Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
b62a5a84 | 2 | // Merlok - June 2011, 2012 |
15c4dc5a | 3 | // Gerhard de Koning Gans - May 2008 |
534983d7 | 4 | // Hagen Fritsch - June 2010 |
bd20f8f4 | 5 | // |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
15c4dc5a | 9 | //----------------------------------------------------------------------------- |
bd20f8f4 | 10 | // Routines to support ISO 14443 type A. |
11 | //----------------------------------------------------------------------------- | |
12 | ||
e30c654b | 13 | #include "proxmark3.h" |
15c4dc5a | 14 | #include "apps.h" |
f7e3ed82 | 15 | #include "util.h" |
9ab7a6c7 | 16 | #include "string.h" |
902cb3c0 | 17 | #include "cmd.h" |
9ab7a6c7 | 18 | |
15c4dc5a | 19 | #include "iso14443crc.h" |
534983d7 | 20 | #include "iso14443a.h" |
20f9a2a1 M |
21 | #include "crapto1.h" |
22 | #include "mifareutil.h" | |
15c4dc5a | 23 | |
534983d7 | 24 | static uint32_t iso14a_timeout; |
1e262141 | 25 | int rsamples = 0; |
26 | int tracing = TRUE; | |
27 | uint8_t trigger = 0; | |
b0127e65 | 28 | // the block number for the ISO14443-4 PCB |
29 | static uint8_t iso14_pcb_blocknum = 0; | |
15c4dc5a | 30 | |
7bc95e2e | 31 | // |
32 | // ISO14443 timing: | |
33 | // | |
34 | // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles | |
35 | #define REQUEST_GUARD_TIME (7000/16 + 1) | |
36 | // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles | |
37 | #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) | |
38 | // bool LastCommandWasRequest = FALSE; | |
39 | ||
40 | // | |
41 | // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) | |
42 | // | |
d714d3ef | 43 | // When the PM acts as reader and is receiving tag data, it takes |
44 | // 3 ticks delay in the AD converter | |
45 | // 16 ticks until the modulation detector completes and sets curbit | |
46 | // 8 ticks until bit_to_arm is assigned from curbit | |
47 | // 8*16 ticks for the transfer from FPGA to ARM | |
7bc95e2e | 48 | // 4*16 ticks until we measure the time |
49 | // - 8*16 ticks because we measure the time of the previous transfer | |
d714d3ef | 50 | #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) |
7bc95e2e | 51 | |
52 | // When the PM acts as a reader and is sending, it takes | |
53 | // 4*16 ticks until we can write data to the sending hold register | |
54 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register | |
55 | // 8 ticks until the first transfer starts | |
56 | // 8 ticks later the FPGA samples the data | |
57 | // 1 tick to assign mod_sig_coil | |
58 | #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) | |
59 | ||
60 | // When the PM acts as tag and is receiving it takes | |
d714d3ef | 61 | // 2 ticks delay in the RF part (for the first falling edge), |
7bc95e2e | 62 | // 3 ticks for the A/D conversion, |
63 | // 8 ticks on average until the start of the SSC transfer, | |
64 | // 8 ticks until the SSC samples the first data | |
65 | // 7*16 ticks to complete the transfer from FPGA to ARM | |
66 | // 8 ticks until the next ssp_clk rising edge | |
d714d3ef | 67 | // 4*16 ticks until we measure the time |
7bc95e2e | 68 | // - 8*16 ticks because we measure the time of the previous transfer |
d714d3ef | 69 | #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) |
7bc95e2e | 70 | |
71 | // The FPGA will report its internal sending delay in | |
72 | uint16_t FpgaSendQueueDelay; | |
73 | // the 5 first bits are the number of bits buffered in mod_sig_buf | |
74 | // the last three bits are the remaining ticks/2 after the mod_sig_buf shift | |
75 | #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) | |
76 | ||
77 | // When the PM acts as tag and is sending, it takes | |
d714d3ef | 78 | // 4*16 ticks until we can write data to the sending hold register |
7bc95e2e | 79 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register |
80 | // 8 ticks until the first transfer starts | |
81 | // 8 ticks later the FPGA samples the data | |
82 | // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) | |
83 | // + 1 tick to assign mod_sig_coil | |
d714d3ef | 84 | #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1) |
7bc95e2e | 85 | |
86 | // When the PM acts as sniffer and is receiving tag data, it takes | |
87 | // 3 ticks A/D conversion | |
d714d3ef | 88 | // 14 ticks to complete the modulation detection |
89 | // 8 ticks (on average) until the result is stored in to_arm | |
7bc95e2e | 90 | // + the delays in transferring data - which is the same for |
91 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 92 | #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) |
7bc95e2e | 93 | |
d714d3ef | 94 | // When the PM acts as sniffer and is receiving reader data, it takes |
95 | // 2 ticks delay in analogue RF receiver (for the falling edge of the | |
96 | // start bit, which marks the start of the communication) | |
7bc95e2e | 97 | // 3 ticks A/D conversion |
d714d3ef | 98 | // 8 ticks on average until the data is stored in to_arm. |
7bc95e2e | 99 | // + the delays in transferring data - which is the same for |
100 | // sniffing reader and tag data and therefore not relevant | |
d714d3ef | 101 | #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) |
7bc95e2e | 102 | |
103 | //variables used for timing purposes: | |
104 | //these are in ssp_clk cycles: | |
6a1f2d82 | 105 | static uint32_t NextTransferTime; |
106 | static uint32_t LastTimeProxToAirStart; | |
107 | static uint32_t LastProxToAirDuration; | |
7bc95e2e | 108 | |
109 | ||
110 | ||
8f51ddb0 | 111 | // CARD TO READER - manchester |
72934aa3 | 112 | // Sequence D: 11110000 modulation with subcarrier during first half |
113 | // Sequence E: 00001111 modulation with subcarrier during second half | |
114 | // Sequence F: 00000000 no modulation with subcarrier | |
8f51ddb0 | 115 | // READER TO CARD - miller |
72934aa3 | 116 | // Sequence X: 00001100 drop after half a period |
117 | // Sequence Y: 00000000 no drop | |
118 | // Sequence Z: 11000000 drop at start | |
119 | #define SEC_D 0xf0 | |
120 | #define SEC_E 0x0f | |
121 | #define SEC_F 0x00 | |
122 | #define SEC_X 0x0c | |
123 | #define SEC_Y 0x00 | |
124 | #define SEC_Z 0xc0 | |
15c4dc5a | 125 | |
1e262141 | 126 | const uint8_t OddByteParity[256] = { |
15c4dc5a | 127 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, |
128 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
129 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
130 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
131 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
132 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
133 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
134 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
135 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
136 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
137 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
138 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
139 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
140 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
141 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
142 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
143 | }; | |
144 | ||
902cb3c0 | 145 | void iso14a_set_trigger(bool enable) { |
534983d7 | 146 | trigger = enable; |
147 | } | |
148 | ||
902cb3c0 | 149 | void iso14a_clear_trace() { |
117d9ec2 | 150 | uint8_t *trace = BigBuf_get_addr(); |
f71f4deb | 151 | uint16_t max_traceLen = BigBuf_max_traceLen(); |
152 | memset(trace, 0x44, max_traceLen); | |
8556b852 M |
153 | traceLen = 0; |
154 | } | |
d19929cb | 155 | |
902cb3c0 | 156 | void iso14a_set_tracing(bool enable) { |
8556b852 M |
157 | tracing = enable; |
158 | } | |
d19929cb | 159 | |
b0127e65 | 160 | void iso14a_set_timeout(uint32_t timeout) { |
161 | iso14a_timeout = timeout; | |
162 | } | |
8556b852 | 163 | |
15c4dc5a | 164 | //----------------------------------------------------------------------------- |
165 | // Generate the parity value for a byte sequence | |
e30c654b | 166 | // |
15c4dc5a | 167 | //----------------------------------------------------------------------------- |
20f9a2a1 M |
168 | byte_t oddparity (const byte_t bt) |
169 | { | |
5f6d6c90 | 170 | return OddByteParity[bt]; |
20f9a2a1 M |
171 | } |
172 | ||
6a1f2d82 | 173 | void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) |
15c4dc5a | 174 | { |
6a1f2d82 | 175 | uint16_t paritybit_cnt = 0; |
176 | uint16_t paritybyte_cnt = 0; | |
177 | uint8_t parityBits = 0; | |
178 | ||
179 | for (uint16_t i = 0; i < iLen; i++) { | |
180 | // Generate the parity bits | |
181 | parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); | |
182 | if (paritybit_cnt == 7) { | |
183 | par[paritybyte_cnt] = parityBits; // save 8 Bits parity | |
184 | parityBits = 0; // and advance to next Parity Byte | |
185 | paritybyte_cnt++; | |
186 | paritybit_cnt = 0; | |
187 | } else { | |
188 | paritybit_cnt++; | |
189 | } | |
5f6d6c90 | 190 | } |
6a1f2d82 | 191 | |
192 | // save remaining parity bits | |
193 | par[paritybyte_cnt] = parityBits; | |
194 | ||
15c4dc5a | 195 | } |
196 | ||
534983d7 | 197 | void AppendCrc14443a(uint8_t* data, int len) |
15c4dc5a | 198 | { |
5f6d6c90 | 199 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); |
15c4dc5a | 200 | } |
201 | ||
1e262141 | 202 | // The function LogTrace() is also used by the iClass implementation in iClass.c |
6a1f2d82 | 203 | bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_start, uint32_t timestamp_end, uint8_t *parity, bool readerToTag) |
15c4dc5a | 204 | { |
fdcd43eb | 205 | if (!tracing) return FALSE; |
6a1f2d82 | 206 | |
117d9ec2 | 207 | uint8_t *trace = BigBuf_get_addr(); |
6a1f2d82 | 208 | uint16_t num_paritybytes = (iLen-1)/8 + 1; // number of valid paritybytes in *parity |
209 | uint16_t duration = timestamp_end - timestamp_start; | |
210 | ||
7bc95e2e | 211 | // Return when trace is full |
f71f4deb | 212 | uint16_t max_traceLen = BigBuf_max_traceLen(); |
213 | if (traceLen + sizeof(iLen) + sizeof(timestamp_start) + sizeof(duration) + num_paritybytes + iLen >= max_traceLen) { | |
7bc95e2e | 214 | tracing = FALSE; // don't trace any more |
215 | return FALSE; | |
216 | } | |
217 | ||
6a1f2d82 | 218 | // Traceformat: |
219 | // 32 bits timestamp (little endian) | |
220 | // 16 bits duration (little endian) | |
221 | // 16 bits data length (little endian, Highest Bit used as readerToTag flag) | |
222 | // y Bytes data | |
223 | // x Bytes parity (one byte per 8 bytes data) | |
224 | ||
225 | // timestamp (start) | |
226 | trace[traceLen++] = ((timestamp_start >> 0) & 0xff); | |
227 | trace[traceLen++] = ((timestamp_start >> 8) & 0xff); | |
228 | trace[traceLen++] = ((timestamp_start >> 16) & 0xff); | |
229 | trace[traceLen++] = ((timestamp_start >> 24) & 0xff); | |
230 | ||
231 | // duration | |
232 | trace[traceLen++] = ((duration >> 0) & 0xff); | |
233 | trace[traceLen++] = ((duration >> 8) & 0xff); | |
234 | ||
235 | // data length | |
236 | trace[traceLen++] = ((iLen >> 0) & 0xff); | |
237 | trace[traceLen++] = ((iLen >> 8) & 0xff); | |
17cba269 | 238 | |
6a1f2d82 | 239 | // readerToTag flag |
17cba269 | 240 | if (!readerToTag) { |
7bc95e2e | 241 | trace[traceLen - 1] |= 0x80; |
242 | } | |
6a1f2d82 | 243 | |
244 | // data bytes | |
7bc95e2e | 245 | if (btBytes != NULL && iLen != 0) { |
246 | memcpy(trace + traceLen, btBytes, iLen); | |
247 | } | |
248 | traceLen += iLen; | |
6a1f2d82 | 249 | |
250 | // parity bytes | |
251 | if (parity != NULL && iLen != 0) { | |
252 | memcpy(trace + traceLen, parity, num_paritybytes); | |
253 | } | |
254 | traceLen += num_paritybytes; | |
255 | ||
7bc95e2e | 256 | return TRUE; |
15c4dc5a | 257 | } |
258 | ||
7bc95e2e | 259 | //============================================================================= |
260 | // ISO 14443 Type A - Miller decoder | |
261 | //============================================================================= | |
262 | // Basics: | |
263 | // This decoder is used when the PM3 acts as a tag. | |
264 | // The reader will generate "pauses" by temporarily switching of the field. | |
265 | // At the PM3 antenna we will therefore measure a modulated antenna voltage. | |
266 | // The FPGA does a comparison with a threshold and would deliver e.g.: | |
267 | // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... | |
268 | // The Miller decoder needs to identify the following sequences: | |
269 | // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") | |
270 | // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") | |
271 | // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") | |
272 | // Note 1: the bitstream may start at any time. We therefore need to sync. | |
273 | // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. | |
15c4dc5a | 274 | //----------------------------------------------------------------------------- |
b62a5a84 | 275 | static tUart Uart; |
15c4dc5a | 276 | |
d7aa3739 | 277 | // Lookup-Table to decide if 4 raw bits are a modulation. |
278 | // We accept two or three consecutive "0" in any position with the rest "1" | |
279 | const bool Mod_Miller_LUT[] = { | |
280 | TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, | |
281 | TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE | |
282 | }; | |
283 | #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x00F0) >> 4]) | |
284 | #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x000F)]) | |
285 | ||
7bc95e2e | 286 | void UartReset() |
15c4dc5a | 287 | { |
7bc95e2e | 288 | Uart.state = STATE_UNSYNCD; |
289 | Uart.bitCount = 0; | |
290 | Uart.len = 0; // number of decoded data bytes | |
6a1f2d82 | 291 | Uart.parityLen = 0; // number of decoded parity bytes |
7bc95e2e | 292 | Uart.shiftReg = 0; // shiftreg to hold decoded data bits |
6a1f2d82 | 293 | Uart.parityBits = 0; // holds 8 parity bits |
7bc95e2e | 294 | Uart.twoBits = 0x0000; // buffer for 2 Bits |
295 | Uart.highCnt = 0; | |
296 | Uart.startTime = 0; | |
297 | Uart.endTime = 0; | |
298 | } | |
15c4dc5a | 299 | |
6a1f2d82 | 300 | void UartInit(uint8_t *data, uint8_t *parity) |
301 | { | |
302 | Uart.output = data; | |
303 | Uart.parity = parity; | |
304 | UartReset(); | |
305 | } | |
d714d3ef | 306 | |
7bc95e2e | 307 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
308 | static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) | |
309 | { | |
15c4dc5a | 310 | |
7bc95e2e | 311 | Uart.twoBits = (Uart.twoBits << 8) | bit; |
312 | ||
313 | if (Uart.state == STATE_UNSYNCD) { // not yet synced | |
3fe4ff4f | 314 | |
7bc95e2e | 315 | if (Uart.highCnt < 7) { // wait for a stable unmodulated signal |
316 | if (Uart.twoBits == 0xffff) { | |
317 | Uart.highCnt++; | |
318 | } else { | |
319 | Uart.highCnt = 0; | |
15c4dc5a | 320 | } |
7bc95e2e | 321 | } else { |
322 | Uart.syncBit = 0xFFFF; // not set | |
323 | // look for 00xx1111 (the start bit) | |
324 | if ((Uart.twoBits & 0x6780) == 0x0780) Uart.syncBit = 7; | |
325 | else if ((Uart.twoBits & 0x33C0) == 0x03C0) Uart.syncBit = 6; | |
326 | else if ((Uart.twoBits & 0x19E0) == 0x01E0) Uart.syncBit = 5; | |
327 | else if ((Uart.twoBits & 0x0CF0) == 0x00F0) Uart.syncBit = 4; | |
328 | else if ((Uart.twoBits & 0x0678) == 0x0078) Uart.syncBit = 3; | |
329 | else if ((Uart.twoBits & 0x033C) == 0x003C) Uart.syncBit = 2; | |
330 | else if ((Uart.twoBits & 0x019E) == 0x001E) Uart.syncBit = 1; | |
331 | else if ((Uart.twoBits & 0x00CF) == 0x000F) Uart.syncBit = 0; | |
332 | if (Uart.syncBit != 0xFFFF) { | |
333 | Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); | |
334 | Uart.startTime -= Uart.syncBit; | |
d7aa3739 | 335 | Uart.endTime = Uart.startTime; |
7bc95e2e | 336 | Uart.state = STATE_START_OF_COMMUNICATION; |
15c4dc5a | 337 | } |
7bc95e2e | 338 | } |
15c4dc5a | 339 | |
7bc95e2e | 340 | } else { |
15c4dc5a | 341 | |
d7aa3739 | 342 | if (IsMillerModulationNibble1(Uart.twoBits >> Uart.syncBit)) { |
343 | if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation in both halves - error | |
344 | UartReset(); | |
345 | Uart.highCnt = 6; | |
346 | } else { // Modulation in first half = Sequence Z = logic "0" | |
7bc95e2e | 347 | if (Uart.state == STATE_MILLER_X) { // error - must not follow after X |
348 | UartReset(); | |
349 | Uart.highCnt = 6; | |
350 | } else { | |
351 | Uart.bitCount++; | |
352 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
353 | Uart.state = STATE_MILLER_Z; | |
354 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; | |
355 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
356 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
357 | Uart.parityBits <<= 1; // make room for the parity bit | |
358 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
359 | Uart.bitCount = 0; | |
360 | Uart.shiftReg = 0; | |
6a1f2d82 | 361 | if((Uart.len&0x0007) == 0) { // every 8 data bytes |
362 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
363 | Uart.parityBits = 0; | |
364 | } | |
15c4dc5a | 365 | } |
7bc95e2e | 366 | } |
d7aa3739 | 367 | } |
368 | } else { | |
369 | if (IsMillerModulationNibble2(Uart.twoBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" | |
7bc95e2e | 370 | Uart.bitCount++; |
371 | Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg | |
372 | Uart.state = STATE_MILLER_X; | |
373 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; | |
374 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
375 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
376 | Uart.parityBits <<= 1; // make room for the new parity bit | |
377 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
378 | Uart.bitCount = 0; | |
379 | Uart.shiftReg = 0; | |
6a1f2d82 | 380 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
381 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
382 | Uart.parityBits = 0; | |
383 | } | |
7bc95e2e | 384 | } |
d7aa3739 | 385 | } else { // no modulation in both halves - Sequence Y |
7bc95e2e | 386 | if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication |
15c4dc5a | 387 | Uart.state = STATE_UNSYNCD; |
6a1f2d82 | 388 | Uart.bitCount--; // last "0" was part of EOC sequence |
389 | Uart.shiftReg <<= 1; // drop it | |
390 | if(Uart.bitCount > 0) { // if we decoded some bits | |
391 | Uart.shiftReg >>= (9 - Uart.bitCount); // right align them | |
392 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output | |
393 | Uart.parityBits <<= 1; // add a (void) parity bit | |
394 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits | |
395 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it | |
396 | return TRUE; | |
397 | } else if (Uart.len & 0x0007) { // there are some parity bits to store | |
398 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits | |
399 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them | |
52bfb955 | 400 | } |
401 | if (Uart.len) { | |
6a1f2d82 | 402 | return TRUE; // we are finished with decoding the raw data sequence |
52bfb955 | 403 | } else { |
3fe4ff4f | 404 | UartReset(); // Nothing receiver - start over |
7bc95e2e | 405 | } |
15c4dc5a | 406 | } |
7bc95e2e | 407 | if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC |
408 | UartReset(); | |
409 | Uart.highCnt = 6; | |
410 | } else { // a logic "0" | |
411 | Uart.bitCount++; | |
412 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
413 | Uart.state = STATE_MILLER_Y; | |
414 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
415 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
416 | Uart.parityBits <<= 1; // make room for the parity bit | |
417 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
418 | Uart.bitCount = 0; | |
419 | Uart.shiftReg = 0; | |
6a1f2d82 | 420 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes |
421 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
422 | Uart.parityBits = 0; | |
423 | } | |
15c4dc5a | 424 | } |
425 | } | |
d7aa3739 | 426 | } |
15c4dc5a | 427 | } |
7bc95e2e | 428 | |
429 | } | |
15c4dc5a | 430 | |
7bc95e2e | 431 | return FALSE; // not finished yet, need more data |
15c4dc5a | 432 | } |
433 | ||
7bc95e2e | 434 | |
435 | ||
15c4dc5a | 436 | //============================================================================= |
e691fc45 | 437 | // ISO 14443 Type A - Manchester decoder |
15c4dc5a | 438 | //============================================================================= |
e691fc45 | 439 | // Basics: |
7bc95e2e | 440 | // This decoder is used when the PM3 acts as a reader. |
e691fc45 | 441 | // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage |
442 | // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: | |
443 | // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... | |
444 | // The Manchester decoder needs to identify the following sequences: | |
445 | // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") | |
446 | // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 | |
447 | // 8 ticks unmodulated: Sequence F = end of communication | |
448 | // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D | |
7bc95e2e | 449 | // Note 1: the bitstream may start at any time. We therefore need to sync. |
e691fc45 | 450 | // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) |
b62a5a84 | 451 | static tDemod Demod; |
15c4dc5a | 452 | |
d7aa3739 | 453 | // Lookup-Table to decide if 4 raw bits are a modulation. |
d714d3ef | 454 | // We accept three or four "1" in any position |
7bc95e2e | 455 | const bool Mod_Manchester_LUT[] = { |
d7aa3739 | 456 | FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, |
d714d3ef | 457 | FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE |
7bc95e2e | 458 | }; |
459 | ||
460 | #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) | |
461 | #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) | |
15c4dc5a | 462 | |
2f2d9fc5 | 463 | |
7bc95e2e | 464 | void DemodReset() |
e691fc45 | 465 | { |
7bc95e2e | 466 | Demod.state = DEMOD_UNSYNCD; |
467 | Demod.len = 0; // number of decoded data bytes | |
6a1f2d82 | 468 | Demod.parityLen = 0; |
7bc95e2e | 469 | Demod.shiftReg = 0; // shiftreg to hold decoded data bits |
470 | Demod.parityBits = 0; // | |
471 | Demod.collisionPos = 0; // Position of collision bit | |
472 | Demod.twoBits = 0xffff; // buffer for 2 Bits | |
473 | Demod.highCnt = 0; | |
474 | Demod.startTime = 0; | |
475 | Demod.endTime = 0; | |
e691fc45 | 476 | } |
15c4dc5a | 477 | |
6a1f2d82 | 478 | void DemodInit(uint8_t *data, uint8_t *parity) |
479 | { | |
480 | Demod.output = data; | |
481 | Demod.parity = parity; | |
482 | DemodReset(); | |
483 | } | |
484 | ||
7bc95e2e | 485 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time |
486 | static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) | |
e691fc45 | 487 | { |
7bc95e2e | 488 | |
489 | Demod.twoBits = (Demod.twoBits << 8) | bit; | |
e691fc45 | 490 | |
7bc95e2e | 491 | if (Demod.state == DEMOD_UNSYNCD) { |
492 | ||
493 | if (Demod.highCnt < 2) { // wait for a stable unmodulated signal | |
494 | if (Demod.twoBits == 0x0000) { | |
495 | Demod.highCnt++; | |
496 | } else { | |
497 | Demod.highCnt = 0; | |
498 | } | |
499 | } else { | |
500 | Demod.syncBit = 0xFFFF; // not set | |
501 | if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; | |
502 | else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; | |
503 | else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; | |
504 | else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; | |
505 | else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; | |
506 | else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; | |
507 | else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; | |
508 | else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; | |
d7aa3739 | 509 | if (Demod.syncBit != 0xFFFF) { |
7bc95e2e | 510 | Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); |
511 | Demod.startTime -= Demod.syncBit; | |
512 | Demod.bitCount = offset; // number of decoded data bits | |
e691fc45 | 513 | Demod.state = DEMOD_MANCHESTER_DATA; |
2f2d9fc5 | 514 | } |
7bc95e2e | 515 | } |
15c4dc5a | 516 | |
7bc95e2e | 517 | } else { |
15c4dc5a | 518 | |
7bc95e2e | 519 | if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half |
520 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision | |
e691fc45 | 521 | if (!Demod.collisionPos) { |
522 | Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; | |
523 | } | |
524 | } // modulation in first half only - Sequence D = 1 | |
7bc95e2e | 525 | Demod.bitCount++; |
526 | Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg | |
527 | if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) | |
e691fc45 | 528 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 529 | Demod.parityBits <<= 1; // make room for the parity bit |
e691fc45 | 530 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
531 | Demod.bitCount = 0; | |
532 | Demod.shiftReg = 0; | |
6a1f2d82 | 533 | if((Demod.len&0x0007) == 0) { // every 8 data bytes |
534 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits | |
535 | Demod.parityBits = 0; | |
536 | } | |
15c4dc5a | 537 | } |
7bc95e2e | 538 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; |
539 | } else { // no modulation in first half | |
540 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 | |
e691fc45 | 541 | Demod.bitCount++; |
7bc95e2e | 542 | Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg |
e691fc45 | 543 | if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) |
e691fc45 | 544 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); |
7bc95e2e | 545 | Demod.parityBits <<= 1; // make room for the new parity bit |
e691fc45 | 546 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit |
547 | Demod.bitCount = 0; | |
548 | Demod.shiftReg = 0; | |
6a1f2d82 | 549 | if ((Demod.len&0x0007) == 0) { // every 8 data bytes |
550 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 | |
551 | Demod.parityBits = 0; | |
552 | } | |
15c4dc5a | 553 | } |
7bc95e2e | 554 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); |
e691fc45 | 555 | } else { // no modulation in both halves - End of communication |
6a1f2d82 | 556 | if(Demod.bitCount > 0) { // there are some remaining data bits |
557 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits | |
558 | Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output | |
559 | Demod.parityBits <<= 1; // add a (void) parity bit | |
560 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
561 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
562 | return TRUE; | |
563 | } else if (Demod.len & 0x0007) { // there are some parity bits to store | |
564 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
565 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
52bfb955 | 566 | } |
567 | if (Demod.len) { | |
d7aa3739 | 568 | return TRUE; // we are finished with decoding the raw data sequence |
569 | } else { // nothing received. Start over | |
570 | DemodReset(); | |
e691fc45 | 571 | } |
15c4dc5a | 572 | } |
7bc95e2e | 573 | } |
e691fc45 | 574 | |
575 | } | |
15c4dc5a | 576 | |
e691fc45 | 577 | return FALSE; // not finished yet, need more data |
15c4dc5a | 578 | } |
579 | ||
580 | //============================================================================= | |
581 | // Finally, a `sniffer' for ISO 14443 Type A | |
582 | // Both sides of communication! | |
583 | //============================================================================= | |
584 | ||
585 | //----------------------------------------------------------------------------- | |
586 | // Record the sequence of commands sent by the reader to the tag, with | |
587 | // triggering so that we start recording at the point that the tag is moved | |
588 | // near the reader. | |
589 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
590 | void RAMFUNC SnoopIso14443a(uint8_t param) { |
591 | // param: | |
592 | // bit 0 - trigger from first card answer | |
593 | // bit 1 - trigger from first reader 7-bit request | |
594 | ||
595 | LEDsoff(); | |
5cd9ec01 M |
596 | |
597 | // We won't start recording the frames that we acquire until we trigger; | |
598 | // a good trigger condition to get started is probably when we see a | |
599 | // response from the tag. | |
600 | // triggered == FALSE -- to wait first for card | |
7bc95e2e | 601 | bool triggered = !(param & 0x03); |
602 | ||
f71f4deb | 603 | // Allocate memory from BigBuf for some buffers |
604 | // free all previous allocations first | |
605 | BigBuf_free(); | |
606 | ||
5cd9ec01 | 607 | // The command (reader -> tag) that we're receiving. |
f71f4deb | 608 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); |
609 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
6a1f2d82 | 610 | |
5cd9ec01 | 611 | // The response (tag -> reader) that we're receiving. |
f71f4deb | 612 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); |
613 | uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); | |
5cd9ec01 M |
614 | |
615 | // The DMA buffer, used to stream samples from the FPGA | |
f71f4deb | 616 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); |
617 | ||
618 | // init trace buffer | |
619 | iso14a_clear_trace(); | |
620 | iso14a_set_tracing(TRUE); | |
621 | ||
7bc95e2e | 622 | uint8_t *data = dmaBuf; |
623 | uint8_t previous_data = 0; | |
5cd9ec01 M |
624 | int maxDataLen = 0; |
625 | int dataLen = 0; | |
7bc95e2e | 626 | bool TagIsActive = FALSE; |
627 | bool ReaderIsActive = FALSE; | |
628 | ||
629 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); | |
15c4dc5a | 630 | |
5cd9ec01 | 631 | // Set up the demodulator for tag -> reader responses. |
6a1f2d82 | 632 | DemodInit(receivedResponse, receivedResponsePar); |
633 | ||
5cd9ec01 | 634 | // Set up the demodulator for the reader -> tag commands |
6a1f2d82 | 635 | UartInit(receivedCmd, receivedCmdPar); |
636 | ||
7bc95e2e | 637 | // Setup and start DMA. |
5cd9ec01 | 638 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); |
7bc95e2e | 639 | |
5cd9ec01 | 640 | // And now we loop, receiving samples. |
7bc95e2e | 641 | for(uint32_t rsamples = 0; TRUE; ) { |
642 | ||
5cd9ec01 M |
643 | if(BUTTON_PRESS()) { |
644 | DbpString("cancelled by button"); | |
7bc95e2e | 645 | break; |
5cd9ec01 | 646 | } |
15c4dc5a | 647 | |
5cd9ec01 M |
648 | LED_A_ON(); |
649 | WDT_HIT(); | |
15c4dc5a | 650 | |
5cd9ec01 M |
651 | int register readBufDataP = data - dmaBuf; |
652 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
653 | if (readBufDataP <= dmaBufDataP){ | |
654 | dataLen = dmaBufDataP - readBufDataP; | |
655 | } else { | |
7bc95e2e | 656 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; |
5cd9ec01 M |
657 | } |
658 | // test for length of buffer | |
659 | if(dataLen > maxDataLen) { | |
660 | maxDataLen = dataLen; | |
f71f4deb | 661 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
7bc95e2e | 662 | Dbprintf("blew circular buffer! dataLen=%d", dataLen); |
663 | break; | |
5cd9ec01 M |
664 | } |
665 | } | |
666 | if(dataLen < 1) continue; | |
667 | ||
668 | // primary buffer was stopped( <-- we lost data! | |
669 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
670 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
671 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
7bc95e2e | 672 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
673 | } |
674 | // secondary buffer sets as primary, secondary buffer was stopped | |
675 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
676 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
677 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
678 | } | |
679 | ||
680 | LED_A_OFF(); | |
7bc95e2e | 681 | |
682 | if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder | |
3be2a5ae | 683 | |
7bc95e2e | 684 | if(!TagIsActive) { // no need to try decoding reader data if the tag is sending |
685 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
686 | if (MillerDecoding(readerdata, (rsamples-1)*4)) { | |
687 | LED_C_ON(); | |
5cd9ec01 | 688 | |
7bc95e2e | 689 | // check - if there is a short 7bit request from reader |
690 | if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; | |
5cd9ec01 | 691 | |
7bc95e2e | 692 | if(triggered) { |
6a1f2d82 | 693 | if (!LogTrace(receivedCmd, |
694 | Uart.len, | |
695 | Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
696 | Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
697 | Uart.parity, | |
698 | TRUE)) break; | |
7bc95e2e | 699 | } |
700 | /* And ready to receive another command. */ | |
701 | UartReset(); | |
702 | /* And also reset the demod code, which might have been */ | |
703 | /* false-triggered by the commands from the reader. */ | |
704 | DemodReset(); | |
705 | LED_B_OFF(); | |
706 | } | |
707 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
5cd9ec01 | 708 | } |
3be2a5ae | 709 | |
7bc95e2e | 710 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time |
711 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
712 | if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { | |
713 | LED_B_ON(); | |
5cd9ec01 | 714 | |
6a1f2d82 | 715 | if (!LogTrace(receivedResponse, |
716 | Demod.len, | |
717 | Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
718 | Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
719 | Demod.parity, | |
720 | FALSE)) break; | |
5cd9ec01 | 721 | |
7bc95e2e | 722 | if ((!triggered) && (param & 0x01)) triggered = TRUE; |
5cd9ec01 | 723 | |
7bc95e2e | 724 | // And ready to receive another response. |
725 | DemodReset(); | |
726 | LED_C_OFF(); | |
727 | } | |
728 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
729 | } | |
5cd9ec01 M |
730 | } |
731 | ||
7bc95e2e | 732 | previous_data = *data; |
733 | rsamples++; | |
5cd9ec01 | 734 | data++; |
d714d3ef | 735 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 M |
736 | data = dmaBuf; |
737 | } | |
738 | } // main cycle | |
739 | ||
740 | DbpString("COMMAND FINISHED"); | |
15c4dc5a | 741 | |
7bc95e2e | 742 | FpgaDisableSscDma(); |
743 | Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); | |
744 | Dbprintf("traceLen=%d, Uart.output[0]=%08x", traceLen, (uint32_t)Uart.output[0]); | |
5cd9ec01 | 745 | LEDsoff(); |
15c4dc5a | 746 | } |
747 | ||
15c4dc5a | 748 | //----------------------------------------------------------------------------- |
749 | // Prepare tag messages | |
750 | //----------------------------------------------------------------------------- | |
6a1f2d82 | 751 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) |
15c4dc5a | 752 | { |
8f51ddb0 | 753 | ToSendReset(); |
15c4dc5a | 754 | |
755 | // Correction bit, might be removed when not needed | |
756 | ToSendStuffBit(0); | |
757 | ToSendStuffBit(0); | |
758 | ToSendStuffBit(0); | |
759 | ToSendStuffBit(0); | |
760 | ToSendStuffBit(1); // 1 | |
761 | ToSendStuffBit(0); | |
762 | ToSendStuffBit(0); | |
763 | ToSendStuffBit(0); | |
8f51ddb0 | 764 | |
15c4dc5a | 765 | // Send startbit |
72934aa3 | 766 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 767 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 768 | |
6a1f2d82 | 769 | for(uint16_t i = 0; i < len; i++) { |
8f51ddb0 | 770 | uint8_t b = cmd[i]; |
15c4dc5a | 771 | |
772 | // Data bits | |
6a1f2d82 | 773 | for(uint16_t j = 0; j < 8; j++) { |
15c4dc5a | 774 | if(b & 1) { |
72934aa3 | 775 | ToSend[++ToSendMax] = SEC_D; |
15c4dc5a | 776 | } else { |
72934aa3 | 777 | ToSend[++ToSendMax] = SEC_E; |
8f51ddb0 M |
778 | } |
779 | b >>= 1; | |
780 | } | |
15c4dc5a | 781 | |
0014cb46 | 782 | // Get the parity bit |
6a1f2d82 | 783 | if (parity[i>>3] & (0x80>>(i&0x0007))) { |
8f51ddb0 | 784 | ToSend[++ToSendMax] = SEC_D; |
7bc95e2e | 785 | LastProxToAirDuration = 8 * ToSendMax - 4; |
15c4dc5a | 786 | } else { |
72934aa3 | 787 | ToSend[++ToSendMax] = SEC_E; |
7bc95e2e | 788 | LastProxToAirDuration = 8 * ToSendMax; |
15c4dc5a | 789 | } |
8f51ddb0 | 790 | } |
15c4dc5a | 791 | |
8f51ddb0 M |
792 | // Send stopbit |
793 | ToSend[++ToSendMax] = SEC_F; | |
15c4dc5a | 794 | |
8f51ddb0 M |
795 | // Convert from last byte pos to length |
796 | ToSendMax++; | |
8f51ddb0 M |
797 | } |
798 | ||
6a1f2d82 | 799 | static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) |
800 | { | |
801 | uint8_t par[MAX_PARITY_SIZE]; | |
802 | ||
803 | GetParity(cmd, len, par); | |
804 | CodeIso14443aAsTagPar(cmd, len, par); | |
15c4dc5a | 805 | } |
806 | ||
15c4dc5a | 807 | |
8f51ddb0 M |
808 | static void Code4bitAnswerAsTag(uint8_t cmd) |
809 | { | |
810 | int i; | |
811 | ||
5f6d6c90 | 812 | ToSendReset(); |
8f51ddb0 M |
813 | |
814 | // Correction bit, might be removed when not needed | |
815 | ToSendStuffBit(0); | |
816 | ToSendStuffBit(0); | |
817 | ToSendStuffBit(0); | |
818 | ToSendStuffBit(0); | |
819 | ToSendStuffBit(1); // 1 | |
820 | ToSendStuffBit(0); | |
821 | ToSendStuffBit(0); | |
822 | ToSendStuffBit(0); | |
823 | ||
824 | // Send startbit | |
825 | ToSend[++ToSendMax] = SEC_D; | |
826 | ||
827 | uint8_t b = cmd; | |
828 | for(i = 0; i < 4; i++) { | |
829 | if(b & 1) { | |
830 | ToSend[++ToSendMax] = SEC_D; | |
7bc95e2e | 831 | LastProxToAirDuration = 8 * ToSendMax - 4; |
8f51ddb0 M |
832 | } else { |
833 | ToSend[++ToSendMax] = SEC_E; | |
7bc95e2e | 834 | LastProxToAirDuration = 8 * ToSendMax; |
8f51ddb0 M |
835 | } |
836 | b >>= 1; | |
837 | } | |
838 | ||
839 | // Send stopbit | |
840 | ToSend[++ToSendMax] = SEC_F; | |
841 | ||
5f6d6c90 | 842 | // Convert from last byte pos to length |
843 | ToSendMax++; | |
15c4dc5a | 844 | } |
845 | ||
846 | //----------------------------------------------------------------------------- | |
847 | // Wait for commands from reader | |
848 | // Stop when button is pressed | |
849 | // Or return TRUE when command is captured | |
850 | //----------------------------------------------------------------------------- | |
6a1f2d82 | 851 | static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) |
15c4dc5a | 852 | { |
853 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
854 | // only, since we are receiving, not transmitting). | |
855 | // Signal field is off with the appropriate LED | |
856 | LED_D_OFF(); | |
857 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
858 | ||
859 | // Now run a `software UART' on the stream of incoming samples. | |
6a1f2d82 | 860 | UartInit(received, parity); |
7bc95e2e | 861 | |
862 | // clear RXRDY: | |
863 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
15c4dc5a | 864 | |
865 | for(;;) { | |
866 | WDT_HIT(); | |
867 | ||
868 | if(BUTTON_PRESS()) return FALSE; | |
7bc95e2e | 869 | |
15c4dc5a | 870 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
7bc95e2e | 871 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
872 | if(MillerDecoding(b, 0)) { | |
873 | *len = Uart.len; | |
15c4dc5a | 874 | return TRUE; |
875 | } | |
7bc95e2e | 876 | } |
15c4dc5a | 877 | } |
878 | } | |
28afbd2b | 879 | |
6a1f2d82 | 880 | static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); |
7bc95e2e | 881 | int EmSend4bitEx(uint8_t resp, bool correctionNeeded); |
28afbd2b | 882 | int EmSend4bit(uint8_t resp); |
6a1f2d82 | 883 | int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); |
884 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); | |
885 | int EmSendCmd(uint8_t *resp, uint16_t respLen); | |
886 | int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); | |
887 | bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, | |
888 | uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); | |
15c4dc5a | 889 | |
117d9ec2 | 890 | static uint8_t* free_buffer_pointer; |
ce02f6f9 | 891 | |
892 | typedef struct { | |
893 | uint8_t* response; | |
894 | size_t response_n; | |
895 | uint8_t* modulation; | |
896 | size_t modulation_n; | |
7bc95e2e | 897 | uint32_t ProxToAirDuration; |
ce02f6f9 | 898 | } tag_response_info_t; |
899 | ||
ce02f6f9 | 900 | bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { |
7bc95e2e | 901 | // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes |
ce02f6f9 | 902 | // This will need the following byte array for a modulation sequence |
903 | // 144 data bits (18 * 8) | |
904 | // 18 parity bits | |
905 | // 2 Start and stop | |
906 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
907 | // 1 just for the case | |
908 | // ----------- + | |
909 | // 166 bytes, since every bit that needs to be send costs us a byte | |
910 | // | |
f71f4deb | 911 | |
912 | ||
ce02f6f9 | 913 | // Prepare the tag modulation bits from the message |
914 | CodeIso14443aAsTag(response_info->response,response_info->response_n); | |
915 | ||
916 | // Make sure we do not exceed the free buffer space | |
917 | if (ToSendMax > max_buffer_size) { | |
918 | Dbprintf("Out of memory, when modulating bits for tag answer:"); | |
919 | Dbhexdump(response_info->response_n,response_info->response,false); | |
920 | return false; | |
921 | } | |
922 | ||
923 | // Copy the byte array, used for this modulation to the buffer position | |
924 | memcpy(response_info->modulation,ToSend,ToSendMax); | |
925 | ||
7bc95e2e | 926 | // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them |
ce02f6f9 | 927 | response_info->modulation_n = ToSendMax; |
7bc95e2e | 928 | response_info->ProxToAirDuration = LastProxToAirDuration; |
ce02f6f9 | 929 | |
930 | return true; | |
931 | } | |
932 | ||
f71f4deb | 933 | |
934 | // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. | |
935 | // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) | |
936 | // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits | |
937 | // -> need 273 bytes buffer | |
938 | #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 | |
939 | ||
ce02f6f9 | 940 | bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { |
941 | // Retrieve and store the current buffer index | |
942 | response_info->modulation = free_buffer_pointer; | |
943 | ||
944 | // Determine the maximum size we can use from our buffer | |
f71f4deb | 945 | size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; |
ce02f6f9 | 946 | |
947 | // Forward the prepare tag modulation function to the inner function | |
f71f4deb | 948 | if (prepare_tag_modulation(response_info, max_buffer_size)) { |
ce02f6f9 | 949 | // Update the free buffer offset |
950 | free_buffer_pointer += ToSendMax; | |
951 | return true; | |
952 | } else { | |
953 | return false; | |
954 | } | |
955 | } | |
956 | ||
15c4dc5a | 957 | //----------------------------------------------------------------------------- |
958 | // Main loop of simulated tag: receive commands from reader, decide what | |
959 | // response to send, and send it. | |
960 | //----------------------------------------------------------------------------- | |
28afbd2b | 961 | void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data) |
15c4dc5a | 962 | { |
81cd0474 | 963 | uint8_t sak; |
964 | ||
965 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
966 | uint8_t response1[2]; | |
967 | ||
968 | switch (tagType) { | |
969 | case 1: { // MIFARE Classic | |
970 | // Says: I am Mifare 1k - original line | |
971 | response1[0] = 0x04; | |
972 | response1[1] = 0x00; | |
973 | sak = 0x08; | |
974 | } break; | |
975 | case 2: { // MIFARE Ultralight | |
976 | // Says: I am a stupid memory tag, no crypto | |
977 | response1[0] = 0x04; | |
978 | response1[1] = 0x00; | |
979 | sak = 0x00; | |
980 | } break; | |
981 | case 3: { // MIFARE DESFire | |
982 | // Says: I am a DESFire tag, ph33r me | |
983 | response1[0] = 0x04; | |
984 | response1[1] = 0x03; | |
985 | sak = 0x20; | |
986 | } break; | |
987 | case 4: { // ISO/IEC 14443-4 | |
988 | // Says: I am a javacard (JCOP) | |
989 | response1[0] = 0x04; | |
990 | response1[1] = 0x00; | |
991 | sak = 0x28; | |
992 | } break; | |
3fe4ff4f | 993 | case 5: { // MIFARE TNP3XXX |
994 | // Says: I am a toy | |
995 | response1[0] = 0x01; | |
996 | response1[1] = 0x0f; | |
997 | sak = 0x01; | |
998 | } break; | |
81cd0474 | 999 | default: { |
1000 | Dbprintf("Error: unkown tagtype (%d)",tagType); | |
1001 | return; | |
1002 | } break; | |
1003 | } | |
1004 | ||
1005 | // The second response contains the (mandatory) first 24 bits of the UID | |
c8b6da22 | 1006 | uint8_t response2[5] = {0x00}; |
81cd0474 | 1007 | |
1008 | // Check if the uid uses the (optional) part | |
c8b6da22 | 1009 | uint8_t response2a[5] = {0x00}; |
1010 | ||
81cd0474 | 1011 | if (uid_2nd) { |
1012 | response2[0] = 0x88; | |
1013 | num_to_bytes(uid_1st,3,response2+1); | |
1014 | num_to_bytes(uid_2nd,4,response2a); | |
1015 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; | |
1016 | ||
1017 | // Configure the ATQA and SAK accordingly | |
1018 | response1[0] |= 0x40; | |
1019 | sak |= 0x04; | |
1020 | } else { | |
1021 | num_to_bytes(uid_1st,4,response2); | |
1022 | // Configure the ATQA and SAK accordingly | |
1023 | response1[0] &= 0xBF; | |
1024 | sak &= 0xFB; | |
1025 | } | |
1026 | ||
1027 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
1028 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; | |
1029 | ||
1030 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
c8b6da22 | 1031 | uint8_t response3[3] = {0x00}; |
81cd0474 | 1032 | response3[0] = sak; |
1033 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
1034 | ||
1035 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
c8b6da22 | 1036 | uint8_t response3a[3] = {0x00}; |
81cd0474 | 1037 | response3a[0] = sak & 0xFB; |
1038 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
1039 | ||
254b70a4 | 1040 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce |
6a1f2d82 | 1041 | uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: |
1042 | // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, | |
1043 | // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 | |
1044 | // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) | |
1045 | // TC(1) = 0x02: CID supported, NAD not supported | |
ce02f6f9 | 1046 | ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); |
1047 | ||
7bc95e2e | 1048 | #define TAG_RESPONSE_COUNT 7 |
1049 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { | |
1050 | { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type | |
1051 | { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid | |
1052 | { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1053 | { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 | |
1054 | { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 | |
1055 | { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) | |
1056 | { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS | |
1057 | }; | |
1058 | ||
1059 | // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it | |
1060 | // Such a response is less time critical, so we can prepare them on the fly | |
1061 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 | |
1062 | #define DYNAMIC_MODULATION_BUFFER_SIZE 512 | |
1063 | uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; | |
1064 | uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; | |
1065 | tag_response_info_t dynamic_response_info = { | |
1066 | .response = dynamic_response_buffer, | |
1067 | .response_n = 0, | |
1068 | .modulation = dynamic_modulation_buffer, | |
1069 | .modulation_n = 0 | |
1070 | }; | |
ce02f6f9 | 1071 | |
f71f4deb | 1072 | BigBuf_free_keep_EM(); |
1073 | ||
1074 | // allocate buffers: | |
1075 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
1076 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
1077 | free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); | |
1078 | ||
1079 | // clear trace | |
1080 | iso14a_clear_trace(); | |
1081 | iso14a_set_tracing(TRUE); | |
1082 | ||
7bc95e2e | 1083 | // Prepare the responses of the anticollision phase |
ce02f6f9 | 1084 | // there will be not enough time to do this at the moment the reader sends it REQA |
7bc95e2e | 1085 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) { |
1086 | prepare_allocated_tag_modulation(&responses[i]); | |
1087 | } | |
15c4dc5a | 1088 | |
7bc95e2e | 1089 | int len = 0; |
15c4dc5a | 1090 | |
1091 | // To control where we are in the protocol | |
1092 | int order = 0; | |
1093 | int lastorder; | |
1094 | ||
1095 | // Just to allow some checks | |
1096 | int happened = 0; | |
1097 | int happened2 = 0; | |
81cd0474 | 1098 | int cmdsRecvd = 0; |
15c4dc5a | 1099 | |
254b70a4 | 1100 | // We need to listen to the high-frequency, peak-detected path. |
7bc95e2e | 1101 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
15c4dc5a | 1102 | |
254b70a4 | 1103 | cmdsRecvd = 0; |
7bc95e2e | 1104 | tag_response_info_t* p_response; |
15c4dc5a | 1105 | |
254b70a4 | 1106 | LED_A_ON(); |
1107 | for(;;) { | |
7bc95e2e | 1108 | // Clean receive command buffer |
1109 | ||
6a1f2d82 | 1110 | if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { |
ce02f6f9 | 1111 | DbpString("Button press"); |
254b70a4 | 1112 | break; |
1113 | } | |
7bc95e2e | 1114 | |
1115 | p_response = NULL; | |
1116 | ||
254b70a4 | 1117 | // Okay, look at the command now. |
1118 | lastorder = order; | |
1119 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
ce02f6f9 | 1120 | p_response = &responses[0]; order = 1; |
254b70a4 | 1121 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP |
ce02f6f9 | 1122 | p_response = &responses[0]; order = 6; |
254b70a4 | 1123 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) |
ce02f6f9 | 1124 | p_response = &responses[1]; order = 2; |
6a1f2d82 | 1125 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) |
ce02f6f9 | 1126 | p_response = &responses[2]; order = 20; |
254b70a4 | 1127 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) |
ce02f6f9 | 1128 | p_response = &responses[3]; order = 3; |
254b70a4 | 1129 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) |
ce02f6f9 | 1130 | p_response = &responses[4]; order = 30; |
254b70a4 | 1131 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ |
6a1f2d82 | 1132 | EmSendCmdEx(data+(4*receivedCmd[1]),16,false); |
7bc95e2e | 1133 | // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); |
5f6d6c90 | 1134 | // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below |
7bc95e2e | 1135 | p_response = NULL; |
254b70a4 | 1136 | } else if(receivedCmd[0] == 0x50) { // Received a HALT |
3fe4ff4f | 1137 | |
7bc95e2e | 1138 | if (tracing) { |
6a1f2d82 | 1139 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 1140 | } |
1141 | p_response = NULL; | |
254b70a4 | 1142 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request |
ce02f6f9 | 1143 | p_response = &responses[5]; order = 7; |
254b70a4 | 1144 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request |
7bc95e2e | 1145 | if (tagType == 1 || tagType == 2) { // RATS not supported |
1146 | EmSend4bit(CARD_NACK_NA); | |
1147 | p_response = NULL; | |
1148 | } else { | |
1149 | p_response = &responses[6]; order = 70; | |
1150 | } | |
6a1f2d82 | 1151 | } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) |
7bc95e2e | 1152 | if (tracing) { |
6a1f2d82 | 1153 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 1154 | } |
1155 | uint32_t nr = bytes_to_num(receivedCmd,4); | |
1156 | uint32_t ar = bytes_to_num(receivedCmd+4,4); | |
1157 | Dbprintf("Auth attempt {nr}{ar}: %08x %08x",nr,ar); | |
1158 | } else { | |
1159 | // Check for ISO 14443A-4 compliant commands, look at left nibble | |
1160 | switch (receivedCmd[0]) { | |
1161 | ||
1162 | case 0x0B: | |
1163 | case 0x0A: { // IBlock (command) | |
1164 | dynamic_response_info.response[0] = receivedCmd[0]; | |
1165 | dynamic_response_info.response[1] = 0x00; | |
1166 | dynamic_response_info.response[2] = 0x90; | |
1167 | dynamic_response_info.response[3] = 0x00; | |
1168 | dynamic_response_info.response_n = 4; | |
1169 | } break; | |
1170 | ||
1171 | case 0x1A: | |
1172 | case 0x1B: { // Chaining command | |
1173 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); | |
1174 | dynamic_response_info.response_n = 2; | |
1175 | } break; | |
1176 | ||
1177 | case 0xaa: | |
1178 | case 0xbb: { | |
1179 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; | |
1180 | dynamic_response_info.response_n = 2; | |
1181 | } break; | |
1182 | ||
1183 | case 0xBA: { // | |
1184 | memcpy(dynamic_response_info.response,"\xAB\x00",2); | |
1185 | dynamic_response_info.response_n = 2; | |
1186 | } break; | |
1187 | ||
1188 | case 0xCA: | |
1189 | case 0xC2: { // Readers sends deselect command | |
1190 | memcpy(dynamic_response_info.response,"\xCA\x00",2); | |
1191 | dynamic_response_info.response_n = 2; | |
1192 | } break; | |
1193 | ||
1194 | default: { | |
1195 | // Never seen this command before | |
1196 | if (tracing) { | |
6a1f2d82 | 1197 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 1198 | } |
1199 | Dbprintf("Received unknown command (len=%d):",len); | |
1200 | Dbhexdump(len,receivedCmd,false); | |
1201 | // Do not respond | |
1202 | dynamic_response_info.response_n = 0; | |
1203 | } break; | |
1204 | } | |
ce02f6f9 | 1205 | |
7bc95e2e | 1206 | if (dynamic_response_info.response_n > 0) { |
1207 | // Copy the CID from the reader query | |
1208 | dynamic_response_info.response[1] = receivedCmd[1]; | |
ce02f6f9 | 1209 | |
7bc95e2e | 1210 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards |
1211 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); | |
1212 | dynamic_response_info.response_n += 2; | |
ce02f6f9 | 1213 | |
7bc95e2e | 1214 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { |
1215 | Dbprintf("Error preparing tag response"); | |
1216 | if (tracing) { | |
6a1f2d82 | 1217 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 1218 | } |
1219 | break; | |
1220 | } | |
1221 | p_response = &dynamic_response_info; | |
1222 | } | |
81cd0474 | 1223 | } |
15c4dc5a | 1224 | |
1225 | // Count number of wakeups received after a halt | |
1226 | if(order == 6 && lastorder == 5) { happened++; } | |
1227 | ||
1228 | // Count number of other messages after a halt | |
1229 | if(order != 6 && lastorder == 5) { happened2++; } | |
1230 | ||
15c4dc5a | 1231 | if(cmdsRecvd > 999) { |
1232 | DbpString("1000 commands later..."); | |
254b70a4 | 1233 | break; |
15c4dc5a | 1234 | } |
ce02f6f9 | 1235 | cmdsRecvd++; |
1236 | ||
1237 | if (p_response != NULL) { | |
7bc95e2e | 1238 | EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); |
1239 | // do the tracing for the previous reader request and this tag answer: | |
6a1f2d82 | 1240 | uint8_t par[MAX_PARITY_SIZE]; |
1241 | GetParity(p_response->response, p_response->response_n, par); | |
3fe4ff4f | 1242 | |
7bc95e2e | 1243 | EmLogTrace(Uart.output, |
1244 | Uart.len, | |
1245 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1246 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
6a1f2d82 | 1247 | Uart.parity, |
7bc95e2e | 1248 | p_response->response, |
1249 | p_response->response_n, | |
1250 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1251 | (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
6a1f2d82 | 1252 | par); |
7bc95e2e | 1253 | } |
1254 | ||
1255 | if (!tracing) { | |
1256 | Dbprintf("Trace Full. Simulation stopped."); | |
1257 | break; | |
1258 | } | |
1259 | } | |
15c4dc5a | 1260 | |
1261 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1262 | LED_A_OFF(); | |
f71f4deb | 1263 | BigBuf_free_keep_EM(); |
15c4dc5a | 1264 | } |
1265 | ||
9492e0b0 | 1266 | |
1267 | // prepare a delayed transfer. This simply shifts ToSend[] by a number | |
1268 | // of bits specified in the delay parameter. | |
1269 | void PrepareDelayedTransfer(uint16_t delay) | |
1270 | { | |
1271 | uint8_t bitmask = 0; | |
1272 | uint8_t bits_to_shift = 0; | |
1273 | uint8_t bits_shifted = 0; | |
1274 | ||
1275 | delay &= 0x07; | |
1276 | if (delay) { | |
1277 | for (uint16_t i = 0; i < delay; i++) { | |
1278 | bitmask |= (0x01 << i); | |
1279 | } | |
7bc95e2e | 1280 | ToSend[ToSendMax++] = 0x00; |
9492e0b0 | 1281 | for (uint16_t i = 0; i < ToSendMax; i++) { |
1282 | bits_to_shift = ToSend[i] & bitmask; | |
1283 | ToSend[i] = ToSend[i] >> delay; | |
1284 | ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); | |
1285 | bits_shifted = bits_to_shift; | |
1286 | } | |
1287 | } | |
1288 | } | |
1289 | ||
7bc95e2e | 1290 | |
1291 | //------------------------------------------------------------------------------------- | |
15c4dc5a | 1292 | // Transmit the command (to the tag) that was placed in ToSend[]. |
9492e0b0 | 1293 | // Parameter timing: |
7bc95e2e | 1294 | // if NULL: transfer at next possible time, taking into account |
1295 | // request guard time and frame delay time | |
1296 | // if == 0: transfer immediately and return time of transfer | |
9492e0b0 | 1297 | // if != 0: delay transfer until time specified |
7bc95e2e | 1298 | //------------------------------------------------------------------------------------- |
6a1f2d82 | 1299 | static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) |
15c4dc5a | 1300 | { |
7bc95e2e | 1301 | |
9492e0b0 | 1302 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); |
e30c654b | 1303 | |
7bc95e2e | 1304 | uint32_t ThisTransferTime = 0; |
e30c654b | 1305 | |
9492e0b0 | 1306 | if (timing) { |
1307 | if(*timing == 0) { // Measure time | |
7bc95e2e | 1308 | *timing = (GetCountSspClk() + 8) & 0xfffffff8; |
9492e0b0 | 1309 | } else { |
1310 | PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) | |
1311 | } | |
7bc95e2e | 1312 | if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); |
1313 | while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) | |
1314 | LastTimeProxToAirStart = *timing; | |
1315 | } else { | |
1316 | ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); | |
1317 | while(GetCountSspClk() < ThisTransferTime); | |
1318 | LastTimeProxToAirStart = ThisTransferTime; | |
9492e0b0 | 1319 | } |
1320 | ||
7bc95e2e | 1321 | // clear TXRDY |
1322 | AT91C_BASE_SSC->SSC_THR = SEC_Y; | |
1323 | ||
7bc95e2e | 1324 | uint16_t c = 0; |
9492e0b0 | 1325 | for(;;) { |
1326 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1327 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1328 | c++; | |
1329 | if(c >= len) { | |
1330 | break; | |
1331 | } | |
1332 | } | |
1333 | } | |
7bc95e2e | 1334 | |
1335 | NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); | |
15c4dc5a | 1336 | } |
1337 | ||
7bc95e2e | 1338 | |
15c4dc5a | 1339 | //----------------------------------------------------------------------------- |
195af472 | 1340 | // Prepare reader command (in bits, support short frames) to send to FPGA |
15c4dc5a | 1341 | //----------------------------------------------------------------------------- |
6a1f2d82 | 1342 | void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) |
15c4dc5a | 1343 | { |
7bc95e2e | 1344 | int i, j; |
1345 | int last; | |
1346 | uint8_t b; | |
e30c654b | 1347 | |
7bc95e2e | 1348 | ToSendReset(); |
e30c654b | 1349 | |
7bc95e2e | 1350 | // Start of Communication (Seq. Z) |
1351 | ToSend[++ToSendMax] = SEC_Z; | |
1352 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1353 | last = 0; | |
1354 | ||
1355 | size_t bytecount = nbytes(bits); | |
1356 | // Generate send structure for the data bits | |
1357 | for (i = 0; i < bytecount; i++) { | |
1358 | // Get the current byte to send | |
1359 | b = cmd[i]; | |
1360 | size_t bitsleft = MIN((bits-(i*8)),8); | |
1361 | ||
1362 | for (j = 0; j < bitsleft; j++) { | |
1363 | if (b & 1) { | |
1364 | // Sequence X | |
1365 | ToSend[++ToSendMax] = SEC_X; | |
1366 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1367 | last = 1; | |
1368 | } else { | |
1369 | if (last == 0) { | |
1370 | // Sequence Z | |
1371 | ToSend[++ToSendMax] = SEC_Z; | |
1372 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1373 | } else { | |
1374 | // Sequence Y | |
1375 | ToSend[++ToSendMax] = SEC_Y; | |
1376 | last = 0; | |
1377 | } | |
1378 | } | |
1379 | b >>= 1; | |
1380 | } | |
1381 | ||
6a1f2d82 | 1382 | // Only transmit parity bit if we transmitted a complete byte |
7bc95e2e | 1383 | if (j == 8) { |
1384 | // Get the parity bit | |
6a1f2d82 | 1385 | if (parity[i>>3] & (0x80 >> (i&0x0007))) { |
7bc95e2e | 1386 | // Sequence X |
1387 | ToSend[++ToSendMax] = SEC_X; | |
1388 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1389 | last = 1; | |
1390 | } else { | |
1391 | if (last == 0) { | |
1392 | // Sequence Z | |
1393 | ToSend[++ToSendMax] = SEC_Z; | |
1394 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1395 | } else { | |
1396 | // Sequence Y | |
1397 | ToSend[++ToSendMax] = SEC_Y; | |
1398 | last = 0; | |
1399 | } | |
1400 | } | |
1401 | } | |
1402 | } | |
e30c654b | 1403 | |
7bc95e2e | 1404 | // End of Communication: Logic 0 followed by Sequence Y |
1405 | if (last == 0) { | |
1406 | // Sequence Z | |
1407 | ToSend[++ToSendMax] = SEC_Z; | |
1408 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1409 | } else { | |
1410 | // Sequence Y | |
1411 | ToSend[++ToSendMax] = SEC_Y; | |
1412 | last = 0; | |
1413 | } | |
1414 | ToSend[++ToSendMax] = SEC_Y; | |
e30c654b | 1415 | |
7bc95e2e | 1416 | // Convert to length of command: |
1417 | ToSendMax++; | |
15c4dc5a | 1418 | } |
1419 | ||
195af472 | 1420 | //----------------------------------------------------------------------------- |
1421 | // Prepare reader command to send to FPGA | |
1422 | //----------------------------------------------------------------------------- | |
6a1f2d82 | 1423 | void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) |
195af472 | 1424 | { |
6a1f2d82 | 1425 | CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); |
195af472 | 1426 | } |
1427 | ||
9ca155ba M |
1428 | //----------------------------------------------------------------------------- |
1429 | // Wait for commands from reader | |
1430 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1431 | // Or return 0 when command is captured | |
1432 | //----------------------------------------------------------------------------- | |
6a1f2d82 | 1433 | static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) |
9ca155ba M |
1434 | { |
1435 | *len = 0; | |
1436 | ||
1437 | uint32_t timer = 0, vtime = 0; | |
1438 | int analogCnt = 0; | |
1439 | int analogAVG = 0; | |
1440 | ||
1441 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1442 | // only, since we are receiving, not transmitting). | |
1443 | // Signal field is off with the appropriate LED | |
1444 | LED_D_OFF(); | |
1445 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1446 | ||
1447 | // Set ADC to read field strength | |
1448 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1449 | AT91C_BASE_ADC->ADC_MR = | |
1450 | ADC_MODE_PRESCALE(32) | | |
1451 | ADC_MODE_STARTUP_TIME(16) | | |
1452 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
1453 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); | |
1454 | // start ADC | |
1455 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1456 | ||
1457 | // Now run a 'software UART' on the stream of incoming samples. | |
6a1f2d82 | 1458 | UartInit(received, parity); |
7bc95e2e | 1459 | |
1460 | // Clear RXRDY: | |
1461 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
9ca155ba M |
1462 | |
1463 | for(;;) { | |
1464 | WDT_HIT(); | |
1465 | ||
1466 | if (BUTTON_PRESS()) return 1; | |
1467 | ||
1468 | // test if the field exists | |
1469 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1470 | analogCnt++; | |
1471 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1472 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1473 | if (analogCnt >= 32) { | |
1474 | if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { | |
1475 | vtime = GetTickCount(); | |
1476 | if (!timer) timer = vtime; | |
1477 | // 50ms no field --> card to idle state | |
1478 | if (vtime - timer > 50) return 2; | |
1479 | } else | |
1480 | if (timer) timer = 0; | |
1481 | analogCnt = 0; | |
1482 | analogAVG = 0; | |
1483 | } | |
1484 | } | |
7bc95e2e | 1485 | |
9ca155ba | 1486 | // receive and test the miller decoding |
7bc95e2e | 1487 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
1488 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1489 | if(MillerDecoding(b, 0)) { | |
1490 | *len = Uart.len; | |
9ca155ba M |
1491 | return 0; |
1492 | } | |
7bc95e2e | 1493 | } |
1494 | ||
9ca155ba M |
1495 | } |
1496 | } | |
1497 | ||
9ca155ba | 1498 | |
6a1f2d82 | 1499 | static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) |
7bc95e2e | 1500 | { |
1501 | uint8_t b; | |
1502 | uint16_t i = 0; | |
1503 | uint32_t ThisTransferTime; | |
1504 | ||
9ca155ba M |
1505 | // Modulate Manchester |
1506 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
7bc95e2e | 1507 | |
1508 | // include correction bit if necessary | |
1509 | if (Uart.parityBits & 0x01) { | |
1510 | correctionNeeded = TRUE; | |
1511 | } | |
1512 | if(correctionNeeded) { | |
9ca155ba M |
1513 | // 1236, so correction bit needed |
1514 | i = 0; | |
7bc95e2e | 1515 | } else { |
1516 | i = 1; | |
9ca155ba | 1517 | } |
7bc95e2e | 1518 | |
d714d3ef | 1519 | // clear receiving shift register and holding register |
7bc95e2e | 1520 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); |
1521 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1522 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1523 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
9ca155ba | 1524 | |
7bc95e2e | 1525 | // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) |
1526 | for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never | |
1527 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1528 | if (AT91C_BASE_SSC->SSC_RHR) break; | |
1529 | } | |
1530 | ||
1531 | while ((ThisTransferTime = GetCountSspClk()) & 0x00000007); | |
1532 | ||
1533 | // Clear TXRDY: | |
1534 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1535 | ||
9ca155ba | 1536 | // send cycle |
bb42a03e | 1537 | for(; i < respLen; ) { |
9ca155ba | 1538 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { |
7bc95e2e | 1539 | AT91C_BASE_SSC->SSC_THR = resp[i++]; |
1540 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
9ca155ba | 1541 | } |
7bc95e2e | 1542 | |
9ca155ba M |
1543 | if(BUTTON_PRESS()) { |
1544 | break; | |
1545 | } | |
1546 | } | |
1547 | ||
7bc95e2e | 1548 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: |
1549 | for (i = 0; i < 2 ; ) { | |
1550 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1551 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1552 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1553 | i++; | |
1554 | } | |
1555 | } | |
1556 | ||
1557 | LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); | |
1558 | ||
9ca155ba M |
1559 | return 0; |
1560 | } | |
1561 | ||
7bc95e2e | 1562 | int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ |
1563 | Code4bitAnswerAsTag(resp); | |
0a39986e | 1564 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); |
7bc95e2e | 1565 | // do the tracing for the previous reader request and this tag answer: |
6a1f2d82 | 1566 | uint8_t par[1]; |
1567 | GetParity(&resp, 1, par); | |
7bc95e2e | 1568 | EmLogTrace(Uart.output, |
1569 | Uart.len, | |
1570 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1571 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
6a1f2d82 | 1572 | Uart.parity, |
7bc95e2e | 1573 | &resp, |
1574 | 1, | |
1575 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1576 | (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
6a1f2d82 | 1577 | par); |
0a39986e | 1578 | return res; |
9ca155ba M |
1579 | } |
1580 | ||
8f51ddb0 | 1581 | int EmSend4bit(uint8_t resp){ |
7bc95e2e | 1582 | return EmSend4bitEx(resp, false); |
8f51ddb0 M |
1583 | } |
1584 | ||
6a1f2d82 | 1585 | int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){ |
7bc95e2e | 1586 | CodeIso14443aAsTagPar(resp, respLen, par); |
8f51ddb0 | 1587 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); |
7bc95e2e | 1588 | // do the tracing for the previous reader request and this tag answer: |
1589 | EmLogTrace(Uart.output, | |
1590 | Uart.len, | |
1591 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1592 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
6a1f2d82 | 1593 | Uart.parity, |
7bc95e2e | 1594 | resp, |
1595 | respLen, | |
1596 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1597 | (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
6a1f2d82 | 1598 | par); |
8f51ddb0 M |
1599 | return res; |
1600 | } | |
1601 | ||
6a1f2d82 | 1602 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ |
1603 | uint8_t par[MAX_PARITY_SIZE]; | |
1604 | GetParity(resp, respLen, par); | |
1605 | return EmSendCmdExPar(resp, respLen, correctionNeeded, par); | |
8f51ddb0 M |
1606 | } |
1607 | ||
6a1f2d82 | 1608 | int EmSendCmd(uint8_t *resp, uint16_t respLen){ |
1609 | uint8_t par[MAX_PARITY_SIZE]; | |
1610 | GetParity(resp, respLen, par); | |
1611 | return EmSendCmdExPar(resp, respLen, false, par); | |
8f51ddb0 M |
1612 | } |
1613 | ||
6a1f2d82 | 1614 | int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ |
7bc95e2e | 1615 | return EmSendCmdExPar(resp, respLen, false, par); |
1616 | } | |
1617 | ||
6a1f2d82 | 1618 | bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, |
1619 | uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) | |
7bc95e2e | 1620 | { |
1621 | if (tracing) { | |
1622 | // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from | |
1623 | // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. | |
1624 | // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: | |
1625 | uint16_t reader_modlen = reader_EndTime - reader_StartTime; | |
1626 | uint16_t approx_fdt = tag_StartTime - reader_EndTime; | |
1627 | uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; | |
1628 | reader_EndTime = tag_StartTime - exact_fdt; | |
1629 | reader_StartTime = reader_EndTime - reader_modlen; | |
6a1f2d82 | 1630 | if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { |
7bc95e2e | 1631 | return FALSE; |
6a1f2d82 | 1632 | } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); |
7bc95e2e | 1633 | } else { |
1634 | return TRUE; | |
1635 | } | |
9ca155ba M |
1636 | } |
1637 | ||
15c4dc5a | 1638 | //----------------------------------------------------------------------------- |
1639 | // Wait a certain time for tag response | |
1640 | // If a response is captured return TRUE | |
e691fc45 | 1641 | // If it takes too long return FALSE |
15c4dc5a | 1642 | //----------------------------------------------------------------------------- |
6a1f2d82 | 1643 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) |
15c4dc5a | 1644 | { |
52bfb955 | 1645 | uint32_t c; |
e691fc45 | 1646 | |
15c4dc5a | 1647 | // Set FPGA mode to "reader listen mode", no modulation (listen |
534983d7 | 1648 | // only, since we are receiving, not transmitting). |
1649 | // Signal field is on with the appropriate LED | |
1650 | LED_D_ON(); | |
1651 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1c611bbd | 1652 | |
534983d7 | 1653 | // Now get the answer from the card |
6a1f2d82 | 1654 | DemodInit(receivedResponse, receivedResponsePar); |
15c4dc5a | 1655 | |
7bc95e2e | 1656 | // clear RXRDY: |
1657 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1658 | ||
15c4dc5a | 1659 | c = 0; |
1660 | for(;;) { | |
534983d7 | 1661 | WDT_HIT(); |
15c4dc5a | 1662 | |
534983d7 | 1663 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { |
534983d7 | 1664 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
7bc95e2e | 1665 | if(ManchesterDecoding(b, offset, 0)) { |
1666 | NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); | |
15c4dc5a | 1667 | return TRUE; |
6a1f2d82 | 1668 | } else if (c++ > iso14a_timeout) { |
7bc95e2e | 1669 | return FALSE; |
15c4dc5a | 1670 | } |
534983d7 | 1671 | } |
1672 | } | |
15c4dc5a | 1673 | } |
1674 | ||
6a1f2d82 | 1675 | void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) |
15c4dc5a | 1676 | { |
6a1f2d82 | 1677 | CodeIso14443aBitsAsReaderPar(frame, bits, par); |
dfc3c505 | 1678 | |
7bc95e2e | 1679 | // Send command to tag |
1680 | TransmitFor14443a(ToSend, ToSendMax, timing); | |
1681 | if(trigger) | |
1682 | LED_A_ON(); | |
dfc3c505 | 1683 | |
7bc95e2e | 1684 | // Log reader command in trace buffer |
1685 | if (tracing) { | |
6a1f2d82 | 1686 | LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); |
7bc95e2e | 1687 | } |
15c4dc5a | 1688 | } |
1689 | ||
6a1f2d82 | 1690 | void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) |
dfc3c505 | 1691 | { |
6a1f2d82 | 1692 | ReaderTransmitBitsPar(frame, len*8, par, timing); |
dfc3c505 | 1693 | } |
15c4dc5a | 1694 | |
6a1f2d82 | 1695 | void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) |
e691fc45 | 1696 | { |
1697 | // Generate parity and redirect | |
6a1f2d82 | 1698 | uint8_t par[MAX_PARITY_SIZE]; |
1699 | GetParity(frame, len/8, par); | |
1700 | ReaderTransmitBitsPar(frame, len, par, timing); | |
e691fc45 | 1701 | } |
1702 | ||
6a1f2d82 | 1703 | void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) |
15c4dc5a | 1704 | { |
1705 | // Generate parity and redirect | |
6a1f2d82 | 1706 | uint8_t par[MAX_PARITY_SIZE]; |
1707 | GetParity(frame, len, par); | |
1708 | ReaderTransmitBitsPar(frame, len*8, par, timing); | |
15c4dc5a | 1709 | } |
1710 | ||
6a1f2d82 | 1711 | int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) |
e691fc45 | 1712 | { |
6a1f2d82 | 1713 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; |
7bc95e2e | 1714 | if (tracing) { |
6a1f2d82 | 1715 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); |
7bc95e2e | 1716 | } |
e691fc45 | 1717 | return Demod.len; |
1718 | } | |
1719 | ||
6a1f2d82 | 1720 | int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) |
15c4dc5a | 1721 | { |
6a1f2d82 | 1722 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; |
7bc95e2e | 1723 | if (tracing) { |
6a1f2d82 | 1724 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); |
7bc95e2e | 1725 | } |
e691fc45 | 1726 | return Demod.len; |
f89c7050 M |
1727 | } |
1728 | ||
e691fc45 | 1729 | /* performs iso14443a anticollision procedure |
534983d7 | 1730 | * fills the uid pointer unless NULL |
1731 | * fills resp_data unless NULL */ | |
6a1f2d82 | 1732 | int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) { |
1733 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP | |
1734 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1735 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; | |
1736 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 | |
f71f4deb | 1737 | uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller |
1738 | uint8_t resp_par[MAX_PARITY_SIZE]; | |
6a1f2d82 | 1739 | byte_t uid_resp[4]; |
1740 | size_t uid_resp_len; | |
1741 | ||
1742 | uint8_t sak = 0x04; // cascade uid | |
1743 | int cascade_level = 0; | |
1744 | int len; | |
1745 | ||
1746 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
9492e0b0 | 1747 | ReaderTransmitBitsPar(wupa,7,0, NULL); |
7bc95e2e | 1748 | |
6a1f2d82 | 1749 | // Receive the ATQA |
1750 | if(!ReaderReceive(resp, resp_par)) return 0; | |
6a1f2d82 | 1751 | |
1752 | if(p_hi14a_card) { | |
1753 | memcpy(p_hi14a_card->atqa, resp, 2); | |
1754 | p_hi14a_card->uidlen = 0; | |
1755 | memset(p_hi14a_card->uid,0,10); | |
1756 | } | |
5f6d6c90 | 1757 | |
6a1f2d82 | 1758 | // clear uid |
1759 | if (uid_ptr) { | |
1760 | memset(uid_ptr,0,10); | |
1761 | } | |
79a73ab2 | 1762 | |
6a1f2d82 | 1763 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in |
1764 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1765 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1766 | for(; sak & 0x04; cascade_level++) { | |
1767 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1768 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1769 | ||
1770 | // SELECT_ALL | |
1771 | ReaderTransmit(sel_all, sizeof(sel_all), NULL); | |
1772 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1773 | ||
1774 | if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit | |
1775 | memset(uid_resp, 0, 4); | |
1776 | uint16_t uid_resp_bits = 0; | |
1777 | uint16_t collision_answer_offset = 0; | |
1778 | // anti-collision-loop: | |
1779 | while (Demod.collisionPos) { | |
1780 | Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); | |
1781 | for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point | |
1782 | uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; | |
758f1fd1 | 1783 | uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); |
6a1f2d82 | 1784 | } |
1785 | uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position | |
1786 | uid_resp_bits++; | |
1787 | // construct anticollosion command: | |
1788 | sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits | |
1789 | for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { | |
1790 | sel_uid[2+i] = uid_resp[i]; | |
1791 | } | |
1792 | collision_answer_offset = uid_resp_bits%8; | |
1793 | ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); | |
1794 | if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; | |
e691fc45 | 1795 | } |
6a1f2d82 | 1796 | // finally, add the last bits and BCC of the UID |
1797 | for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { | |
1798 | uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; | |
1799 | uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); | |
e691fc45 | 1800 | } |
e691fc45 | 1801 | |
6a1f2d82 | 1802 | } else { // no collision, use the response to SELECT_ALL as current uid |
1803 | memcpy(uid_resp, resp, 4); | |
1804 | } | |
1805 | uid_resp_len = 4; | |
5f6d6c90 | 1806 | |
6a1f2d82 | 1807 | // calculate crypto UID. Always use last 4 Bytes. |
1808 | if(cuid_ptr) { | |
1809 | *cuid_ptr = bytes_to_num(uid_resp, 4); | |
1810 | } | |
e30c654b | 1811 | |
6a1f2d82 | 1812 | // Construct SELECT UID command |
1813 | sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) | |
1814 | memcpy(sel_uid+2, uid_resp, 4); // the UID | |
1815 | sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC | |
1816 | AppendCrc14443a(sel_uid, 7); // calculate and add CRC | |
1817 | ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); | |
1818 | ||
1819 | // Receive the SAK | |
1820 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1821 | sak = resp[0]; | |
1822 | ||
52ab55ab | 1823 | // Test if more parts of the uid are coming |
6a1f2d82 | 1824 | if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { |
1825 | // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: | |
1826 | // http://www.nxp.com/documents/application_note/AN10927.pdf | |
6a1f2d82 | 1827 | uid_resp[0] = uid_resp[1]; |
1828 | uid_resp[1] = uid_resp[2]; | |
1829 | uid_resp[2] = uid_resp[3]; | |
1830 | ||
1831 | uid_resp_len = 3; | |
1832 | } | |
5f6d6c90 | 1833 | |
6a1f2d82 | 1834 | if(uid_ptr) { |
1835 | memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); | |
1836 | } | |
5f6d6c90 | 1837 | |
6a1f2d82 | 1838 | if(p_hi14a_card) { |
1839 | memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); | |
1840 | p_hi14a_card->uidlen += uid_resp_len; | |
1841 | } | |
1842 | } | |
79a73ab2 | 1843 | |
6a1f2d82 | 1844 | if(p_hi14a_card) { |
1845 | p_hi14a_card->sak = sak; | |
1846 | p_hi14a_card->ats_len = 0; | |
1847 | } | |
534983d7 | 1848 | |
3fe4ff4f | 1849 | // non iso14443a compliant tag |
1850 | if( (sak & 0x20) == 0) return 2; | |
534983d7 | 1851 | |
6a1f2d82 | 1852 | // Request for answer to select |
1853 | AppendCrc14443a(rats, 2); | |
1854 | ReaderTransmit(rats, sizeof(rats), NULL); | |
1c611bbd | 1855 | |
6a1f2d82 | 1856 | if (!(len = ReaderReceive(resp, resp_par))) return 0; |
5191b3d1 | 1857 | |
3fe4ff4f | 1858 | |
6a1f2d82 | 1859 | if(p_hi14a_card) { |
1860 | memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); | |
1861 | p_hi14a_card->ats_len = len; | |
1862 | } | |
5f6d6c90 | 1863 | |
6a1f2d82 | 1864 | // reset the PCB block number |
1865 | iso14_pcb_blocknum = 0; | |
6a1f2d82 | 1866 | return 1; |
7e758047 | 1867 | } |
15c4dc5a | 1868 | |
7bc95e2e | 1869 | void iso14443a_setup(uint8_t fpga_minor_mode) { |
7cc204bf | 1870 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); |
9492e0b0 | 1871 | // Set up the synchronous serial port |
1872 | FpgaSetupSsc(); | |
7bc95e2e | 1873 | // connect Demodulated Signal to ADC: |
7e758047 | 1874 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); |
e30c654b | 1875 | |
7e758047 | 1876 | // Signal field is on with the appropriate LED |
7bc95e2e | 1877 | if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD |
1878 | || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { | |
1879 | LED_D_ON(); | |
1880 | } else { | |
1881 | LED_D_OFF(); | |
1882 | } | |
1883 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); | |
534983d7 | 1884 | |
7bc95e2e | 1885 | // Start the timer |
1886 | StartCountSspClk(); | |
1887 | ||
1888 | DemodReset(); | |
1889 | UartReset(); | |
1890 | NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; | |
1891 | iso14a_set_timeout(1050); // 10ms default | |
7e758047 | 1892 | } |
15c4dc5a | 1893 | |
6a1f2d82 | 1894 | int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { |
1895 | uint8_t parity[MAX_PARITY_SIZE]; | |
534983d7 | 1896 | uint8_t real_cmd[cmd_len+4]; |
1897 | real_cmd[0] = 0x0a; //I-Block | |
b0127e65 | 1898 | // put block number into the PCB |
1899 | real_cmd[0] |= iso14_pcb_blocknum; | |
534983d7 | 1900 | real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards |
1901 | memcpy(real_cmd+2, cmd, cmd_len); | |
1902 | AppendCrc14443a(real_cmd,cmd_len+2); | |
1903 | ||
9492e0b0 | 1904 | ReaderTransmit(real_cmd, cmd_len+4, NULL); |
6a1f2d82 | 1905 | size_t len = ReaderReceive(data, parity); |
1906 | uint8_t *data_bytes = (uint8_t *) data; | |
b0127e65 | 1907 | if (!len) |
1908 | return 0; //DATA LINK ERROR | |
1909 | // if we received an I- or R(ACK)-Block with a block number equal to the | |
1910 | // current block number, toggle the current block number | |
1911 | else if (len >= 4 // PCB+CID+CRC = 4 bytes | |
1912 | && ((data_bytes[0] & 0xC0) == 0 // I-Block | |
1913 | || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 | |
1914 | && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers | |
1915 | { | |
1916 | iso14_pcb_blocknum ^= 1; | |
1917 | } | |
1918 | ||
534983d7 | 1919 | return len; |
1920 | } | |
1921 | ||
7e758047 | 1922 | //----------------------------------------------------------------------------- |
1923 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1924 | // | |
1925 | //----------------------------------------------------------------------------- | |
7bc95e2e | 1926 | void ReaderIso14443a(UsbCommand *c) |
7e758047 | 1927 | { |
534983d7 | 1928 | iso14a_command_t param = c->arg[0]; |
7bc95e2e | 1929 | uint8_t *cmd = c->d.asBytes; |
534983d7 | 1930 | size_t len = c->arg[1]; |
5f6d6c90 | 1931 | size_t lenbits = c->arg[2]; |
9492e0b0 | 1932 | uint32_t arg0 = 0; |
1933 | byte_t buf[USB_CMD_DATA_SIZE]; | |
6a1f2d82 | 1934 | uint8_t par[MAX_PARITY_SIZE]; |
902cb3c0 | 1935 | |
5f6d6c90 | 1936 | if(param & ISO14A_CONNECT) { |
1937 | iso14a_clear_trace(); | |
1938 | } | |
e691fc45 | 1939 | |
7bc95e2e | 1940 | iso14a_set_tracing(TRUE); |
e30c654b | 1941 | |
79a73ab2 | 1942 | if(param & ISO14A_REQUEST_TRIGGER) { |
7bc95e2e | 1943 | iso14a_set_trigger(TRUE); |
9492e0b0 | 1944 | } |
15c4dc5a | 1945 | |
534983d7 | 1946 | if(param & ISO14A_CONNECT) { |
7bc95e2e | 1947 | iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); |
5f6d6c90 | 1948 | if(!(param & ISO14A_NO_SELECT)) { |
1949 | iso14a_card_select_t *card = (iso14a_card_select_t*)buf; | |
1950 | arg0 = iso14443a_select_card(NULL,card,NULL); | |
1951 | cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); | |
1952 | } | |
534983d7 | 1953 | } |
e30c654b | 1954 | |
534983d7 | 1955 | if(param & ISO14A_SET_TIMEOUT) { |
3fe4ff4f | 1956 | iso14a_set_timeout(c->arg[2]); |
534983d7 | 1957 | } |
e30c654b | 1958 | |
534983d7 | 1959 | if(param & ISO14A_APDU) { |
902cb3c0 | 1960 | arg0 = iso14_apdu(cmd, len, buf); |
79a73ab2 | 1961 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); |
534983d7 | 1962 | } |
e30c654b | 1963 | |
534983d7 | 1964 | if(param & ISO14A_RAW) { |
1965 | if(param & ISO14A_APPEND_CRC) { | |
1966 | AppendCrc14443a(cmd,len); | |
1967 | len += 2; | |
c7324bef | 1968 | if (lenbits) lenbits += 16; |
15c4dc5a | 1969 | } |
5f6d6c90 | 1970 | if(lenbits>0) { |
6a1f2d82 | 1971 | GetParity(cmd, lenbits/8, par); |
1972 | ReaderTransmitBitsPar(cmd, lenbits, par, NULL); | |
5f6d6c90 | 1973 | } else { |
1974 | ReaderTransmit(cmd,len, NULL); | |
1975 | } | |
6a1f2d82 | 1976 | arg0 = ReaderReceive(buf, par); |
9492e0b0 | 1977 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); |
534983d7 | 1978 | } |
15c4dc5a | 1979 | |
79a73ab2 | 1980 | if(param & ISO14A_REQUEST_TRIGGER) { |
7bc95e2e | 1981 | iso14a_set_trigger(FALSE); |
9492e0b0 | 1982 | } |
15c4dc5a | 1983 | |
79a73ab2 | 1984 | if(param & ISO14A_NO_DISCONNECT) { |
534983d7 | 1985 | return; |
9492e0b0 | 1986 | } |
15c4dc5a | 1987 | |
15c4dc5a | 1988 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1989 | LEDsoff(); | |
15c4dc5a | 1990 | } |
b0127e65 | 1991 | |
1c611bbd | 1992 | |
1c611bbd | 1993 | // Determine the distance between two nonces. |
1994 | // Assume that the difference is small, but we don't know which is first. | |
1995 | // Therefore try in alternating directions. | |
1996 | int32_t dist_nt(uint32_t nt1, uint32_t nt2) { | |
1997 | ||
1998 | uint16_t i; | |
1999 | uint32_t nttmp1, nttmp2; | |
e772353f | 2000 | |
1c611bbd | 2001 | if (nt1 == nt2) return 0; |
2002 | ||
2003 | nttmp1 = nt1; | |
2004 | nttmp2 = nt2; | |
2005 | ||
2006 | for (i = 1; i < 32768; i++) { | |
2007 | nttmp1 = prng_successor(nttmp1, 1); | |
2008 | if (nttmp1 == nt2) return i; | |
2009 | nttmp2 = prng_successor(nttmp2, 1); | |
2010 | if (nttmp2 == nt1) return -i; | |
2011 | } | |
2012 | ||
2013 | return(-99999); // either nt1 or nt2 are invalid nonces | |
e772353f | 2014 | } |
2015 | ||
e772353f | 2016 | |
1c611bbd | 2017 | //----------------------------------------------------------------------------- |
2018 | // Recover several bits of the cypher stream. This implements (first stages of) | |
2019 | // the algorithm described in "The Dark Side of Security by Obscurity and | |
2020 | // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" | |
2021 | // (article by Nicolas T. Courtois, 2009) | |
2022 | //----------------------------------------------------------------------------- | |
2023 | void ReaderMifare(bool first_try) | |
2024 | { | |
2025 | // Mifare AUTH | |
2026 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
2027 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
2028 | static uint8_t mf_nr_ar3; | |
e772353f | 2029 | |
f71f4deb | 2030 | uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE]; |
2031 | uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE]; | |
7bc95e2e | 2032 | |
f71f4deb | 2033 | // free eventually allocated BigBuf memory. We want all for tracing. |
2034 | BigBuf_free(); | |
2035 | ||
d2f487af | 2036 | iso14a_clear_trace(); |
7bc95e2e | 2037 | iso14a_set_tracing(TRUE); |
e772353f | 2038 | |
1c611bbd | 2039 | byte_t nt_diff = 0; |
6a1f2d82 | 2040 | uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough |
1c611bbd | 2041 | static byte_t par_low = 0; |
2042 | bool led_on = TRUE; | |
ca4714cd | 2043 | uint8_t uid[10] ={0}; |
1c611bbd | 2044 | uint32_t cuid; |
e772353f | 2045 | |
6a1f2d82 | 2046 | uint32_t nt = 0; |
2ed270a8 | 2047 | uint32_t previous_nt = 0; |
1c611bbd | 2048 | static uint32_t nt_attacked = 0; |
3fe4ff4f | 2049 | byte_t par_list[8] = {0x00}; |
2050 | byte_t ks_list[8] = {0x00}; | |
e772353f | 2051 | |
1c611bbd | 2052 | static uint32_t sync_time; |
2053 | static uint32_t sync_cycles; | |
2054 | int catch_up_cycles = 0; | |
2055 | int last_catch_up = 0; | |
2056 | uint16_t consecutive_resyncs = 0; | |
2057 | int isOK = 0; | |
e772353f | 2058 | |
1c611bbd | 2059 | if (first_try) { |
1c611bbd | 2060 | mf_nr_ar3 = 0; |
7bc95e2e | 2061 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); |
2062 | sync_time = GetCountSspClk() & 0xfffffff8; | |
1c611bbd | 2063 | sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). |
2064 | nt_attacked = 0; | |
2065 | nt = 0; | |
6a1f2d82 | 2066 | par[0] = 0; |
1c611bbd | 2067 | } |
2068 | else { | |
2069 | // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) | |
1c611bbd | 2070 | mf_nr_ar3++; |
2071 | mf_nr_ar[3] = mf_nr_ar3; | |
6a1f2d82 | 2072 | par[0] = par_low; |
1c611bbd | 2073 | } |
e30c654b | 2074 | |
15c4dc5a | 2075 | LED_A_ON(); |
2076 | LED_B_OFF(); | |
2077 | LED_C_OFF(); | |
1c611bbd | 2078 | |
7bc95e2e | 2079 | |
1c611bbd | 2080 | for(uint16_t i = 0; TRUE; i++) { |
2081 | ||
2082 | WDT_HIT(); | |
e30c654b | 2083 | |
1c611bbd | 2084 | // Test if the action was cancelled |
2085 | if(BUTTON_PRESS()) { | |
2086 | break; | |
2087 | } | |
2088 | ||
2089 | LED_C_ON(); | |
e30c654b | 2090 | |
1c611bbd | 2091 | if(!iso14443a_select_card(uid, NULL, &cuid)) { |
9492e0b0 | 2092 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); |
1c611bbd | 2093 | continue; |
2094 | } | |
2095 | ||
9492e0b0 | 2096 | sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; |
1c611bbd | 2097 | catch_up_cycles = 0; |
2098 | ||
2099 | // if we missed the sync time already, advance to the next nonce repeat | |
7bc95e2e | 2100 | while(GetCountSspClk() > sync_time) { |
9492e0b0 | 2101 | sync_time = (sync_time & 0xfffffff8) + sync_cycles; |
1c611bbd | 2102 | } |
e30c654b | 2103 | |
9492e0b0 | 2104 | // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) |
2105 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
f89c7050 | 2106 | |
1c611bbd | 2107 | // Receive the (4 Byte) "random" nonce |
6a1f2d82 | 2108 | if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { |
9492e0b0 | 2109 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); |
1c611bbd | 2110 | continue; |
2111 | } | |
2112 | ||
1c611bbd | 2113 | previous_nt = nt; |
2114 | nt = bytes_to_num(receivedAnswer, 4); | |
2115 | ||
2116 | // Transmit reader nonce with fake par | |
9492e0b0 | 2117 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); |
1c611bbd | 2118 | |
2119 | if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet | |
2120 | int nt_distance = dist_nt(previous_nt, nt); | |
2121 | if (nt_distance == 0) { | |
2122 | nt_attacked = nt; | |
2123 | } | |
2124 | else { | |
2125 | if (nt_distance == -99999) { // invalid nonce received, try again | |
2126 | continue; | |
2127 | } | |
2128 | sync_cycles = (sync_cycles - nt_distance); | |
9492e0b0 | 2129 | if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); |
1c611bbd | 2130 | continue; |
2131 | } | |
2132 | } | |
2133 | ||
2134 | if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... | |
2135 | catch_up_cycles = -dist_nt(nt_attacked, nt); | |
2136 | if (catch_up_cycles == 99999) { // invalid nonce received. Don't resync on that one. | |
2137 | catch_up_cycles = 0; | |
2138 | continue; | |
2139 | } | |
2140 | if (catch_up_cycles == last_catch_up) { | |
2141 | consecutive_resyncs++; | |
2142 | } | |
2143 | else { | |
2144 | last_catch_up = catch_up_cycles; | |
2145 | consecutive_resyncs = 0; | |
2146 | } | |
2147 | if (consecutive_resyncs < 3) { | |
9492e0b0 | 2148 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); |
1c611bbd | 2149 | } |
2150 | else { | |
2151 | sync_cycles = sync_cycles + catch_up_cycles; | |
9492e0b0 | 2152 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); |
1c611bbd | 2153 | } |
2154 | continue; | |
2155 | } | |
2156 | ||
2157 | consecutive_resyncs = 0; | |
2158 | ||
2159 | // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding | |
6a1f2d82 | 2160 | if (ReaderReceive(receivedAnswer, receivedAnswerPar)) |
1c611bbd | 2161 | { |
9492e0b0 | 2162 | catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer |
1c611bbd | 2163 | |
2164 | if (nt_diff == 0) | |
2165 | { | |
6a1f2d82 | 2166 | par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change |
1c611bbd | 2167 | } |
2168 | ||
2169 | led_on = !led_on; | |
2170 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
2171 | ||
6a1f2d82 | 2172 | par_list[nt_diff] = SwapBits(par[0], 8); |
1c611bbd | 2173 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; |
2174 | ||
2175 | // Test if the information is complete | |
2176 | if (nt_diff == 0x07) { | |
2177 | isOK = 1; | |
2178 | break; | |
2179 | } | |
2180 | ||
2181 | nt_diff = (nt_diff + 1) & 0x07; | |
2182 | mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); | |
6a1f2d82 | 2183 | par[0] = par_low; |
1c611bbd | 2184 | } else { |
2185 | if (nt_diff == 0 && first_try) | |
2186 | { | |
6a1f2d82 | 2187 | par[0]++; |
1c611bbd | 2188 | } else { |
6a1f2d82 | 2189 | par[0] = ((par[0] & 0x1F) + 1) | par_low; |
1c611bbd | 2190 | } |
2191 | } | |
2192 | } | |
2193 | ||
1c611bbd | 2194 | |
2195 | mf_nr_ar[3] &= 0x1F; | |
2196 | ||
2197 | byte_t buf[28]; | |
2198 | memcpy(buf + 0, uid, 4); | |
2199 | num_to_bytes(nt, 4, buf + 4); | |
2200 | memcpy(buf + 8, par_list, 8); | |
2201 | memcpy(buf + 16, ks_list, 8); | |
2202 | memcpy(buf + 24, mf_nr_ar, 4); | |
2203 | ||
2204 | cmd_send(CMD_ACK,isOK,0,0,buf,28); | |
2205 | ||
2206 | // Thats it... | |
2207 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2208 | LEDsoff(); | |
7bc95e2e | 2209 | |
2210 | iso14a_set_tracing(FALSE); | |
20f9a2a1 | 2211 | } |
1c611bbd | 2212 | |
d2f487af | 2213 | /** |
2214 | *MIFARE 1K simulate. | |
2215 | * | |
2216 | *@param flags : | |
2217 | * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK | |
2218 | * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that | |
2219 | * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that | |
2220 | * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later | |
2221 | *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite | |
2222 | */ | |
2223 | void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) | |
20f9a2a1 | 2224 | { |
50193c1e | 2225 | int cardSTATE = MFEMUL_NOFIELD; |
8556b852 | 2226 | int _7BUID = 0; |
9ca155ba | 2227 | int vHf = 0; // in mV |
8f51ddb0 | 2228 | int res; |
0a39986e M |
2229 | uint32_t selTimer = 0; |
2230 | uint32_t authTimer = 0; | |
6a1f2d82 | 2231 | uint16_t len = 0; |
8f51ddb0 | 2232 | uint8_t cardWRBL = 0; |
9ca155ba M |
2233 | uint8_t cardAUTHSC = 0; |
2234 | uint8_t cardAUTHKEY = 0xff; // no authentication | |
51969283 | 2235 | uint32_t cardRr = 0; |
9ca155ba | 2236 | uint32_t cuid = 0; |
d2f487af | 2237 | //uint32_t rn_enc = 0; |
51969283 | 2238 | uint32_t ans = 0; |
0014cb46 M |
2239 | uint32_t cardINTREG = 0; |
2240 | uint8_t cardINTBLOCK = 0; | |
9ca155ba M |
2241 | struct Crypto1State mpcs = {0, 0}; |
2242 | struct Crypto1State *pcs; | |
2243 | pcs = &mpcs; | |
d2f487af | 2244 | uint32_t numReads = 0;//Counts numer of times reader read a block |
f71f4deb | 2245 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; |
2246 | uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; | |
2247 | uint8_t response[MAX_MIFARE_FRAME_SIZE]; | |
2248 | uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; | |
9ca155ba | 2249 | |
d2f487af | 2250 | uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID |
2251 | uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; | |
2252 | uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! | |
2253 | uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; | |
2254 | uint8_t rSAK1[] = {0x04, 0xda, 0x17}; | |
9ca155ba | 2255 | |
d2f487af | 2256 | uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; |
2257 | uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; | |
7bc95e2e | 2258 | |
d2f487af | 2259 | //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 |
2260 | // This can be used in a reader-only attack. | |
2261 | // (it can also be retrieved via 'hf 14a list', but hey... | |
2262 | uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0}; | |
2263 | uint8_t ar_nr_collected = 0; | |
0014cb46 | 2264 | |
f71f4deb | 2265 | // free eventually allocated BigBuf memory but keep Emulator Memory |
2266 | BigBuf_free_keep_EM(); | |
0a39986e | 2267 | // clear trace |
7bc95e2e | 2268 | iso14a_clear_trace(); |
2269 | iso14a_set_tracing(TRUE); | |
51969283 | 2270 | |
7bc95e2e | 2271 | // Authenticate response - nonce |
51969283 | 2272 | uint32_t nonce = bytes_to_num(rAUTH_NT, 4); |
7bc95e2e | 2273 | |
d2f487af | 2274 | //-- Determine the UID |
2275 | // Can be set from emulator memory, incoming data | |
2276 | // and can be 7 or 4 bytes long | |
7bc95e2e | 2277 | if (flags & FLAG_4B_UID_IN_DATA) |
d2f487af | 2278 | { |
2279 | // 4B uid comes from data-portion of packet | |
2280 | memcpy(rUIDBCC1,datain,4); | |
8556b852 | 2281 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; |
8556b852 | 2282 | |
7bc95e2e | 2283 | } else if (flags & FLAG_7B_UID_IN_DATA) { |
d2f487af | 2284 | // 7B uid comes from data-portion of packet |
2285 | memcpy(&rUIDBCC1[1],datain,3); | |
2286 | memcpy(rUIDBCC2, datain+3, 4); | |
2287 | _7BUID = true; | |
7bc95e2e | 2288 | } else { |
d2f487af | 2289 | // get UID from emul memory |
2290 | emlGetMemBt(receivedCmd, 7, 1); | |
2291 | _7BUID = !(receivedCmd[0] == 0x00); | |
2292 | if (!_7BUID) { // ---------- 4BUID | |
2293 | emlGetMemBt(rUIDBCC1, 0, 4); | |
2294 | } else { // ---------- 7BUID | |
2295 | emlGetMemBt(&rUIDBCC1[1], 0, 3); | |
2296 | emlGetMemBt(rUIDBCC2, 3, 4); | |
2297 | } | |
2298 | } | |
7bc95e2e | 2299 | |
d2f487af | 2300 | /* |
2301 | * Regardless of what method was used to set the UID, set fifth byte and modify | |
2302 | * the ATQA for 4 or 7-byte UID | |
2303 | */ | |
d2f487af | 2304 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; |
7bc95e2e | 2305 | if (_7BUID) { |
d2f487af | 2306 | rATQA[0] = 0x44; |
8556b852 | 2307 | rUIDBCC1[0] = 0x88; |
8556b852 M |
2308 | rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; |
2309 | } | |
2310 | ||
9ca155ba | 2311 | // We need to listen to the high-frequency, peak-detected path. |
7bc95e2e | 2312 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); |
9ca155ba | 2313 | |
9ca155ba | 2314 | |
d2f487af | 2315 | if (MF_DBGLEVEL >= 1) { |
2316 | if (!_7BUID) { | |
b03c0f2d | 2317 | Dbprintf("4B UID: %02x%02x%02x%02x", |
2318 | rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); | |
7bc95e2e | 2319 | } else { |
b03c0f2d | 2320 | Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", |
2321 | rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], | |
2322 | rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); | |
d2f487af | 2323 | } |
2324 | } | |
7bc95e2e | 2325 | |
2326 | bool finished = FALSE; | |
d2f487af | 2327 | while (!BUTTON_PRESS() && !finished) { |
9ca155ba | 2328 | WDT_HIT(); |
9ca155ba M |
2329 | |
2330 | // find reader field | |
2331 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
2332 | // can measure voltages up to 33000 mV | |
2333 | if (cardSTATE == MFEMUL_NOFIELD) { | |
2334 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
2335 | if (vHf > MF_MINFIELDV) { | |
0014cb46 | 2336 | cardSTATE_TO_IDLE(); |
9ca155ba M |
2337 | LED_A_ON(); |
2338 | } | |
2339 | } | |
d2f487af | 2340 | if(cardSTATE == MFEMUL_NOFIELD) continue; |
9ca155ba | 2341 | |
d2f487af | 2342 | //Now, get data |
2343 | ||
6a1f2d82 | 2344 | res = EmGetCmd(receivedCmd, &len, receivedCmd_par); |
d2f487af | 2345 | if (res == 2) { //Field is off! |
2346 | cardSTATE = MFEMUL_NOFIELD; | |
2347 | LEDsoff(); | |
2348 | continue; | |
7bc95e2e | 2349 | } else if (res == 1) { |
2350 | break; //return value 1 means button press | |
2351 | } | |
2352 | ||
d2f487af | 2353 | // REQ or WUP request in ANY state and WUP in HALTED state |
2354 | if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { | |
2355 | selTimer = GetTickCount(); | |
2356 | EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); | |
2357 | cardSTATE = MFEMUL_SELECT1; | |
2358 | ||
2359 | // init crypto block | |
2360 | LED_B_OFF(); | |
2361 | LED_C_OFF(); | |
2362 | crypto1_destroy(pcs); | |
2363 | cardAUTHKEY = 0xff; | |
2364 | continue; | |
0a39986e | 2365 | } |
7bc95e2e | 2366 | |
50193c1e | 2367 | switch (cardSTATE) { |
d2f487af | 2368 | case MFEMUL_NOFIELD: |
2369 | case MFEMUL_HALTED: | |
50193c1e | 2370 | case MFEMUL_IDLE:{ |
6a1f2d82 | 2371 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
50193c1e M |
2372 | break; |
2373 | } | |
2374 | case MFEMUL_SELECT1:{ | |
9ca155ba M |
2375 | // select all |
2376 | if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { | |
d2f487af | 2377 | if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received"); |
9ca155ba | 2378 | EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); |
0014cb46 | 2379 | break; |
9ca155ba M |
2380 | } |
2381 | ||
d2f487af | 2382 | if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 ) |
2383 | { | |
2384 | Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); | |
2385 | } | |
9ca155ba | 2386 | // select card |
0a39986e M |
2387 | if (len == 9 && |
2388 | (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { | |
bfb6a143 | 2389 | EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); |
9ca155ba | 2390 | cuid = bytes_to_num(rUIDBCC1, 4); |
8556b852 M |
2391 | if (!_7BUID) { |
2392 | cardSTATE = MFEMUL_WORK; | |
0014cb46 M |
2393 | LED_B_ON(); |
2394 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); | |
2395 | break; | |
8556b852 M |
2396 | } else { |
2397 | cardSTATE = MFEMUL_SELECT2; | |
8556b852 | 2398 | } |
9ca155ba | 2399 | } |
50193c1e M |
2400 | break; |
2401 | } | |
d2f487af | 2402 | case MFEMUL_AUTH1:{ |
2403 | if( len != 8) | |
2404 | { | |
2405 | cardSTATE_TO_IDLE(); | |
6a1f2d82 | 2406 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
d2f487af | 2407 | break; |
2408 | } | |
2409 | uint32_t ar = bytes_to_num(receivedCmd, 4); | |
6a1f2d82 | 2410 | uint32_t nr = bytes_to_num(&receivedCmd[4], 4); |
d2f487af | 2411 | |
2412 | //Collect AR/NR | |
2413 | if(ar_nr_collected < 2){ | |
273b57a7 | 2414 | if(ar_nr_responses[2] != ar) |
2415 | {// Avoid duplicates... probably not necessary, ar should vary. | |
d2f487af | 2416 | ar_nr_responses[ar_nr_collected*4] = cuid; |
2417 | ar_nr_responses[ar_nr_collected*4+1] = nonce; | |
2418 | ar_nr_responses[ar_nr_collected*4+2] = ar; | |
2419 | ar_nr_responses[ar_nr_collected*4+3] = nr; | |
273b57a7 | 2420 | ar_nr_collected++; |
d2f487af | 2421 | } |
2422 | } | |
2423 | ||
2424 | // --- crypto | |
2425 | crypto1_word(pcs, ar , 1); | |
2426 | cardRr = nr ^ crypto1_word(pcs, 0, 0); | |
2427 | ||
2428 | // test if auth OK | |
2429 | if (cardRr != prng_successor(nonce, 64)){ | |
b03c0f2d | 2430 | if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", |
2431 | cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', | |
2432 | cardRr, prng_successor(nonce, 64)); | |
7bc95e2e | 2433 | // Shouldn't we respond anything here? |
d2f487af | 2434 | // Right now, we don't nack or anything, which causes the |
2435 | // reader to do a WUPA after a while. /Martin | |
b03c0f2d | 2436 | // -- which is the correct response. /piwi |
d2f487af | 2437 | cardSTATE_TO_IDLE(); |
6a1f2d82 | 2438 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
d2f487af | 2439 | break; |
2440 | } | |
2441 | ||
2442 | ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); | |
2443 | ||
2444 | num_to_bytes(ans, 4, rAUTH_AT); | |
2445 | // --- crypto | |
2446 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2447 | LED_C_ON(); | |
2448 | cardSTATE = MFEMUL_WORK; | |
b03c0f2d | 2449 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", |
2450 | cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', | |
2451 | GetTickCount() - authTimer); | |
d2f487af | 2452 | break; |
2453 | } | |
50193c1e | 2454 | case MFEMUL_SELECT2:{ |
7bc95e2e | 2455 | if (!len) { |
6a1f2d82 | 2456 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 2457 | break; |
2458 | } | |
8556b852 | 2459 | if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { |
9ca155ba | 2460 | EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); |
8556b852 M |
2461 | break; |
2462 | } | |
9ca155ba | 2463 | |
8556b852 M |
2464 | // select 2 card |
2465 | if (len == 9 && | |
2466 | (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { | |
2467 | EmSendCmd(rSAK, sizeof(rSAK)); | |
8556b852 M |
2468 | cuid = bytes_to_num(rUIDBCC2, 4); |
2469 | cardSTATE = MFEMUL_WORK; | |
2470 | LED_B_ON(); | |
0014cb46 | 2471 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); |
8556b852 M |
2472 | break; |
2473 | } | |
0014cb46 M |
2474 | |
2475 | // i guess there is a command). go into the work state. | |
7bc95e2e | 2476 | if (len != 4) { |
6a1f2d82 | 2477 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 2478 | break; |
2479 | } | |
0014cb46 | 2480 | cardSTATE = MFEMUL_WORK; |
d2f487af | 2481 | //goto lbWORK; |
2482 | //intentional fall-through to the next case-stmt | |
50193c1e | 2483 | } |
51969283 | 2484 | |
7bc95e2e | 2485 | case MFEMUL_WORK:{ |
2486 | if (len == 0) { | |
6a1f2d82 | 2487 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 2488 | break; |
2489 | } | |
2490 | ||
d2f487af | 2491 | bool encrypted_data = (cardAUTHKEY != 0xFF) ; |
2492 | ||
7bc95e2e | 2493 | if(encrypted_data) { |
51969283 M |
2494 | // decrypt seqence |
2495 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
d2f487af | 2496 | } |
7bc95e2e | 2497 | |
d2f487af | 2498 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { |
2499 | authTimer = GetTickCount(); | |
2500 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2501 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2502 | crypto1_destroy(pcs);//Added by martin | |
2503 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
51969283 | 2504 | |
d2f487af | 2505 | if (!encrypted_data) { // first authentication |
b03c0f2d | 2506 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); |
51969283 | 2507 | |
d2f487af | 2508 | crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state |
2509 | num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce | |
7bc95e2e | 2510 | } else { // nested authentication |
b03c0f2d | 2511 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); |
7bc95e2e | 2512 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); |
d2f487af | 2513 | num_to_bytes(ans, 4, rAUTH_AT); |
2514 | } | |
2515 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2516 | //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); | |
2517 | cardSTATE = MFEMUL_AUTH1; | |
2518 | break; | |
51969283 | 2519 | } |
7bc95e2e | 2520 | |
8f51ddb0 M |
2521 | // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued |
2522 | // BUT... ACK --> NACK | |
2523 | if (len == 1 && receivedCmd[0] == CARD_ACK) { | |
2524 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2525 | break; | |
2526 | } | |
2527 | ||
2528 | // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) | |
2529 | if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { | |
2530 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2531 | break; | |
0a39986e M |
2532 | } |
2533 | ||
7bc95e2e | 2534 | if(len != 4) { |
6a1f2d82 | 2535 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
7bc95e2e | 2536 | break; |
2537 | } | |
d2f487af | 2538 | |
2539 | if(receivedCmd[0] == 0x30 // read block | |
2540 | || receivedCmd[0] == 0xA0 // write block | |
b03c0f2d | 2541 | || receivedCmd[0] == 0xC0 // inc |
2542 | || receivedCmd[0] == 0xC1 // dec | |
2543 | || receivedCmd[0] == 0xC2 // restore | |
7bc95e2e | 2544 | || receivedCmd[0] == 0xB0) { // transfer |
2545 | if (receivedCmd[1] >= 16 * 4) { | |
d2f487af | 2546 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
2547 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); | |
2548 | break; | |
2549 | } | |
2550 | ||
7bc95e2e | 2551 | if (receivedCmd[1] / 4 != cardAUTHSC) { |
8f51ddb0 | 2552 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
d2f487af | 2553 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); |
8f51ddb0 M |
2554 | break; |
2555 | } | |
d2f487af | 2556 | } |
2557 | // read block | |
2558 | if (receivedCmd[0] == 0x30) { | |
b03c0f2d | 2559 | if (MF_DBGLEVEL >= 4) { |
d2f487af | 2560 | Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); |
2561 | } | |
8f51ddb0 M |
2562 | emlGetMem(response, receivedCmd[1], 1); |
2563 | AppendCrc14443a(response, 16); | |
6a1f2d82 | 2564 | mf_crypto1_encrypt(pcs, response, 18, response_par); |
2565 | EmSendCmdPar(response, 18, response_par); | |
d2f487af | 2566 | numReads++; |
7bc95e2e | 2567 | if(exitAfterNReads > 0 && numReads == exitAfterNReads) { |
d2f487af | 2568 | Dbprintf("%d reads done, exiting", numReads); |
2569 | finished = true; | |
2570 | } | |
0a39986e M |
2571 | break; |
2572 | } | |
0a39986e | 2573 | // write block |
d2f487af | 2574 | if (receivedCmd[0] == 0xA0) { |
b03c0f2d | 2575 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); |
8f51ddb0 | 2576 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); |
8f51ddb0 M |
2577 | cardSTATE = MFEMUL_WRITEBL2; |
2578 | cardWRBL = receivedCmd[1]; | |
0a39986e | 2579 | break; |
7bc95e2e | 2580 | } |
0014cb46 | 2581 | // increment, decrement, restore |
d2f487af | 2582 | if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { |
b03c0f2d | 2583 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); |
d2f487af | 2584 | if (emlCheckValBl(receivedCmd[1])) { |
2585 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); | |
0014cb46 M |
2586 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
2587 | break; | |
2588 | } | |
2589 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2590 | if (receivedCmd[0] == 0xC1) | |
2591 | cardSTATE = MFEMUL_INTREG_INC; | |
2592 | if (receivedCmd[0] == 0xC0) | |
2593 | cardSTATE = MFEMUL_INTREG_DEC; | |
2594 | if (receivedCmd[0] == 0xC2) | |
2595 | cardSTATE = MFEMUL_INTREG_REST; | |
2596 | cardWRBL = receivedCmd[1]; | |
0014cb46 M |
2597 | break; |
2598 | } | |
0014cb46 | 2599 | // transfer |
d2f487af | 2600 | if (receivedCmd[0] == 0xB0) { |
b03c0f2d | 2601 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); |
0014cb46 M |
2602 | if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) |
2603 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2604 | else | |
2605 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
0014cb46 M |
2606 | break; |
2607 | } | |
9ca155ba | 2608 | // halt |
d2f487af | 2609 | if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { |
9ca155ba | 2610 | LED_B_OFF(); |
0a39986e | 2611 | LED_C_OFF(); |
0014cb46 M |
2612 | cardSTATE = MFEMUL_HALTED; |
2613 | if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); | |
6a1f2d82 | 2614 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
0a39986e | 2615 | break; |
9ca155ba | 2616 | } |
d2f487af | 2617 | // RATS |
2618 | if (receivedCmd[0] == 0xe0) {//RATS | |
8f51ddb0 M |
2619 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); |
2620 | break; | |
2621 | } | |
d2f487af | 2622 | // command not allowed |
2623 | if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); | |
2624 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
51969283 | 2625 | break; |
8f51ddb0 M |
2626 | } |
2627 | case MFEMUL_WRITEBL2:{ | |
2628 | if (len == 18){ | |
2629 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2630 | emlSetMem(receivedCmd, cardWRBL, 1); | |
2631 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2632 | cardSTATE = MFEMUL_WORK; | |
51969283 | 2633 | } else { |
0014cb46 | 2634 | cardSTATE_TO_IDLE(); |
6a1f2d82 | 2635 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
8f51ddb0 | 2636 | } |
8f51ddb0 | 2637 | break; |
50193c1e | 2638 | } |
0014cb46 M |
2639 | |
2640 | case MFEMUL_INTREG_INC:{ | |
2641 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2642 | memcpy(&ans, receivedCmd, 4); | |
2643 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2644 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2645 | cardSTATE_TO_IDLE(); | |
2646 | break; | |
7bc95e2e | 2647 | } |
6a1f2d82 | 2648 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
0014cb46 M |
2649 | cardINTREG = cardINTREG + ans; |
2650 | cardSTATE = MFEMUL_WORK; | |
2651 | break; | |
2652 | } | |
2653 | case MFEMUL_INTREG_DEC:{ | |
2654 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2655 | memcpy(&ans, receivedCmd, 4); | |
2656 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2657 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2658 | cardSTATE_TO_IDLE(); | |
2659 | break; | |
2660 | } | |
6a1f2d82 | 2661 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
0014cb46 M |
2662 | cardINTREG = cardINTREG - ans; |
2663 | cardSTATE = MFEMUL_WORK; | |
2664 | break; | |
2665 | } | |
2666 | case MFEMUL_INTREG_REST:{ | |
2667 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2668 | memcpy(&ans, receivedCmd, 4); | |
2669 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2670 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2671 | cardSTATE_TO_IDLE(); | |
2672 | break; | |
2673 | } | |
6a1f2d82 | 2674 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); |
0014cb46 M |
2675 | cardSTATE = MFEMUL_WORK; |
2676 | break; | |
2677 | } | |
50193c1e | 2678 | } |
50193c1e M |
2679 | } |
2680 | ||
9ca155ba M |
2681 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2682 | LEDsoff(); | |
2683 | ||
d2f487af | 2684 | if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK |
2685 | { | |
2686 | //May just aswell send the collected ar_nr in the response aswell | |
2687 | cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,0,0,&ar_nr_responses,ar_nr_collected*4*4); | |
2688 | } | |
d714d3ef | 2689 | |
d2f487af | 2690 | if(flags & FLAG_NR_AR_ATTACK) |
2691 | { | |
7bc95e2e | 2692 | if(ar_nr_collected > 1) { |
d2f487af | 2693 | Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); |
d714d3ef | 2694 | Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", |
d2f487af | 2695 | ar_nr_responses[0], // UID |
2696 | ar_nr_responses[1], //NT | |
2697 | ar_nr_responses[2], //AR1 | |
2698 | ar_nr_responses[3], //NR1 | |
2699 | ar_nr_responses[6], //AR2 | |
2700 | ar_nr_responses[7] //NR2 | |
2701 | ); | |
7bc95e2e | 2702 | } else { |
d2f487af | 2703 | Dbprintf("Failed to obtain two AR/NR pairs!"); |
7bc95e2e | 2704 | if(ar_nr_collected >0) { |
d714d3ef | 2705 | Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x", |
d2f487af | 2706 | ar_nr_responses[0], // UID |
2707 | ar_nr_responses[1], //NT | |
2708 | ar_nr_responses[2], //AR1 | |
2709 | ar_nr_responses[3] //NR1 | |
2710 | ); | |
2711 | } | |
2712 | } | |
2713 | } | |
0014cb46 | 2714 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); |
15c4dc5a | 2715 | } |
b62a5a84 | 2716 | |
d2f487af | 2717 | |
2718 | ||
b62a5a84 M |
2719 | //----------------------------------------------------------------------------- |
2720 | // MIFARE sniffer. | |
2721 | // | |
2722 | //----------------------------------------------------------------------------- | |
5cd9ec01 M |
2723 | void RAMFUNC SniffMifare(uint8_t param) { |
2724 | // param: | |
2725 | // bit 0 - trigger from first card answer | |
2726 | // bit 1 - trigger from first reader 7-bit request | |
39864b0b M |
2727 | |
2728 | // C(red) A(yellow) B(green) | |
b62a5a84 M |
2729 | LEDsoff(); |
2730 | // init trace buffer | |
991f13f2 | 2731 | iso14a_clear_trace(); |
2732 | iso14a_set_tracing(TRUE); | |
b62a5a84 | 2733 | |
b62a5a84 M |
2734 | // The command (reader -> tag) that we're receiving. |
2735 | // The length of a received command will in most cases be no more than 18 bytes. | |
2736 | // So 32 should be enough! | |
f71f4deb | 2737 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; |
2738 | uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; | |
b62a5a84 | 2739 | // The response (tag -> reader) that we're receiving. |
f71f4deb | 2740 | uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; |
2741 | uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; | |
b62a5a84 M |
2742 | |
2743 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
2744 | // into trace, along with its length and other annotations. | |
2745 | //uint8_t *trace = (uint8_t *)BigBuf; | |
2746 | ||
f71f4deb | 2747 | // free eventually allocated BigBuf memory |
2748 | BigBuf_free(); | |
2749 | // allocate the DMA buffer, used to stream samples from the FPGA | |
2750 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
7bc95e2e | 2751 | uint8_t *data = dmaBuf; |
2752 | uint8_t previous_data = 0; | |
5cd9ec01 M |
2753 | int maxDataLen = 0; |
2754 | int dataLen = 0; | |
7bc95e2e | 2755 | bool ReaderIsActive = FALSE; |
2756 | bool TagIsActive = FALSE; | |
2757 | ||
2758 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); | |
b62a5a84 M |
2759 | |
2760 | // Set up the demodulator for tag -> reader responses. | |
6a1f2d82 | 2761 | DemodInit(receivedResponse, receivedResponsePar); |
b62a5a84 M |
2762 | |
2763 | // Set up the demodulator for the reader -> tag commands | |
6a1f2d82 | 2764 | UartInit(receivedCmd, receivedCmdPar); |
b62a5a84 M |
2765 | |
2766 | // Setup for the DMA. | |
7bc95e2e | 2767 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. |
b62a5a84 | 2768 | |
b62a5a84 | 2769 | LED_D_OFF(); |
39864b0b M |
2770 | |
2771 | // init sniffer | |
2772 | MfSniffInit(); | |
b62a5a84 | 2773 | |
b62a5a84 | 2774 | // And now we loop, receiving samples. |
7bc95e2e | 2775 | for(uint32_t sniffCounter = 0; TRUE; ) { |
2776 | ||
5cd9ec01 M |
2777 | if(BUTTON_PRESS()) { |
2778 | DbpString("cancelled by button"); | |
7bc95e2e | 2779 | break; |
5cd9ec01 M |
2780 | } |
2781 | ||
b62a5a84 M |
2782 | LED_A_ON(); |
2783 | WDT_HIT(); | |
39864b0b | 2784 | |
7bc95e2e | 2785 | if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time |
2786 | // check if a transaction is completed (timeout after 2000ms). | |
2787 | // if yes, stop the DMA transfer and send what we have so far to the client | |
2788 | if (MfSniffSend(2000)) { | |
2789 | // Reset everything - we missed some sniffed data anyway while the DMA was stopped | |
2790 | sniffCounter = 0; | |
2791 | data = dmaBuf; | |
2792 | maxDataLen = 0; | |
2793 | ReaderIsActive = FALSE; | |
2794 | TagIsActive = FALSE; | |
2795 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. | |
39864b0b | 2796 | } |
39864b0b | 2797 | } |
7bc95e2e | 2798 | |
2799 | int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far | |
2800 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred | |
2801 | if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred | |
2802 | dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed | |
2803 | } else { | |
2804 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed | |
5cd9ec01 M |
2805 | } |
2806 | // test for length of buffer | |
7bc95e2e | 2807 | if(dataLen > maxDataLen) { // we are more behind than ever... |
2808 | maxDataLen = dataLen; | |
f71f4deb | 2809 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { |
5cd9ec01 | 2810 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); |
7bc95e2e | 2811 | break; |
b62a5a84 M |
2812 | } |
2813 | } | |
5cd9ec01 | 2814 | if(dataLen < 1) continue; |
b62a5a84 | 2815 | |
7bc95e2e | 2816 | // primary buffer was stopped ( <-- we lost data! |
5cd9ec01 M |
2817 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { |
2818 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
2819 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
55acbb2a | 2820 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary |
5cd9ec01 M |
2821 | } |
2822 | // secondary buffer sets as primary, secondary buffer was stopped | |
2823 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
2824 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
b62a5a84 M |
2825 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; |
2826 | } | |
5cd9ec01 M |
2827 | |
2828 | LED_A_OFF(); | |
b62a5a84 | 2829 | |
7bc95e2e | 2830 | if (sniffCounter & 0x01) { |
b62a5a84 | 2831 | |
7bc95e2e | 2832 | if(!TagIsActive) { // no need to try decoding tag data if the reader is sending |
2833 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
2834 | if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { | |
2835 | LED_C_INV(); | |
6a1f2d82 | 2836 | if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; |
b62a5a84 | 2837 | |
7bc95e2e | 2838 | /* And ready to receive another command. */ |
2839 | UartReset(); | |
2840 | ||
2841 | /* And also reset the demod code */ | |
2842 | DemodReset(); | |
2843 | } | |
2844 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
2845 | } | |
2846 | ||
2847 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending | |
2848 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
2849 | if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { | |
2850 | LED_C_INV(); | |
b62a5a84 | 2851 | |
6a1f2d82 | 2852 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break; |
39864b0b | 2853 | |
7bc95e2e | 2854 | // And ready to receive another response. |
2855 | DemodReset(); | |
2856 | } | |
2857 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
2858 | } | |
b62a5a84 M |
2859 | } |
2860 | ||
7bc95e2e | 2861 | previous_data = *data; |
2862 | sniffCounter++; | |
5cd9ec01 | 2863 | data++; |
d714d3ef | 2864 | if(data == dmaBuf + DMA_BUFFER_SIZE) { |
5cd9ec01 | 2865 | data = dmaBuf; |
b62a5a84 | 2866 | } |
7bc95e2e | 2867 | |
b62a5a84 M |
2868 | } // main cycle |
2869 | ||
2870 | DbpString("COMMAND FINISHED"); | |
2871 | ||
55acbb2a | 2872 | FpgaDisableSscDma(); |
39864b0b M |
2873 | MfSniffEnd(); |
2874 | ||
7bc95e2e | 2875 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); |
b62a5a84 | 2876 | LEDsoff(); |
3803d529 | 2877 | } |