]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
Merge branch 'master' of https://github.com/Proxmark/proxmark3
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
f38a1528 13#include "../common/usb_cdc.h"
14#include "../common/cmd.h"
902cb3c0 15
f38a1528 16#include "../include/proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
9ab7a6c7 21#include <stdarg.h>
f7e3ed82 22
15c4dc5a 23#include "legicrf.h"
f38a1528 24#include "../include/hitag2.h"
31abe49f 25#include "lfsampling.h"
3000dc4e 26#include "BigBuf.h"
15c4dc5a 27#ifdef WITH_LCD
902cb3c0 28 #include "LCD.h"
15c4dc5a 29#endif
30
15c4dc5a 31#define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33//=============================================================================
34// A buffer where we can queue things up to be sent through the FPGA, for
35// any purpose (fake tag, as reader, whatever). We go MSB first, since that
36// is the order in which they go out on the wire.
37//=============================================================================
38
6a1f2d82 39#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 40uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 41int ToSendMax;
42static int ToSendBit;
43struct common_area common_area __attribute__((section(".commonarea")));
44
15c4dc5a 45void ToSendReset(void)
46{
47 ToSendMax = -1;
48 ToSendBit = 8;
49}
50
51void ToSendStuffBit(int b)
52{
53 if(ToSendBit >= 8) {
54 ToSendMax++;
55 ToSend[ToSendMax] = 0;
56 ToSendBit = 0;
57 }
58
59 if(b) {
60 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
61 }
62
63 ToSendBit++;
64
6a1f2d82 65 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 66 ToSendBit = 0;
67 DbpString("ToSendStuffBit overflowed!");
68 }
69}
70
71//=============================================================================
72// Debug print functions, to go out over USB, to the usual PC-side client.
73//=============================================================================
74
75void DbpString(char *str)
76{
9440213d 77 byte_t len = strlen(str);
78 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 79}
80
81#if 0
82void DbpIntegers(int x1, int x2, int x3)
83{
902cb3c0 84 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 85}
86#endif
87
88void Dbprintf(const char *fmt, ...) {
89// should probably limit size here; oh well, let's just use a big buffer
90 char output_string[128];
91 va_list ap;
92
93 va_start(ap, fmt);
94 kvsprintf(fmt, output_string, 10, ap);
95 va_end(ap);
e30c654b 96
15c4dc5a 97 DbpString(output_string);
98}
99
9455b51c 100// prints HEX & ASCII
d19929cb 101void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 102 int l=0,i;
103 char ascii[9];
d19929cb 104
9455b51c 105 while (len>0) {
106 if (len>8) l=8;
107 else l=len;
108
109 memcpy(ascii,d,l);
d19929cb 110 ascii[l]=0;
9455b51c 111
112 // filter safe ascii
d19929cb 113 for (i=0;i<l;i++)
9455b51c 114 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 115
116 if (bAsci) {
117 Dbprintf("%-8s %*D",ascii,l,d," ");
118 } else {
119 Dbprintf("%*D",l,d," ");
120 }
121
9455b51c 122 len-=8;
123 d+=8;
124 }
125}
126
15c4dc5a 127//-----------------------------------------------------------------------------
128// Read an ADC channel and block till it completes, then return the result
129// in ADC units (0 to 1023). Also a routine to average 32 samples and
130// return that.
131//-----------------------------------------------------------------------------
132static int ReadAdc(int ch)
133{
f7e3ed82 134 uint32_t d;
15c4dc5a 135
136 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
137 AT91C_BASE_ADC->ADC_MR =
3b692427 138 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
139 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
140 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
141
142 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
143 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
144 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
145 //
146 // The maths are:
147 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
148 //
149 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
150 //
151 // Note: with the "historic" values in the comments above, the error was 34% !!!
152
15c4dc5a 153 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
154
155 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 156
15c4dc5a 157 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
158 ;
159 d = AT91C_BASE_ADC->ADC_CDR[ch];
160
161 return d;
162}
163
9ca155ba 164int AvgAdc(int ch) // was static - merlok
15c4dc5a 165{
166 int i;
167 int a = 0;
168
169 for(i = 0; i < 32; i++) {
170 a += ReadAdc(ch);
171 }
172
173 return (a + 15) >> 5;
174}
175
176void MeasureAntennaTuning(void)
177{
d3499d36 178 uint8_t LF_Results[256];
9f693930 179 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 180 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
181
d19929cb 182 LED_B_ON();
15c4dc5a 183
184/*
185 * Sweeps the useful LF range of the proxmark from
186 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
187 * read the voltage in the antenna, the result left
188 * in the buffer is a graph which should clearly show
189 * the resonating frequency of your LF antenna
190 * ( hopefully around 95 if it is tuned to 125kHz!)
191 */
d19929cb 192
7cc204bf 193 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 194 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
d3499d36 195 for (i=255; i>=19; i--) {
d19929cb 196 WDT_HIT();
15c4dc5a 197 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
198 SpinDelay(20);
3b692427 199 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 200 if (i==95) vLf125 = adcval; // voltage at 125Khz
201 if (i==89) vLf134 = adcval; // voltage at 134Khz
202
d3499d36 203 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
204 if(LF_Results[i] > peak) {
15c4dc5a 205 peakv = adcval;
d3499d36 206 peak = LF_Results[i];
15c4dc5a 207 peakf = i;
9f693930 208 //ptr = i;
15c4dc5a 209 }
210 }
211
d3499d36 212 for (i=18; i >= 0; i--) LF_Results[i] = 0;
213
d19929cb 214 LED_A_ON();
15c4dc5a 215 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 216 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 217 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
218 SpinDelay(20);
3b692427 219 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 220
3b692427 221 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 222 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
223 LED_A_OFF();
224 LED_B_OFF();
225 return;
15c4dc5a 226}
227
228void MeasureAntennaTuningHf(void)
229{
230 int vHf = 0; // in mV
231
232 DbpString("Measuring HF antenna, press button to exit");
233
3b692427 234 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
235 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
236 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
237
15c4dc5a 238 for (;;) {
15c4dc5a 239 SpinDelay(20);
3b692427 240 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 241
15c4dc5a 242 Dbprintf("%d mV",vHf);
243 if (BUTTON_PRESS()) break;
244 }
245 DbpString("cancelled");
3b692427 246
247 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
248
15c4dc5a 249}
250
251
252void SimulateTagHfListen(void)
253{
f71f4deb 254 // ToDo: historically this used the free buffer, which was 2744 Bytes long.
255 // There might be a better size to be defined:
256 #define HF_14B_SNOOP_BUFFER_SIZE 2744
257 uint8_t *dest = BigBuf_malloc(HF_14B_SNOOP_BUFFER_SIZE);
f7e3ed82 258 uint8_t v = 0;
15c4dc5a 259 int i;
260 int p = 0;
261
262 // We're using this mode just so that I can test it out; the simulated
263 // tag mode would work just as well and be simpler.
7cc204bf 264 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 265 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
266
267 // We need to listen to the high-frequency, peak-detected path.
268 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
269
270 FpgaSetupSsc();
271
272 i = 0;
273 for(;;) {
274 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
275 AT91C_BASE_SSC->SSC_THR = 0xff;
276 }
277 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
f7e3ed82 278 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 279
280 v <<= 1;
281 if(r & 1) {
282 v |= 1;
283 }
284 p++;
285
286 if(p >= 8) {
287 dest[i] = v;
288 v = 0;
289 p = 0;
290 i++;
291
f71f4deb 292 if(i >= HF_14B_SNOOP_BUFFER_SIZE) {
15c4dc5a 293 break;
294 }
295 }
296 }
297 }
298 DbpString("simulate tag (now type bitsamples)");
299}
300
301void ReadMem(int addr)
302{
f7e3ed82 303 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 304
305 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
306 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
307}
308
309/* osimage version information is linked in */
310extern struct version_information version_information;
311/* bootrom version information is pointed to from _bootphase1_version_pointer */
312extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
313void SendVersion(void)
314{
95e63594 315 char temp[512]; /* Limited data payload in USB packets */
15c4dc5a 316 DbpString("Prox/RFID mark3 RFID instrument");
e30c654b 317
318 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 319 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
320 * pointer, then use it.
321 */
322 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
323 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
324 DbpString("bootrom version information appears invalid");
325 } else {
326 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
327 DbpString(temp);
328 }
e30c654b 329
15c4dc5a 330 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
331 DbpString(temp);
e30c654b 332
15c4dc5a 333 FpgaGatherVersion(temp, sizeof(temp));
334 DbpString(temp);
4f269f63 335 // Send Chip ID
336 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
15c4dc5a 337}
338
339#ifdef WITH_LF
340// samy's sniff and repeat routine
341void SamyRun()
342{
343 DbpString("Stand-alone mode! No PC necessary.");
7cc204bf 344 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 345
346 // 3 possible options? no just 2 for now
347#define OPTS 2
348
349 int high[OPTS], low[OPTS];
350
351 // Oooh pretty -- notify user we're in elite samy mode now
352 LED(LED_RED, 200);
353 LED(LED_ORANGE, 200);
354 LED(LED_GREEN, 200);
355 LED(LED_ORANGE, 200);
356 LED(LED_RED, 200);
357 LED(LED_ORANGE, 200);
358 LED(LED_GREEN, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_RED, 200);
361
362 int selected = 0;
363 int playing = 0;
72e930ef 364 int cardRead = 0;
15c4dc5a 365
366 // Turn on selected LED
367 LED(selected + 1, 0);
368
369 for (;;)
370 {
6e82300d 371 usb_poll();
95e63594 372 WDT_HIT();
15c4dc5a 373
374 // Was our button held down or pressed?
375 int button_pressed = BUTTON_HELD(1000);
376 SpinDelay(300);
377
378 // Button was held for a second, begin recording
72e930ef 379 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 380 {
381 LEDsoff();
382 LED(selected + 1, 0);
383 LED(LED_RED2, 0);
384
385 // record
386 DbpString("Starting recording");
387
388 // wait for button to be released
389 while(BUTTON_PRESS())
390 WDT_HIT();
391
392 /* need this delay to prevent catching some weird data */
393 SpinDelay(500);
394
395 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
396 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
397
398 LEDsoff();
399 LED(selected + 1, 0);
400 // Finished recording
401
402 // If we were previously playing, set playing off
403 // so next button push begins playing what we recorded
404 playing = 0;
72e930ef 405
406 cardRead = 1;
407
408 }
409
410 else if (button_pressed > 0 && cardRead == 1)
411 {
412 LEDsoff();
413 LED(selected + 1, 0);
414 LED(LED_ORANGE, 0);
415
416 // record
417 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
418
419 // wait for button to be released
420 while(BUTTON_PRESS())
421 WDT_HIT();
422
423 /* need this delay to prevent catching some weird data */
424 SpinDelay(500);
425
426 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
427 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
428
429 LEDsoff();
430 LED(selected + 1, 0);
431 // Finished recording
432
433 // If we were previously playing, set playing off
434 // so next button push begins playing what we recorded
435 playing = 0;
436
437 cardRead = 0;
438
15c4dc5a 439 }
440
441 // Change where to record (or begin playing)
442 else if (button_pressed)
443 {
444 // Next option if we were previously playing
445 if (playing)
446 selected = (selected + 1) % OPTS;
447 playing = !playing;
448
449 LEDsoff();
450 LED(selected + 1, 0);
451
452 // Begin transmitting
453 if (playing)
454 {
455 LED(LED_GREEN, 0);
456 DbpString("Playing");
457 // wait for button to be released
458 while(BUTTON_PRESS())
459 WDT_HIT();
460 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
461 CmdHIDsimTAG(high[selected], low[selected], 0);
462 DbpString("Done playing");
463 if (BUTTON_HELD(1000) > 0)
464 {
465 DbpString("Exiting");
466 LEDsoff();
467 return;
468 }
469
470 /* We pressed a button so ignore it here with a delay */
471 SpinDelay(300);
472
473 // when done, we're done playing, move to next option
474 selected = (selected + 1) % OPTS;
475 playing = !playing;
476 LEDsoff();
477 LED(selected + 1, 0);
478 }
479 else
480 while(BUTTON_PRESS())
481 WDT_HIT();
482 }
483 }
484}
485#endif
486
487/*
488OBJECTIVE
489Listen and detect an external reader. Determine the best location
490for the antenna.
491
492INSTRUCTIONS:
493Inside the ListenReaderField() function, there is two mode.
494By default, when you call the function, you will enter mode 1.
495If you press the PM3 button one time, you will enter mode 2.
496If you press the PM3 button a second time, you will exit the function.
497
498DESCRIPTION OF MODE 1:
499This mode just listens for an external reader field and lights up green
500for HF and/or red for LF. This is the original mode of the detectreader
501function.
502
503DESCRIPTION OF MODE 2:
504This mode will visually represent, using the LEDs, the actual strength of the
505current compared to the maximum current detected. Basically, once you know
506what kind of external reader is present, it will help you spot the best location to place
507your antenna. You will probably not get some good results if there is a LF and a HF reader
508at the same place! :-)
509
510LIGHT SCHEME USED:
511*/
512static const char LIGHT_SCHEME[] = {
513 0x0, /* ---- | No field detected */
514 0x1, /* X--- | 14% of maximum current detected */
515 0x2, /* -X-- | 29% of maximum current detected */
516 0x4, /* --X- | 43% of maximum current detected */
517 0x8, /* ---X | 57% of maximum current detected */
518 0xC, /* --XX | 71% of maximum current detected */
519 0xE, /* -XXX | 86% of maximum current detected */
520 0xF, /* XXXX | 100% of maximum current detected */
521};
522static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
523
524void ListenReaderField(int limit)
525{
3b692427 526 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
527 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 528 int mode=1, display_val, display_max, i;
529
3b692427 530#define LF_ONLY 1
531#define HF_ONLY 2
532#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
533
534
535 // switch off FPGA - we don't want to measure our own signal
536 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
537 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 538
539 LEDsoff();
540
3b692427 541 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 542
543 if(limit != HF_ONLY) {
3b692427 544 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 545 lf_baseline = lf_av;
546 }
547
3b692427 548 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 549
550 if (limit != LF_ONLY) {
3b692427 551 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 552 hf_baseline = hf_av;
553 }
554
555 for(;;) {
556 if (BUTTON_PRESS()) {
557 SpinDelay(500);
558 switch (mode) {
559 case 1:
560 mode=2;
561 DbpString("Signal Strength Mode");
562 break;
563 case 2:
564 default:
565 DbpString("Stopped");
566 LEDsoff();
567 return;
568 break;
569 }
570 }
571 WDT_HIT();
572
573 if (limit != HF_ONLY) {
3b692427 574 if(mode == 1) {
575 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
576 LED_D_ON();
577 else
578 LED_D_OFF();
15c4dc5a 579 }
e30c654b 580
3b692427 581 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 582 // see if there's a significant change
3b692427 583 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
584 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 585 lf_av = lf_av_new;
586 if (lf_av > lf_max)
587 lf_max = lf_av;
15c4dc5a 588 }
589 }
590
591 if (limit != LF_ONLY) {
592 if (mode == 1){
3b692427 593 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
594 LED_B_ON();
595 else
596 LED_B_OFF();
15c4dc5a 597 }
e30c654b 598
3b692427 599 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 600 // see if there's a significant change
3b692427 601 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
602 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 603 hf_av = hf_av_new;
604 if (hf_av > hf_max)
605 hf_max = hf_av;
15c4dc5a 606 }
607 }
e30c654b 608
15c4dc5a 609 if(mode == 2) {
610 if (limit == LF_ONLY) {
611 display_val = lf_av;
612 display_max = lf_max;
613 } else if (limit == HF_ONLY) {
614 display_val = hf_av;
615 display_max = hf_max;
616 } else { /* Pick one at random */
617 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
618 display_val = hf_av;
619 display_max = hf_max;
620 } else {
621 display_val = lf_av;
622 display_max = lf_max;
623 }
624 }
625 for (i=0; i<LIGHT_LEN; i++) {
626 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
627 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
628 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
629 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
630 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
631 break;
632 }
633 }
634 }
635 }
636}
637
f7e3ed82 638void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 639{
640 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 641
313ee67e 642 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 643
15c4dc5a 644 switch(c->cmd) {
645#ifdef WITH_LF
31abe49f
MHS
646 case CMD_SET_LF_SAMPLING_CONFIG:
647 setSamplingConfig((sample_config *) c->d.asBytes);
648 break;
15c4dc5a 649 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
31abe49f 650 cmd_send(CMD_ACK,SampleLF(),0,0,0,0);
15c4dc5a 651 break;
15c4dc5a 652 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
653 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
654 break;
b014c96d 655 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 656 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 657 break;
7e67e42f 658 case CMD_HID_DEMOD_FSK:
a501c82b 659 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 660 break;
661 case CMD_HID_SIM_TAG:
a501c82b 662 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 663 break;
a501c82b 664 case CMD_HID_CLONE_TAG:
1c611bbd 665 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 666 break;
a1f3bb12 667 case CMD_IO_DEMOD_FSK:
a501c82b 668 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 669 break;
a501c82b 670 case CMD_IO_CLONE_TAG:
a1f3bb12 671 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
672 break;
6ff6ade2 673 case CMD_EM410X_DEMOD:
674 CmdEM410xdemod(c->arg[0], 0, 0, 1);
675 break;
2d4eae76 676 case CMD_EM410X_WRITE_TAG:
677 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
678 break;
7e67e42f 679 case CMD_READ_TI_TYPE:
680 ReadTItag();
681 break;
682 case CMD_WRITE_TI_TYPE:
683 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
684 break;
685 case CMD_SIMULATE_TAG_125K:
a61b4976 686 SimulateTagLowFrequency(c->arg[0], c->arg[1], 0);
a501c82b 687 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
7e67e42f 688 break;
689 case CMD_LF_SIMULATE_BIDIR:
690 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
691 break;
a501c82b 692 case CMD_INDALA_CLONE_TAG:
2414f978 693 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
694 break;
a501c82b 695 case CMD_INDALA_CLONE_TAG_L:
2414f978 696 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
697 break;
1c611bbd 698 case CMD_T55XX_READ_BLOCK:
699 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
700 break;
701 case CMD_T55XX_WRITE_BLOCK:
702 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
703 break;
a501c82b 704 case CMD_T55XX_READ_TRACE:
1c611bbd 705 T55xxReadTrace();
706 break;
a501c82b 707 case CMD_PCF7931_READ:
1c611bbd 708 ReadPCF7931();
709 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 710 break;
711 case CMD_EM4X_READ_WORD:
712 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
713 break;
714 case CMD_EM4X_WRITE_WORD:
715 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
716 break;
15c4dc5a 717#endif
718
d19929cb 719#ifdef WITH_HITAG
720 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
721 SnoopHitag(c->arg[0]);
722 break;
723 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
724 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
725 break;
726 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
727 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
728 break;
729#endif
730
15c4dc5a 731#ifdef WITH_ISO15693
732 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
733 AcquireRawAdcSamplesIso15693();
734 break;
9455b51c 735 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
736 RecordRawAdcSamplesIso15693();
737 break;
738
739 case CMD_ISO_15693_COMMAND:
740 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
741 break;
742
743 case CMD_ISO_15693_FIND_AFI:
744 BruteforceIso15693Afi(c->arg[0]);
745 break;
746
747 case CMD_ISO_15693_DEBUG:
748 SetDebugIso15693(c->arg[0]);
749 break;
15c4dc5a 750
15c4dc5a 751 case CMD_READER_ISO_15693:
752 ReaderIso15693(c->arg[0]);
753 break;
7e67e42f 754 case CMD_SIMTAG_ISO_15693:
3649b640 755 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 756 break;
15c4dc5a 757#endif
758
7e67e42f 759#ifdef WITH_LEGICRF
760 case CMD_SIMULATE_TAG_LEGIC_RF:
761 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
762 break;
3612a8a8 763
7e67e42f 764 case CMD_WRITER_LEGIC_RF:
765 LegicRfWriter(c->arg[1], c->arg[0]);
766 break;
3612a8a8 767
15c4dc5a 768 case CMD_READER_LEGIC_RF:
769 LegicRfReader(c->arg[0], c->arg[1]);
770 break;
15c4dc5a 771#endif
772
773#ifdef WITH_ISO14443b
774 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
775 AcquireRawAdcSamplesIso14443(c->arg[0]);
776 break;
15c4dc5a 777 case CMD_READ_SRI512_TAG:
7cf3ef20 778 ReadSTMemoryIso14443(0x0F);
15c4dc5a 779 break;
7e67e42f 780 case CMD_READ_SRIX4K_TAG:
7cf3ef20 781 ReadSTMemoryIso14443(0x7F);
7e67e42f 782 break;
783 case CMD_SNOOP_ISO_14443:
784 SnoopIso14443();
785 break;
786 case CMD_SIMULATE_TAG_ISO_14443:
787 SimulateIso14443Tag();
788 break;
7cf3ef20 789 case CMD_ISO_14443B_COMMAND:
790 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
791 break;
15c4dc5a 792#endif
793
794#ifdef WITH_ISO14443a
7e67e42f 795 case CMD_SNOOP_ISO_14443a:
5cd9ec01 796 SnoopIso14443a(c->arg[0]);
7e67e42f 797 break;
15c4dc5a 798 case CMD_READER_ISO_14443a:
902cb3c0 799 ReaderIso14443a(c);
15c4dc5a 800 break;
7e67e42f 801 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 802 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 803 break;
95e63594 804
5acd09bd 805 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 806 EPA_PACE_Collect_Nonce(c);
5acd09bd 807 break;
7e67e42f 808
95e63594 809 // case CMD_EPA_:
810 // EpaFoo(c);
811 // break;
812
15c4dc5a 813 case CMD_READER_MIFARE:
1c611bbd 814 ReaderMifare(c->arg[0]);
15c4dc5a 815 break;
20f9a2a1
M
816 case CMD_MIFARE_READBL:
817 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
818 break;
981bd429 819 case CMD_MIFAREU_READBL:
820 MifareUReadBlock(c->arg[0],c->d.asBytes);
821 break;
f38a1528 822 case CMD_MIFAREUC_AUTH1:
823 MifareUC_Auth1(c->arg[0],c->d.asBytes);
824 break;
825 case CMD_MIFAREUC_AUTH2:
826 MifareUC_Auth2(c->arg[0],c->d.asBytes);
827 break;
981bd429 828 case CMD_MIFAREU_READCARD:
117d9ec2 829 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
f38a1528 830 break;
831 case CMD_MIFAREUC_READCARD:
117d9ec2 832 MifareUReadCard(c->arg[0], c->arg[1], c->d.asBytes);
833 break;
20f9a2a1
M
834 case CMD_MIFARE_READSC:
835 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
836 break;
837 case CMD_MIFARE_WRITEBL:
838 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
981bd429 840 case CMD_MIFAREU_WRITEBL_COMPAT:
841 MifareUWriteBlock(c->arg[0], c->d.asBytes);
842 break;
843 case CMD_MIFAREU_WRITEBL:
844 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
845 break;
20f9a2a1
M
846 case CMD_MIFARE_NESTED:
847 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
848 break;
849 case CMD_MIFARE_CHKKEYS:
850 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
851 break;
852 case CMD_SIMULATE_MIFARE_CARD:
853 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
854 break;
8556b852
M
855
856 // emulator
857 case CMD_MIFARE_SET_DBGMODE:
858 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
859 break;
860 case CMD_MIFARE_EML_MEMCLR:
861 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
862 break;
863 case CMD_MIFARE_EML_MEMSET:
864 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
865 break;
866 case CMD_MIFARE_EML_MEMGET:
867 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
868 break;
869 case CMD_MIFARE_EML_CARDLOAD:
870 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
871 break;
872
873 // Work with "magic Chinese" card
d52e4e88 874 case CMD_MIFARE_CSETBLOCK:
0675f200 875 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 876 break;
d52e4e88 877 case CMD_MIFARE_CGETBLOCK:
545a1f38 878 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 879 break;
d52e4e88 880 case CMD_MIFARE_CIDENT:
881 MifareCIdent();
882 break;
b62a5a84
M
883
884 // mifare sniffer
885 case CMD_MIFARE_SNIFFER:
5cd9ec01 886 SniffMifare(c->arg[0]);
b62a5a84 887 break;
313ee67e 888
20f9a2a1
M
889#endif
890
7e67e42f 891#ifdef WITH_ICLASS
cee5a30d 892 // Makes use of ISO14443a FPGA Firmware
893 case CMD_SNOOP_ICLASS:
894 SnoopIClass();
895 break;
1e262141 896 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 897 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 898 break;
899 case CMD_READER_ICLASS:
900 ReaderIClass(c->arg[0]);
901 break;
f38a1528 902 case CMD_READER_ICLASS_REPLAY:
903 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
904 break;
cee5a30d 905#endif
906
15c4dc5a 907 case CMD_SIMULATE_TAG_HF_LISTEN:
908 SimulateTagHfListen();
909 break;
910
7e67e42f 911 case CMD_BUFF_CLEAR:
117d9ec2 912 BigBuf_Clear();
15c4dc5a 913 break;
15c4dc5a 914
915 case CMD_MEASURE_ANTENNA_TUNING:
916 MeasureAntennaTuning();
917 break;
918
919 case CMD_MEASURE_ANTENNA_TUNING_HF:
920 MeasureAntennaTuningHf();
921 break;
922
923 case CMD_LISTEN_READER_FIELD:
924 ListenReaderField(c->arg[0]);
925 break;
926
15c4dc5a 927 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
928 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
929 SpinDelay(200);
930 LED_D_OFF(); // LED D indicates field ON or OFF
931 break;
932
1c611bbd 933 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 934
1c611bbd 935 LED_B_ON();
117d9ec2 936 uint8_t *BigBuf = BigBuf_get_addr();
1c611bbd 937 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
938 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 939 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 940 }
941 // Trigger a finish downloading signal with an ACK frame
3000dc4e 942 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 943 LED_B_OFF();
1c611bbd 944 break;
15c4dc5a 945
946 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 947 uint8_t *b = BigBuf_get_addr();
7c756d68 948 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 949 cmd_send(CMD_ACK,0,0,0,0,0);
950 break;
951 }
15c4dc5a 952 case CMD_READ_MEM:
953 ReadMem(c->arg[0]);
954 break;
955
956 case CMD_SET_LF_DIVISOR:
7cc204bf 957 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 958 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
959 break;
960
961 case CMD_SET_ADC_MUX:
962 switch(c->arg[0]) {
963 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
964 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
965 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
966 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
967 }
968 break;
969
970 case CMD_VERSION:
971 SendVersion();
972 break;
973
15c4dc5a 974#ifdef WITH_LCD
975 case CMD_LCD_RESET:
976 LCDReset();
977 break;
978 case CMD_LCD:
979 LCDSend(c->arg[0]);
980 break;
981#endif
982 case CMD_SETUP_WRITE:
983 case CMD_FINISH_WRITE:
1c611bbd 984 case CMD_HARDWARE_RESET:
985 usb_disable();
15c4dc5a 986 SpinDelay(1000);
987 SpinDelay(1000);
988 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
989 for(;;) {
990 // We're going to reset, and the bootrom will take control.
991 }
1c611bbd 992 break;
15c4dc5a 993
1c611bbd 994 case CMD_START_FLASH:
15c4dc5a 995 if(common_area.flags.bootrom_present) {
996 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
997 }
1c611bbd 998 usb_disable();
15c4dc5a 999 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1000 for(;;);
1c611bbd 1001 break;
e30c654b 1002
15c4dc5a 1003 case CMD_DEVICE_INFO: {
902cb3c0 1004 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1005 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1006 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1007 break;
1008 }
1009 default:
15c4dc5a 1010 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1011 break;
15c4dc5a 1012 }
1013}
1014
1015void __attribute__((noreturn)) AppMain(void)
1016{
1017 SpinDelay(100);
9e8255d4 1018 clear_trace();
15c4dc5a 1019 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1020 /* Initialize common area */
1021 memset(&common_area, 0, sizeof(common_area));
1022 common_area.magic = COMMON_AREA_MAGIC;
1023 common_area.version = 1;
1024 }
1025 common_area.flags.osimage_present = 1;
1026
1027 LED_D_OFF();
1028 LED_C_OFF();
1029 LED_B_OFF();
1030 LED_A_OFF();
1031
b44e5233 1032 // Init USB device
313ee67e 1033 usb_enable();
15c4dc5a 1034
1035 // The FPGA gets its clock from us from PCK0 output, so set that up.
1036 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1037 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1038 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1039 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1040 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1041 AT91C_PMC_PRES_CLK_4;
1042 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1043
1044 // Reset SPI
1045 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1046 // Reset SSC
1047 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1048
1049 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1050 // (the HF version by default)
1051 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1052
9ca155ba 1053 StartTickCount();
902cb3c0 1054
15c4dc5a 1055#ifdef WITH_LCD
15c4dc5a 1056 LCDInit();
15c4dc5a 1057#endif
1058
902cb3c0 1059 byte_t rx[sizeof(UsbCommand)];
1060 size_t rx_len;
1061
15c4dc5a 1062 for(;;) {
313ee67e 1063 if (usb_poll()) {
1064 rx_len = usb_read(rx,sizeof(UsbCommand));
1065 if (rx_len) {
1066 UsbPacketReceived(rx,rx_len);
1067 }
1068 }
15c4dc5a 1069 WDT_HIT();
1070
1071#ifdef WITH_LF
1072 if (BUTTON_HELD(1000) > 0)
1073 SamyRun();
1074#endif
1075 }
1076}
Impressum, Datenschutz