]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
Merge branch 'master' of https://github.com/iceman1001/proxmark3
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
c3c241f3 13#include "usb_cdc.h"
14#include "cmd.h"
15
16#include "proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
22e24700 21
9ab7a6c7 22#include <stdarg.h>
22e24700 23
15c4dc5a 24#include "legicrf.h"
c3c241f3 25#include <hitag2.h>
31abe49f 26#include "lfsampling.h"
3000dc4e 27#include "BigBuf.h"
7838f4be 28#include "mifareutil.h"
36804420 29#include "pcf7931.h"
15c4dc5a 30#ifdef WITH_LCD
902cb3c0 31 #include "LCD.h"
15c4dc5a 32#endif
33
7838f4be 34// Craig Young - 14a stand-alone code
35#ifdef WITH_ISO14443a_StandAlone
36 #include "iso14443a.h"
c2731f37 37 #include "protocols.h"
7838f4be 38#endif
39
15c4dc5a 40#define abs(x) ( ((x)<0) ? -(x) : (x) )
41
42//=============================================================================
43// A buffer where we can queue things up to be sent through the FPGA, for
44// any purpose (fake tag, as reader, whatever). We go MSB first, since that
45// is the order in which they go out on the wire.
46//=============================================================================
47
6a1f2d82 48#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 49uint8_t ToSend[TOSEND_BUFFER_SIZE];
7838f4be 50int ToSendMax = 0;
15c4dc5a 51static int ToSendBit;
52struct common_area common_area __attribute__((section(".commonarea")));
53
15c4dc5a 54void ToSendReset(void)
55{
56 ToSendMax = -1;
57 ToSendBit = 8;
58}
59
60void ToSendStuffBit(int b)
61{
62 if(ToSendBit >= 8) {
63 ToSendMax++;
64 ToSend[ToSendMax] = 0;
65 ToSendBit = 0;
66 }
67
68 if(b) {
69 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
70 }
71
72 ToSendBit++;
73
6a1f2d82 74 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 75 ToSendBit = 0;
76 DbpString("ToSendStuffBit overflowed!");
77 }
78}
79
80//=============================================================================
81// Debug print functions, to go out over USB, to the usual PC-side client.
82//=============================================================================
83
84void DbpString(char *str)
85{
9440213d 86 byte_t len = strlen(str);
87 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 88}
89
90#if 0
91void DbpIntegers(int x1, int x2, int x3)
92{
902cb3c0 93 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 94}
95#endif
96
97void Dbprintf(const char *fmt, ...) {
98// should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128];
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
e30c654b 105
15c4dc5a 106 DbpString(output_string);
107}
108
9455b51c 109// prints HEX & ASCII
d19929cb 110void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 111 int l=0,i;
112 char ascii[9];
d19929cb 113
9455b51c 114 while (len>0) {
115 if (len>8) l=8;
116 else l=len;
117
118 memcpy(ascii,d,l);
d19929cb 119 ascii[l]=0;
9455b51c 120
121 // filter safe ascii
d19929cb 122 for (i=0;i<l;i++)
9455b51c 123 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 124
125 if (bAsci) {
126 Dbprintf("%-8s %*D",ascii,l,d," ");
127 } else {
128 Dbprintf("%*D",l,d," ");
129 }
130
9455b51c 131 len-=8;
132 d+=8;
133 }
134}
135
15c4dc5a 136//-----------------------------------------------------------------------------
137// Read an ADC channel and block till it completes, then return the result
138// in ADC units (0 to 1023). Also a routine to average 32 samples and
139// return that.
140//-----------------------------------------------------------------------------
141static int ReadAdc(int ch)
142{
f7e3ed82 143 uint32_t d;
15c4dc5a 144
145 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
146 AT91C_BASE_ADC->ADC_MR =
3b692427 147 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
148 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
149 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
150
151 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
152 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
153 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
154 //
155 // The maths are:
156 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
157 //
158 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
159 //
160 // Note: with the "historic" values in the comments above, the error was 34% !!!
161
15c4dc5a 162 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
163
164 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 165
15c4dc5a 166 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
167 ;
168 d = AT91C_BASE_ADC->ADC_CDR[ch];
169
170 return d;
171}
172
9ca155ba 173int AvgAdc(int ch) // was static - merlok
15c4dc5a 174{
175 int i;
176 int a = 0;
177
178 for(i = 0; i < 32; i++) {
179 a += ReadAdc(ch);
180 }
181
182 return (a + 15) >> 5;
183}
184
185void MeasureAntennaTuning(void)
186{
d3499d36 187 uint8_t LF_Results[256];
9f693930 188 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 189 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
190
7838f4be 191 LED_B_ON();
15c4dc5a 192
193/*
194 * Sweeps the useful LF range of the proxmark from
195 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
196 * read the voltage in the antenna, the result left
197 * in the buffer is a graph which should clearly show
198 * the resonating frequency of your LF antenna
199 * ( hopefully around 95 if it is tuned to 125kHz!)
200 */
d19929cb 201
7cc204bf 202 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 203 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
d3499d36 204 for (i=255; i>=19; i--) {
d19929cb 205 WDT_HIT();
15c4dc5a 206 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
207 SpinDelay(20);
3b692427 208 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 209 if (i==95) vLf125 = adcval; // voltage at 125Khz
210 if (i==89) vLf134 = adcval; // voltage at 134Khz
211
d3499d36 212 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
213 if(LF_Results[i] > peak) {
15c4dc5a 214 peakv = adcval;
d3499d36 215 peak = LF_Results[i];
15c4dc5a 216 peakf = i;
9f693930 217 //ptr = i;
15c4dc5a 218 }
219 }
220
d3499d36 221 for (i=18; i >= 0; i--) LF_Results[i] = 0;
222
7838f4be 223 LED_A_ON();
15c4dc5a 224 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7838f4be 225 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 226 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
227 SpinDelay(20);
3b692427 228 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 229
3b692427 230 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 231 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
7838f4be 232 LED_A_OFF();
233 LED_B_OFF();
d19929cb 234 return;
15c4dc5a 235}
236
237void MeasureAntennaTuningHf(void)
238{
239 int vHf = 0; // in mV
240
241 DbpString("Measuring HF antenna, press button to exit");
242
3b692427 243 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
244 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
245 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
246
15c4dc5a 247 for (;;) {
15c4dc5a 248 SpinDelay(20);
3b692427 249 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 250
15c4dc5a 251 Dbprintf("%d mV",vHf);
252 if (BUTTON_PRESS()) break;
253 }
254 DbpString("cancelled");
3b692427 255
256 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
257
15c4dc5a 258}
259
260
15c4dc5a 261void ReadMem(int addr)
262{
f7e3ed82 263 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 264
265 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
266 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
267}
268
269/* osimage version information is linked in */
270extern struct version_information version_information;
271/* bootrom version information is pointed to from _bootphase1_version_pointer */
9783989b 272extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 273void SendVersion(void)
274{
9783989b 275 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
276 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 277
278 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 279 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
280 * pointer, then use it.
281 */
282 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
283 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
9783989b 284 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 285 } else {
286 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
9783989b 287 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 288 }
e30c654b 289
15c4dc5a 290 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
9783989b 291 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 292
9783989b 293 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
294 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
295 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
296 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
297
298 // Send Chip ID and used flash memory
299 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
300 uint32_t compressed_data_section_size = common_area.arg1;
301 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 302}
f62b5e12 303
304// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
305// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
0de8e387 306void printUSBSpeed(void)
f62b5e12 307{
308 Dbprintf("USB Speed:");
0de8e387 309 Dbprintf(" Sending USB packets to client...");
f62b5e12 310
0de8e387 311 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
f62b5e12 312 uint8_t *test_data = BigBuf_get_addr();
0de8e387 313 uint32_t end_time;
f62b5e12 314
0de8e387 315 uint32_t start_time = end_time = GetTickCount();
316 uint32_t bytes_transferred = 0;
f62b5e12 317
318 LED_B_ON();
0de8e387 319 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
320 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
321 end_time = GetTickCount();
322 bytes_transferred += USB_CMD_DATA_SIZE;
f62b5e12 323 }
324 LED_B_OFF();
325
0de8e387 326 Dbprintf(" Time elapsed: %dms", end_time - start_time);
327 Dbprintf(" Bytes transferred: %d", bytes_transferred);
328 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
329 1000 * bytes_transferred / (end_time - start_time));
f62b5e12 330
331}
332
7838f4be 333/**
334 * Prints runtime information about the PM3.
335**/
0de8e387 336void SendStatus(void)
15c4dc5a 337{
7838f4be 338 BigBuf_print_status();
339 Fpga_print_status();
340 printConfig(); //LF Sampling config
0de8e387 341 printUSBSpeed();
7838f4be 342 Dbprintf("Various");
f62b5e12 343 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
344 Dbprintf(" ToSendMax..........%d", ToSendMax);
345 Dbprintf(" ToSendBit..........%d", ToSendBit);
346 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
347
348 cmd_send(CMD_ACK,1,0,0,0,0);
7838f4be 349}
15c4dc5a 350
7838f4be 351#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 352
7838f4be 353#define OPTS 2
7838f4be 354void StandAloneMode()
355{
356 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 357 // Oooh pretty -- notify user we're in elite samy mode now
358 LED(LED_RED, 200);
359 LED(LED_ORANGE, 200);
360 LED(LED_GREEN, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_RED, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_GREEN, 200);
365 LED(LED_ORANGE, 200);
366 LED(LED_RED, 200);
7838f4be 367}
7838f4be 368#endif
369
7838f4be 370#ifdef WITH_ISO14443a_StandAlone
371void StandAloneMode14a()
372{
373 StandAloneMode();
374 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
375
376 int selected = 0;
0db6ed9a 377 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
7838f4be 378 int cardRead[OPTS] = {0};
379 uint8_t readUID[10] = {0};
380 uint32_t uid_1st[OPTS]={0};
381 uint32_t uid_2nd[OPTS]={0};
0db6ed9a 382 uint32_t uid_tmp1 = 0;
383 uint32_t uid_tmp2 = 0;
384 iso14a_card_select_t hi14a_card[OPTS];
7838f4be 385
c2731f37 386 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
387
7838f4be 388 LED(selected + 1, 0);
389
390 for (;;)
391 {
392 usb_poll();
393 WDT_HIT();
7838f4be 394 SpinDelay(300);
395
0db6ed9a 396 if (iGotoRecord == 1 || cardRead[selected] == 0)
7838f4be 397 {
0db6ed9a 398 iGotoRecord = 0;
7838f4be 399 LEDsoff();
400 LED(selected + 1, 0);
401 LED(LED_RED2, 0);
402
403 // record
404 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
7838f4be 405 /* need this delay to prevent catching some weird data */
406 SpinDelay(500);
407 /* Code for reading from 14a tag */
408 uint8_t uid[10] ={0};
409 uint32_t cuid;
410 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
411
412 for ( ; ; )
413 {
414 WDT_HIT();
0db6ed9a 415 if (BUTTON_PRESS()) {
416 if (cardRead[selected]) {
417 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
418 break;
419 }
420 else if (cardRead[(selected+1)%OPTS]) {
421 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
422 selected = (selected+1)%OPTS;
423 break; // playing = 1;
424 }
425 else {
426 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
427 SpinDelay(300);
428 }
429 }
c188b1b9 430 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
7838f4be 431 continue;
432 else
433 {
434 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
435 memcpy(readUID,uid,10*sizeof(uint8_t));
0db6ed9a 436 uint8_t *dst = (uint8_t *)&uid_tmp1;
7838f4be 437 // Set UID byte order
438 for (int i=0; i<4; i++)
439 dst[i] = uid[3-i];
0db6ed9a 440 dst = (uint8_t *)&uid_tmp2;
7838f4be 441 for (int i=0; i<4; i++)
442 dst[i] = uid[7-i];
0db6ed9a 443 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
444 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
445 }
446 else {
447 if (uid_tmp2) {
448 Dbprintf("Bank[%d] received a 7-byte UID",selected);
449 uid_1st[selected] = (uid_tmp1)>>8;
450 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
451 }
452 else {
453 Dbprintf("Bank[%d] received a 4-byte UID",selected);
454 uid_1st[selected] = uid_tmp1;
455 uid_2nd[selected] = uid_tmp2;
456 }
7838f4be 457 break;
458 }
459 }
0db6ed9a 460 }
461 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
462 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
7838f4be 463 LEDsoff();
464 LED(LED_GREEN, 200);
465 LED(LED_ORANGE, 200);
466 LED(LED_GREEN, 200);
467 LED(LED_ORANGE, 200);
468
469 LEDsoff();
470 LED(selected + 1, 0);
7838f4be 471
0db6ed9a 472 // Next state is replay:
473 playing = 1;
7838f4be 474
475 cardRead[selected] = 1;
7838f4be 476 }
0db6ed9a 477 /* MF Classic UID clone */
478 else if (iGotoClone==1)
7838f4be 479 {
0db6ed9a 480 iGotoClone=0;
c2731f37 481 LEDsoff();
482 LED(selected + 1, 0);
483 LED(LED_ORANGE, 250);
7838f4be 484
c2731f37 485 // record
486 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
7838f4be 487
c2731f37 488 // wait for button to be released
489 // Delay cloning until card is in place
490 while(BUTTON_PRESS())
491 WDT_HIT();
7838f4be 492
c2731f37 493 Dbprintf("Starting clone. [Bank: %u]", selected);
494 // need this delay to prevent catching some weird data
495 SpinDelay(500);
496 // Begin clone function here:
497 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
498 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
499 memcpy(c.d.asBytes, data, 16);
500 SendCommand(&c);
501
502 Block read is similar:
503 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
504 We need to imitate that call with blockNo 0 to set a uid.
505
506 The get and set commands are handled in this file:
507 // Work with "magic Chinese" card
508 case CMD_MIFARE_CSETBLOCK:
509 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
510 break;
511 case CMD_MIFARE_CGETBLOCK:
512 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
513 break;
514
515 mfCSetUID provides example logic for UID set workflow:
516 -Read block0 from card in field with MifareCGetBlock()
517 -Configure new values without replacing reserved bytes
518 memcpy(block0, uid, 4); // Copy UID bytes from byte array
519 // Mifare UID BCC
520 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
521 Bytes 5-7 are reserved SAK and ATQA for mifare classic
522 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
523 */
524 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
525 // arg0 = Flags, arg1=blockNo
526 MifareCGetBlock(params, 0, oldBlock0);
0db6ed9a 527 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
528 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
529 playing = 1;
530 }
531 else {
c2731f37 532 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
533 memcpy(newBlock0,oldBlock0,16);
534 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
535
536 newBlock0[0] = uid_1st[selected]>>24;
537 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
538 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
539 newBlock0[3] = 0xFF & (uid_1st[selected]);
540 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
541
542 // arg0 = workFlags, arg1 = blockNo, datain
543 MifareCSetBlock(params, 0, newBlock0);
544 MifareCGetBlock(params, 0, testBlock0);
545
546 if (memcmp(testBlock0, newBlock0, 16)==0) {
547 DbpString("Cloned successfull!");
548 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
7838f4be 549 playing = 0;
0db6ed9a 550 iGotoRecord = 1;
c2731f37 551 selected = (selected + 1) % OPTS;
552 } else {
0db6ed9a 553 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
554 playing = 1;
555 }
556 }
557 LEDsoff();
558 LED(selected + 1, 0);
7838f4be 559 }
560 // Change where to record (or begin playing)
0db6ed9a 561 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
7838f4be 562 {
7838f4be 563 LEDsoff();
564 LED(selected + 1, 0);
565
566 // Begin transmitting
567 if (playing)
568 {
569 LED(LED_GREEN, 0);
570 DbpString("Playing");
0db6ed9a 571 for ( ; ; ) {
572 WDT_HIT();
573 int button_action = BUTTON_HELD(1000);
574 if (button_action == 0) { // No button action, proceed with sim
575 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
576 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
577 num_to_bytes(uid_1st[selected], 3, data);
578 num_to_bytes(uid_2nd[selected], 4, data);
579
7838f4be 580 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
0db6ed9a 581 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
582 DbpString("Mifare Classic");
583 SimulateIso14443aTag(1, flags, data); // Mifare Classic
584 }
585 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
586 DbpString("Mifare Ultralight");
587 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
588 }
589 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
590 DbpString("Mifare DESFire");
591 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
592 }
593 else {
594 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
595 SimulateIso14443aTag(1, flags, data);
596 }
597 }
598 else if (button_action == BUTTON_SINGLE_CLICK) {
599 selected = (selected + 1) % OPTS;
600 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
601 iGotoRecord = 1;
602 break;
603 }
604 else if (button_action == BUTTON_HOLD) {
605 Dbprintf("Playtime over. Begin cloning...");
606 iGotoClone = 1;
607 break;
7838f4be 608 }
0db6ed9a 609 WDT_HIT();
610 }
7838f4be 611
612 /* We pressed a button so ignore it here with a delay */
613 SpinDelay(300);
7838f4be 614 LEDsoff();
615 LED(selected + 1, 0);
616 }
617 else
618 while(BUTTON_PRESS())
619 WDT_HIT();
620 }
621 }
622}
623#elif WITH_LF
624// samy's sniff and repeat routine
625void SamyRun()
626{
627 StandAloneMode();
628 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
629
630 int high[OPTS], low[OPTS];
15c4dc5a 631 int selected = 0;
632 int playing = 0;
72e930ef 633 int cardRead = 0;
15c4dc5a 634
635 // Turn on selected LED
636 LED(selected + 1, 0);
637
614da335 638 for (;;) {
6e82300d 639 usb_poll();
95e63594 640 WDT_HIT();
15c4dc5a 641
642 // Was our button held down or pressed?
643 int button_pressed = BUTTON_HELD(1000);
644 SpinDelay(300);
645
646 // Button was held for a second, begin recording
72e930ef 647 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 648 {
649 LEDsoff();
650 LED(selected + 1, 0);
651 LED(LED_RED2, 0);
652
653 // record
654 DbpString("Starting recording");
655
656 // wait for button to be released
657 while(BUTTON_PRESS())
658 WDT_HIT();
659
660 /* need this delay to prevent catching some weird data */
661 SpinDelay(500);
662
663 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
664 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
665
666 LEDsoff();
667 LED(selected + 1, 0);
668 // Finished recording
15c4dc5a 669 // If we were previously playing, set playing off
670 // so next button push begins playing what we recorded
614da335 671 playing = 0;
672 cardRead = 1;
72e930ef 673 }
614da335 674 else if (button_pressed > 0 && cardRead == 1) {
675 LEDsoff();
676 LED(selected + 1, 0);
677 LED(LED_ORANGE, 0);
72e930ef 678
614da335 679 // record
680 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
72e930ef 681
614da335 682 // wait for button to be released
683 while(BUTTON_PRESS())
684 WDT_HIT();
72e930ef 685
614da335 686 /* need this delay to prevent catching some weird data */
687 SpinDelay(500);
72e930ef 688
614da335 689 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
690 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
72e930ef 691
614da335 692 LEDsoff();
693 LED(selected + 1, 0);
694 // Finished recording
72e930ef 695
614da335 696 // If we were previously playing, set playing off
697 // so next button push begins playing what we recorded
698 playing = 0;
699 cardRead = 0;
15c4dc5a 700 }
701
702 // Change where to record (or begin playing)
614da335 703 else if (button_pressed) {
15c4dc5a 704 // Next option if we were previously playing
705 if (playing)
706 selected = (selected + 1) % OPTS;
707 playing = !playing;
708
709 LEDsoff();
710 LED(selected + 1, 0);
711
712 // Begin transmitting
713 if (playing)
714 {
715 LED(LED_GREEN, 0);
716 DbpString("Playing");
717 // wait for button to be released
718 while(BUTTON_PRESS())
719 WDT_HIT();
720 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
721 CmdHIDsimTAG(high[selected], low[selected], 0);
722 DbpString("Done playing");
723 if (BUTTON_HELD(1000) > 0)
724 {
725 DbpString("Exiting");
726 LEDsoff();
727 return;
728 }
729
730 /* We pressed a button so ignore it here with a delay */
731 SpinDelay(300);
732
733 // when done, we're done playing, move to next option
734 selected = (selected + 1) % OPTS;
735 playing = !playing;
736 LEDsoff();
737 LED(selected + 1, 0);
738 }
739 else
740 while(BUTTON_PRESS())
741 WDT_HIT();
742 }
743 }
744}
15c4dc5a 745
7838f4be 746#endif
15c4dc5a 747/*
748OBJECTIVE
749Listen and detect an external reader. Determine the best location
750for the antenna.
751
752INSTRUCTIONS:
753Inside the ListenReaderField() function, there is two mode.
754By default, when you call the function, you will enter mode 1.
755If you press the PM3 button one time, you will enter mode 2.
756If you press the PM3 button a second time, you will exit the function.
757
758DESCRIPTION OF MODE 1:
759This mode just listens for an external reader field and lights up green
760for HF and/or red for LF. This is the original mode of the detectreader
761function.
762
763DESCRIPTION OF MODE 2:
764This mode will visually represent, using the LEDs, the actual strength of the
765current compared to the maximum current detected. Basically, once you know
766what kind of external reader is present, it will help you spot the best location to place
767your antenna. You will probably not get some good results if there is a LF and a HF reader
768at the same place! :-)
769
770LIGHT SCHEME USED:
771*/
772static const char LIGHT_SCHEME[] = {
773 0x0, /* ---- | No field detected */
774 0x1, /* X--- | 14% of maximum current detected */
775 0x2, /* -X-- | 29% of maximum current detected */
776 0x4, /* --X- | 43% of maximum current detected */
777 0x8, /* ---X | 57% of maximum current detected */
778 0xC, /* --XX | 71% of maximum current detected */
779 0xE, /* -XXX | 86% of maximum current detected */
780 0xF, /* XXXX | 100% of maximum current detected */
781};
782static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
783
784void ListenReaderField(int limit)
785{
3b692427 786 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
787 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
15c4dc5a 788 int mode=1, display_val, display_max, i;
789
3b692427 790#define LF_ONLY 1
791#define HF_ONLY 2
792#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
793
794
795 // switch off FPGA - we don't want to measure our own signal
796 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
797 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 798
799 LEDsoff();
800
3b692427 801 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 802
803 if(limit != HF_ONLY) {
3b692427 804 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 805 lf_baseline = lf_av;
806 }
807
3b692427 808 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 809
810 if (limit != LF_ONLY) {
3b692427 811 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 812 hf_baseline = hf_av;
813 }
814
815 for(;;) {
816 if (BUTTON_PRESS()) {
817 SpinDelay(500);
818 switch (mode) {
819 case 1:
820 mode=2;
821 DbpString("Signal Strength Mode");
822 break;
823 case 2:
824 default:
825 DbpString("Stopped");
826 LEDsoff();
827 return;
828 break;
829 }
830 }
831 WDT_HIT();
832
833 if (limit != HF_ONLY) {
3b692427 834 if(mode == 1) {
835 if (abs(lf_av - lf_baseline) > REPORT_CHANGE)
836 LED_D_ON();
837 else
838 LED_D_OFF();
15c4dc5a 839 }
e30c654b 840
3b692427 841 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 842 // see if there's a significant change
3b692427 843 if(abs(lf_av - lf_av_new) > REPORT_CHANGE) {
844 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 845 lf_av = lf_av_new;
846 if (lf_av > lf_max)
847 lf_max = lf_av;
15c4dc5a 848 }
849 }
850
851 if (limit != LF_ONLY) {
852 if (mode == 1){
3b692427 853 if (abs(hf_av - hf_baseline) > REPORT_CHANGE)
854 LED_B_ON();
855 else
856 LED_B_OFF();
15c4dc5a 857 }
e30c654b 858
3b692427 859 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 860 // see if there's a significant change
3b692427 861 if(abs(hf_av - hf_av_new) > REPORT_CHANGE) {
862 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 863 hf_av = hf_av_new;
864 if (hf_av > hf_max)
865 hf_max = hf_av;
15c4dc5a 866 }
867 }
e30c654b 868
15c4dc5a 869 if(mode == 2) {
870 if (limit == LF_ONLY) {
871 display_val = lf_av;
872 display_max = lf_max;
873 } else if (limit == HF_ONLY) {
874 display_val = hf_av;
875 display_max = hf_max;
876 } else { /* Pick one at random */
877 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
878 display_val = hf_av;
879 display_max = hf_max;
880 } else {
881 display_val = lf_av;
882 display_max = lf_max;
883 }
884 }
885 for (i=0; i<LIGHT_LEN; i++) {
886 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
887 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
888 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
889 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
890 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
891 break;
892 }
893 }
894 }
895 }
896}
897
f7e3ed82 898void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 899{
900 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 901
313ee67e 902 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 903
15c4dc5a 904 switch(c->cmd) {
905#ifdef WITH_LF
31abe49f
MHS
906 case CMD_SET_LF_SAMPLING_CONFIG:
907 setSamplingConfig((sample_config *) c->d.asBytes);
908 break;
15c4dc5a 909 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1c8fbeb9 910 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 911 break;
15c4dc5a 912 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
913 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
914 break;
b014c96d 915 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 916 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 917 break;
7e67e42f 918 case CMD_HID_DEMOD_FSK:
a501c82b 919 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 920 break;
921 case CMD_HID_SIM_TAG:
a501c82b 922 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 923 break;
abd6112f 924 case CMD_FSK_SIM_TAG:
925 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
926 break;
927 case CMD_ASK_SIM_TAG:
928 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
929 break;
872e3d4d 930 case CMD_PSK_SIM_TAG:
931 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
932 break;
a501c82b 933 case CMD_HID_CLONE_TAG:
1c611bbd 934 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 935 break;
a1f3bb12 936 case CMD_IO_DEMOD_FSK:
a501c82b 937 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 938 break;
a501c82b 939 case CMD_IO_CLONE_TAG:
94422fa2 940 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 941 break;
6ff6ade2 942 case CMD_EM410X_DEMOD:
943 CmdEM410xdemod(c->arg[0], 0, 0, 1);
944 break;
2d4eae76 945 case CMD_EM410X_WRITE_TAG:
946 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
947 break;
7e67e42f 948 case CMD_READ_TI_TYPE:
949 ReadTItag();
950 break;
951 case CMD_WRITE_TI_TYPE:
952 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
953 break;
954 case CMD_SIMULATE_TAG_125K:
74daee24 955 LED_A_ON();
956 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
957 LED_A_OFF();
7e67e42f 958 break;
959 case CMD_LF_SIMULATE_BIDIR:
960 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
961 break;
a501c82b 962 case CMD_INDALA_CLONE_TAG:
2414f978 963 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
964 break;
a501c82b 965 case CMD_INDALA_CLONE_TAG_L:
2414f978 966 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
967 break;
1c611bbd 968 case CMD_T55XX_READ_BLOCK:
9276e859 969 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 970 break;
971 case CMD_T55XX_WRITE_BLOCK:
972 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
973 break;
9276e859 974 case CMD_T55XX_WAKEUP:
975 T55xxWakeUp(c->arg[0]);
976 break;
94422fa2 977 case CMD_T55XX_RESET_READ:
978 T55xxResetRead();
979 break;
a501c82b 980 case CMD_PCF7931_READ:
1c611bbd 981 ReadPCF7931();
1c611bbd 982 break;
e98572a1 983 case CMD_PCF7931_WRITE:
ac2df346 984 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
e98572a1 985 break;
1c611bbd 986 case CMD_EM4X_READ_WORD:
987 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
988 break;
989 case CMD_EM4X_WRITE_WORD:
990 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
991 break;
db25599d 992 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
993 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
70459879 994 break;
0de8e387 995 case CMD_VIKING_CLONE_TAG:
a126332a 996 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
0de8e387 997 break;
15c4dc5a 998#endif
999
d19929cb 1000#ifdef WITH_HITAG
1001 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1002 SnoopHitag(c->arg[0]);
1003 break;
1004 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1005 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1006 break;
1007 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1008 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1009 break;
1010#endif
f168b263 1011
15c4dc5a 1012#ifdef WITH_ISO15693
1013 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1014 AcquireRawAdcSamplesIso15693();
1015 break;
9455b51c 1016 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1017 RecordRawAdcSamplesIso15693();
1018 break;
1019
1020 case CMD_ISO_15693_COMMAND:
1021 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1022 break;
1023
1024 case CMD_ISO_15693_FIND_AFI:
1025 BruteforceIso15693Afi(c->arg[0]);
1026 break;
1027
1028 case CMD_ISO_15693_DEBUG:
1029 SetDebugIso15693(c->arg[0]);
1030 break;
15c4dc5a 1031
15c4dc5a 1032 case CMD_READER_ISO_15693:
1033 ReaderIso15693(c->arg[0]);
1034 break;
7e67e42f 1035 case CMD_SIMTAG_ISO_15693:
3649b640 1036 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1037 break;
15c4dc5a 1038#endif
1039
7e67e42f 1040#ifdef WITH_LEGICRF
1041 case CMD_SIMULATE_TAG_LEGIC_RF:
1042 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1043 break;
3612a8a8 1044
7e67e42f 1045 case CMD_WRITER_LEGIC_RF:
1046 LegicRfWriter(c->arg[1], c->arg[0]);
1047 break;
3612a8a8 1048
15c4dc5a 1049 case CMD_READER_LEGIC_RF:
1050 LegicRfReader(c->arg[0], c->arg[1]);
1051 break;
15c4dc5a 1052#endif
1053
1054#ifdef WITH_ISO14443b
15c4dc5a 1055 case CMD_READ_SRI512_TAG:
abb21530 1056 ReadSTMemoryIso14443b(0x0F);
15c4dc5a 1057 break;
7e67e42f 1058 case CMD_READ_SRIX4K_TAG:
abb21530 1059 ReadSTMemoryIso14443b(0x7F);
7e67e42f 1060 break;
22e24700 1061 case CMD_SNOOP_ISO_14443B:
abb21530 1062 SnoopIso14443b();
7e67e42f 1063 break;
22e24700 1064 case CMD_SIMULATE_TAG_ISO_14443B:
abb21530 1065 SimulateIso14443bTag();
7e67e42f 1066 break;
7cf3ef20 1067 case CMD_ISO_14443B_COMMAND:
1068 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1069 break;
15c4dc5a 1070#endif
1071
1072#ifdef WITH_ISO14443a
7e67e42f 1073 case CMD_SNOOP_ISO_14443a:
4d2e4eea 1074 SniffIso14443a(c->arg[0]);
7e67e42f 1075 break;
15c4dc5a 1076 case CMD_READER_ISO_14443a:
902cb3c0 1077 ReaderIso14443a(c);
15c4dc5a 1078 break;
7e67e42f 1079 case CMD_SIMULATE_TAG_ISO_14443a:
0db6ed9a 1080 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1081 break;
95e63594 1082
5acd09bd 1083 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1084 EPA_PACE_Collect_Nonce(c);
5acd09bd 1085 break;
d0f3338e 1086 case CMD_EPA_PACE_REPLAY:
1087 EPA_PACE_Replay(c);
1088 break;
7e67e42f 1089
15c4dc5a 1090 case CMD_READER_MIFARE:
1c611bbd 1091 ReaderMifare(c->arg[0]);
15c4dc5a 1092 break;
20f9a2a1
M
1093 case CMD_MIFARE_READBL:
1094 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1095 break;
981bd429 1096 case CMD_MIFAREU_READBL:
aa60d156 1097 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1098 break;
4d2e4eea 1099 case CMD_MIFAREUC_AUTH:
1100 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 1101 break;
981bd429 1102 case CMD_MIFAREU_READCARD:
74daee24 1103 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1104 break;
aa60d156 1105 case CMD_MIFAREUC_SETPWD:
1106 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 1107 break;
20f9a2a1
M
1108 case CMD_MIFARE_READSC:
1109 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1110 break;
1111 case CMD_MIFARE_WRITEBL:
1112 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1113 break;
95aeb706 1114 //case CMD_MIFAREU_WRITEBL_COMPAT:
1115 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1116 //break;
981bd429 1117 case CMD_MIFAREU_WRITEBL:
95aeb706 1118 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 1119 break;
c188b1b9 1120 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1121 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1122 break;
20f9a2a1
M
1123 case CMD_MIFARE_NESTED:
1124 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1125 break;
1126 case CMD_MIFARE_CHKKEYS:
1127 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1128 break;
1129 case CMD_SIMULATE_MIFARE_CARD:
1130 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1131 break;
8556b852
M
1132
1133 // emulator
1134 case CMD_MIFARE_SET_DBGMODE:
1135 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1136 break;
1137 case CMD_MIFARE_EML_MEMCLR:
1138 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1139 break;
1140 case CMD_MIFARE_EML_MEMSET:
1141 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1142 break;
1143 case CMD_MIFARE_EML_MEMGET:
1144 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1145 break;
1146 case CMD_MIFARE_EML_CARDLOAD:
1147 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1148 break;
1149
1150 // Work with "magic Chinese" card
d52e4e88 1151 case CMD_MIFARE_CSETBLOCK:
c2731f37 1152 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
545a1f38 1153 break;
d52e4e88 1154 case CMD_MIFARE_CGETBLOCK:
c2731f37 1155 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
8556b852 1156 break;
d52e4e88 1157 case CMD_MIFARE_CIDENT:
1158 MifareCIdent();
1159 break;
b62a5a84
M
1160
1161 // mifare sniffer
1162 case CMD_MIFARE_SNIFFER:
5cd9ec01 1163 SniffMifare(c->arg[0]);
b62a5a84 1164 break;
313ee67e 1165
aa60d156 1166 //mifare desfire
1167 case CMD_MIFARE_DESFIRE_READBL: break;
1168 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1169 case CMD_MIFARE_DESFIRE_AUTH1:
1170 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1171 break;
1172 case CMD_MIFARE_DESFIRE_AUTH2:
1173 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1174 break;
1175 case CMD_MIFARE_DES_READER:
1176 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1177 break;
1178 case CMD_MIFARE_DESFIRE_INFO:
1179 MifareDesfireGetInformation();
1180 break;
1181 case CMD_MIFARE_DESFIRE:
1182 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1183 break;
1184
add0504d 1185 case CMD_MIFARE_COLLECT_NONCES:
add0504d 1186 break;
20f9a2a1
M
1187#endif
1188
7e67e42f 1189#ifdef WITH_ICLASS
cee5a30d 1190 // Makes use of ISO14443a FPGA Firmware
1191 case CMD_SNOOP_ICLASS:
1192 SnoopIClass();
1193 break;
1e262141 1194 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1195 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1196 break;
1197 case CMD_READER_ICLASS:
1198 ReaderIClass(c->arg[0]);
1199 break;
f38a1528 1200 case CMD_READER_ICLASS_REPLAY:
f62b5e12 1201 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
f38a1528 1202 break;
e80aeb96
MHS
1203 case CMD_ICLASS_EML_MEMSET:
1204 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1205 break;
e98572a1 1206 case CMD_ICLASS_WRITEBLOCK:
1207 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1208 break;
1209 case CMD_ICLASS_READCHECK: // auth step 1
1210 iClass_ReadCheck(c->arg[0], c->arg[1]);
1211 break;
1212 case CMD_ICLASS_READBLOCK:
1213 iClass_ReadBlk(c->arg[0]);
1214 break;
1215 case CMD_ICLASS_AUTHENTICATION: //check
1216 iClass_Authentication(c->d.asBytes);
1217 break;
1218 case CMD_ICLASS_DUMP:
1219 iClass_Dump(c->arg[0], c->arg[1]);
1220 break;
1221 case CMD_ICLASS_CLONE:
1222 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1223 break;
cee5a30d 1224#endif
1d0ccbe0 1225#ifdef WITH_HFSNOOP
1226 case CMD_HF_SNIFFER:
1227 HfSnoop(c->arg[0], c->arg[1]);
1228 break;
1229#endif
cee5a30d 1230
7e67e42f 1231 case CMD_BUFF_CLEAR:
117d9ec2 1232 BigBuf_Clear();
15c4dc5a 1233 break;
15c4dc5a 1234
1235 case CMD_MEASURE_ANTENNA_TUNING:
1236 MeasureAntennaTuning();
1237 break;
1238
1239 case CMD_MEASURE_ANTENNA_TUNING_HF:
1240 MeasureAntennaTuningHf();
1241 break;
1242
1243 case CMD_LISTEN_READER_FIELD:
1244 ListenReaderField(c->arg[0]);
1245 break;
1246
15c4dc5a 1247 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1248 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1249 SpinDelay(200);
1250 LED_D_OFF(); // LED D indicates field ON or OFF
1251 break;
1252
1c611bbd 1253 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 1254
1c611bbd 1255 LED_B_ON();
117d9ec2 1256 uint8_t *BigBuf = BigBuf_get_addr();
0de8e387 1257 size_t len = 0;
1c611bbd 1258 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
0de8e387 1259 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1260 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1261 }
1262 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1263 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1264 LED_B_OFF();
1c611bbd 1265 break;
15c4dc5a 1266
1267 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1268 uint8_t *b = BigBuf_get_addr();
7c756d68 1269 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1270 cmd_send(CMD_ACK,0,0,0,0,0);
1271 break;
1272 }
15c4dc5a 1273 case CMD_READ_MEM:
1274 ReadMem(c->arg[0]);
1275 break;
1276
1277 case CMD_SET_LF_DIVISOR:
7cc204bf 1278 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1279 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1280 break;
1281
1282 case CMD_SET_ADC_MUX:
1283 switch(c->arg[0]) {
1284 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1285 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1286 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1287 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1288 }
1289 break;
1290
1291 case CMD_VERSION:
1292 SendVersion();
1293 break;
7838f4be 1294 case CMD_STATUS:
0de8e387 1295 SendStatus();
7838f4be 1296 break;
1297 case CMD_PING:
1298 cmd_send(CMD_ACK,0,0,0,0,0);
1299 break;
15c4dc5a 1300#ifdef WITH_LCD
1301 case CMD_LCD_RESET:
1302 LCDReset();
1303 break;
1304 case CMD_LCD:
1305 LCDSend(c->arg[0]);
1306 break;
1307#endif
1308 case CMD_SETUP_WRITE:
1309 case CMD_FINISH_WRITE:
1c611bbd 1310 case CMD_HARDWARE_RESET:
1311 usb_disable();
f62b5e12 1312 SpinDelay(2000);
15c4dc5a 1313 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1314 for(;;) {
1315 // We're going to reset, and the bootrom will take control.
1316 }
1c611bbd 1317 break;
15c4dc5a 1318
1c611bbd 1319 case CMD_START_FLASH:
15c4dc5a 1320 if(common_area.flags.bootrom_present) {
1321 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1322 }
1c611bbd 1323 usb_disable();
15c4dc5a 1324 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1325 for(;;);
1c611bbd 1326 break;
e30c654b 1327
15c4dc5a 1328 case CMD_DEVICE_INFO: {
902cb3c0 1329 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1330 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1331 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1332 break;
1333 }
1334 default:
15c4dc5a 1335 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1336 break;
15c4dc5a 1337 }
1338}
1339
1340void __attribute__((noreturn)) AppMain(void)
1341{
1342 SpinDelay(100);
9e8255d4 1343 clear_trace();
15c4dc5a 1344 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1345 /* Initialize common area */
1346 memset(&common_area, 0, sizeof(common_area));
1347 common_area.magic = COMMON_AREA_MAGIC;
1348 common_area.version = 1;
1349 }
1350 common_area.flags.osimage_present = 1;
1351
1352 LED_D_OFF();
1353 LED_C_OFF();
1354 LED_B_OFF();
1355 LED_A_OFF();
1356
b44e5233 1357 // Init USB device
313ee67e 1358 usb_enable();
15c4dc5a 1359
1360 // The FPGA gets its clock from us from PCK0 output, so set that up.
1361 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1362 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1363 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1364 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1365 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1d0ccbe0 1366 AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1367 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1368
1369 // Reset SPI
1370 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1371 // Reset SSC
1372 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1373
1374 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1375 // (the HF version by default)
1376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1377
9ca155ba 1378 StartTickCount();
902cb3c0 1379
15c4dc5a 1380#ifdef WITH_LCD
15c4dc5a 1381 LCDInit();
15c4dc5a 1382#endif
1383
f62b5e12 1384 byte_t rx[sizeof(UsbCommand)];
902cb3c0 1385 size_t rx_len;
1386
15c4dc5a 1387 for(;;) {
313ee67e 1388 if (usb_poll()) {
1389 rx_len = usb_read(rx,sizeof(UsbCommand));
1390 if (rx_len) {
1391 UsbPacketReceived(rx,rx_len);
1392 }
1393 }
15c4dc5a 1394 WDT_HIT();
1395
1396#ifdef WITH_LF
7838f4be 1397#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1398 if (BUTTON_HELD(1000) > 0)
1399 SamyRun();
7838f4be 1400#endif
1401#endif
1402#ifdef WITH_ISO14443a
1403#ifdef WITH_ISO14443a_StandAlone
1404 if (BUTTON_HELD(1000) > 0)
1405 StandAloneMode14a();
1406#endif
15c4dc5a 1407#endif
1408 }
1409}
Impressum, Datenschutz