]>
Commit | Line | Data |
---|---|---|
700d8687 OM |
1 | /* |
2 | * Helper functions for the RSA module | |
3 | * | |
4 | * Copyright (C) 2006-2017, ARM Limited, All Rights Reserved | |
5 | * SPDX-License-Identifier: GPL-2.0 | |
6 | * | |
7 | * This program is free software; you can redistribute it and/or modify | |
8 | * it under the terms of the GNU General Public License as published by | |
9 | * the Free Software Foundation; either version 2 of the License, or | |
10 | * (at your option) any later version. | |
11 | * | |
12 | * This program is distributed in the hope that it will be useful, | |
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | * GNU General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU General Public License along | |
18 | * with this program; if not, write to the Free Software Foundation, Inc., | |
19 | * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. | |
20 | * | |
21 | * This file is part of mbed TLS (https://tls.mbed.org) | |
22 | * | |
23 | */ | |
24 | ||
25 | #if !defined(MBEDTLS_CONFIG_FILE) | |
26 | #include "mbedtls/config.h" | |
27 | #else | |
28 | #include MBEDTLS_CONFIG_FILE | |
29 | #endif | |
30 | ||
31 | #if defined(MBEDTLS_RSA_C) | |
32 | ||
33 | #include "mbedtls/rsa.h" | |
34 | #include "mbedtls/bignum.h" | |
35 | #include "mbedtls/rsa_internal.h" | |
36 | ||
37 | /* | |
38 | * Compute RSA prime factors from public and private exponents | |
39 | * | |
40 | * Summary of algorithm: | |
41 | * Setting F := lcm(P-1,Q-1), the idea is as follows: | |
42 | * | |
43 | * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2) | |
44 | * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the | |
45 | * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four | |
46 | * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1) | |
47 | * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime | |
48 | * factors of N. | |
49 | * | |
50 | * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same | |
51 | * construction still applies since (-)^K is the identity on the set of | |
52 | * roots of 1 in Z/NZ. | |
53 | * | |
54 | * The public and private key primitives (-)^E and (-)^D are mutually inverse | |
55 | * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e. | |
56 | * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L. | |
57 | * Splitting L = 2^t * K with K odd, we have | |
58 | * | |
59 | * DE - 1 = FL = (F/2) * (2^(t+1)) * K, | |
60 | * | |
61 | * so (F / 2) * K is among the numbers | |
62 | * | |
63 | * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord | |
64 | * | |
65 | * where ord is the order of 2 in (DE - 1). | |
66 | * We can therefore iterate through these numbers apply the construction | |
67 | * of (a) and (b) above to attempt to factor N. | |
68 | * | |
69 | */ | |
70 | int mbedtls_rsa_deduce_primes( mbedtls_mpi const *N, | |
71 | mbedtls_mpi const *E, mbedtls_mpi const *D, | |
72 | mbedtls_mpi *P, mbedtls_mpi *Q ) | |
73 | { | |
74 | int ret = 0; | |
75 | ||
76 | uint16_t attempt; /* Number of current attempt */ | |
77 | uint16_t iter; /* Number of squares computed in the current attempt */ | |
78 | ||
79 | uint16_t order; /* Order of 2 in DE - 1 */ | |
80 | ||
81 | mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */ | |
82 | mbedtls_mpi K; /* Temporary holding the current candidate */ | |
83 | ||
84 | const unsigned char primes[] = { 2, | |
85 | 3, 5, 7, 11, 13, 17, 19, 23, | |
86 | 29, 31, 37, 41, 43, 47, 53, 59, | |
87 | 61, 67, 71, 73, 79, 83, 89, 97, | |
88 | 101, 103, 107, 109, 113, 127, 131, 137, | |
89 | 139, 149, 151, 157, 163, 167, 173, 179, | |
90 | 181, 191, 193, 197, 199, 211, 223, 227, | |
91 | 229, 233, 239, 241, 251 | |
92 | }; | |
93 | ||
94 | const size_t num_primes = sizeof( primes ) / sizeof( *primes ); | |
95 | ||
96 | if( P == NULL || Q == NULL || P->p != NULL || Q->p != NULL ) | |
97 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | |
98 | ||
99 | if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 || | |
100 | mbedtls_mpi_cmp_int( D, 1 ) <= 0 || | |
101 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || | |
102 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || | |
103 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) | |
104 | { | |
105 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | |
106 | } | |
107 | ||
108 | /* | |
109 | * Initializations and temporary changes | |
110 | */ | |
111 | ||
112 | mbedtls_mpi_init( &K ); | |
113 | mbedtls_mpi_init( &T ); | |
114 | ||
115 | /* T := DE - 1 */ | |
116 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, D, E ) ); | |
117 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &T, &T, 1 ) ); | |
118 | ||
119 | if( ( order = (uint16_t) mbedtls_mpi_lsb( &T ) ) == 0 ) | |
120 | { | |
121 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | |
122 | goto cleanup; | |
123 | } | |
124 | ||
125 | /* After this operation, T holds the largest odd divisor of DE - 1. */ | |
126 | MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &T, order ) ); | |
127 | ||
128 | /* | |
129 | * Actual work | |
130 | */ | |
131 | ||
132 | /* Skip trying 2 if N == 1 mod 8 */ | |
133 | attempt = 0; | |
134 | if( N->p[0] % 8 == 1 ) | |
135 | attempt = 1; | |
136 | ||
137 | for( ; attempt < num_primes; ++attempt ) | |
138 | { | |
139 | mbedtls_mpi_lset( &K, primes[attempt] ); | |
140 | ||
141 | /* Check if gcd(K,N) = 1 */ | |
142 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); | |
143 | if( mbedtls_mpi_cmp_int( P, 1 ) != 0 ) | |
144 | continue; | |
145 | ||
146 | /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ... | |
147 | * and check whether they have nontrivial GCD with N. */ | |
148 | MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &K, &K, &T, N, | |
149 | Q /* temporarily use Q for storing Montgomery | |
150 | * multiplication helper values */ ) ); | |
151 | ||
152 | for( iter = 1; iter <= order; ++iter ) | |
153 | { | |
154 | /* If we reach 1 prematurely, there's no point | |
155 | * in continuing to square K */ | |
156 | if( mbedtls_mpi_cmp_int( &K, 1 ) == 0 ) | |
157 | break; | |
158 | ||
159 | MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &K, &K, 1 ) ); | |
160 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( P, &K, N ) ); | |
161 | ||
162 | if( mbedtls_mpi_cmp_int( P, 1 ) == 1 && | |
163 | mbedtls_mpi_cmp_mpi( P, N ) == -1 ) | |
164 | { | |
165 | /* | |
166 | * Have found a nontrivial divisor P of N. | |
167 | * Set Q := N / P. | |
168 | */ | |
169 | ||
170 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( Q, NULL, N, P ) ); | |
171 | goto cleanup; | |
172 | } | |
173 | ||
174 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | |
175 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &K ) ); | |
176 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, N ) ); | |
177 | } | |
178 | ||
179 | /* | |
180 | * If we get here, then either we prematurely aborted the loop because | |
181 | * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must | |
182 | * be 1 if D,E,N were consistent. | |
183 | * Check if that's the case and abort if not, to avoid very long, | |
184 | * yet eventually failing, computations if N,D,E were not sane. | |
185 | */ | |
186 | if( mbedtls_mpi_cmp_int( &K, 1 ) != 0 ) | |
187 | { | |
188 | break; | |
189 | } | |
190 | } | |
191 | ||
192 | ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA; | |
193 | ||
194 | cleanup: | |
195 | ||
196 | mbedtls_mpi_free( &K ); | |
197 | mbedtls_mpi_free( &T ); | |
198 | return( ret ); | |
199 | } | |
200 | ||
201 | /* | |
202 | * Given P, Q and the public exponent E, deduce D. | |
203 | * This is essentially a modular inversion. | |
204 | */ | |
205 | int mbedtls_rsa_deduce_private_exponent( mbedtls_mpi const *P, | |
206 | mbedtls_mpi const *Q, | |
207 | mbedtls_mpi const *E, | |
208 | mbedtls_mpi *D ) | |
209 | { | |
210 | int ret = 0; | |
211 | mbedtls_mpi K, L; | |
212 | ||
213 | if( D == NULL || mbedtls_mpi_cmp_int( D, 0 ) != 0 ) | |
214 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | |
215 | ||
216 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || | |
217 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 || | |
218 | mbedtls_mpi_cmp_int( E, 0 ) == 0 ) | |
219 | { | |
220 | return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA ); | |
221 | } | |
222 | ||
223 | mbedtls_mpi_init( &K ); | |
224 | mbedtls_mpi_init( &L ); | |
225 | ||
226 | /* Temporarily put K := P-1 and L := Q-1 */ | |
227 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); | |
228 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); | |
229 | ||
230 | /* Temporarily put D := gcd(P-1, Q-1) */ | |
231 | MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( D, &K, &L ) ); | |
232 | ||
233 | /* K := LCM(P-1, Q-1) */ | |
234 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, &K, &L ) ); | |
235 | MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &K, NULL, &K, D ) ); | |
236 | ||
237 | /* Compute modular inverse of E in LCM(P-1, Q-1) */ | |
238 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( D, E, &K ) ); | |
239 | ||
240 | cleanup: | |
241 | ||
242 | mbedtls_mpi_free( &K ); | |
243 | mbedtls_mpi_free( &L ); | |
244 | ||
245 | return( ret ); | |
246 | } | |
247 | ||
248 | /* | |
249 | * Check that RSA CRT parameters are in accordance with core parameters. | |
250 | */ | |
251 | int mbedtls_rsa_validate_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, | |
252 | const mbedtls_mpi *D, const mbedtls_mpi *DP, | |
253 | const mbedtls_mpi *DQ, const mbedtls_mpi *QP ) | |
254 | { | |
255 | int ret = 0; | |
256 | ||
257 | mbedtls_mpi K, L; | |
258 | mbedtls_mpi_init( &K ); | |
259 | mbedtls_mpi_init( &L ); | |
260 | ||
261 | /* Check that DP - D == 0 mod P - 1 */ | |
262 | if( DP != NULL ) | |
263 | { | |
264 | if( P == NULL ) | |
265 | { | |
266 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | |
267 | goto cleanup; | |
268 | } | |
269 | ||
270 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); | |
271 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DP, D ) ); | |
272 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); | |
273 | ||
274 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) | |
275 | { | |
276 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
277 | goto cleanup; | |
278 | } | |
279 | } | |
280 | ||
281 | /* Check that DQ - D == 0 mod Q - 1 */ | |
282 | if( DQ != NULL ) | |
283 | { | |
284 | if( Q == NULL ) | |
285 | { | |
286 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | |
287 | goto cleanup; | |
288 | } | |
289 | ||
290 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); | |
291 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &L, DQ, D ) ); | |
292 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &L, &L, &K ) ); | |
293 | ||
294 | if( mbedtls_mpi_cmp_int( &L, 0 ) != 0 ) | |
295 | { | |
296 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
297 | goto cleanup; | |
298 | } | |
299 | } | |
300 | ||
301 | /* Check that QP * Q - 1 == 0 mod P */ | |
302 | if( QP != NULL ) | |
303 | { | |
304 | if( P == NULL || Q == NULL ) | |
305 | { | |
306 | ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA; | |
307 | goto cleanup; | |
308 | } | |
309 | ||
310 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, QP, Q ) ); | |
311 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | |
312 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, P ) ); | |
313 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | |
314 | { | |
315 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
316 | goto cleanup; | |
317 | } | |
318 | } | |
319 | ||
320 | cleanup: | |
321 | ||
322 | /* Wrap MPI error codes by RSA check failure error code */ | |
323 | if( ret != 0 && | |
324 | ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED && | |
325 | ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA ) | |
326 | { | |
327 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
328 | } | |
329 | ||
330 | mbedtls_mpi_free( &K ); | |
331 | mbedtls_mpi_free( &L ); | |
332 | ||
333 | return( ret ); | |
334 | } | |
335 | ||
336 | /* | |
337 | * Check that core RSA parameters are sane. | |
338 | */ | |
339 | int mbedtls_rsa_validate_params( const mbedtls_mpi *N, const mbedtls_mpi *P, | |
340 | const mbedtls_mpi *Q, const mbedtls_mpi *D, | |
341 | const mbedtls_mpi *E, | |
342 | int (*f_rng)(void *, unsigned char *, size_t), | |
343 | void *p_rng ) | |
344 | { | |
345 | int ret = 0; | |
346 | mbedtls_mpi K, L; | |
347 | ||
348 | mbedtls_mpi_init( &K ); | |
349 | mbedtls_mpi_init( &L ); | |
350 | ||
351 | /* | |
352 | * Step 1: If PRNG provided, check that P and Q are prime | |
353 | */ | |
354 | ||
355 | #if defined(MBEDTLS_GENPRIME) | |
356 | if( f_rng != NULL && P != NULL && | |
357 | ( ret = mbedtls_mpi_is_prime( P, f_rng, p_rng ) ) != 0 ) | |
358 | { | |
359 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
360 | goto cleanup; | |
361 | } | |
362 | ||
363 | if( f_rng != NULL && Q != NULL && | |
364 | ( ret = mbedtls_mpi_is_prime( Q, f_rng, p_rng ) ) != 0 ) | |
365 | { | |
366 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
367 | goto cleanup; | |
368 | } | |
369 | #else | |
370 | ((void) f_rng); | |
371 | ((void) p_rng); | |
372 | #endif /* MBEDTLS_GENPRIME */ | |
373 | ||
374 | /* | |
375 | * Step 2: Check that 1 < N = P * Q | |
376 | */ | |
377 | ||
378 | if( P != NULL && Q != NULL && N != NULL ) | |
379 | { | |
380 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, P, Q ) ); | |
381 | if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 || | |
382 | mbedtls_mpi_cmp_mpi( &K, N ) != 0 ) | |
383 | { | |
384 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
385 | goto cleanup; | |
386 | } | |
387 | } | |
388 | ||
389 | /* | |
390 | * Step 3: Check and 1 < D, E < N if present. | |
391 | */ | |
392 | ||
393 | if( N != NULL && D != NULL && E != NULL ) | |
394 | { | |
395 | if ( mbedtls_mpi_cmp_int( D, 1 ) <= 0 || | |
396 | mbedtls_mpi_cmp_int( E, 1 ) <= 0 || | |
397 | mbedtls_mpi_cmp_mpi( D, N ) >= 0 || | |
398 | mbedtls_mpi_cmp_mpi( E, N ) >= 0 ) | |
399 | { | |
400 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
401 | goto cleanup; | |
402 | } | |
403 | } | |
404 | ||
405 | /* | |
406 | * Step 4: Check that D, E are inverse modulo P-1 and Q-1 | |
407 | */ | |
408 | ||
409 | if( P != NULL && Q != NULL && D != NULL && E != NULL ) | |
410 | { | |
411 | if( mbedtls_mpi_cmp_int( P, 1 ) <= 0 || | |
412 | mbedtls_mpi_cmp_int( Q, 1 ) <= 0 ) | |
413 | { | |
414 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
415 | goto cleanup; | |
416 | } | |
417 | ||
418 | /* Compute DE-1 mod P-1 */ | |
419 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); | |
420 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | |
421 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, P, 1 ) ); | |
422 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); | |
423 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | |
424 | { | |
425 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
426 | goto cleanup; | |
427 | } | |
428 | ||
429 | /* Compute DE-1 mod Q-1 */ | |
430 | MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &K, D, E ) ); | |
431 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, &K, 1 ) ); | |
432 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &L, Q, 1 ) ); | |
433 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &K, &K, &L ) ); | |
434 | if( mbedtls_mpi_cmp_int( &K, 0 ) != 0 ) | |
435 | { | |
436 | ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
437 | goto cleanup; | |
438 | } | |
439 | } | |
440 | ||
441 | cleanup: | |
442 | ||
443 | mbedtls_mpi_free( &K ); | |
444 | mbedtls_mpi_free( &L ); | |
445 | ||
446 | /* Wrap MPI error codes by RSA check failure error code */ | |
447 | if( ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED ) | |
448 | { | |
449 | ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED; | |
450 | } | |
451 | ||
452 | return( ret ); | |
453 | } | |
454 | ||
455 | int mbedtls_rsa_deduce_crt( const mbedtls_mpi *P, const mbedtls_mpi *Q, | |
456 | const mbedtls_mpi *D, mbedtls_mpi *DP, | |
457 | mbedtls_mpi *DQ, mbedtls_mpi *QP ) | |
458 | { | |
459 | int ret = 0; | |
460 | mbedtls_mpi K; | |
461 | mbedtls_mpi_init( &K ); | |
462 | ||
463 | /* DP = D mod P-1 */ | |
464 | if( DP != NULL ) | |
465 | { | |
466 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, P, 1 ) ); | |
467 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DP, D, &K ) ); | |
468 | } | |
469 | ||
470 | /* DQ = D mod Q-1 */ | |
471 | if( DQ != NULL ) | |
472 | { | |
473 | MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &K, Q, 1 ) ); | |
474 | MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( DQ, D, &K ) ); | |
475 | } | |
476 | ||
477 | /* QP = Q^{-1} mod P */ | |
478 | if( QP != NULL ) | |
479 | { | |
480 | MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( QP, Q, P ) ); | |
481 | } | |
482 | ||
483 | cleanup: | |
484 | mbedtls_mpi_free( &K ); | |
485 | ||
486 | return( ret ); | |
487 | } | |
488 | ||
489 | #endif /* MBEDTLS_RSA_C */ |