]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/iso14443b.c
ADD: @marshmellow42 's 14b fixes.
[proxmark3-svn] / armsrc / iso14443b.c
CommitLineData
489ef36c 1//-----------------------------------------------------------------------------
2// Jonathan Westhues, split Nov 2006
3//
4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
abb21530 8// Routines to support ISO 14443B. This includes both the reader software and
9// the `fake tag' modes.
489ef36c 10//-----------------------------------------------------------------------------
11
12#include "proxmark3.h"
13#include "apps.h"
14#include "util.h"
15#include "string.h"
16
17#include "iso14443crc.h"
18
489ef36c 19#define RECEIVE_SAMPLES_TIMEOUT 2000
705bfa10 20#define ISO14443B_DMA_BUFFER_SIZE 256
489ef36c 21
22//=============================================================================
23// An ISO 14443 Type B tag. We listen for commands from the reader, using
24// a UART kind of thing that's implemented in software. When we get a
25// frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
26// If it's good, then we can do something appropriate with it, and send
27// a response.
28//=============================================================================
29
30//-----------------------------------------------------------------------------
31// Code up a string of octets at layer 2 (including CRC, we don't generate
32// that here) so that they can be transmitted to the reader. Doesn't transmit
33// them yet, just leaves them ready to send in ToSend[].
34//-----------------------------------------------------------------------------
35static void CodeIso14443bAsTag(const uint8_t *cmd, int len)
36{
37 int i;
38
39 ToSendReset();
40
41 // Transmit a burst of ones, as the initial thing that lets the
42 // reader get phase sync. This (TR1) must be > 80/fs, per spec,
43 // but tag that I've tried (a Paypass) exceeds that by a fair bit,
44 // so I will too.
45 for(i = 0; i < 20; i++) {
46 ToSendStuffBit(1);
47 ToSendStuffBit(1);
48 ToSendStuffBit(1);
49 ToSendStuffBit(1);
50 }
51
52 // Send SOF.
53 for(i = 0; i < 10; i++) {
54 ToSendStuffBit(0);
55 ToSendStuffBit(0);
56 ToSendStuffBit(0);
57 ToSendStuffBit(0);
58 }
59 for(i = 0; i < 2; i++) {
60 ToSendStuffBit(1);
61 ToSendStuffBit(1);
62 ToSendStuffBit(1);
63 ToSendStuffBit(1);
64 }
65
66 for(i = 0; i < len; i++) {
67 int j;
68 uint8_t b = cmd[i];
69
70 // Start bit
71 ToSendStuffBit(0);
72 ToSendStuffBit(0);
73 ToSendStuffBit(0);
74 ToSendStuffBit(0);
75
76 // Data bits
77 for(j = 0; j < 8; j++) {
78 if(b & 1) {
79 ToSendStuffBit(1);
80 ToSendStuffBit(1);
81 ToSendStuffBit(1);
82 ToSendStuffBit(1);
83 } else {
84 ToSendStuffBit(0);
85 ToSendStuffBit(0);
86 ToSendStuffBit(0);
87 ToSendStuffBit(0);
88 }
89 b >>= 1;
90 }
91
92 // Stop bit
93 ToSendStuffBit(1);
94 ToSendStuffBit(1);
95 ToSendStuffBit(1);
96 ToSendStuffBit(1);
97 }
98
abb21530 99 // Send EOF.
489ef36c 100 for(i = 0; i < 10; i++) {
101 ToSendStuffBit(0);
102 ToSendStuffBit(0);
103 ToSendStuffBit(0);
104 ToSendStuffBit(0);
105 }
abb21530 106 for(i = 0; i < 2; i++) {
489ef36c 107 ToSendStuffBit(1);
108 ToSendStuffBit(1);
109 ToSendStuffBit(1);
110 ToSendStuffBit(1);
111 }
112
113 // Convert from last byte pos to length
114 ToSendMax++;
489ef36c 115}
116
117//-----------------------------------------------------------------------------
118// The software UART that receives commands from the reader, and its state
119// variables.
120//-----------------------------------------------------------------------------
121static struct {
122 enum {
123 STATE_UNSYNCD,
124 STATE_GOT_FALLING_EDGE_OF_SOF,
125 STATE_AWAITING_START_BIT,
36f84d47 126 STATE_RECEIVING_DATA
489ef36c 127 } state;
128 uint16_t shiftReg;
129 int bitCnt;
130 int byteCnt;
131 int byteCntMax;
132 int posCnt;
133 uint8_t *output;
134} Uart;
135
136/* Receive & handle a bit coming from the reader.
abb21530 137 *
138 * This function is called 4 times per bit (every 2 subcarrier cycles).
139 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
489ef36c 140 *
141 * LED handling:
142 * LED A -> ON once we have received the SOF and are expecting the rest.
143 * LED A -> OFF once we have received EOF or are in error state or unsynced
144 *
145 * Returns: true if we received a EOF
146 * false if we are still waiting for some more
147 */
36f84d47 148static RAMFUNC int Handle14443bUartBit(uint8_t bit)
489ef36c 149{
150 switch(Uart.state) {
151 case STATE_UNSYNCD:
489ef36c 152 if(!bit) {
153 // we went low, so this could be the beginning
154 // of an SOF
155 Uart.state = STATE_GOT_FALLING_EDGE_OF_SOF;
156 Uart.posCnt = 0;
157 Uart.bitCnt = 0;
158 }
159 break;
160
161 case STATE_GOT_FALLING_EDGE_OF_SOF:
162 Uart.posCnt++;
abb21530 163 if(Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
489ef36c 164 if(bit) {
abb21530 165 if(Uart.bitCnt > 9) {
489ef36c 166 // we've seen enough consecutive
167 // zeros that it's a valid SOF
168 Uart.posCnt = 0;
169 Uart.byteCnt = 0;
170 Uart.state = STATE_AWAITING_START_BIT;
171 LED_A_ON(); // Indicate we got a valid SOF
172 } else {
173 // didn't stay down long enough
174 // before going high, error
36f84d47 175 Uart.state = STATE_UNSYNCD;
489ef36c 176 }
177 } else {
178 // do nothing, keep waiting
179 }
180 Uart.bitCnt++;
181 }
182 if(Uart.posCnt >= 4) Uart.posCnt = 0;
abb21530 183 if(Uart.bitCnt > 12) {
489ef36c 184 // Give up if we see too many zeros without
185 // a one, too.
36f84d47 186 LED_A_OFF();
187 Uart.state = STATE_UNSYNCD;
489ef36c 188 }
189 break;
190
191 case STATE_AWAITING_START_BIT:
192 Uart.posCnt++;
193 if(bit) {
abb21530 194 if(Uart.posCnt > 50/2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
489ef36c 195 // stayed high for too long between
196 // characters, error
36f84d47 197 Uart.state = STATE_UNSYNCD;
489ef36c 198 }
199 } else {
200 // falling edge, this starts the data byte
201 Uart.posCnt = 0;
202 Uart.bitCnt = 0;
203 Uart.shiftReg = 0;
204 Uart.state = STATE_RECEIVING_DATA;
489ef36c 205 }
206 break;
207
208 case STATE_RECEIVING_DATA:
209 Uart.posCnt++;
210 if(Uart.posCnt == 2) {
211 // time to sample a bit
212 Uart.shiftReg >>= 1;
213 if(bit) {
214 Uart.shiftReg |= 0x200;
215 }
216 Uart.bitCnt++;
217 }
218 if(Uart.posCnt >= 4) {
219 Uart.posCnt = 0;
220 }
221 if(Uart.bitCnt == 10) {
222 if((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001))
223 {
224 // this is a data byte, with correct
225 // start and stop bits
226 Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
227 Uart.byteCnt++;
228
229 if(Uart.byteCnt >= Uart.byteCntMax) {
230 // Buffer overflowed, give up
36f84d47 231 LED_A_OFF();
232 Uart.state = STATE_UNSYNCD;
489ef36c 233 } else {
234 // so get the next byte now
235 Uart.posCnt = 0;
236 Uart.state = STATE_AWAITING_START_BIT;
237 }
46734099 238 } else if (Uart.shiftReg == 0x000) {
489ef36c 239 // this is an EOF byte
240 LED_A_OFF(); // Finished receiving
36f84d47 241 Uart.state = STATE_UNSYNCD;
22e24700 242 if (Uart.byteCnt != 0) {
489ef36c 243 return TRUE;
22e24700 244 }
489ef36c 245 } else {
246 // this is an error
36f84d47 247 LED_A_OFF();
46734099 248 Uart.state = STATE_UNSYNCD;
36f84d47 249 }
489ef36c 250 }
251 break;
252
253 default:
36f84d47 254 LED_A_OFF();
489ef36c 255 Uart.state = STATE_UNSYNCD;
256 break;
257 }
258
489ef36c 259 return FALSE;
260}
261
36f84d47 262
263static void UartReset()
264{
265 Uart.byteCntMax = MAX_FRAME_SIZE;
266 Uart.state = STATE_UNSYNCD;
267 Uart.byteCnt = 0;
268 Uart.bitCnt = 0;
269}
270
271
272static void UartInit(uint8_t *data)
273{
274 Uart.output = data;
275 UartReset();
276}
277
278
489ef36c 279//-----------------------------------------------------------------------------
280// Receive a command (from the reader to us, where we are the simulated tag),
281// and store it in the given buffer, up to the given maximum length. Keeps
282// spinning, waiting for a well-framed command, until either we get one
283// (returns TRUE) or someone presses the pushbutton on the board (FALSE).
284//
285// Assume that we're called with the SSC (to the FPGA) and ADC path set
286// correctly.
287//-----------------------------------------------------------------------------
36f84d47 288static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len)
489ef36c 289{
abb21530 290 // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
489ef36c 291 // only, since we are receiving, not transmitting).
292 // Signal field is off with the appropriate LED
293 LED_D_OFF();
294 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);
295
489ef36c 296 // Now run a `software UART' on the stream of incoming samples.
36f84d47 297 UartInit(received);
489ef36c 298
299 for(;;) {
300 WDT_HIT();
301
302 if(BUTTON_PRESS()) return FALSE;
303
489ef36c 304 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
305 uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
36f84d47 306 for(uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
307 if(Handle14443bUartBit(b & mask)) {
489ef36c 308 *len = Uart.byteCnt;
309 return TRUE;
310 }
311 }
312 }
313 }
36f84d47 314
315 return FALSE;
489ef36c 316}
317
318//-----------------------------------------------------------------------------
319// Main loop of simulated tag: receive commands from reader, decide what
320// response to send, and send it.
321//-----------------------------------------------------------------------------
abb21530 322void SimulateIso14443bTag(void)
489ef36c 323{
17ad0e09 324 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
325 BigBuf_free();
326
36f84d47 327 // the only commands we understand is REQB, AFI=0, Select All, N=0:
489ef36c 328 static const uint8_t cmd1[] = { 0x05, 0x00, 0x08, 0x39, 0x73 };
36f84d47 329 // ... and REQB, AFI=0, Normal Request, N=0:
330 static const uint8_t cmd2[] = { 0x05, 0x00, 0x00, 0x71, 0xFF };
331
332 // ... and we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
abb21530 333 // supports only 106kBit/s in both directions, max frame size = 32Bytes,
334 // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
489ef36c 335 static const uint8_t response1[] = {
336 0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19, 0x22,
337 0x00, 0x21, 0x85, 0x5e, 0xd7
338 };
339
36f84d47 340 clear_trace();
341 set_tracing(TRUE);
342
343 const uint8_t *resp;
344 uint8_t *respCode;
345 uint16_t respLen, respCodeLen;
36f84d47 346 uint16_t len;
347 uint16_t cmdsRecvd = 0;
489ef36c 348
17ad0e09 349
350 // allocate command receive buffer
351 uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
489ef36c 352
abb21530 353 // prepare the (only one) tag answer:
489ef36c 354 CodeIso14443bAsTag(response1, sizeof(response1));
17ad0e09 355
36f84d47 356 uint8_t *resp1Code = BigBuf_malloc(ToSendMax);
357 memcpy(resp1Code, ToSend, ToSendMax);
358 uint16_t resp1CodeLen = ToSendMax;
489ef36c 359
360 // We need to listen to the high-frequency, peak-detected path.
361 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
362 FpgaSetupSsc();
363
364 cmdsRecvd = 0;
365
366 for(;;) {
489ef36c 367
36f84d47 368 if(!GetIso14443bCommandFromReader(receivedCmd, &len)) {
489ef36c 369 Dbprintf("button pressed, received %d commands", cmdsRecvd);
370 break;
371 }
372
36f84d47 373 if (tracing) {
374 uint8_t parity[MAX_PARITY_SIZE];
375 LogTrace(receivedCmd, len, 0, 0, parity, TRUE);
376 }
489ef36c 377
36f84d47 378 // Good, look at the command now.
379 if ( (len == sizeof(cmd1) && memcmp(receivedCmd, cmd1, len) == 0)
380 || (len == sizeof(cmd2) && memcmp(receivedCmd, cmd2, len) == 0) ) {
381 resp = response1;
382 respLen = sizeof(response1);
383 respCode = resp1Code;
384 respCodeLen = resp1CodeLen;
489ef36c 385 } else {
386 Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsRecvd);
387 // And print whether the CRC fails, just for good measure
36f84d47 388 uint8_t b1, b2;
489ef36c 389 ComputeCrc14443(CRC_14443_B, receivedCmd, len-2, &b1, &b2);
390 if(b1 != receivedCmd[len-2] || b2 != receivedCmd[len-1]) {
391 // Not so good, try again.
392 DbpString("+++CRC fail");
393 } else {
394 DbpString("CRC passes");
395 }
396 break;
397 }
398
489ef36c 399 cmdsRecvd++;
400
401 if(cmdsRecvd > 0x30) {
402 DbpString("many commands later...");
403 break;
404 }
405
36f84d47 406 if(respCodeLen <= 0) continue;
489ef36c 407
408 // Modulate BPSK
409 // Signal field is off with the appropriate LED
410 LED_D_OFF();
411 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
412 AT91C_BASE_SSC->SSC_THR = 0xff;
413 FpgaSetupSsc();
414
17ad0e09 415 uint8_t c;
416 // clear receiving shift register and holding register
417 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
418 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
419 while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY));
420 c = AT91C_BASE_SSC->SSC_RHR; (void) c;
421
422 // Clear TXRDY:
423 AT91C_BASE_SSC->SSC_THR = 0x00;
424
489ef36c 425 // Transmit the response.
17ad0e09 426 uint16_t FpgaSendQueueDelay = 0;
36f84d47 427 uint16_t i = 0;
17ad0e09 428 for(;i < respCodeLen; ) {
489ef36c 429 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
17ad0e09 430 AT91C_BASE_SSC->SSC_THR = respCode[i++];
431 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
489ef36c 432 }
17ad0e09 433 if(BUTTON_PRESS()) break;
434 }
435
436 // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
437 uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3;
438 for (i = 0; i <= fpga_queued_bits/8 + 1; ) {
439 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
440 AT91C_BASE_SSC->SSC_THR = 0x00;
441 FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
442 i++;
489ef36c 443 }
444 }
36f84d47 445
446 // trace the response:
447 if (tracing) {
448 uint8_t parity[MAX_PARITY_SIZE];
449 LogTrace(resp, respLen, 0, 0, parity, FALSE);
450 }
451
489ef36c 452 }
453}
454
455//=============================================================================
456// An ISO 14443 Type B reader. We take layer two commands, code them
457// appropriately, and then send them to the tag. We then listen for the
458// tag's response, which we leave in the buffer to be demodulated on the
459// PC side.
460//=============================================================================
461
462static struct {
463 enum {
464 DEMOD_UNSYNCD,
465 DEMOD_PHASE_REF_TRAINING,
466 DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
467 DEMOD_GOT_FALLING_EDGE_OF_SOF,
468 DEMOD_AWAITING_START_BIT,
36f84d47 469 DEMOD_RECEIVING_DATA
489ef36c 470 } state;
471 int bitCount;
472 int posCount;
473 int thisBit;
abb21530 474/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
489ef36c 475 int metric;
476 int metricN;
abb21530 477*/
489ef36c 478 uint16_t shiftReg;
479 uint8_t *output;
480 int len;
481 int sumI;
482 int sumQ;
483} Demod;
484
485/*
486 * Handles reception of a bit from the tag
487 *
abb21530 488 * This function is called 2 times per bit (every 4 subcarrier cycles).
489 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
490 *
489ef36c 491 * LED handling:
492 * LED C -> ON once we have received the SOF and are expecting the rest.
493 * LED C -> OFF once we have received EOF or are unsynced
494 *
495 * Returns: true if we received a EOF
496 * false if we are still waiting for some more
497 *
498 */
abb21530 499static RAMFUNC int Handle14443bSamplesDemod(int ci, int cq)
489ef36c 500{
501 int v;
502
51d4f6f1 503// The soft decision on the bit uses an estimate of just the
504// quadrant of the reference angle, not the exact angle.
489ef36c 505#define MAKE_SOFT_DECISION() { \
506 if(Demod.sumI > 0) { \
507 v = ci; \
508 } else { \
509 v = -ci; \
510 } \
511 if(Demod.sumQ > 0) { \
512 v += cq; \
513 } else { \
514 v -= cq; \
515 } \
516 }
517
abb21530 518#define SUBCARRIER_DETECT_THRESHOLD 8
519
520// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
521/* #define CHECK_FOR_SUBCARRIER() { \
522 v = ci; \
523 if(v < 0) v = -v; \
524 if(cq > 0) { \
525 v += cq; \
526 } else { \
527 v -= cq; \
528 } \
529 }
530 */
531// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
532#define CHECK_FOR_SUBCARRIER() { \
533 if(ci < 0) { \
534 if(cq < 0) { /* ci < 0, cq < 0 */ \
535 if (cq < ci) { \
536 v = -cq - (ci >> 1); \
537 } else { \
538 v = -ci - (cq >> 1); \
539 } \
540 } else { /* ci < 0, cq >= 0 */ \
541 if (cq < -ci) { \
542 v = -ci + (cq >> 1); \
543 } else { \
544 v = cq - (ci >> 1); \
545 } \
546 } \
547 } else { \
548 if(cq < 0) { /* ci >= 0, cq < 0 */ \
549 if (-cq < ci) { \
550 v = ci - (cq >> 1); \
551 } else { \
552 v = -cq + (ci >> 1); \
553 } \
554 } else { /* ci >= 0, cq >= 0 */ \
555 if (cq < ci) { \
556 v = ci + (cq >> 1); \
557 } else { \
558 v = cq + (ci >> 1); \
559 } \
560 } \
561 } \
562 }
563
489ef36c 564 switch(Demod.state) {
565 case DEMOD_UNSYNCD:
abb21530 566 CHECK_FOR_SUBCARRIER();
567 if(v > SUBCARRIER_DETECT_THRESHOLD) { // subcarrier detected
489ef36c 568 Demod.state = DEMOD_PHASE_REF_TRAINING;
abb21530 569 Demod.sumI = ci;
570 Demod.sumQ = cq;
571 Demod.posCount = 1;
489ef36c 572 }
573 break;
574
575 case DEMOD_PHASE_REF_TRAINING:
576 if(Demod.posCount < 8) {
abb21530 577 CHECK_FOR_SUBCARRIER();
578 if (v > SUBCARRIER_DETECT_THRESHOLD) {
579 // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
580 // note: synchronization time > 80 1/fs
489ef36c 581 Demod.sumI += ci;
582 Demod.sumQ += cq;
abb21530 583 Demod.posCount++;
584 } else { // subcarrier lost
489ef36c 585 Demod.state = DEMOD_UNSYNCD;
abb21530 586 }
489ef36c 587 } else {
489ef36c 588 Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
489ef36c 589 }
489ef36c 590 break;
591
592 case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:
593 MAKE_SOFT_DECISION();
abb21530 594 if(v < 0) { // logic '0' detected
489ef36c 595 Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
abb21530 596 Demod.posCount = 0; // start of SOF sequence
489ef36c 597 } else {
abb21530 598 if(Demod.posCount > 200/4) { // maximum length of TR1 = 200 1/fs
489ef36c 599 Demod.state = DEMOD_UNSYNCD;
600 }
601 }
602 Demod.posCount++;
603 break;
604
605 case DEMOD_GOT_FALLING_EDGE_OF_SOF:
abb21530 606 Demod.posCount++;
489ef36c 607 MAKE_SOFT_DECISION();
608 if(v > 0) {
abb21530 609 if(Demod.posCount < 9*2) { // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
489ef36c 610 Demod.state = DEMOD_UNSYNCD;
611 } else {
612 LED_C_ON(); // Got SOF
613 Demod.state = DEMOD_AWAITING_START_BIT;
614 Demod.posCount = 0;
615 Demod.len = 0;
abb21530 616/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
489ef36c 617 Demod.metricN = 0;
618 Demod.metric = 0;
abb21530 619*/
489ef36c 620 }
621 } else {
abb21530 622 if(Demod.posCount > 12*2) { // low phase of SOF too long (> 12 etu)
489ef36c 623 Demod.state = DEMOD_UNSYNCD;
47286d89 624 LED_C_OFF();
489ef36c 625 }
626 }
489ef36c 627 break;
628
629 case DEMOD_AWAITING_START_BIT:
abb21530 630 Demod.posCount++;
489ef36c 631 MAKE_SOFT_DECISION();
632 if(v > 0) {
abb21530 633 if(Demod.posCount > 3*2) { // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
489ef36c 634 Demod.state = DEMOD_UNSYNCD;
47286d89 635 LED_C_OFF();
489ef36c 636 }
abb21530 637 } else { // start bit detected
489ef36c 638 Demod.bitCount = 0;
abb21530 639 Demod.posCount = 1; // this was the first half
489ef36c 640 Demod.thisBit = v;
641 Demod.shiftReg = 0;
642 Demod.state = DEMOD_RECEIVING_DATA;
643 }
644 break;
645
646 case DEMOD_RECEIVING_DATA:
647 MAKE_SOFT_DECISION();
abb21530 648 if(Demod.posCount == 0) { // first half of bit
489ef36c 649 Demod.thisBit = v;
650 Demod.posCount = 1;
abb21530 651 } else { // second half of bit
489ef36c 652 Demod.thisBit += v;
653
abb21530 654/* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
489ef36c 655 if(Demod.thisBit > 0) {
656 Demod.metric += Demod.thisBit;
657 } else {
658 Demod.metric -= Demod.thisBit;
659 }
660 (Demod.metricN)++;
abb21530 661*/
489ef36c 662
663 Demod.shiftReg >>= 1;
abb21530 664 if(Demod.thisBit > 0) { // logic '1'
489ef36c 665 Demod.shiftReg |= 0x200;
666 }
667
668 Demod.bitCount++;
669 if(Demod.bitCount == 10) {
670 uint16_t s = Demod.shiftReg;
abb21530 671 if((s & 0x200) && !(s & 0x001)) { // stop bit == '1', start bit == '0'
489ef36c 672 uint8_t b = (s >> 1);
673 Demod.output[Demod.len] = b;
674 Demod.len++;
675 Demod.state = DEMOD_AWAITING_START_BIT;
489ef36c 676 } else {
677 Demod.state = DEMOD_UNSYNCD;
47286d89 678 LED_C_OFF();
679 if(s == 0x000) {
abb21530 680 // This is EOF (start, stop and all data bits == '0'
47286d89 681 return TRUE;
682 }
489ef36c 683 }
684 }
685 Demod.posCount = 0;
686 }
687 break;
688
689 default:
690 Demod.state = DEMOD_UNSYNCD;
47286d89 691 LED_C_OFF();
489ef36c 692 break;
693 }
694
489ef36c 695 return FALSE;
696}
697
698
699static void DemodReset()
700{
701 // Clear out the state of the "UART" that receives from the tag.
702 Demod.len = 0;
703 Demod.state = DEMOD_UNSYNCD;
abb21530 704 Demod.posCount = 0;
489ef36c 705 memset(Demod.output, 0x00, MAX_FRAME_SIZE);
706}
707
708
709static void DemodInit(uint8_t *data)
710{
711 Demod.output = data;
712 DemodReset();
713}
714
715
489ef36c 716/*
717 * Demodulate the samples we received from the tag, also log to tracebuffer
489ef36c 718 * quiet: set to 'TRUE' to disable debug output
719 */
abb21530 720static void GetSamplesFor14443bDemod(int n, bool quiet)
489ef36c 721{
722 int max = 0;
abb21530 723 bool gotFrame = FALSE;
489ef36c 724 int lastRxCounter, ci, cq, samples = 0;
725
726 // Allocate memory from BigBuf for some buffers
727 // free all previous allocations first
728 BigBuf_free();
729
730 // The response (tag -> reader) that we're receiving.
731 uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE);
732
733 // The DMA buffer, used to stream samples from the FPGA
705bfa10 734 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
489ef36c 735
736 // Set up the demodulator for tag -> reader responses.
737 DemodInit(receivedResponse);
738
739 // Setup and start DMA.
705bfa10 740 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
489ef36c 741
742 int8_t *upTo = dmaBuf;
705bfa10 743 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
489ef36c 744
745 // Signal field is ON with the appropriate LED:
abb21530 746 LED_D_ON();
489ef36c 747 // And put the FPGA in the appropriate mode
22e24700 748 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
489ef36c 749
750 for(;;) {
751 int behindBy = lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR;
752 if(behindBy > max) max = behindBy;
753
705bfa10 754 while(((lastRxCounter-AT91C_BASE_PDC_SSC->PDC_RCR) & (ISO14443B_DMA_BUFFER_SIZE-1)) > 2) {
489ef36c 755 ci = upTo[0];
756 cq = upTo[1];
757 upTo += 2;
705bfa10 758 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
489ef36c 759 upTo = dmaBuf;
760 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
705bfa10 761 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
489ef36c 762 }
763 lastRxCounter -= 2;
764 if(lastRxCounter <= 0) {
705bfa10 765 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
489ef36c 766 }
767
768 samples += 2;
769
abb21530 770 if(Handle14443bSamplesDemod(ci, cq)) {
771 gotFrame = TRUE;
51d4f6f1 772 break;
489ef36c 773 }
abb21530 774 }
489ef36c 775
abb21530 776 if(samples > n || gotFrame) {
489ef36c 777 break;
778 }
779 }
abb21530 780
489ef36c 781 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
abb21530 782
783 if (!quiet) Dbprintf("max behindby = %d, samples = %d, gotFrame = %d, Demod.len = %d, Demod.sumI = %d, Demod.sumQ = %d", max, samples, gotFrame, Demod.len, Demod.sumI, Demod.sumQ);
489ef36c 784 //Tracing
785 if (tracing && Demod.len > 0) {
786 uint8_t parity[MAX_PARITY_SIZE];
489ef36c 787 LogTrace(Demod.output, Demod.len, 0, 0, parity, FALSE);
788 }
789}
790
791
489ef36c 792//-----------------------------------------------------------------------------
793// Transmit the command (to the tag) that was placed in ToSend[].
794//-----------------------------------------------------------------------------
abb21530 795static void TransmitFor14443b(void)
489ef36c 796{
797 int c;
798
799 FpgaSetupSsc();
800
801 while(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
802 AT91C_BASE_SSC->SSC_THR = 0xff;
803 }
804
805 // Signal field is ON with the appropriate Red LED
806 LED_D_ON();
807 // Signal we are transmitting with the Green LED
808 LED_B_ON();
abb21530 809 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
489ef36c 810
811 for(c = 0; c < 10;) {
812 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
813 AT91C_BASE_SSC->SSC_THR = 0xff;
814 c++;
815 }
816 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
817 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
818 (void)r;
819 }
820 WDT_HIT();
821 }
822
823 c = 0;
824 for(;;) {
825 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
826 AT91C_BASE_SSC->SSC_THR = ToSend[c];
827 c++;
828 if(c >= ToSendMax) {
829 break;
830 }
831 }
832 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
833 volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
834 (void)r;
835 }
836 WDT_HIT();
837 }
838 LED_B_OFF(); // Finished sending
839}
840
841
842//-----------------------------------------------------------------------------
843// Code a layer 2 command (string of octets, including CRC) into ToSend[],
abb21530 844// so that it is ready to transmit to the tag using TransmitFor14443b().
489ef36c 845//-----------------------------------------------------------------------------
846static void CodeIso14443bAsReader(const uint8_t *cmd, int len)
847{
848 int i, j;
849 uint8_t b;
850
851 ToSendReset();
852
853 // Establish initial reference level
854 for(i = 0; i < 40; i++) {
855 ToSendStuffBit(1);
856 }
857 // Send SOF
858 for(i = 0; i < 10; i++) {
859 ToSendStuffBit(0);
860 }
861
862 for(i = 0; i < len; i++) {
863 // Stop bits/EGT
864 ToSendStuffBit(1);
865 ToSendStuffBit(1);
866 // Start bit
867 ToSendStuffBit(0);
868 // Data bits
869 b = cmd[i];
870 for(j = 0; j < 8; j++) {
871 if(b & 1) {
872 ToSendStuffBit(1);
873 } else {
874 ToSendStuffBit(0);
875 }
876 b >>= 1;
877 }
878 }
879 // Send EOF
880 ToSendStuffBit(1);
881 for(i = 0; i < 10; i++) {
882 ToSendStuffBit(0);
883 }
884 for(i = 0; i < 8; i++) {
885 ToSendStuffBit(1);
886 }
887
888 // And then a little more, to make sure that the last character makes
889 // it out before we switch to rx mode.
890 for(i = 0; i < 24; i++) {
891 ToSendStuffBit(1);
892 }
893
894 // Convert from last character reference to length
895 ToSendMax++;
896}
897
898
489ef36c 899/**
900 Convenience function to encode, transmit and trace iso 14443b comms
901 **/
902static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len)
903{
904 CodeIso14443bAsReader(cmd, len);
abb21530 905 TransmitFor14443b();
489ef36c 906 if (tracing) {
907 uint8_t parity[MAX_PARITY_SIZE];
489ef36c 908 LogTrace(cmd,len, 0, 0, parity, TRUE);
909 }
910}
911
912
913//-----------------------------------------------------------------------------
abb21530 914// Read a SRI512 ISO 14443B tag.
489ef36c 915//
916// SRI512 tags are just simple memory tags, here we're looking at making a dump
917// of the contents of the memory. No anticollision algorithm is done, we assume
918// we have a single tag in the field.
919//
920// I tried to be systematic and check every answer of the tag, every CRC, etc...
921//-----------------------------------------------------------------------------
abb21530 922void ReadSTMemoryIso14443b(uint32_t dwLast)
489ef36c 923{
17ad0e09 924 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
925
489ef36c 926 clear_trace();
927 set_tracing(TRUE);
928
929 uint8_t i = 0x00;
930
489ef36c 931 // Make sure that we start from off, since the tags are stateful;
932 // confusing things will happen if we don't reset them between reads.
933 LED_D_OFF();
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
489ef36c 935 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
936 FpgaSetupSsc();
937
938 // Now give it time to spin up.
939 // Signal field is on with the appropriate LED
940 LED_D_ON();
22e24700 941 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);
489ef36c 942 SpinDelay(200);
943
944 // First command: wake up the tag using the INITIATE command
51d4f6f1 945 uint8_t cmd1[] = {0x06, 0x00, 0x97, 0x5b};
489ef36c 946 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
abb21530 947 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
489ef36c 948
949 if (Demod.len == 0) {
22e24700 950 DbpString("No response from tag");
951 return;
489ef36c 952 } else {
705bfa10 953 Dbprintf("Randomly generated Chip ID (+ 2 byte CRC): %02x %02x %02x",
954 Demod.output[0], Demod.output[1], Demod.output[2]);
489ef36c 955 }
705bfa10 956
489ef36c 957 // There is a response, SELECT the uid
958 DbpString("Now SELECT tag:");
959 cmd1[0] = 0x0E; // 0x0E is SELECT
960 cmd1[1] = Demod.output[0];
961 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
962 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
abb21530 963 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
489ef36c 964 if (Demod.len != 3) {
22e24700 965 Dbprintf("Expected 3 bytes from tag, got %d", Demod.len);
966 return;
489ef36c 967 }
968 // Check the CRC of the answer:
969 ComputeCrc14443(CRC_14443_B, Demod.output, 1 , &cmd1[2], &cmd1[3]);
970 if(cmd1[2] != Demod.output[1] || cmd1[3] != Demod.output[2]) {
22e24700 971 DbpString("CRC Error reading select response.");
972 return;
489ef36c 973 }
974 // Check response from the tag: should be the same UID as the command we just sent:
975 if (cmd1[1] != Demod.output[0]) {
22e24700 976 Dbprintf("Bad response to SELECT from Tag, aborting: %02x %02x", cmd1[1], Demod.output[0]);
977 return;
489ef36c 978 }
705bfa10 979
489ef36c 980 // Tag is now selected,
981 // First get the tag's UID:
982 cmd1[0] = 0x0B;
983 ComputeCrc14443(CRC_14443_B, cmd1, 1 , &cmd1[1], &cmd1[2]);
984 CodeAndTransmit14443bAsReader(cmd1, 3); // Only first three bytes for this one
abb21530 985 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
489ef36c 986 if (Demod.len != 10) {
22e24700 987 Dbprintf("Expected 10 bytes from tag, got %d", Demod.len);
988 return;
489ef36c 989 }
990 // The check the CRC of the answer (use cmd1 as temporary variable):
991 ComputeCrc14443(CRC_14443_B, Demod.output, 8, &cmd1[2], &cmd1[3]);
51d4f6f1 992 if(cmd1[2] != Demod.output[8] || cmd1[3] != Demod.output[9]) {
22e24700 993 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
705bfa10 994 (cmd1[2]<<8)+cmd1[3], (Demod.output[8]<<8)+Demod.output[9]);
489ef36c 995 // Do not return;, let's go on... (we should retry, maybe ?)
996 }
997 Dbprintf("Tag UID (64 bits): %08x %08x",
705bfa10 998 (Demod.output[7]<<24) + (Demod.output[6]<<16) + (Demod.output[5]<<8) + Demod.output[4],
999 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0]);
489ef36c 1000
1001 // Now loop to read all 16 blocks, address from 0 to last block
132a0217 1002 Dbprintf("Tag memory dump, block 0 to %d", dwLast);
489ef36c 1003 cmd1[0] = 0x08;
1004 i = 0x00;
1005 dwLast++;
1006 for (;;) {
1007 if (i == dwLast) {
1008 DbpString("System area block (0xff):");
1009 i = 0xff;
1010 }
1011 cmd1[1] = i;
1012 ComputeCrc14443(CRC_14443_B, cmd1, 2, &cmd1[2], &cmd1[3]);
1013 CodeAndTransmit14443bAsReader(cmd1, sizeof(cmd1));
abb21530 1014 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
489ef36c 1015 if (Demod.len != 6) { // Check if we got an answer from the tag
1016 DbpString("Expected 6 bytes from tag, got less...");
1017 return;
1018 }
1019 // The check the CRC of the answer (use cmd1 as temporary variable):
1020 ComputeCrc14443(CRC_14443_B, Demod.output, 4, &cmd1[2], &cmd1[3]);
1021 if(cmd1[2] != Demod.output[4] || cmd1[3] != Demod.output[5]) {
132a0217 1022 Dbprintf("CRC Error reading block! Expected: %04x got: %04x",
705bfa10 1023 (cmd1[2]<<8)+cmd1[3], (Demod.output[4]<<8)+Demod.output[5]);
489ef36c 1024 // Do not return;, let's go on... (we should retry, maybe ?)
1025 }
1026 // Now print out the memory location:
22e24700 1027 Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
705bfa10 1028 (Demod.output[3]<<24) + (Demod.output[2]<<16) + (Demod.output[1]<<8) + Demod.output[0],
17ad0e09 1029 (Demod.output[4]<<8)+Demod.output[5]);
1030 if (i == 0xff) {
1031 break;
1032 }
489ef36c 1033 i++;
1034 }
1035}
1036
1037
1038//=============================================================================
1039// Finally, the `sniffer' combines elements from both the reader and
1040// simulated tag, to show both sides of the conversation.
1041//=============================================================================
1042
1043//-----------------------------------------------------------------------------
1044// Record the sequence of commands sent by the reader to the tag, with
1045// triggering so that we start recording at the point that the tag is moved
1046// near the reader.
1047//-----------------------------------------------------------------------------
1048/*
1049 * Memory usage for this function, (within BigBuf)
47286d89 1050 * Last Received command (reader->tag) - MAX_FRAME_SIZE
1051 * Last Received command (tag->reader) - MAX_FRAME_SIZE
705bfa10 1052 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
47286d89 1053 * Demodulated samples received - all the rest
489ef36c 1054 */
abb21530 1055void RAMFUNC SnoopIso14443b(void)
489ef36c 1056{
1057 // We won't start recording the frames that we acquire until we trigger;
1058 // a good trigger condition to get started is probably when we see a
1059 // response from the tag.
47286d89 1060 int triggered = TRUE; // TODO: set and evaluate trigger condition
489ef36c 1061
1062 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
1063 BigBuf_free();
1064
1065 clear_trace();
1066 set_tracing(TRUE);
1067
1068 // The DMA buffer, used to stream samples from the FPGA
705bfa10 1069 int8_t *dmaBuf = (int8_t*) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
489ef36c 1070 int lastRxCounter;
1071 int8_t *upTo;
1072 int ci, cq;
1073 int maxBehindBy = 0;
1074
1075 // Count of samples received so far, so that we can include timing
1076 // information in the trace buffer.
1077 int samples = 0;
1078
1079 DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
1080 UartInit(BigBuf_malloc(MAX_FRAME_SIZE));
1081
1082 // Print some debug information about the buffer sizes
1083 Dbprintf("Snooping buffers initialized:");
1084 Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen());
1085 Dbprintf(" Reader -> tag: %i bytes", MAX_FRAME_SIZE);
1086 Dbprintf(" tag -> Reader: %i bytes", MAX_FRAME_SIZE);
705bfa10 1087 Dbprintf(" DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
489ef36c 1088
abb21530 1089 // Signal field is off, no reader signal, no tag signal
1090 LEDsoff();
489ef36c 1091
1092 // And put the FPGA in the appropriate mode
22e24700 1093 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
489ef36c 1094 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1095
1096 // Setup for the DMA.
1097 FpgaSetupSsc();
1098 upTo = dmaBuf;
705bfa10 1099 lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
1100 FpgaSetupSscDma((uint8_t*) dmaBuf, ISO14443B_DMA_BUFFER_SIZE);
489ef36c 1101 uint8_t parity[MAX_PARITY_SIZE];
5b95953d 1102
f53020e7 1103 bool TagIsActive = FALSE;
1104 bool ReaderIsActive = FALSE;
489ef36c 1105
1106 // And now we loop, receiving samples.
1107 for(;;) {
1108 int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) &
705bfa10 1109 (ISO14443B_DMA_BUFFER_SIZE-1);
489ef36c 1110 if(behindBy > maxBehindBy) {
1111 maxBehindBy = behindBy;
489ef36c 1112 }
abb21530 1113
489ef36c 1114 if(behindBy < 2) continue;
1115
1116 ci = upTo[0];
1117 cq = upTo[1];
1118 upTo += 2;
1119 lastRxCounter -= 2;
705bfa10 1120 if(upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
489ef36c 1121 upTo = dmaBuf;
705bfa10 1122 lastRxCounter += ISO14443B_DMA_BUFFER_SIZE;
489ef36c 1123 AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
705bfa10 1124 AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
51d4f6f1 1125 WDT_HIT();
705bfa10 1126 if(behindBy > (9*ISO14443B_DMA_BUFFER_SIZE/10)) { // TODO: understand whether we can increase/decrease as we want or not?
132a0217 1127 Dbprintf("blew circular buffer! behindBy=%d", behindBy);
51d4f6f1 1128 break;
abb21530 1129 }
1130 if(!tracing) {
1131 DbpString("Reached trace limit");
1132 break;
1133 }
1134 if(BUTTON_PRESS()) {
1135 DbpString("cancelled");
1136 break;
1137 }
489ef36c 1138 }
1139
1140 samples += 2;
1141
47286d89 1142 if (!TagIsActive) { // no need to try decoding reader data if the tag is sending
abb21530 1143 if(Handle14443bUartBit(ci & 0x01)) {
489ef36c 1144 if(triggered && tracing) {
51d4f6f1 1145 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
489ef36c 1146 }
489ef36c 1147 /* And ready to receive another command. */
1148 UartReset();
1149 /* And also reset the demod code, which might have been */
1150 /* false-triggered by the commands from the reader. */
1151 DemodReset();
1152 }
abb21530 1153 if(Handle14443bUartBit(cq & 0x01)) {
489ef36c 1154 if(triggered && tracing) {
51d4f6f1 1155 LogTrace(Uart.output, Uart.byteCnt, samples, samples, parity, TRUE);
489ef36c 1156 }
489ef36c 1157 /* And ready to receive another command. */
1158 UartReset();
1159 /* And also reset the demod code, which might have been */
1160 /* false-triggered by the commands from the reader. */
1161 DemodReset();
1162 }
36f84d47 1163 ReaderIsActive = (Uart.state > STATE_GOT_FALLING_EDGE_OF_SOF);
47286d89 1164 }
489ef36c 1165
47286d89 1166 if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time
36f84d47 1167 if(Handle14443bSamplesDemod(ci | 0x01, cq | 0x01)) {
489ef36c 1168
1169 //Use samples as a time measurement
1170 if(tracing)
1171 {
1172 uint8_t parity[MAX_PARITY_SIZE];
09c66f1f 1173 LogTrace(Demod.output, Demod.len, samples, samples, parity, FALSE);
489ef36c 1174 }
1175 triggered = TRUE;
489ef36c 1176
1177 // And ready to receive another response.
1178 DemodReset();
1179 }
22e24700 1180 TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
47286d89 1181 }
1182
489ef36c 1183 }
abb21530 1184
489ef36c 1185 FpgaDisableSscDma();
abb21530 1186 LEDsoff();
489ef36c 1187 AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS;
1188 DbpString("Snoop statistics:");
1189 Dbprintf(" Max behind by: %i", maxBehindBy);
1190 Dbprintf(" Uart State: %x", Uart.state);
1191 Dbprintf(" Uart ByteCnt: %i", Uart.byteCnt);
1192 Dbprintf(" Uart ByteCntMax: %i", Uart.byteCntMax);
1193 Dbprintf(" Trace length: %i", BigBuf_get_traceLen());
1194}
1195
1196
1197/*
1198 * Send raw command to tag ISO14443B
1199 * @Input
1200 * datalen len of buffer data
1201 * recv bool when true wait for data from tag and send to client
1202 * powerfield bool leave the field on when true
1203 * data buffer with byte to send
1204 *
1205 * @Output
1206 * none
1207 *
1208 */
abb21530 1209void SendRawCommand14443B(uint32_t datalen, uint32_t recv, uint8_t powerfield, uint8_t data[])
489ef36c 1210{
1211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
17ad0e09 1212 BigBuf_free();
abb21530 1213 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
1214 FpgaSetupSsc();
1215
51d4f6f1 1216 set_tracing(TRUE);
abb21530 1217
489ef36c 1218 CodeAndTransmit14443bAsReader(data, datalen);
1219
abb21530 1220 if(recv) {
1221 GetSamplesFor14443bDemod(RECEIVE_SAMPLES_TIMEOUT, TRUE);
51d4f6f1 1222 uint16_t iLen = MIN(Demod.len, USB_CMD_DATA_SIZE);
1223 cmd_send(CMD_ACK, iLen, 0, 0, Demod.output, iLen);
489ef36c 1224 }
abb21530 1225
1226 if(!powerfield) {
489ef36c 1227 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1228 LED_D_OFF();
1229 }
1230}
1231
Impressum, Datenschutz