state_odd)
1075 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1076 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1077 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1078 // }
1079 }
1080 }
1081 }
1082 }
1083
1084 if (!found_match) {
1085 // if ((odd_even == ODD_STATE && state == test_state_odd)
1086 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1087 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1088 // }
1089 return false;
1090 }
1091 }
1092
1093 return true;
1094}
1095
f8ada309 1096static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1097{
1098 for (uint16_t i = 0; i < 256; i++) {
1099 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1100 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1101 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1102 uint32_t mask = 0xfffffff0;
1103 if (odd_even == ODD_STATE) {
a531720a 1104 mask >>= j/2;
f8ada309 1105 } else {
a531720a 1106 mask >>= (j+1)/2;
f8ada309 1107 }
1108 mask &= 0x000fffff;
1109 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1110 bool found_match = false;
1111 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1112 if (p != NULL) {
81ba7ee8 1113 while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) {
a531720a 1114 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1115 found_match = true;
1116 // if ((odd_even == ODD_STATE && state == test_state_odd)
1117 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1118 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1119 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1120 // }
1121 break;
1122 } else {
1123 // if ((odd_even == ODD_STATE && state == test_state_odd)
1124 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1125 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1126 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1127 // }
1128 }
1129 p++;
1130 }
1131 } else {
1132 // if ((odd_even == ODD_STATE && state == test_state_odd)
1133 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1134 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1135 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1136 // }
1137 }
1138 if (!found_match) {
1139 // if ((odd_even == ODD_STATE && state == test_state_odd)
1140 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1141 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1142 // }
1143 return false;
1144 }
1145 }
1146
1147 }
1148
1149 return true;
1150}
1151
a531720a 1152static struct sl_cache_entry {
1153 uint32_t *sl;
1154 uint32_t len;
1155 } sl_cache[17][17][2];
1156
a531720a 1157static void init_statelist_cache(void)
1158{
a531720a 1159 for (uint16_t i = 0; i < 17; i+=2) {
1160 for (uint16_t j = 0; j < 17; j+=2) {
1161 for (uint16_t k = 0; k < 2; k++) {
1162 sl_cache[i][j][k].sl = NULL;
1163 sl_cache[i][j][k].len = 0;
1164 }
1165 }
1166 }
1167}
1168
8ce3e4b4 1169static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1170{
1171 uint32_t worstcase_size = 1<<20;
1172
a531720a 1173 // check cache for existing results
1174 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1175 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1176 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1177 return 0;
1178 }
1179
8ce3e4b4 1180 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1181 if (candidates->states[odd_even] == NULL) {
1182 PrintAndLog("Out of memory error.\n");
1183 return 4;
1184 }
a531720a 1185 uint32_t *add_p = candidates->states[odd_even];
81ba7ee8 1186 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) {
8ce3e4b4 1187 uint32_t search_mask = 0x000ffff0;
1188 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1189 if (p2 != NULL) {
81ba7ee8 1190 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) {
a531720a 1191 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1192 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1193 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1194 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1195 *add_p++ = (*p1 << 4) | *p2;
1196 }
8ce3e4b4 1197 }
f8ada309 1198 }
8ce3e4b4 1199 p2++;
1200 }
1201 }
8ce3e4b4 1202 }
f8ada309 1203
a531720a 1204 // set end of list marker and len
81ba7ee8 1205 *add_p = END_OF_LIST_MARKER;
a531720a 1206 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1207
8ce3e4b4 1208 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1209
a531720a 1210 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1211 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1212
8ce3e4b4 1213 return 0;
1214}
1215
8ce3e4b4 1216static statelist_t *add_more_candidates(statelist_t *current_candidates)
1217{
1218 statelist_t *new_candidates = NULL;
1219 if (current_candidates == NULL) {
1220 if (candidates == NULL) {
1221 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1222 }
1223 new_candidates = candidates;
1224 } else {
1225 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1226 }
1227 new_candidates->next = NULL;
1228 new_candidates->len[ODD_STATE] = 0;
1229 new_candidates->len[EVEN_STATE] = 0;
1230 new_candidates->states[ODD_STATE] = NULL;
1231 new_candidates->states[EVEN_STATE] = NULL;
1232 return new_candidates;
1233}
1234
057d2e91 1235static bool TestIfKeyExists(uint64_t key)
8ce3e4b4 1236{
1237 struct Crypto1State *pcs;
1238 pcs = crypto1_create(key);
1239 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1240
1241 uint32_t state_odd = pcs->odd & 0x00ffffff;
1242 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1243 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
8ce3e4b4 1244
f8ada309 1245 uint64_t count = 0;
8ce3e4b4 1246 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1247 bool found_odd = false;
1248 bool found_even = false;
8ce3e4b4 1249 uint32_t *p_odd = p->states[ODD_STATE];
1250 uint32_t *p_even = p->states[EVEN_STATE];
81ba7ee8 1251 while (*p_odd != END_OF_LIST_MARKER) {
f8ada309 1252 if ((*p_odd & 0x00ffffff) == state_odd) {
1253 found_odd = true;
1254 break;
1255 }
8ce3e4b4 1256 p_odd++;
1257 }
81ba7ee8 1258 while (*p_even != END_OF_LIST_MARKER) {
f8ada309 1259 if ((*p_even & 0x00ffffff) == state_even) {
1260 found_even = true;
1261 }
8ce3e4b4 1262 p_even++;
1263 }
f8ada309 1264 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1265 if (found_odd && found_even) {
81ba7ee8 1266 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. ",
1267 count,
1268 log(count)/log(2),
1269 maximum_states,
1270 log(maximum_states)/log(2)
1271 );
0d5ee8e2 1272 if (write_stats) {
1273 fprintf(fstats, "1\n");
1274 }
f8ada309 1275 crypto1_destroy(pcs);
057d2e91 1276 return true;
f8ada309 1277 }
8ce3e4b4 1278 }
f8ada309 1279
1280 printf("Key NOT found!\n");
0d5ee8e2 1281 if (write_stats) {
1282 fprintf(fstats, "0\n");
1283 }
8ce3e4b4 1284 crypto1_destroy(pcs);
057d2e91
GG
1285
1286 return false;
8ce3e4b4 1287}
1288
057d2e91 1289static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
8ce3e4b4 1290{
1291 printf("Generating crypto1 state candidates... \n");
1292
1293 statelist_t *current_candidates = NULL;
1294 // estimate maximum candidate states
f8ada309 1295 maximum_states = 0;
8ce3e4b4 1296 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1297 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1298 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1299 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1300 }
1301 }
1302 }
057d2e91 1303
5e32cf75 1304 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
8ce3e4b4 1305
a531720a 1306 init_statelist_cache();
1307
8ce3e4b4 1308 for (uint16_t p = 0; p <= 16; p += 2) {
1309 for (uint16_t q = 0; q <= 16; q += 2) {
1310 if (p*(16-q) + (16-p)*q == sum_a0) {
1311 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1312 p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1313 for (uint16_t r = 0; r <= 16; r += 2) {
1314 for (uint16_t s = 0; s <= 16; s += 2) {
1315 if (r*(16-s) + (16-r)*s == sum_a8) {
1316 current_candidates = add_more_candidates(current_candidates);
a531720a 1317 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1318 // and eliminate the need to calculate the other part
1319 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1320 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
8ce3e4b4 1321 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1322 if(current_candidates->len[ODD_STATE]) {
8ce3e4b4 1323 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1324 } else {
1325 current_candidates->len[EVEN_STATE] = 0;
1326 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1327 *p = END_OF_LIST_MARKER;
a531720a 1328 }
1329 } else {
1330 add_matching_states(current_candidates, q, s, EVEN_STATE);
1331 if(current_candidates->len[EVEN_STATE]) {
1332 add_matching_states(current_candidates, p, r, ODD_STATE);
1333 } else {
1334 current_candidates->len[ODD_STATE] = 0;
1335 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
81ba7ee8 1336 *p = END_OF_LIST_MARKER;
a531720a 1337 }
1338 }
1c38049b 1339 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1340 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1341 }
1342 }
1343 }
1344 }
1345 }
1346 }
1347
8ce3e4b4 1348 maximum_states = 0;
1349 for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
1350 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1351 }
057d2e91
GG
1352 float kcalc = log(maximum_states)/log(2.0);
1353 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
0d5ee8e2 1354 if (write_stats) {
1355 if (maximum_states != 0) {
057d2e91 1356 fprintf(fstats, "%1.1f;", kcalc);
0d5ee8e2 1357 } else {
1358 fprintf(fstats, "%1.1f;", 0.0);
1359 }
1360 }
057d2e91
GG
1361 if (kcalc < 39.00f) return true;
1362
1363 return false;
0d5ee8e2 1364}
1365
0d5ee8e2 1366static void free_candidates_memory(statelist_t *sl)
1367{
1368 if (sl == NULL) {
1369 return;
1370 } else {
1371 free_candidates_memory(sl->next);
1372 free(sl);
1373 }
1374}
1375
0d5ee8e2 1376static void free_statelist_cache(void)
1377{
1378 for (uint16_t i = 0; i < 17; i+=2) {
1379 for (uint16_t j = 0; j < 17; j+=2) {
1380 for (uint16_t k = 0; k < 2; k++) {
1381 free(sl_cache[i][j][k].sl);
1382 }
1383 }
1384 }
8ce3e4b4 1385}
1386
45c0c48c 1387uint64_t foundkey = 0;
3130ba4b 1388size_t keys_found = 0;
1389size_t bucket_count = 0;
1390statelist_t* buckets[128];
1391size_t total_states_tested = 0;
1392size_t thread_count = 4;
1393
1394// these bitsliced states will hold identical states in all slices
1395bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1396
1397// arrays of bitsliced states with identical values in all slices
1398bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1399bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1400
1401#define EXACT_COUNT
1402
1403static const uint64_t crack_states_bitsliced(statelist_t *p){
1404 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1405 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1406 uint64_t key = -1;
1407 uint8_t bSize = sizeof(bitslice_t);
1408
1409#ifdef EXACT_COUNT
1410 size_t bucket_states_tested = 0;
1411 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1412#else
1413 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1414#endif
1415
1416 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1417 size_t bitsliced_blocks = 0;
1418 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1419
1420 // bitslice all the even states
1421 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1422
1423#ifdef __WIN32
1424 #ifdef __MINGW32__
1425 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1426 #else
1427 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1428 #endif
1429#else
b01e7d20 1430 #ifdef __APPLE__
9d590832 1431 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1432 #else
3130ba4b 1433 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1434 #endif
3130ba4b 1435#endif
1436
1437 if ( !lstate_p ) {
1438 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1439 return key;
1440 }
1441
1442 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1443
1444 // bitslice even half-states
1445 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1446#ifdef EXACT_COUNT
1447 bucket_size[bitsliced_blocks] = max_slices;
1448#endif
1449 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1450 uint32_t e = *(p_even+slice_idx);
1451 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1452 // set even bits
1453 if(e&1){
1454 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1455 }
1456 }
1457 }
1458 // compute the rollback bits
1459 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1460 // inlined crypto1_bs_lfsr_rollback
1461 const bitslice_value_t feedout = lstate_p[0].value;
1462 ++lstate_p;
1463 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1464 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1465 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1466 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1467 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1468 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1469 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1470 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1471 }
1472 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1473 }
1474
1475 // bitslice every odd state to every block of even half-states with half-finished rollback
1476 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1477 // early abort
1478 if(keys_found){
1479 goto out;
1480 }
1481
1482 // set the odd bits and compute rollback
1483 uint64_t o = (uint64_t) *p_odd;
1484 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1485 // pre-compute part of the odd feedback bits (minus rollback)
1486 bool odd_feedback_bit = parity(o&0x9ce5c);
1487
1488 crypto1_bs_rewind_a0();
1489 // set odd bits
1490 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1491 if(o & 1){
1492 state_p[state_idx] = bs_ones;
1493 } else {
1494 state_p[state_idx] = bs_zeroes;
1495 }
1496 }
1497 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1498
1499 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
057d2e91 1500 bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
3130ba4b 1501 size_t state_idx;
1502 // set even bits
1503 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1504 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1505 }
1506 // set rollback bits
1507 uint64_t lo = o;
1508 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1509 // set the odd bits and take in the odd rollback bits from the even states
1510 if(lo & 1){
1511 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1512 } else {
1513 state_p[state_idx] = bitsliced_even_state[state_idx];
1514 }
1515
1516 // set the even bits and take in the even rollback bits from the odd states
1517 if((lo >> 32) & 1){
1518 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1519 } else {
1520 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1521 }
1522 }
1523
1524#ifdef EXACT_COUNT
1525 bucket_states_tested += bucket_size[block_idx];
1526#endif
1527 // pre-compute first keystream and feedback bit vectors
1528 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1529 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1530 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1531 state_p[47-24].value ^ state_p[47-42].value);
1532
1533 // vector to contain test results (1 = passed, 0 = failed)
1534 bitslice_t results = bs_ones;
1535
1536 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1537 size_t parity_bit_idx = 0;
1538 bitslice_value_t fb_bits = fbb;
1539 bitslice_value_t ks_bits = ksb;
1540 state_p = &states[KEYSTREAM_SIZE-1];
1541 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1542
1543 // highest bit is transmitted/received first
1544 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1545 // decrypt nonce bits
1546 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1547 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1548
1549 // compute real parity bits on the fly
1550 parity_bit_vector ^= decrypted_nonce_bit_vector;
1551
1552 // update state
1553 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1554
1555 // compute next keystream bit
1556 ks_bits = crypto1_bs_f20(state_p);
1557
1558 // for each byte:
1559 if((ks_idx&7) == 0){
1560 // get encrypted parity bits
1561 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1562
1563 // decrypt parity bits
1564 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1565
1566 // compare actual parity bits with decrypted parity bits and take count in results vector
1567 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1568
1569 // make sure we still have a match in our set
1570 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1571
1572 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1573 // the short-circuiting also helps
1574 if(results.bytes64[0] == 0
1575#if MAX_BITSLICES > 64
1576 && results.bytes64[1] == 0
1577#endif
1578#if MAX_BITSLICES > 128
1579 && results.bytes64[2] == 0
1580 && results.bytes64[3] == 0
1581#endif
1582 ){
1583 goto stop_tests;
1584 }
1585 // this is about as fast but less portable (requires -std=gnu99)
1586 // asm goto ("ptest %1, %0\n\t"
1587 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1588 parity_bit_vector = bs_zeroes.value;
1589 }
1590 // compute next feedback bit vector
1591 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1592 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1593 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1594 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1595 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1596 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1597 }
1598 }
1599 // all nonce tests were successful: we've found the key in this block!
1600 state_t keys[MAX_BITSLICES];
1601 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1602 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1603 if(get_vector_bit(results_idx, results)){
1604 key = keys[results_idx].value;
1605 goto out;
1606 }
1607 }
1608stop_tests:
1609 // prepare to set new states
1610 crypto1_bs_rewind_a0();
1611 continue;
1612 }
1613 }
1614
1615out:
1616 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1617
1618#ifdef __WIN32
1619 #ifdef __MINGW32__
1620 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1621 #else
1622 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1623 #endif
1624#else
2e350b19 1625 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1626#endif
1627
1628 }
1629 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1630 return key;
1631}
8ce3e4b4 1632
3130ba4b 1633static void* crack_states_thread(void* x){
1634 const size_t thread_id = (size_t)x;
1635 size_t current_bucket = thread_id;
1636 while(current_bucket < bucket_count){
1637 statelist_t * bucket = buckets[current_bucket];
1638 if(bucket){
1639 const uint64_t key = crack_states_bitsliced(bucket);
1640 if(key != -1){
3130ba4b 1641 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1642 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1643 break;
1644 } else if(keys_found){
1645 break;
1646 } else {
1647 printf(".");
1648 fflush(stdout);
1649 }
1650 }
1651 current_bucket += thread_count;
1652 }
1653 return NULL;
1654}
cd777a05 1655
057d2e91 1656static bool brute_force(void)
8ce3e4b4 1657{
057d2e91 1658 bool ret = false;
f8ada309 1659 if (known_target_key != -1) {
1660 PrintAndLog("Looking for known target key in remaining key space...");
057d2e91 1661 ret = TestIfKeyExists(known_target_key);
f8ada309 1662 } else {
057d2e91
GG
1663 PrintAndLog("Brute force phase starting.");
1664 time_t start, end;
1665 time(&start);
1666 keys_found = 0;
ddaecc08 1667 foundkey = 0;
3130ba4b 1668
057d2e91
GG
1669 crypto1_bs_init();
1670
1671 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
1672 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
1673 // convert to 32 bit little-endian
ed69e099 1674 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
057d2e91
GG
1675
1676 PrintAndLog("Bitslicing nonces...");
1677 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1678 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1679 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1680 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1681 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1682 // convert to 32 bit little-endian
1683 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1684 }
057d2e91 1685 total_states_tested = 0;
3130ba4b 1686
057d2e91
GG
1687 // count number of states to go
1688 bucket_count = 0;
1689 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1690 buckets[bucket_count] = p;
1691 bucket_count++;
1692 }
3130ba4b 1693
1694#ifndef __WIN32
057d2e91 1695 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1696 if ( thread_count < 1)
1697 thread_count = 1;
3130ba4b 1698#endif /* _WIN32 */
fd3be901 1699
057d2e91 1700 pthread_t threads[thread_count];
3130ba4b 1701
057d2e91
GG
1702 // enumerate states using all hardware threads, each thread handles one bucket
1703 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
56d0fb8e 1704
057d2e91
GG
1705 for(size_t i = 0; i < thread_count; i++){
1706 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1707 }
1708 for(size_t i = 0; i < thread_count; i++){
1709 pthread_join(threads[i], 0);
1710 }
1711
1712 time(&end);
1713 double elapsed_time = difftime(end, start);
1714
1715 if(keys_found){
1e2bb9c9 1716 PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time);
45c0c48c 1717 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
057d2e91
GG
1718 known_target_key = foundkey;
1719
1720 ret = TestIfKeyExists(known_target_key);
1721
1722 PrintAndLog("Check if key is found in the keyspace: %d", ret);
1723
1724 ret = true;
1725 } else {
1e2bb9c9 1726 PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time);
21d359f6 1727 }
057d2e91
GG
1728
1729 // reset this counter for the next call
1730 nonces_to_bruteforce = 0;
f8ada309 1731 }
057d2e91
GG
1732
1733 return ret;
f8ada309 1734}
1735
0d5ee8e2 1736int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1737{
0d5ee8e2 1738 // initialize Random number generator
1739 time_t t;
1740 srand((unsigned) time(&t));
1741
f8ada309 1742 if (trgkey != NULL) {
1743 known_target_key = bytes_to_num(trgkey, 6);
1744 } else {
1745 known_target_key = -1;
1746 }
8ce3e4b4 1747
8ce3e4b4 1748 init_partial_statelists();
1749 init_BitFlip_statelist();
0d5ee8e2 1750 write_stats = false;
8ce3e4b4 1751
0d5ee8e2 1752 if (tests) {
1753 // set the correct locale for the stats printing
1754 setlocale(LC_ALL, "");
1755 write_stats = true;
1756 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1757 PrintAndLog("Could not create/open file hardnested_stats.txt");
1758 return 3;
1759 }
1760 for (uint32_t i = 0; i < tests; i++) {
1761 init_nonce_memory();
1762 simulate_acquire_nonces();
1763 Tests();
1764 printf("Sum(a0) = %d\n", first_byte_Sum);
1765 fprintf(fstats, "%d;", first_byte_Sum);
1766 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1767 brute_force();
1768 free_nonces_memory();
1769 free_statelist_cache();
1770 free_candidates_memory(candidates);
1771 candidates = NULL;
1772 }
1773 fclose(fstats);
1774 } else {
1775 init_nonce_memory();
b112787d 1776 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
1777 if (read_nonce_file() != 0) {
1778 return 3;
1779 }
1780 Check_for_FilterFlipProperties();
1781 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
1782 } else { // acquire nonces.
1783 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1784 if (is_OK != 0) {
1785 return is_OK;
1786 }
8ce3e4b4 1787 }
8ce3e4b4 1788
45c0c48c 1789 //Tests();
b112787d 1790
9d590832 1791 //PrintAndLog("");
1792 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
b112787d 1793 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1794 // best_first_bytes[0],
1795 // best_first_bytes[1],
1796 // best_first_bytes[2],
1797 // best_first_bytes[3],
1798 // best_first_bytes[4],
1799 // best_first_bytes[5],
1800 // best_first_bytes[6],
1801 // best_first_bytes[7],
1802 // best_first_bytes[8],
1803 // best_first_bytes[9] );
b112787d 1804
057d2e91
GG
1805 //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1806
1807 //clock_t time1 = clock();
1808 //generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1809 //time1 = clock() - time1;
1810 //if ( time1 > 0 )
1811 //PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
1812
1813 //brute_force();
1814
b112787d 1815 free_nonces_memory();
1816 free_statelist_cache();
1817 free_candidates_memory(candidates);
1818 candidates = NULL;
057d2e91 1819 }
8ce3e4b4 1820 return 0;
1821}
1822
1823
Impressum, Datenschutz