]> git.zerfleddert.de Git - proxmark3-svn/blame - client/nonce2key/crapto1.c
CHG: test of re-adding @piwi's bucketsort to @blapost's crapt1 v3.3 imp.
[proxmark3-svn] / client / nonce2key / crapto1.c
CommitLineData
f89c7050
M
1/* crapto1.c\r
2\r
3 This program is free software; you can redistribute it and/or\r
4 modify it under the terms of the GNU General Public License\r
5 as published by the Free Software Foundation; either version 2\r
6 of the License, or (at your option) any later version.\r
7\r
8 This program is distributed in the hope that it will be useful,\r
9 but WITHOUT ANY WARRANTY; without even the implied warranty of\r
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
11 GNU General Public License for more details.\r
12\r
13 You should have received a copy of the GNU General Public License\r
14 along with this program; if not, write to the Free Software\r
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,\r
16 Boston, MA 02110-1301, US$\r
17\r
a0f33b66 18 Copyright (C) 2008-2014 bla <blapost@gmail.com>\r
f89c7050
M
19*/\r
20#include "crapto1.h"\r
21#include <stdlib.h>\r
22\r
23#if !defined LOWMEM && defined __GNUC__\r
a0f33b66 24static uint8_t filterlut[1 << 20];\r
f89c7050
M
25static void __attribute__((constructor)) fill_lut()\r
26{\r
66afab80 27 uint32_t i;\r
28 for(i = 0; i < 1 << 20; ++i)\r
29 filterlut[i] = filter(i);\r
f89c7050 30}\r
a0f33b66 31#define filter(x) (filterlut[(x) & 0xfffff])\r
f89c7050
M
32#endif\r
33\r
66afab80 34\r
35\r
36typedef struct bucket {\r
37 uint32_t *head;\r
38 uint32_t *bp;\r
39} bucket_t;\r
40\r
41typedef bucket_t bucket_array_t[2][0x100];\r
42\r
43typedef struct bucket_info {\r
44 struct {\r
45 uint32_t *head, *tail;\r
46 } bucket_info[2][0x100];\r
47 uint32_t numbuckets;\r
48 } bucket_info_t;\r
49\r
50\r
51static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,\r
52 uint32_t* const ostart, uint32_t* const ostop,\r
53 bucket_info_t *bucket_info, bucket_array_t bucket)\r
9492e0b0 54{\r
66afab80 55 uint32_t *p1, *p2;\r
56 uint32_t *start[2];\r
57 uint32_t *stop[2];\r
9cefee6f 58\r
66afab80 59 start[0] = estart;\r
60 stop[0] = estop;\r
61 start[1] = ostart;\r
62 stop[1] = ostop;\r
9492e0b0 63\r
66afab80 64 // init buckets to be empty\r
65 for (uint32_t i = 0; i < 2; i++) {\r
66 for (uint32_t j = 0x00; j <= 0xff; j++) {\r
67 bucket[i][j].bp = bucket[i][j].head;\r
68 }\r
69 }\r
70\r
71 // sort the lists into the buckets based on the MSB (contribution bits)\r
72 for (uint32_t i = 0; i < 2; i++) {\r
73 for (p1 = start[i]; p1 <= stop[i]; p1++) {\r
74 uint32_t bucket_index = (*p1 & 0xff000000) >> 24;\r
75 *(bucket[i][bucket_index].bp++) = *p1;\r
76 }\r
77 }\r
9cefee6f 78\r
9492e0b0 79\r
66afab80 80 // write back intersecting buckets as sorted list.\r
81 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.\r
82 uint32_t nonempty_bucket;\r
83 for (uint32_t i = 0; i < 2; i++) {\r
84 p1 = start[i];\r
85 nonempty_bucket = 0;\r
86 for (uint32_t j = 0x00; j <= 0xff; j++) {\r
87 if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only\r
88 bucket_info->bucket_info[i][nonempty_bucket].head = p1;\r
89 for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);\r
90 bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;\r
91 nonempty_bucket++;\r
92 }\r
93 }\r
94 bucket_info->numbuckets = nonempty_bucket;\r
95 }\r
a0f33b66 96}\r
66afab80 97\r
f89c7050
M
98/** binsearch\r
99 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r
100 */\r
a0f33b66 101static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)\r
f89c7050
M
102{\r
103 uint32_t mid, val = *stop & 0xff000000;\r
104 while(start != stop)\r
105 if(start[mid = (stop - start) >> 1] > val)\r
106 stop = &start[mid];\r
107 else\r
108 start += mid + 1;\r
109\r
110 return start;\r
111}\r
112\r
113/** update_contribution\r
114 * helper, calculates the partial linear feedback contributions and puts in MSB\r
115 */\r
116static inline void\r
117update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r
118{\r
119 uint32_t p = *item >> 25;\r
120\r
121 p = p << 1 | parity(*item & mask1);\r
122 p = p << 1 | parity(*item & mask2);\r
123 *item = p << 24 | (*item & 0xffffff);\r
124}\r
125\r
126/** extend_table\r
127 * using a bit of the keystream extend the table of possible lfsr states\r
128 */\r
129static inline void\r
130extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
131{\r
132 in <<= 24;\r
a0f33b66 133 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
134 if(filter(*tbl) ^ filter(*tbl | 1)) {\r
135 *tbl |= filter(*tbl) ^ bit;\r
136 update_contribution(tbl, m1, m2);\r
137 *tbl ^= in;\r
138 } else if(filter(*tbl) == bit) {\r
139 *++*end = tbl[1];\r
140 tbl[1] = tbl[0] | 1;\r
141 update_contribution(tbl, m1, m2);\r
142 *tbl++ ^= in;\r
143 update_contribution(tbl, m1, m2);\r
144 *tbl ^= in;\r
145 } else\r
146 *tbl-- = *(*end)--;\r
f89c7050
M
147}\r
148/** extend_table_simple\r
149 * using a bit of the keystream extend the table of possible lfsr states\r
150 */\r
a0f33b66 151static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r
f89c7050 152{\r
9cefee6f 153 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
9492e0b0 154 if(filter(*tbl) ^ filter(*tbl | 1)) { // replace\r
f89c7050 155 *tbl |= filter(*tbl) ^ bit;\r
9492e0b0 156 } else if(filter(*tbl) == bit) { // insert\r
f89c7050
M
157 *++*end = *++tbl;\r
158 *tbl = tbl[-1] | 1;\r
9492e0b0 159 } else // drop\r
f89c7050
M
160 *tbl-- = *(*end)--;\r
161}\r
9492e0b0 162\r
163\r
f89c7050
M
164/** recover\r
165 * recursively narrow down the search space, 4 bits of keystream at a time\r
166 */\r
167static struct Crypto1State*\r
168recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r
169 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r
66afab80 170 struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)\r
f89c7050 171{\r
66afab80 172 uint32_t *o, *e;\r
173 bucket_info_t bucket_info;\r
f89c7050
M
174\r
175 if(rem == -1) {\r
176 for(e = e_head; e <= e_tail; ++e) {\r
177 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r
178 for(o = o_head; o <= o_tail; ++o, ++sl) {\r
179 sl->even = *o;\r
180 sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r
a0f33b66 181 sl[1].odd = sl[1].even = 0;\r
f89c7050
M
182 }\r
183 }\r
184 return sl;\r
185 }\r
186\r
66afab80 187 for(uint32_t i = 0; i < 4 && rem--; i++) {\r
a0f33b66 188 oks >>= 1;\r
189 eks >>= 1;\r
190 in >>= 2;\r
191 extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,\r
192 LF_POLY_ODD << 1, 0);\r
f89c7050
M
193 if(o_head > o_tail)\r
194 return sl;\r
195\r
a0f33b66 196 extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,\r
197 LF_POLY_EVEN << 1 | 1, in & 3);\r
f89c7050
M
198 if(e_head > e_tail)\r
199 return sl;\r
200 }\r
201\r
66afab80 202 bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);\r
9cefee6f 203\r
66afab80 204 for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {\r
205 sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,\r
206 bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,\r
207 rem, sl, in, bucket);\r
9492e0b0 208 }\r
9cefee6f 209\r
f89c7050
M
210 return sl;\r
211}\r
212/** lfsr_recovery\r
213 * recover the state of the lfsr given 32 bits of the keystream\r
214 * additionally you can use the in parameter to specify the value\r
215 * that was fed into the lfsr at the time the keystream was generated\r
216 */\r
217struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r
218{\r
219 struct Crypto1State *statelist;\r
220 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r
221 uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r
222 int i;\r
223\r
9492e0b0 224 // split the keystream into an odd and even part\r
f89c7050
M
225 for(i = 31; i >= 0; i -= 2)\r
226 oks = oks << 1 | BEBIT(ks2, i);\r
227 for(i = 30; i >= 0; i -= 2)\r
228 eks = eks << 1 | BEBIT(ks2, i);\r
229\r
230 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r
231 even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r
232 statelist = malloc(sizeof(struct Crypto1State) << 18);\r
9492e0b0 233 if(!odd_tail-- || !even_tail-- || !statelist) {\r
a0f33b66 234 free(statelist);\r
235 statelist = 0;\r
f89c7050 236 goto out;\r
9492e0b0 237 }\r
f89c7050 238\r
a0f33b66 239 statelist->odd = statelist->even = 0;\r
9492e0b0 240\r
66afab80 241 // allocate memory for out of place bucket_sort\r
242 bucket_array_t bucket;\r
243 for (uint32_t i = 0; i < 2; i++)\r
244 for (uint32_t j = 0; j <= 0xff; j++) {\r
245 bucket[i][j].head = malloc(sizeof(uint32_t)<<14);\r
246 if (!bucket[i][j].head) {\r
247 goto out;\r
248 }\r
249 }\r
250\r
251\r
9492e0b0 252 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream\r
f89c7050
M
253 for(i = 1 << 20; i >= 0; --i) {\r
254 if(filter(i) == (oks & 1))\r
255 *++odd_tail = i;\r
256 if(filter(i) == (eks & 1))\r
257 *++even_tail = i;\r
258 }\r
259\r
9492e0b0 260 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):\r
f89c7050
M
261 for(i = 0; i < 4; i++) {\r
262 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r
263 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r
264 }\r
265\r
9492e0b0 266 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.\r
267 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"\r
268 // parameter into account.\r
66afab80 269 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping\r
a0f33b66 270 recover(odd_head, odd_tail, oks,\r
66afab80 271 even_head, even_tail, eks, 11, statelist, in << 1, bucket);\r
272\r
f89c7050
M
273\r
274out:\r
275 free(odd_head);\r
276 free(even_head);\r
66afab80 277 for (uint32_t i = 0; i < 2; i++)\r
278 for (uint32_t j = 0; j <= 0xff; j++)\r
279 free(bucket[i][j].head);\r
280\r
f89c7050
M
281 return statelist;\r
282}\r
283\r
284static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r
285 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r
286 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r
287static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r
288 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r
289 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r
290 0x7EC7EE90, 0x7F63F748, 0x79117020};\r
291static const uint32_t T1[] = {\r
292 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r
293 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r
294 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r
295 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r
296static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r
297 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r
298 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r
299 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r
300 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r
301 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r
302static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r
303static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r
304/** Reverse 64 bits of keystream into possible cipher states\r
305 * Variation mentioned in the paper. Somewhat optimized version\r
306 */\r
307struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r
308{\r
309 struct Crypto1State *statelist, *sl;\r
310 uint8_t oks[32], eks[32], hi[32];\r
311 uint32_t low = 0, win = 0;\r
312 uint32_t *tail, table[1 << 16];\r
313 int i, j;\r
314\r
315 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r
316 if(!sl)\r
317 return 0;\r
318 sl->odd = sl->even = 0;\r
319\r
320 for(i = 30; i >= 0; i -= 2) {\r
a0f33b66 321 oks[i >> 1] = BEBIT(ks2, i);\r
322 oks[16 + (i >> 1)] = BEBIT(ks3, i);\r
f89c7050
M
323 }\r
324 for(i = 31; i >= 0; i -= 2) {\r
a0f33b66 325 eks[i >> 1] = BEBIT(ks2, i);\r
326 eks[16 + (i >> 1)] = BEBIT(ks3, i);\r
f89c7050
M
327 }\r
328\r
329 for(i = 0xfffff; i >= 0; --i) {\r
330 if (filter(i) != oks[0])\r
331 continue;\r
332\r
333 *(tail = table) = i;\r
334 for(j = 1; tail >= table && j < 29; ++j)\r
335 extend_table_simple(table, &tail, oks[j]);\r
336\r
337 if(tail < table)\r
338 continue;\r
339\r
340 for(j = 0; j < 19; ++j)\r
341 low = low << 1 | parity(i & S1[j]);\r
342 for(j = 0; j < 32; ++j)\r
343 hi[j] = parity(i & T1[j]);\r
344\r
345 for(; tail >= table; --tail) {\r
346 for(j = 0; j < 3; ++j) {\r
347 *tail = *tail << 1;\r
348 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r
349 if(filter(*tail) != oks[29 + j])\r
350 goto continue2;\r
351 }\r
352\r
353 for(j = 0; j < 19; ++j)\r
354 win = win << 1 | parity(*tail & S2[j]);\r
355\r
356 win ^= low;\r
357 for(j = 0; j < 32; ++j) {\r
358 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r
359 if(filter(win) != eks[j])\r
360 goto continue2;\r
361 }\r
362\r
363 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r
364 sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r
365 sl->even = win;\r
366 ++sl;\r
367 sl->odd = sl->even = 0;\r
368 continue2:;\r
369 }\r
370 }\r
371 return statelist;\r
372}\r
373\r
374/** lfsr_rollback_bit\r
375 * Rollback the shift register in order to get previous states\r
376 */\r
a0f33b66 377uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r
f89c7050
M
378{\r
379 int out;\r
a0f33b66 380 uint8_t ret;\r
381 uint32_t t;\r
f89c7050
M
382\r
383 s->odd &= 0xffffff;\r
a0f33b66 384 t = s->odd, s->odd = s->even, s->even = t;\r
f89c7050
M
385\r
386 out = s->even & 1;\r
387 out ^= LF_POLY_EVEN & (s->even >>= 1);\r
388 out ^= LF_POLY_ODD & s->odd;\r
389 out ^= !!in;\r
a0f33b66 390 out ^= (ret = filter(s->odd)) & !!fb;\r
f89c7050
M
391\r
392 s->even |= parity(out) << 23;\r
a0f33b66 393 return ret;\r
f89c7050
M
394}\r
395/** lfsr_rollback_byte\r
396 * Rollback the shift register in order to get previous states\r
397 */\r
a0f33b66 398uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r
f89c7050 399{\r
a0f33b66 400 /*\r
401 int i, ret = 0;\r
f89c7050 402 for (i = 7; i >= 0; --i)\r
a0f33b66 403 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;\r
738eeccd 404*/\r
405// unfold loop 20160112\r
a0f33b66 406 uint8_t ret = 0;\r
407 ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;\r
408 ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;\r
409 ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;\r
410 ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;\r
411 ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;\r
412 ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;\r
413 ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;\r
414 ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;\r
415 return ret;\r
f89c7050
M
416}\r
417/** lfsr_rollback_word\r
418 * Rollback the shift register in order to get previous states\r
419 */\r
a0f33b66 420uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r
f89c7050 421{\r
a0f33b66 422 /*\r
f89c7050 423 int i;\r
a0f33b66 424 uint32_t ret = 0;\r
f89c7050 425 for (i = 31; i >= 0; --i)\r
a0f33b66 426 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);\r
738eeccd 427*/\r
428// unfold loop 20160112\r
a0f33b66 429 uint32_t ret = 0;\r
430 ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);\r
431 ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);\r
432 ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);\r
433 ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);\r
434 ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);\r
435 ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);\r
436 ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);\r
437 ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);\r
438\r
439 ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);\r
440 ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);\r
441 ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);\r
442 ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);\r
443 ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);\r
444 ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);\r
445 ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);\r
446 ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);\r
447 \r
448 ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);\r
449 ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);\r
450 ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);\r
451 ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);\r
452 ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);\r
453 ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);\r
454 ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);\r
455 ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);\r
456 \r
457 ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);\r
458 ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);\r
459 ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);\r
460 ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);\r
461 ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);\r
462 ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);\r
463 ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);\r
464 ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);\r
465 return ret;\r
f89c7050
M
466}\r
467\r
468/** nonce_distance\r
469 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r
470 */\r
471static uint16_t *dist = 0;\r
472int nonce_distance(uint32_t from, uint32_t to)\r
473{\r
474 uint16_t x, i;\r
475 if(!dist) {\r
476 dist = malloc(2 << 16);\r
477 if(!dist)\r
478 return -1;\r
479 for (x = i = 1; i; ++i) {\r
480 dist[(x & 0xff) << 8 | x >> 8] = i;\r
481 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r
482 }\r
483 }\r
484 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r
485}\r
486\r
487\r
488static uint32_t fastfwd[2][8] = {\r
489 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r
490 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r
491\r
492\r
493/** lfsr_prefix_ks\r
494 *\r
495 * Is an exported helper function from the common prefix attack\r
496 * Described in the "dark side" paper. It returns an -1 terminated array\r
497 * of possible partial(21 bit) secret state.\r
498 * The required keystream(ks) needs to contain the keystream that was used to\r
a0f33b66 499 * encrypt the NACK which is observed when varying only the 3 last bits of Nr\r
f89c7050
M
500 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r
501 */\r
502uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r
503{\r
a0f33b66 504 uint32_t *candidates = malloc(4 << 10);\r
505 if(!candidates) return 0;\r
506 \r
f89c7050 507 uint32_t c, entry;\r
a0f33b66 508 int size = 0, i, good;\r
f89c7050 509\r
a0f33b66 510 for(i = 0; i < 1 << 21; ++i) {\r
511 for(c = 0, good = 1; good && c < 8; ++c) {\r
512 entry = i ^ fastfwd[isodd][c];\r
513 good &= (BIT(ks[c], isodd) == filter(entry >> 1));\r
514 good &= (BIT(ks[c], isodd + 2) == filter(entry));\r
f89c7050 515 }\r
a0f33b66 516 if(good)\r
517 candidates[size++] = i;\r
518 }\r
f89c7050 519\r
a0f33b66 520 candidates[size] = -1;\r
f89c7050
M
521\r
522 return candidates;\r
523}\r
524\r
a0f33b66 525/** check_pfx_parity\r
f89c7050
M
526 * helper function which eliminates possible secret states using parity bits\r
527 */\r
a0f33b66 528static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)\r
f89c7050 529{\r
a0f33b66 530 uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;\r
f89c7050 531\r
a0f33b66 532 for(c = 0; good && c < 8; ++c) {\r
533 sl->odd = odd ^ fastfwd[1][c];\r
534 sl->even = even ^ fastfwd[0][c];\r
9cefee6f 535\r
a0f33b66 536 lfsr_rollback_bit(sl, 0, 0);\r
537 lfsr_rollback_bit(sl, 0, 0);\r
9cefee6f 538\r
a0f33b66 539 ks3 = lfsr_rollback_bit(sl, 0, 0);\r
540 ks2 = lfsr_rollback_word(sl, 0, 0);\r
541 ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);\r
9cefee6f 542\r
f89c7050
M
543 nr = ks1 ^ (prefix | c << 5);\r
544 rr = ks2 ^ rresp;\r
545\r
f89c7050
M
546 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r
547 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r
548 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r
549 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r
a0f33b66 550 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;\r
f89c7050
M
551 }\r
552\r
a0f33b66 553 return sl + good;\r
9cefee6f 554}\r
f89c7050 555\r
f89c7050
M
556/** lfsr_common_prefix\r
557 * Implentation of the common prefix attack.\r
558 * Requires the 28 bit constant prefix used as reader nonce (pfx)\r
559 * The reader response used (rr)\r
560 * The keystream used to encrypt the observed NACK's (ks)\r
561 * The parity bits (par)\r
562 * It returns a zero terminated list of possible cipher states after the\r
563 * tag nonce was fed in\r
564 */\r
a0f33b66 565\r
566struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])\r
f89c7050
M
567{\r
568 struct Crypto1State *statelist, *s;\r
569 uint32_t *odd, *even, *o, *e, top;\r
570\r
571 odd = lfsr_prefix_ks(ks, 1);\r
572 even = lfsr_prefix_ks(ks, 0);\r
573\r
8130eba4 574 s = statelist = malloc((sizeof *statelist) << 21);\r
a0f33b66 575 if(!s || !odd || !even) {\r
bcf61bd3 576 free(statelist);\r
577 free(odd);\r
578 free(even);\r
579 return 0;\r
a61b4976 580 }\r
f89c7050 581\r
a0f33b66 582 for(o = odd; *o + 1; ++o)\r
583 for(e = even; *e + 1; ++e)\r
f89c7050 584 for(top = 0; top < 64; ++top) {\r
a0f33b66 585 *o += 1 << 21;\r
586 *e += (!(top & 7) + 1) << 21;\r
587 s = check_pfx_parity(pfx, rr, par, *o, *e, s);\r
f89c7050
M
588 }\r
589\r
a0f33b66 590 s->odd = s->even = 0;\r
f89c7050
M
591\r
592 free(odd);\r
593 free(even);\r
f89c7050 594 return statelist;\r
a0f33b66 595}
Impressum, Datenschutz