eb191de6 |
1 | //----------------------------------------------------------------------------- |
ba1a299c |
2 | // Copyright (C) 2014 |
eb191de6 |
3 | // |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
5 | // at your option, any later version. See the LICENSE.txt file for the text of |
6 | // the license. |
7 | //----------------------------------------------------------------------------- |
1e090a61 |
8 | // Low frequency demod/decode commands |
eb191de6 |
9 | //----------------------------------------------------------------------------- |
10 | |
eb191de6 |
11 | #include <stdlib.h> |
12 | #include <string.h> |
eb191de6 |
13 | #include "lfdemod.h" |
a1d17964 |
14 | uint8_t justNoise(uint8_t *BitStream, size_t size) |
15 | { |
16 | static const uint8_t THRESHOLD = 123; |
17 | //test samples are not just noise |
18 | uint8_t justNoise1 = 1; |
19 | for(size_t idx=0; idx < size && justNoise1 ;idx++){ |
20 | justNoise1 = BitStream[idx] < THRESHOLD; |
21 | } |
22 | return justNoise1; |
23 | } |
24 | |
1e090a61 |
25 | //by marshmellow |
872e3d4d |
26 | //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise |
1e090a61 |
27 | int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) |
28 | { |
29 | *high=0; |
30 | *low=255; |
31 | // get high and low thresholds |
2eec55c8 |
32 | for (size_t i=0; i < size; i++){ |
1e090a61 |
33 | if (BitStream[i] > *high) *high = BitStream[i]; |
34 | if (BitStream[i] < *low) *low = BitStream[i]; |
35 | } |
36 | if (*high < 123) return -1; // just noise |
75cbbe9a |
37 | *high = ((*high-128)*fuzzHi + 12800)/100; |
38 | *low = ((*low-128)*fuzzLo + 12800)/100; |
1e090a61 |
39 | return 1; |
40 | } |
41 | |
a1d17964 |
42 | // by marshmellow |
43 | // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType |
44 | // returns 1 if passed |
45 | uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) |
46 | { |
47 | uint8_t ans = 0; |
48 | for (uint8_t i = 0; i < bitLen; i++){ |
49 | ans ^= ((bits >> i) & 1); |
50 | } |
f3bf15e4 |
51 | //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); |
a1d17964 |
52 | return (ans == pType); |
53 | } |
54 | |
55 | //by marshmellow |
2147c307 |
56 | //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length |
a1d17964 |
57 | uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) |
58 | { |
e0165dcf |
59 | uint8_t foundCnt=0; |
60 | for (int idx=0; idx < *size - pLen; idx++){ |
61 | if (memcmp(BitStream+idx, preamble, pLen) == 0){ |
62 | //first index found |
63 | foundCnt++; |
64 | if (foundCnt == 1){ |
65 | *startIdx = idx; |
66 | } |
67 | if (foundCnt == 2){ |
68 | *size = idx - *startIdx; |
69 | return 1; |
70 | } |
71 | } |
72 | } |
73 | return 0; |
a1d17964 |
74 | } |
75 | |
2147c307 |
76 | //by marshmellow |
77 | //takes 1s and 0s and searches for EM410x format - output EM ID |
78 | uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) |
79 | { |
e0165dcf |
80 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future |
81 | // otherwise could be a void with no arguments |
82 | //set defaults |
83 | uint32_t i = 0; |
2767fc02 |
84 | if (BitStream[1]>1) return 0; //allow only 1s and 0s |
85 | |
e0165dcf |
86 | // 111111111 bit pattern represent start of frame |
87 | // include 0 in front to help get start pos |
88 | uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; |
89 | uint32_t idx = 0; |
90 | uint32_t parityBits = 0; |
91 | uint8_t errChk = 0; |
92 | uint8_t FmtLen = 10; |
93 | *startIdx = 0; |
94 | errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); |
95 | if (errChk == 0 || *size < 64) return 0; |
96 | if (*size > 64) FmtLen = 22; |
97 | *startIdx += 1; //get rid of 0 from preamble |
98 | idx = *startIdx + 9; |
99 | for (i=0; i<FmtLen; i++){ //loop through 10 or 22 sets of 5 bits (50-10p = 40 bits or 88 bits) |
100 | parityBits = bytebits_to_byte(BitStream+(i*5)+idx,5); |
2eec55c8 |
101 | //check even parity - quit if failed |
102 | if (parityTest(parityBits, 5, 0) == 0) return 0; |
e0165dcf |
103 | //set uint64 with ID from BitStream |
104 | for (uint8_t ii=0; ii<4; ii++){ |
105 | *hi = (*hi << 1) | (*lo >> 63); |
106 | *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); |
107 | } |
108 | } |
109 | if (errChk != 0) return 1; |
110 | //skip last 5 bit parity test for simplicity. |
111 | // *size = 64 | 128; |
112 | return 0; |
2147c307 |
113 | } |
114 | |
fef74fdc |
115 | //by marshmellow |
116 | //demodulates strong heavily clipped samples |
23f0a7d8 |
117 | int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) |
118 | { |
119 | size_t bitCnt=0, smplCnt=0, errCnt=0; |
120 | uint8_t waveHigh = 0; |
23f0a7d8 |
121 | for (size_t i=0; i < *size; i++){ |
122 | if (BinStream[i] >= high && waveHigh){ |
123 | smplCnt++; |
124 | } else if (BinStream[i] <= low && !waveHigh){ |
125 | smplCnt++; |
126 | } else { //transition |
127 | if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ |
128 | if (smplCnt > clk-(clk/4)-1) { //full clock |
129 | if (smplCnt > clk + (clk/4)+1) { //too many samples |
130 | errCnt++; |
2767fc02 |
131 | BinStream[bitCnt++]=7; |
23f0a7d8 |
132 | } else if (waveHigh) { |
133 | BinStream[bitCnt++] = invert; |
134 | BinStream[bitCnt++] = invert; |
135 | } else if (!waveHigh) { |
136 | BinStream[bitCnt++] = invert ^ 1; |
137 | BinStream[bitCnt++] = invert ^ 1; |
138 | } |
139 | waveHigh ^= 1; |
140 | smplCnt = 0; |
141 | } else if (smplCnt > (clk/2) - (clk/4)-1) { |
142 | if (waveHigh) { |
143 | BinStream[bitCnt++] = invert; |
144 | } else if (!waveHigh) { |
145 | BinStream[bitCnt++] = invert ^ 1; |
146 | } |
147 | waveHigh ^= 1; |
148 | smplCnt = 0; |
149 | } else if (!bitCnt) { |
150 | //first bit |
151 | waveHigh = (BinStream[i] >= high); |
152 | smplCnt = 1; |
153 | } else { |
154 | smplCnt++; |
155 | //transition bit oops |
156 | } |
157 | } else { //haven't hit new high or new low yet |
158 | smplCnt++; |
159 | } |
160 | } |
161 | } |
162 | *size = bitCnt; |
163 | return errCnt; |
164 | } |
165 | |
eb191de6 |
166 | //by marshmellow |
fef74fdc |
167 | void askAmp(uint8_t *BitStream, size_t size) |
168 | { |
169 | for(size_t i = 1; i<size; i++){ |
170 | if (BitStream[i]-BitStream[i-1]>=30) //large jump up |
171 | BitStream[i]=127; |
172 | else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down |
173 | BitStream[i]=-127; |
174 | } |
175 | return; |
176 | } |
177 | |
178 | //by marshmellow |
179 | //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester |
180 | int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) |
eb191de6 |
181 | { |
fef74fdc |
182 | if (*size==0) return -1; |
6e984446 |
183 | int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default |
2eec55c8 |
184 | if (*clk==0 || start < 0) return -3; |
fef74fdc |
185 | if (*invert != 1) *invert = 0; |
186 | if (amp==1) askAmp(BinStream, *size); |
187 | |
2eec55c8 |
188 | uint8_t initLoopMax = 255; |
189 | if (initLoopMax > *size) initLoopMax = *size; |
ba1a299c |
190 | // Detect high and lows |
fef74fdc |
191 | //25% clip in case highs and lows aren't clipped [marshmellow] |
2eec55c8 |
192 | int high, low; |
fef74fdc |
193 | if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) |
194 | return -2; //just noise |
ba1a299c |
195 | |
fef74fdc |
196 | size_t errCnt = 0; |
23f0a7d8 |
197 | // if clean clipped waves detected run alternate demod |
198 | if (DetectCleanAskWave(BinStream, *size, high, low)) { |
fef74fdc |
199 | errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); |
200 | if (askType) //askman |
201 | return manrawdecode(BinStream, size, 0); |
202 | else //askraw |
203 | return errCnt; |
23f0a7d8 |
204 | } |
205 | |
fef74fdc |
206 | int lastBit; //set first clock check - can go negative |
207 | size_t i, bitnum = 0; //output counter |
208 | uint8_t midBit = 0; |
2eec55c8 |
209 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
fef74fdc |
210 | if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely |
211 | size_t MaxBits = 1024; |
6e984446 |
212 | lastBit = start - *clk; |
fef74fdc |
213 | |
6e984446 |
214 | for (i = start; i < *size; ++i) { |
fef74fdc |
215 | if (i-lastBit >= *clk-tol){ |
216 | if (BinStream[i] >= high) { |
217 | BinStream[bitnum++] = *invert; |
218 | } else if (BinStream[i] <= low) { |
219 | BinStream[bitnum++] = *invert ^ 1; |
220 | } else if (i-lastBit >= *clk+tol) { |
221 | if (bitnum > 0) { |
222 | BinStream[bitnum++]=7; |
223 | errCnt++; |
224 | } |
225 | } else { //in tolerance - looking for peak |
226 | continue; |
227 | } |
228 | midBit = 0; |
2eec55c8 |
229 | lastBit += *clk; |
fef74fdc |
230 | } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ |
231 | if (BinStream[i] >= high) { |
232 | BinStream[bitnum++] = *invert; |
233 | } else if (BinStream[i] <= low) { |
234 | BinStream[bitnum++] = *invert ^ 1; |
235 | } else if (i-lastBit >= *clk/2+tol) { |
236 | BinStream[bitnum] = BinStream[bitnum-1]; |
237 | bitnum++; |
238 | } else { //in tolerance - looking for peak |
239 | continue; |
240 | } |
241 | midBit = 1; |
2eec55c8 |
242 | } |
243 | if (bitnum >= MaxBits) break; |
ba1a299c |
244 | } |
2eec55c8 |
245 | *size = bitnum; |
6e984446 |
246 | return errCnt; |
eb191de6 |
247 | } |
248 | |
249 | //by marshmellow |
250 | //take 10 and 01 and manchester decode |
251 | //run through 2 times and take least errCnt |
fef74fdc |
252 | int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert) |
eb191de6 |
253 | { |
13d77ef9 |
254 | uint16_t bitnum=0, MaxBits = 512, errCnt = 0; |
255 | size_t i, ii; |
256 | uint16_t bestErr = 1000, bestRun = 0; |
fef74fdc |
257 | if (*size < 16) return -1; |
2767fc02 |
258 | //find correct start position [alignment] |
13d77ef9 |
259 | for (ii=0;ii<2;++ii){ |
fef74fdc |
260 | for (i=ii; i<*size-3; i+=2) |
2eec55c8 |
261 | if (BitStream[i]==BitStream[i+1]) |
ba1a299c |
262 | errCnt++; |
2eec55c8 |
263 | |
ba1a299c |
264 | if (bestErr>errCnt){ |
265 | bestErr=errCnt; |
266 | bestRun=ii; |
267 | } |
268 | errCnt=0; |
269 | } |
2767fc02 |
270 | //decode |
fef74fdc |
271 | for (i=bestRun; i < *size-3; i+=2){ |
23f0a7d8 |
272 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ |
fef74fdc |
273 | BitStream[bitnum++]=invert; |
23f0a7d8 |
274 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ |
fef74fdc |
275 | BitStream[bitnum++]=invert^1; |
23f0a7d8 |
276 | } else { |
2767fc02 |
277 | BitStream[bitnum++]=7; |
ba1a299c |
278 | } |
23f0a7d8 |
279 | if(bitnum>MaxBits) break; |
ba1a299c |
280 | } |
23f0a7d8 |
281 | *size=bitnum; |
2eec55c8 |
282 | return bestErr; |
f822a063 |
283 | } |
284 | |
fef74fdc |
285 | //by marshmellow |
286 | //encode binary data into binary manchester |
287 | int ManchesterEncode(uint8_t *BitStream, size_t size) |
288 | { |
289 | size_t modIdx=20000, i=0; |
290 | if (size>modIdx) return -1; |
291 | for (size_t idx=0; idx < size; idx++){ |
292 | BitStream[idx+modIdx++] = BitStream[idx]; |
293 | BitStream[idx+modIdx++] = BitStream[idx]^1; |
294 | } |
295 | for (; i<(size*2); i++){ |
296 | BitStream[i] = BitStream[i+20000]; |
297 | } |
298 | return i; |
299 | } |
300 | |
f822a063 |
301 | //by marshmellow |
2147c307 |
302 | //take 01 or 10 = 1 and 11 or 00 = 0 |
303 | //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 |
13d77ef9 |
304 | //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding |
1e090a61 |
305 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) |
f822a063 |
306 | { |
2eec55c8 |
307 | uint16_t bitnum = 0; |
308 | uint16_t errCnt = 0; |
309 | size_t i = offset; |
2147c307 |
310 | uint16_t MaxBits=512; |
311 | //if not enough samples - error |
312 | if (*size < 51) return -1; |
313 | //check for phase change faults - skip one sample if faulty |
314 | uint8_t offsetA = 1, offsetB = 1; |
315 | for (; i<48; i+=2){ |
316 | if (BitStream[i+1]==BitStream[i+2]) offsetA=0; |
317 | if (BitStream[i+2]==BitStream[i+3]) offsetB=0; |
318 | } |
319 | if (!offsetA && offsetB) offset++; |
320 | for (i=offset; i<*size-3; i+=2){ |
321 | //check for phase error |
13d77ef9 |
322 | if (BitStream[i+1]==BitStream[i+2]) { |
2767fc02 |
323 | BitStream[bitnum++]=7; |
2147c307 |
324 | errCnt++; |
325 | } |
ba1a299c |
326 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ |
1e090a61 |
327 | BitStream[bitnum++]=1^invert; |
ba1a299c |
328 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ |
1e090a61 |
329 | BitStream[bitnum++]=invert; |
ba1a299c |
330 | } else { |
2767fc02 |
331 | BitStream[bitnum++]=7; |
ba1a299c |
332 | errCnt++; |
333 | } |
6de43508 |
334 | if(bitnum>MaxBits) break; |
ba1a299c |
335 | } |
336 | *size=bitnum; |
337 | return errCnt; |
eb191de6 |
338 | } |
339 | |
fef74fdc |
340 | // by marshmellow |
11081e04 |
341 | // demod gProxIIDemod |
342 | // error returns as -x |
343 | // success returns start position in BitStream |
344 | // BitStream must contain previously askrawdemod and biphasedemoded data |
345 | int gProxII_Demod(uint8_t BitStream[], size_t *size) |
346 | { |
347 | size_t startIdx=0; |
348 | uint8_t preamble[] = {1,1,1,1,1,0}; |
349 | |
350 | uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); |
351 | if (errChk == 0) return -3; //preamble not found |
352 | if (*size != 96) return -2; //should have found 96 bits |
353 | //check first 6 spacer bits to verify format |
354 | if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ |
355 | //confirmed proper separator bits found |
356 | //return start position |
357 | return (int) startIdx; |
358 | } |
359 | return -5; |
360 | } |
361 | |
ba1a299c |
362 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) |
f822a063 |
363 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) |
eb191de6 |
364 | { |
2eec55c8 |
365 | size_t last_transition = 0; |
366 | size_t idx = 1; |
ac3ba7ee |
367 | //uint32_t maxVal=0; |
ba1a299c |
368 | if (fchigh==0) fchigh=10; |
369 | if (fclow==0) fclow=8; |
84871873 |
370 | //set the threshold close to 0 (graph) or 128 std to avoid static |
371 | uint8_t threshold_value = 123; |
ba1a299c |
372 | |
373 | // sync to first lo-hi transition, and threshold |
374 | |
375 | // Need to threshold first sample |
376 | |
377 | if(dest[0] < threshold_value) dest[0] = 0; |
378 | else dest[0] = 1; |
379 | |
380 | size_t numBits = 0; |
381 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) |
382 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere |
383 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 |
384 | for(idx = 1; idx < size; idx++) { |
385 | // threshold current value |
386 | |
387 | if (dest[idx] < threshold_value) dest[idx] = 0; |
388 | else dest[idx] = 1; |
389 | |
390 | // Check for 0->1 transition |
391 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition |
392 | if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise |
393 | //do nothing with extra garbage |
394 | } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves |
2eec55c8 |
395 | dest[numBits++]=1; |
13d77ef9 |
396 | } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage |
397 | //do nothing with beginning garbage |
398 | } else { //9+ = 10 waves |
2eec55c8 |
399 | dest[numBits++]=0; |
ba1a299c |
400 | } |
401 | last_transition = idx; |
ba1a299c |
402 | } |
403 | } |
404 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 |
eb191de6 |
405 | } |
406 | |
ba1a299c |
407 | //translate 11111100000 to 10 |
2eec55c8 |
408 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, |
e0165dcf |
409 | uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 |
410 | { |
ba1a299c |
411 | uint8_t lastval=dest[0]; |
2eec55c8 |
412 | size_t idx=0; |
ba1a299c |
413 | size_t numBits=0; |
414 | uint32_t n=1; |
ba1a299c |
415 | for( idx=1; idx < size; idx++) { |
13d77ef9 |
416 | n++; |
2eec55c8 |
417 | if (dest[idx]==lastval) continue; |
418 | |
ba1a299c |
419 | //if lastval was 1, we have a 1->0 crossing |
13d77ef9 |
420 | if (dest[idx-1]==1) { |
75cbbe9a |
421 | if (!numBits && n < rfLen/fclow) { |
13d77ef9 |
422 | n=0; |
423 | lastval = dest[idx]; |
424 | continue; |
425 | } |
75cbbe9a |
426 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 |
427 | } else {// 0->1 crossing |
428 | //test first bitsample too small |
75cbbe9a |
429 | if (!numBits && n < rfLen/fchigh) { |
13d77ef9 |
430 | n=0; |
431 | lastval = dest[idx]; |
432 | continue; |
433 | } |
75cbbe9a |
434 | n = (n * fchigh + rfLen/2) / rfLen; |
ba1a299c |
435 | } |
436 | if (n == 0) n = 1; |
437 | |
2eec55c8 |
438 | memset(dest+numBits, dest[idx-1]^invert , n); |
439 | numBits += n; |
ba1a299c |
440 | n=0; |
441 | lastval=dest[idx]; |
442 | }//end for |
13d77ef9 |
443 | // if valid extra bits at the end were all the same frequency - add them in |
75cbbe9a |
444 | if (n > rfLen/fchigh) { |
13d77ef9 |
445 | if (dest[idx-2]==1) { |
75cbbe9a |
446 | n = (n * fclow + rfLen/2) / rfLen; |
13d77ef9 |
447 | } else { |
75cbbe9a |
448 | n = (n * fchigh + rfLen/2) / rfLen; |
13d77ef9 |
449 | } |
2eec55c8 |
450 | memset(dest+numBits, dest[idx-1]^invert , n); |
13d77ef9 |
451 | numBits += n; |
452 | } |
ba1a299c |
453 | return numBits; |
eb191de6 |
454 | } |
455 | //by marshmellow (from holiman's base) |
456 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) |
f822a063 |
457 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) |
eb191de6 |
458 | { |
ba1a299c |
459 | // FSK demodulator |
460 | size = fsk_wave_demod(dest, size, fchigh, fclow); |
2eec55c8 |
461 | size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); |
ba1a299c |
462 | return size; |
eb191de6 |
463 | } |
a1d17964 |
464 | |
eb191de6 |
465 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
ec75f5c1 |
466 | int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
eb191de6 |
467 | { |
e0165dcf |
468 | if (justNoise(dest, *size)) return -1; |
469 | |
470 | size_t numStart=0, size2=*size, startIdx=0; |
471 | // FSK demodulator |
472 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
2eec55c8 |
473 | if (*size < 96*2) return -2; |
e0165dcf |
474 | // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
475 | uint8_t preamble[] = {0,0,0,1,1,1,0,1}; |
476 | // find bitstring in array |
477 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
478 | if (errChk == 0) return -3; //preamble not found |
479 | |
480 | numStart = startIdx + sizeof(preamble); |
481 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID |
482 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ |
483 | if (dest[idx] == dest[idx+1]){ |
484 | return -4; //not manchester data |
485 | } |
486 | *hi2 = (*hi2<<1)|(*hi>>31); |
487 | *hi = (*hi<<1)|(*lo>>31); |
488 | //Then, shift in a 0 or one into low |
489 | if (dest[idx] && !dest[idx+1]) // 1 0 |
490 | *lo=(*lo<<1)|1; |
491 | else // 0 1 |
492 | *lo=(*lo<<1)|0; |
493 | } |
494 | return (int)startIdx; |
eb191de6 |
495 | } |
496 | |
ec75f5c1 |
497 | // loop to get raw paradox waveform then FSK demodulate the TAG ID from it |
a1d17964 |
498 | int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) |
ec75f5c1 |
499 | { |
a1d17964 |
500 | if (justNoise(dest, *size)) return -1; |
501 | |
502 | size_t numStart=0, size2=*size, startIdx=0; |
ec75f5c1 |
503 | // FSK demodulator |
a1d17964 |
504 | *size = fskdemod(dest, size2,50,1,10,8); //fsk2a |
505 | if (*size < 96) return -2; |
ec75f5c1 |
506 | |
a1d17964 |
507 | // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 |
508 | uint8_t preamble[] = {0,0,0,0,1,1,1,1}; |
509 | |
510 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
511 | if (errChk == 0) return -3; //preamble not found |
512 | |
513 | numStart = startIdx + sizeof(preamble); |
514 | // final loop, go over previously decoded FSK data and manchester decode into usable tag ID |
515 | for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ |
516 | if (dest[idx] == dest[idx+1]) |
517 | return -4; //not manchester data |
518 | *hi2 = (*hi2<<1)|(*hi>>31); |
519 | *hi = (*hi<<1)|(*lo>>31); |
520 | //Then, shift in a 0 or one into low |
521 | if (dest[idx] && !dest[idx+1]) // 1 0 |
522 | *lo=(*lo<<1)|1; |
523 | else // 0 1 |
524 | *lo=(*lo<<1)|0; |
ec75f5c1 |
525 | } |
a1d17964 |
526 | return (int)startIdx; |
ec75f5c1 |
527 | } |
528 | |
fd1d30cb |
529 | uint32_t bytebits_to_byte(uint8_t *src, size_t numbits) |
eb191de6 |
530 | { |
ba1a299c |
531 | uint32_t num = 0; |
532 | for(int i = 0 ; i < numbits ; i++) |
533 | { |
534 | num = (num << 1) | (*src); |
535 | src++; |
536 | } |
537 | return num; |
eb191de6 |
538 | } |
539 | |
04bb0567 |
540 | //least significant bit first |
fd1d30cb |
541 | uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) |
04bb0567 |
542 | { |
543 | uint32_t num = 0; |
544 | for(int i = 0 ; i < numbits ; i++) |
545 | { |
fd1d30cb |
546 | num = (num << 1) | *(src + (numbits-(i+1))); |
04bb0567 |
547 | } |
548 | return num; |
549 | } |
550 | |
eb191de6 |
551 | int IOdemodFSK(uint8_t *dest, size_t size) |
552 | { |
a1d17964 |
553 | if (justNoise(dest, size)) return -1; |
ba1a299c |
554 | //make sure buffer has data |
a1d17964 |
555 | if (size < 66*64) return -2; |
ba1a299c |
556 | // FSK demodulator |
a1d17964 |
557 | size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 |
558 | if (size < 65) return -3; //did we get a good demod? |
ba1a299c |
559 | //Index map |
560 | //0 10 20 30 40 50 60 |
561 | //| | | | | | | |
562 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 |
563 | //----------------------------------------------------------------------------- |
564 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 |
565 | // |
566 | //XSF(version)facility:codeone+codetwo |
567 | //Handle the data |
a1d17964 |
568 | size_t startIdx = 0; |
569 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; |
570 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); |
571 | if (errChk == 0) return -4; //preamble not found |
eb191de6 |
572 | |
a1d17964 |
573 | if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ |
574 | //confirmed proper separator bits found |
575 | //return start position |
576 | return (int) startIdx; |
1e090a61 |
577 | } |
a1d17964 |
578 | return -5; |
1e090a61 |
579 | } |
580 | |
581 | // by marshmellow |
582 | // takes a array of binary values, start position, length of bits per parity (includes parity bit), |
fd1d30cb |
583 | // Parity Type (1 for odd; 0 for even; 2 for just drop it), and binary Length (length to run) |
1e090a61 |
584 | size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) |
585 | { |
586 | uint32_t parityWd = 0; |
587 | size_t j = 0, bitCnt = 0; |
588 | for (int word = 0; word < (bLen); word+=pLen){ |
589 | for (int bit=0; bit < pLen; bit++){ |
590 | parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; |
f3bf15e4 |
591 | BitStream[j++] = (BitStream[startIdx+word+bit]); |
1e090a61 |
592 | } |
593 | j--; |
594 | // if parity fails then return 0 |
fd1d30cb |
595 | if (pType != 2) { |
596 | if (parityTest(parityWd, pLen, pType) == 0) return -1; |
597 | } |
1e090a61 |
598 | bitCnt+=(pLen-1); |
599 | parityWd = 0; |
600 | } |
601 | // if we got here then all the parities passed |
602 | //return ID start index and size |
603 | return bitCnt; |
604 | } |
605 | |
04bb0567 |
606 | // Ask/Biphase Demod then try to locate an ISO 11784/85 ID |
607 | // BitStream must contain previously askrawdemod and biphasedemoded data |
b2c330b3 |
608 | int FDXBdemodBI(uint8_t *dest, size_t *size) |
04bb0567 |
609 | { |
610 | //make sure buffer has enough data |
611 | if (*size < 128) return -1; |
612 | |
613 | size_t startIdx = 0; |
614 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; |
615 | |
616 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
617 | if (errChk == 0) return -2; //preamble not found |
618 | return (int)startIdx; |
619 | } |
620 | |
1e090a61 |
621 | // by marshmellow |
622 | // FSK Demod then try to locate an AWID ID |
a1d17964 |
623 | int AWIDdemodFSK(uint8_t *dest, size_t *size) |
1e090a61 |
624 | { |
a1d17964 |
625 | //make sure buffer has enough data |
626 | if (*size < 96*50) return -1; |
627 | |
628 | if (justNoise(dest, *size)) return -2; |
1e090a61 |
629 | |
630 | // FSK demodulator |
a1d17964 |
631 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
632 | if (*size < 96) return -3; //did we get a good demod? |
633 | |
634 | uint8_t preamble[] = {0,0,0,0,0,0,0,1}; |
635 | size_t startIdx = 0; |
636 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
637 | if (errChk == 0) return -4; //preamble not found |
638 | if (*size != 96) return -5; |
639 | return (int)startIdx; |
1e090a61 |
640 | } |
641 | |
642 | // by marshmellow |
643 | // FSK Demod then try to locate an Farpointe Data (pyramid) ID |
a1d17964 |
644 | int PyramiddemodFSK(uint8_t *dest, size_t *size) |
1e090a61 |
645 | { |
f3bf15e4 |
646 | //make sure buffer has data |
647 | if (*size < 128*50) return -5; |
a1d17964 |
648 | |
f3bf15e4 |
649 | //test samples are not just noise |
650 | if (justNoise(dest, *size)) return -1; |
1e090a61 |
651 | |
f3bf15e4 |
652 | // FSK demodulator |
653 | *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 |
654 | if (*size < 128) return -2; //did we get a good demod? |
a1d17964 |
655 | |
f3bf15e4 |
656 | uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; |
a1d17964 |
657 | size_t startIdx = 0; |
658 | uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); |
659 | if (errChk == 0) return -4; //preamble not found |
660 | if (*size != 128) return -3; |
661 | return (int)startIdx; |
1e090a61 |
662 | } |
663 | |
fef74fdc |
664 | // by marshmellow |
665 | // to detect a wave that has heavily clipped (clean) samples |
cc15a118 |
666 | uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
6de43508 |
667 | { |
1fbf8956 |
668 | uint16_t allPeaks=1; |
6de43508 |
669 | uint16_t cntPeaks=0; |
cc15a118 |
670 | size_t loopEnd = 512+60; |
1fbf8956 |
671 | if (loopEnd > size) loopEnd = size; |
672 | for (size_t i=60; i<loopEnd; i++){ |
6de43508 |
673 | if (dest[i]>low && dest[i]<high) |
674 | allPeaks=0; |
675 | else |
676 | cntPeaks++; |
677 | } |
1fbf8956 |
678 | if (allPeaks == 0){ |
679 | if (cntPeaks > 300) return 1; |
6de43508 |
680 | } |
681 | return allPeaks; |
682 | } |
683 | |
2eec55c8 |
684 | // by marshmellow |
685 | // to help detect clocks on heavily clipped samples |
cc15a118 |
686 | // based on count of low to low |
687 | int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low) |
13d77ef9 |
688 | { |
cc15a118 |
689 | uint8_t fndClk[] = {8,16,32,40,50,64,128}; |
690 | size_t startwave; |
691 | size_t i = 0; |
692 | size_t minClk = 255; |
693 | // get to first full low to prime loop and skip incomplete first pulse |
694 | while ((dest[i] < high) && (i < size)) |
695 | ++i; |
696 | while ((dest[i] > low) && (i < size)) |
697 | ++i; |
698 | |
699 | // loop through all samples |
700 | while (i < size) { |
701 | // measure from low to low |
702 | while ((dest[i] > low) && (i < size)) |
703 | ++i; |
704 | startwave= i; |
705 | while ((dest[i] < high) && (i < size)) |
706 | ++i; |
707 | while ((dest[i] > low) && (i < size)) |
708 | ++i; |
709 | //get minimum measured distance |
710 | if (i-startwave < minClk && i < size) |
711 | minClk = i - startwave; |
13d77ef9 |
712 | } |
cc15a118 |
713 | // set clock |
714 | for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { |
715 | if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1) |
716 | return fndClk[clkCnt]; |
13d77ef9 |
717 | } |
cc15a118 |
718 | return 0; |
13d77ef9 |
719 | } |
720 | |
eb191de6 |
721 | // by marshmellow |
722 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) |
723 | // maybe somehow adjust peak trimming value based on samples to fix? |
6de43508 |
724 | // return start index of best starting position for that clock and return clock (by reference) |
725 | int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) |
eb191de6 |
726 | { |
6e984446 |
727 | size_t i=1; |
cc15a118 |
728 | uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; |
729 | uint8_t clkEnd = 9; |
2eec55c8 |
730 | uint8_t loopCnt = 255; //don't need to loop through entire array... |
cc15a118 |
731 | if (size <= loopCnt) return -1; //not enough samples |
6e984446 |
732 | |
733 | //if we already have a valid clock |
734 | uint8_t clockFnd=0; |
cc15a118 |
735 | for (;i<clkEnd;++i) |
736 | if (clk[i] == *clock) clockFnd = i; |
6e984446 |
737 | //clock found but continue to find best startpos |
e0165dcf |
738 | |
739 | //get high and low peak |
740 | int peak, low; |
2eec55c8 |
741 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return -1; |
e0165dcf |
742 | |
743 | //test for large clean peaks |
cc15a118 |
744 | if (!clockFnd){ |
745 | if (DetectCleanAskWave(dest, size, peak, low)==1){ |
746 | int ans = DetectStrongAskClock(dest, size, peak, low); |
747 | for (i=clkEnd-1; i>0; i--){ |
748 | if (clk[i] == ans) { |
749 | *clock = ans; |
750 | //clockFnd = i; |
751 | return 0; // for strong waves i don't use the 'best start position' yet... |
752 | //break; //clock found but continue to find best startpos [not yet] |
753 | } |
e0165dcf |
754 | } |
755 | } |
756 | } |
cc15a118 |
757 | |
2eec55c8 |
758 | uint8_t ii; |
759 | uint8_t clkCnt, tol = 0; |
760 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; |
761 | uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; |
762 | size_t errCnt = 0; |
763 | size_t arrLoc, loopEnd; |
6e984446 |
764 | |
cc15a118 |
765 | if (clockFnd>0) { |
766 | clkCnt = clockFnd; |
767 | clkEnd = clockFnd+1; |
768 | } |
769 | else clkCnt=1; |
770 | |
771 | //test each valid clock from smallest to greatest to see which lines up |
772 | for(; clkCnt < clkEnd; clkCnt++){ |
fef74fdc |
773 | if (clk[clkCnt] <= 32){ |
e0165dcf |
774 | tol=1; |
775 | }else{ |
776 | tol=0; |
777 | } |
2767fc02 |
778 | //if no errors allowed - keep start within the first clock |
cc15a118 |
779 | if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2; |
e0165dcf |
780 | bestErr[clkCnt]=1000; |
6e984446 |
781 | //try lining up the peaks by moving starting point (try first few clocks) |
cc15a118 |
782 | for (ii=0; ii < loopCnt; ii++){ |
2eec55c8 |
783 | if (dest[ii] < peak && dest[ii] > low) continue; |
784 | |
785 | errCnt=0; |
786 | // now that we have the first one lined up test rest of wave array |
787 | loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; |
788 | for (i=0; i < loopEnd; ++i){ |
789 | arrLoc = ii + (i * clk[clkCnt]); |
790 | if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ |
791 | }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ |
792 | }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ |
793 | }else{ //error no peak detected |
794 | errCnt++; |
e0165dcf |
795 | } |
796 | } |
cc15a118 |
797 | //if we found no errors then we can stop here and a low clock (common clocks) |
2eec55c8 |
798 | // this is correct one - return this clock |
799 | //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); |
cc15a118 |
800 | if(errCnt==0 && clkCnt<7) { |
801 | if (!clockFnd) *clock = clk[clkCnt]; |
2eec55c8 |
802 | return ii; |
803 | } |
804 | //if we found errors see if it is lowest so far and save it as best run |
805 | if(errCnt<bestErr[clkCnt]){ |
806 | bestErr[clkCnt]=errCnt; |
807 | bestStart[clkCnt]=ii; |
808 | } |
e0165dcf |
809 | } |
810 | } |
cc15a118 |
811 | uint8_t iii; |
e0165dcf |
812 | uint8_t best=0; |
cc15a118 |
813 | for (iii=1; iii<clkEnd; ++iii){ |
2eec55c8 |
814 | if (bestErr[iii] < bestErr[best]){ |
815 | if (bestErr[iii] == 0) bestErr[iii]=1; |
e0165dcf |
816 | // current best bit to error ratio vs new bit to error ratio |
2eec55c8 |
817 | if ( (size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii] ){ |
e0165dcf |
818 | best = iii; |
819 | } |
820 | } |
821 | } |
2767fc02 |
822 | //if (bestErr[best] > maxErr) return -1; |
cc15a118 |
823 | if (!clockFnd) *clock = clk[best]; |
e0165dcf |
824 | return bestStart[best]; |
eb191de6 |
825 | } |
ba1a299c |
826 | |
827 | //by marshmellow |
6de43508 |
828 | //detect psk clock by reading each phase shift |
829 | // a phase shift is determined by measuring the sample length of each wave |
830 | int DetectPSKClock(uint8_t dest[], size_t size, int clock) |
ba1a299c |
831 | { |
e0165dcf |
832 | uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock |
833 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
834 | if (size == 0) return 0; |
835 | if (size<loopCnt) loopCnt = size; |
836 | |
837 | //if we already have a valid clock quit |
838 | size_t i=1; |
839 | for (; i < 8; ++i) |
840 | if (clk[i] == clock) return clock; |
841 | |
842 | size_t waveStart=0, waveEnd=0, firstFullWave=0, lastClkBit=0; |
843 | uint8_t clkCnt, fc=0, fullWaveLen=0, tol=1; |
844 | uint16_t peakcnt=0, errCnt=0, waveLenCnt=0; |
845 | uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; |
846 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0}; |
2eec55c8 |
847 | fc = countFC(dest, size, 0); |
848 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
e0165dcf |
849 | //PrintAndLog("DEBUG: FC: %d",fc); |
850 | |
851 | //find first full wave |
852 | for (i=0; i<loopCnt; i++){ |
853 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
854 | if (waveStart == 0) { |
855 | waveStart = i+1; |
856 | //PrintAndLog("DEBUG: waveStart: %d",waveStart); |
857 | } else { |
858 | waveEnd = i+1; |
859 | //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); |
860 | waveLenCnt = waveEnd-waveStart; |
861 | if (waveLenCnt > fc){ |
862 | firstFullWave = waveStart; |
863 | fullWaveLen=waveLenCnt; |
864 | break; |
865 | } |
866 | waveStart=0; |
867 | } |
868 | } |
869 | } |
870 | //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
871 | |
872 | //test each valid clock from greatest to smallest to see which lines up |
873 | for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ |
874 | lastClkBit = firstFullWave; //set end of wave as clock align |
875 | waveStart = 0; |
876 | errCnt=0; |
877 | peakcnt=0; |
878 | //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); |
879 | |
880 | for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ |
881 | //top edge of wave = start of new wave |
882 | if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ |
883 | if (waveStart == 0) { |
884 | waveStart = i+1; |
885 | waveLenCnt=0; |
886 | } else { //waveEnd |
887 | waveEnd = i+1; |
888 | waveLenCnt = waveEnd-waveStart; |
889 | if (waveLenCnt > fc){ |
890 | //if this wave is a phase shift |
891 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); |
892 | if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit |
893 | peakcnt++; |
894 | lastClkBit+=clk[clkCnt]; |
895 | } else if (i<lastClkBit+8){ |
896 | //noise after a phase shift - ignore |
897 | } else { //phase shift before supposed to based on clock |
898 | errCnt++; |
899 | } |
900 | } else if (i+1 > lastClkBit + clk[clkCnt] + tol + fc){ |
901 | lastClkBit+=clk[clkCnt]; //no phase shift but clock bit |
902 | } |
903 | waveStart=i+1; |
904 | } |
905 | } |
906 | } |
907 | if (errCnt == 0){ |
908 | return clk[clkCnt]; |
909 | } |
910 | if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; |
911 | if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; |
912 | } |
913 | //all tested with errors |
914 | //return the highest clk with the most peaks found |
915 | uint8_t best=7; |
916 | for (i=7; i>=1; i--){ |
917 | if (peaksdet[i] > peaksdet[best]) { |
918 | best = i; |
919 | } |
920 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); |
921 | } |
922 | return clk[best]; |
ba1a299c |
923 | } |
924 | |
6de43508 |
925 | //by marshmellow |
926 | //detect nrz clock by reading #peaks vs no peaks(or errors) |
927 | int DetectNRZClock(uint8_t dest[], size_t size, int clock) |
ba1a299c |
928 | { |
2eec55c8 |
929 | size_t i=0; |
930 | uint8_t clk[]={8,16,32,40,50,64,100,128,255}; |
931 | size_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf |
932 | if (size == 0) return 0; |
933 | if (size<loopCnt) loopCnt = size; |
934 | |
935 | //if we already have a valid clock quit |
936 | for (; i < 8; ++i) |
937 | if (clk[i] == clock) return clock; |
938 | |
939 | //get high and low peak |
940 | int peak, low; |
2eec55c8 |
941 | if (getHiLo(dest, loopCnt, &peak, &low, 75, 75) < 1) return 0; |
e0165dcf |
942 | |
943 | //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low); |
2eec55c8 |
944 | size_t ii; |
e0165dcf |
945 | uint8_t clkCnt; |
946 | uint8_t tol = 0; |
2eec55c8 |
947 | uint16_t peakcnt=0; |
948 | uint16_t peaksdet[]={0,0,0,0,0,0,0,0}; |
949 | uint16_t maxPeak=0; |
e0165dcf |
950 | //test for large clipped waves |
951 | for (i=0; i<loopCnt; i++){ |
952 | if (dest[i] >= peak || dest[i] <= low){ |
953 | peakcnt++; |
954 | } else { |
955 | if (peakcnt>0 && maxPeak < peakcnt){ |
956 | maxPeak = peakcnt; |
957 | } |
958 | peakcnt=0; |
959 | } |
960 | } |
961 | peakcnt=0; |
962 | //test each valid clock from smallest to greatest to see which lines up |
963 | for(clkCnt=0; clkCnt < 8; ++clkCnt){ |
964 | //ignore clocks smaller than largest peak |
965 | if (clk[clkCnt]<maxPeak) continue; |
966 | |
967 | //try lining up the peaks by moving starting point (try first 256) |
968 | for (ii=0; ii< loopCnt; ++ii){ |
969 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ |
970 | peakcnt=0; |
971 | // now that we have the first one lined up test rest of wave array |
972 | for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ |
973 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ |
974 | peakcnt++; |
975 | } |
976 | } |
977 | if(peakcnt>peaksdet[clkCnt]) { |
978 | peaksdet[clkCnt]=peakcnt; |
979 | } |
980 | } |
981 | } |
982 | } |
983 | int iii=7; |
2eec55c8 |
984 | uint8_t best=0; |
e0165dcf |
985 | for (iii=7; iii > 0; iii--){ |
986 | if (peaksdet[iii] > peaksdet[best]){ |
987 | best = iii; |
988 | } |
989 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); |
990 | } |
991 | return clk[best]; |
ba1a299c |
992 | } |
993 | |
04d2721b |
994 | // by marshmellow |
995 | // convert psk1 demod to psk2 demod |
996 | // only transition waves are 1s |
997 | void psk1TOpsk2(uint8_t *BitStream, size_t size) |
998 | { |
999 | size_t i=1; |
1000 | uint8_t lastBit=BitStream[0]; |
1001 | for (; i<size; i++){ |
2767fc02 |
1002 | if (BitStream[i]==7){ |
7a8a982b |
1003 | //ignore errors |
1004 | } else if (lastBit!=BitStream[i]){ |
04d2721b |
1005 | lastBit=BitStream[i]; |
1006 | BitStream[i]=1; |
1007 | } else { |
1008 | BitStream[i]=0; |
1009 | } |
1010 | } |
1011 | return; |
1012 | } |
ba1a299c |
1013 | |
3bc66a96 |
1014 | // by marshmellow |
1015 | // convert psk2 demod to psk1 demod |
1016 | // from only transition waves are 1s to phase shifts change bit |
1017 | void psk2TOpsk1(uint8_t *BitStream, size_t size) |
1018 | { |
712ebfa6 |
1019 | uint8_t phase=0; |
1020 | for (size_t i=0; i<size; i++){ |
1021 | if (BitStream[i]==1){ |
3bc66a96 |
1022 | phase ^=1; |
1023 | } |
1024 | BitStream[i]=phase; |
1025 | } |
1026 | return; |
1027 | } |
1028 | |
04d2721b |
1029 | // redesigned by marshmellow adjusted from existing decode functions |
1030 | // indala id decoding - only tested on 26 bit tags, but attempted to make it work for more |
ba1a299c |
1031 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) |
1032 | { |
1033 | //26 bit 40134 format (don't know other formats) |
1034 | int i; |
84871873 |
1035 | int long_wait=29;//29 leading zeros in format |
ba1a299c |
1036 | int start; |
1037 | int first = 0; |
1038 | int first2 = 0; |
1039 | int bitCnt = 0; |
1040 | int ii; |
1041 | // Finding the start of a UID |
1042 | for (start = 0; start <= *size - 250; start++) { |
1043 | first = bitStream[start]; |
1044 | for (i = start; i < start + long_wait; i++) { |
1045 | if (bitStream[i] != first) { |
1046 | break; |
1047 | } |
1048 | } |
1049 | if (i == (start + long_wait)) { |
1050 | break; |
1051 | } |
1052 | } |
1053 | if (start == *size - 250 + 1) { |
1054 | // did not find start sequence |
1055 | return -1; |
1056 | } |
ba1a299c |
1057 | // Inverting signal if needed |
1058 | if (first == 1) { |
1059 | for (i = start; i < *size; i++) { |
1060 | bitStream[i] = !bitStream[i]; |
1061 | } |
1062 | *invert = 1; |
1063 | }else *invert=0; |
1064 | |
1065 | int iii; |
84871873 |
1066 | //found start once now test length by finding next one |
ba1a299c |
1067 | for (ii=start+29; ii <= *size - 250; ii++) { |
1068 | first2 = bitStream[ii]; |
1069 | for (iii = ii; iii < ii + long_wait; iii++) { |
1070 | if (bitStream[iii] != first2) { |
1071 | break; |
1072 | } |
1073 | } |
1074 | if (iii == (ii + long_wait)) { |
1075 | break; |
1076 | } |
1077 | } |
1078 | if (ii== *size - 250 + 1){ |
1079 | // did not find second start sequence |
1080 | return -2; |
1081 | } |
1082 | bitCnt=ii-start; |
1083 | |
1084 | // Dumping UID |
1085 | i = start; |
1086 | for (ii = 0; ii < bitCnt; ii++) { |
1087 | bitStream[ii] = bitStream[i++]; |
1088 | } |
1089 | *size=bitCnt; |
1090 | return 1; |
1091 | } |
1092 | |
6de43508 |
1093 | // by marshmellow - demodulate NRZ wave (both similar enough) |
04d2721b |
1094 | // peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak |
6de43508 |
1095 | // there probably is a much simpler way to do this.... |
1096 | int nrzRawDemod(uint8_t *dest, size_t *size, int *clk, int *invert, int maxErr) |
ba1a299c |
1097 | { |
e0165dcf |
1098 | if (justNoise(dest, *size)) return -1; |
1099 | *clk = DetectNRZClock(dest, *size, *clk); |
1100 | if (*clk==0) return -2; |
2eec55c8 |
1101 | size_t i, gLen = 4096; |
e0165dcf |
1102 | if (gLen>*size) gLen = *size; |
1103 | int high, low; |
1104 | if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low |
1105 | int lastBit = 0; //set first clock check |
2eec55c8 |
1106 | size_t iii = 0, bitnum = 0; //bitnum counter |
1107 | uint16_t errCnt = 0, MaxBits = 1000; |
1108 | size_t bestErrCnt = maxErr+1; |
1109 | size_t bestPeakCnt = 0, bestPeakStart = 0; |
1110 | uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0; |
e0165dcf |
1111 | uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave |
e0165dcf |
1112 | uint16_t peakCnt=0; |
1113 | uint8_t ignoreWindow=4; |
2eec55c8 |
1114 | uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak |
e0165dcf |
1115 | //loop to find first wave that works - align to clock |
1116 | for (iii=0; iii < gLen; ++iii){ |
1117 | if ((dest[iii]>=high) || (dest[iii]<=low)){ |
1118 | if (dest[iii]>=high) firstPeakHigh=1; |
1119 | else firstPeakHigh=0; |
1120 | lastBit=iii-*clk; |
1121 | peakCnt=0; |
1122 | errCnt=0; |
e0165dcf |
1123 | //loop through to see if this start location works |
1124 | for (i = iii; i < *size; ++i) { |
2eec55c8 |
1125 | // if we are at a clock bit |
1126 | if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { |
1127 | //test high/low |
1128 | if (dest[i] >= high || dest[i] <= low) { |
1129 | bitHigh = 1; |
1130 | peakCnt++; |
1131 | errBitHigh = 0; |
1132 | ignoreCnt = ignoreWindow; |
1133 | lastBit += *clk; |
1134 | } else if (i == lastBit + *clk + tol) { |
1135 | lastBit += *clk; |
1136 | } |
e0165dcf |
1137 | //else if no bars found |
2eec55c8 |
1138 | } else if (dest[i] < high && dest[i] > low){ |
e0165dcf |
1139 | if (ignoreCnt==0){ |
1140 | bitHigh=0; |
2eec55c8 |
1141 | if (errBitHigh==1) errCnt++; |
e0165dcf |
1142 | errBitHigh=0; |
1143 | } else { |
1144 | ignoreCnt--; |
1145 | } |
2eec55c8 |
1146 | } else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) { |
e0165dcf |
1147 | //error bar found no clock... |
1148 | errBitHigh=1; |
1149 | } |
2eec55c8 |
1150 | if (((i-iii) / *clk)>=MaxBits) break; |
e0165dcf |
1151 | } |
1152 | //we got more than 64 good bits and not all errors |
2eec55c8 |
1153 | if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) { |
e0165dcf |
1154 | //possible good read |
2eec55c8 |
1155 | if (!errCnt || peakCnt > bestPeakCnt){ |
e0165dcf |
1156 | bestFirstPeakHigh=firstPeakHigh; |
1157 | bestErrCnt = errCnt; |
1158 | bestPeakCnt = peakCnt; |
1159 | bestPeakStart = iii; |
2eec55c8 |
1160 | if (!errCnt) break; //great read - finish |
e0165dcf |
1161 | } |
e0165dcf |
1162 | } |
1163 | } |
1164 | } |
1165 | //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); |
2eec55c8 |
1166 | if (bestErrCnt > maxErr) return bestErrCnt; |
1167 | |
1168 | //best run is good enough set to best run and set overwrite BinStream |
1169 | lastBit = bestPeakStart - *clk; |
1170 | memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); |
1171 | bitnum += (bestPeakStart / *clk); |
1172 | for (i = bestPeakStart; i < *size; ++i) { |
1173 | // if expecting a clock bit |
1174 | if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { |
1175 | // test high/low |
1176 | if (dest[i] >= high || dest[i] <= low) { |
1177 | peakCnt++; |
1178 | bitHigh = 1; |
1179 | errBitHigh = 0; |
1180 | ignoreCnt = ignoreWindow; |
1181 | curBit = *invert; |
1182 | if (dest[i] >= high) curBit ^= 1; |
1183 | dest[bitnum++] = curBit; |
1184 | lastBit += *clk; |
1185 | //else no bars found in clock area |
1186 | } else if (i == lastBit + *clk + tol) { |
1187 | dest[bitnum++] = curBit; |
1188 | lastBit += *clk; |
1189 | } |
1190 | //else if no bars found |
1191 | } else if (dest[i] < high && dest[i] > low){ |
1192 | if (ignoreCnt == 0){ |
1193 | bitHigh = 0; |
1194 | if (errBitHigh == 1){ |
2767fc02 |
1195 | dest[bitnum++] = 7; |
2eec55c8 |
1196 | errCnt++; |
e0165dcf |
1197 | } |
2eec55c8 |
1198 | errBitHigh=0; |
1199 | } else { |
1200 | ignoreCnt--; |
e0165dcf |
1201 | } |
2eec55c8 |
1202 | } else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) { |
1203 | //error bar found no clock... |
1204 | errBitHigh=1; |
e0165dcf |
1205 | } |
2eec55c8 |
1206 | if (bitnum >= MaxBits) break; |
e0165dcf |
1207 | } |
2eec55c8 |
1208 | *size = bitnum; |
1209 | return bestErrCnt; |
ba1a299c |
1210 | } |
1211 | |
1e090a61 |
1212 | //by marshmellow |
03e6bb4a |
1213 | //detects the bit clock for FSK given the high and low Field Clocks |
1214 | uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) |
1e090a61 |
1215 | { |
e0165dcf |
1216 | uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; |
1217 | uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1218 | uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; |
1219 | uint8_t rfLensFnd = 0; |
2eec55c8 |
1220 | uint8_t lastFCcnt = 0; |
1221 | uint16_t fcCounter = 0; |
e0165dcf |
1222 | uint16_t rfCounter = 0; |
1223 | uint8_t firstBitFnd = 0; |
1224 | size_t i; |
1225 | if (size == 0) return 0; |
1226 | |
1227 | uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); |
1228 | rfLensFnd=0; |
1229 | fcCounter=0; |
1230 | rfCounter=0; |
1231 | firstBitFnd=0; |
1232 | //PrintAndLog("DEBUG: fcTol: %d",fcTol); |
1233 | // prime i to first up transition |
1234 | for (i = 1; i < size-1; i++) |
1235 | if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) |
1236 | break; |
1237 | |
1238 | for (; i < size-1; i++){ |
2eec55c8 |
1239 | fcCounter++; |
1240 | rfCounter++; |
1241 | |
1242 | if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) |
1243 | continue; |
1244 | // else new peak |
1245 | // if we got less than the small fc + tolerance then set it to the small fc |
1246 | if (fcCounter < fcLow+fcTol) |
1247 | fcCounter = fcLow; |
1248 | else //set it to the large fc |
1249 | fcCounter = fcHigh; |
1250 | |
1251 | //look for bit clock (rf/xx) |
1252 | if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ |
1253 | //not the same size as the last wave - start of new bit sequence |
1254 | if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit |
1255 | for (int ii=0; ii<15; ii++){ |
1256 | if (rfLens[ii] == rfCounter){ |
1257 | rfCnts[ii]++; |
1258 | rfCounter = 0; |
1259 | break; |
e0165dcf |
1260 | } |
e0165dcf |
1261 | } |
2eec55c8 |
1262 | if (rfCounter > 0 && rfLensFnd < 15){ |
1263 | //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); |
1264 | rfCnts[rfLensFnd]++; |
1265 | rfLens[rfLensFnd++] = rfCounter; |
1266 | } |
1267 | } else { |
1268 | firstBitFnd++; |
e0165dcf |
1269 | } |
2eec55c8 |
1270 | rfCounter=0; |
1271 | lastFCcnt=fcCounter; |
e0165dcf |
1272 | } |
2eec55c8 |
1273 | fcCounter=0; |
e0165dcf |
1274 | } |
1275 | uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; |
1276 | |
1277 | for (i=0; i<15; i++){ |
1278 | //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); |
1279 | //get highest 2 RF values (might need to get more values to compare or compare all?) |
1280 | if (rfCnts[i]>rfCnts[rfHighest]){ |
1281 | rfHighest3=rfHighest2; |
1282 | rfHighest2=rfHighest; |
1283 | rfHighest=i; |
1284 | } else if(rfCnts[i]>rfCnts[rfHighest2]){ |
1285 | rfHighest3=rfHighest2; |
1286 | rfHighest2=i; |
1287 | } else if(rfCnts[i]>rfCnts[rfHighest3]){ |
1288 | rfHighest3=i; |
1289 | } |
1290 | } |
1291 | // set allowed clock remainder tolerance to be 1 large field clock length+1 |
1292 | // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off |
1293 | uint8_t tol1 = fcHigh+1; |
1294 | |
1295 | //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); |
1296 | |
1297 | // loop to find the highest clock that has a remainder less than the tolerance |
1298 | // compare samples counted divided by |
1299 | int ii=7; |
1300 | for (; ii>=0; ii--){ |
1301 | if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ |
1302 | if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ |
1303 | if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ |
1304 | break; |
1305 | } |
1306 | } |
1307 | } |
1308 | } |
1309 | |
1310 | if (ii<0) return 0; // oops we went too far |
1311 | |
1312 | return clk[ii]; |
03e6bb4a |
1313 | } |
1e090a61 |
1314 | |
03e6bb4a |
1315 | //by marshmellow |
1316 | //countFC is to detect the field clock lengths. |
1317 | //counts and returns the 2 most common wave lengths |
6de43508 |
1318 | //mainly used for FSK field clock detection |
2eec55c8 |
1319 | uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) |
03e6bb4a |
1320 | { |
e0165dcf |
1321 | uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; |
1322 | uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; |
1323 | uint8_t fcLensFnd = 0; |
1324 | uint8_t lastFCcnt=0; |
2eec55c8 |
1325 | uint8_t fcCounter = 0; |
e0165dcf |
1326 | size_t i; |
1327 | if (size == 0) return 0; |
1328 | |
1329 | // prime i to first up transition |
1330 | for (i = 1; i < size-1; i++) |
1331 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) |
1332 | break; |
1333 | |
1334 | for (; i < size-1; i++){ |
1335 | if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ |
1336 | // new up transition |
1337 | fcCounter++; |
2eec55c8 |
1338 | if (fskAdj){ |
1339 | //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) |
1340 | if (lastFCcnt==5 && fcCounter==9) fcCounter--; |
1341 | //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) |
1342 | if ((fcCounter==9) || fcCounter==4) fcCounter++; |
e0165dcf |
1343 | // save last field clock count (fc/xx) |
2eec55c8 |
1344 | lastFCcnt = fcCounter; |
1345 | } |
e0165dcf |
1346 | // find which fcLens to save it to: |
1347 | for (int ii=0; ii<10; ii++){ |
1348 | if (fcLens[ii]==fcCounter){ |
1349 | fcCnts[ii]++; |
1350 | fcCounter=0; |
1351 | break; |
1352 | } |
1353 | } |
1354 | if (fcCounter>0 && fcLensFnd<10){ |
1355 | //add new fc length |
1356 | fcCnts[fcLensFnd]++; |
1357 | fcLens[fcLensFnd++]=fcCounter; |
1358 | } |
1359 | fcCounter=0; |
1360 | } else { |
1361 | // count sample |
1362 | fcCounter++; |
1363 | } |
1364 | } |
1365 | |
1366 | uint8_t best1=9, best2=9, best3=9; |
1367 | uint16_t maxCnt1=0; |
1368 | // go through fclens and find which ones are bigest 2 |
1369 | for (i=0; i<10; i++){ |
1370 | // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); |
1371 | // get the 3 best FC values |
1372 | if (fcCnts[i]>maxCnt1) { |
1373 | best3=best2; |
1374 | best2=best1; |
1375 | maxCnt1=fcCnts[i]; |
1376 | best1=i; |
1377 | } else if(fcCnts[i]>fcCnts[best2]){ |
1378 | best3=best2; |
1379 | best2=i; |
1380 | } else if(fcCnts[i]>fcCnts[best3]){ |
1381 | best3=i; |
1382 | } |
1383 | } |
1384 | uint8_t fcH=0, fcL=0; |
1385 | if (fcLens[best1]>fcLens[best2]){ |
1386 | fcH=fcLens[best1]; |
1387 | fcL=fcLens[best2]; |
1388 | } else{ |
1389 | fcH=fcLens[best2]; |
1390 | fcL=fcLens[best1]; |
1391 | } |
1392 | |
e0165dcf |
1393 | // TODO: take top 3 answers and compare to known Field clocks to get top 2 |
1394 | |
1395 | uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; |
1396 | // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); |
2eec55c8 |
1397 | if (fskAdj) return fcs; |
1398 | return fcLens[best1]; |
6de43508 |
1399 | } |
1400 | |
1401 | //by marshmellow - demodulate PSK1 wave |
1402 | //uses wave lengths (# Samples) |
1403 | int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) |
1404 | { |
e0165dcf |
1405 | if (size == 0) return -1; |
2eec55c8 |
1406 | uint16_t loopCnt = 4096; //don't need to loop through entire array... |
e0165dcf |
1407 | if (*size<loopCnt) loopCnt = *size; |
1408 | |
1409 | uint8_t curPhase = *invert; |
1410 | size_t i, waveStart=1, waveEnd=0, firstFullWave=0, lastClkBit=0; |
1411 | uint8_t fc=0, fullWaveLen=0, tol=1; |
1412 | uint16_t errCnt=0, waveLenCnt=0; |
2eec55c8 |
1413 | fc = countFC(dest, *size, 0); |
e0165dcf |
1414 | if (fc!=2 && fc!=4 && fc!=8) return -1; |
1415 | //PrintAndLog("DEBUG: FC: %d",fc); |
1416 | *clock = DetectPSKClock(dest, *size, *clock); |
2eec55c8 |
1417 | if (*clock == 0) return -1; |
e0165dcf |
1418 | int avgWaveVal=0, lastAvgWaveVal=0; |
1419 | //find first phase shift |
1420 | for (i=0; i<loopCnt; i++){ |
1421 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1422 | waveEnd = i+1; |
1423 | //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); |
1424 | waveLenCnt = waveEnd-waveStart; |
1425 | if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave |
1426 | lastAvgWaveVal = avgWaveVal/(waveLenCnt); |
1427 | firstFullWave = waveStart; |
1428 | fullWaveLen=waveLenCnt; |
1429 | //if average wave value is > graph 0 then it is an up wave or a 1 |
2eec55c8 |
1430 | if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128 |
e0165dcf |
1431 | break; |
1432 | } |
1433 | waveStart = i+1; |
1434 | avgWaveVal = 0; |
1435 | } |
2eec55c8 |
1436 | avgWaveVal += dest[i+2]; |
e0165dcf |
1437 | } |
1438 | //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); |
1439 | lastClkBit = firstFullWave; //set start of wave as clock align |
1440 | //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); |
1441 | waveStart = 0; |
e0165dcf |
1442 | size_t numBits=0; |
1443 | //set skipped bits |
2eec55c8 |
1444 | memset(dest, curPhase^1, firstFullWave / *clock); |
e0165dcf |
1445 | numBits += (firstFullWave / *clock); |
1446 | dest[numBits++] = curPhase; //set first read bit |
2eec55c8 |
1447 | for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ |
e0165dcf |
1448 | //top edge of wave = start of new wave |
1449 | if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ |
1450 | if (waveStart == 0) { |
1451 | waveStart = i+1; |
2eec55c8 |
1452 | waveLenCnt = 0; |
e0165dcf |
1453 | avgWaveVal = dest[i+1]; |
1454 | } else { //waveEnd |
1455 | waveEnd = i+1; |
1456 | waveLenCnt = waveEnd-waveStart; |
1457 | lastAvgWaveVal = avgWaveVal/waveLenCnt; |
1458 | if (waveLenCnt > fc){ |
1459 | //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); |
2eec55c8 |
1460 | //this wave is a phase shift |
e0165dcf |
1461 | //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); |
1462 | if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit |
2eec55c8 |
1463 | curPhase ^= 1; |
e0165dcf |
1464 | dest[numBits++] = curPhase; |
1465 | lastClkBit += *clock; |
2eec55c8 |
1466 | } else if (i < lastClkBit+10+fc){ |
e0165dcf |
1467 | //noise after a phase shift - ignore |
1468 | } else { //phase shift before supposed to based on clock |
1469 | errCnt++; |
2767fc02 |
1470 | dest[numBits++] = 7; |
e0165dcf |
1471 | } |
1472 | } else if (i+1 > lastClkBit + *clock + tol + fc){ |
1473 | lastClkBit += *clock; //no phase shift but clock bit |
1474 | dest[numBits++] = curPhase; |
1475 | } |
2eec55c8 |
1476 | avgWaveVal = 0; |
1477 | waveStart = i+1; |
e0165dcf |
1478 | } |
1479 | } |
2eec55c8 |
1480 | avgWaveVal += dest[i+1]; |
e0165dcf |
1481 | } |
1482 | *size = numBits; |
1483 | return errCnt; |
6de43508 |
1484 | } |