]>
Commit | Line | Data |
---|---|---|
e09f21fa | 1 | //----------------------------------------------------------------------------- |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
3606ac0a | 19 | #include "protocols.h" |
506672c4 | 20 | #include "usb_cdc.h" // for usb_poll_validate_length |
e09f21fa | 21 | |
22 | /** | |
23 | * Function to do a modulation and then get samples. | |
24 | * @param delay_off | |
25 | * @param period_0 | |
26 | * @param period_1 | |
27 | * @param command | |
28 | */ | |
21a615cb | 29 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command) |
e09f21fa | 30 | { |
31 | ||
e0165dcf | 32 | int divisor_used = 95; // 125 KHz |
33 | // see if 'h' was specified | |
e09f21fa | 34 | |
e0165dcf | 35 | if (command[strlen((char *) command) - 1] == 'h') |
36 | divisor_used = 88; // 134.8 KHz | |
e09f21fa | 37 | |
38 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
39 | setSamplingConfig(&sc); | |
3cec7061 | 40 | //clear read buffer |
29b75739 | 41 | BigBuf_Clear_keep_EM(); |
e09f21fa | 42 | |
43 | /* Make sure the tag is reset */ | |
44 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
45 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
46 | SpinDelay(2500); | |
47 | ||
48 | LFSetupFPGAForADC(sc.divisor, 1); | |
49 | ||
50 | // And a little more time for the tag to fully power up | |
51 | SpinDelay(2000); | |
52 | ||
e0165dcf | 53 | // now modulate the reader field |
54 | while(*command != '\0' && *command != ' ') { | |
55 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
56 | LED_D_OFF(); | |
57 | SpinDelayUs(delay_off); | |
e09f21fa | 58 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
59 | ||
e0165dcf | 60 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
61 | LED_D_ON(); | |
62 | if(*(command++) == '0') | |
63 | SpinDelayUs(period_0); | |
64 | else | |
65 | SpinDelayUs(period_1); | |
66 | } | |
67 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
68 | LED_D_OFF(); | |
69 | SpinDelayUs(delay_off); | |
e09f21fa | 70 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); |
71 | ||
e0165dcf | 72 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
e09f21fa | 73 | |
e0165dcf | 74 | // now do the read |
e09f21fa | 75 | DoAcquisition_config(false); |
76 | } | |
77 | ||
e09f21fa | 78 | /* blank r/w tag data stream |
79 | ...0000000000000000 01111111 | |
80 | 1010101010101010101010101010101010101010101010101010101010101010 | |
81 | 0011010010100001 | |
82 | 01111111 | |
83 | 101010101010101[0]000... | |
84 | ||
85 | [5555fe852c5555555555555555fe0000] | |
86 | */ | |
87 | void ReadTItag(void) | |
88 | { | |
e0165dcf | 89 | // some hardcoded initial params |
90 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
91 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
92 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
e09f21fa | 93 | #define FSAMPLE 2000000 |
94 | #define FREQLO 123200 | |
95 | #define FREQHI 134200 | |
96 | ||
e0165dcf | 97 | signed char *dest = (signed char *)BigBuf_get_addr(); |
98 | uint16_t n = BigBuf_max_traceLen(); | |
99 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
100 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
101 | ||
102 | int i, cycles=0, samples=0; | |
103 | // how many sample points fit in 16 cycles of each frequency | |
104 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
105 | // when to tell if we're close enough to one freq or another | |
106 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
107 | ||
108 | // TI tags charge at 134.2Khz | |
109 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
110 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
111 | ||
112 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
113 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
114 | // whether we're modulating the antenna (high) | |
115 | // or listening to the antenna (low) | |
116 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
117 | ||
118 | // get TI tag data into the buffer | |
119 | AcquireTiType(); | |
120 | ||
121 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
122 | ||
123 | for (i=0; i<n-1; i++) { | |
124 | // count cycles by looking for lo to hi zero crossings | |
125 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
126 | cycles++; | |
127 | // after 16 cycles, measure the frequency | |
128 | if (cycles>15) { | |
129 | cycles=0; | |
130 | samples=i-samples; // number of samples in these 16 cycles | |
131 | ||
132 | // TI bits are coming to us lsb first so shift them | |
133 | // right through our 128 bit right shift register | |
134 | shift0 = (shift0>>1) | (shift1 << 31); | |
135 | shift1 = (shift1>>1) | (shift2 << 31); | |
136 | shift2 = (shift2>>1) | (shift3 << 31); | |
137 | shift3 >>= 1; | |
138 | ||
139 | // check if the cycles fall close to the number | |
140 | // expected for either the low or high frequency | |
141 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
142 | // low frequency represents a 1 | |
143 | shift3 |= (1<<31); | |
144 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
145 | // high frequency represents a 0 | |
146 | } else { | |
147 | // probably detected a gay waveform or noise | |
148 | // use this as gaydar or discard shift register and start again | |
149 | shift3 = shift2 = shift1 = shift0 = 0; | |
150 | } | |
151 | samples = i; | |
152 | ||
153 | // for each bit we receive, test if we've detected a valid tag | |
154 | ||
155 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
156 | // remember the bits are backwards | |
157 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
158 | // if start and end bytes match, we have a tag so break out of the loop | |
159 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
160 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
161 | break; | |
162 | } | |
163 | } | |
164 | } | |
165 | } | |
166 | } | |
167 | ||
168 | // if flag is set we have a tag | |
169 | if (cycles!=0xF0B) { | |
170 | DbpString("Info: No valid tag detected."); | |
171 | } else { | |
172 | // put 64 bit data into shift1 and shift0 | |
173 | shift0 = (shift0>>24) | (shift1 << 8); | |
174 | shift1 = (shift1>>24) | (shift2 << 8); | |
175 | ||
176 | // align 16 bit crc into lower half of shift2 | |
177 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
178 | ||
179 | // if r/w tag, check ident match | |
e09f21fa | 180 | if (shift3 & (1<<15) ) { |
e0165dcf | 181 | DbpString("Info: TI tag is rewriteable"); |
182 | // only 15 bits compare, last bit of ident is not valid | |
e09f21fa | 183 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { |
e0165dcf | 184 | DbpString("Error: Ident mismatch!"); |
185 | } else { | |
186 | DbpString("Info: TI tag ident is valid"); | |
187 | } | |
188 | } else { | |
189 | DbpString("Info: TI tag is readonly"); | |
190 | } | |
191 | ||
192 | // WARNING the order of the bytes in which we calc crc below needs checking | |
193 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
194 | // bytes in reverse or something | |
195 | // calculate CRC | |
196 | uint32_t crc=0; | |
197 | ||
198 | crc = update_crc16(crc, (shift0)&0xff); | |
199 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
200 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
201 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
202 | crc = update_crc16(crc, (shift1)&0xff); | |
203 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
204 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
205 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
206 | ||
207 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
208 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
209 | if (crc != (shift2&0xffff)) { | |
210 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
211 | } else { | |
212 | DbpString("Info: CRC is good"); | |
213 | } | |
214 | } | |
e09f21fa | 215 | } |
216 | ||
217 | void WriteTIbyte(uint8_t b) | |
218 | { | |
e0165dcf | 219 | int i = 0; |
220 | ||
221 | // modulate 8 bits out to the antenna | |
222 | for (i=0; i<8; i++) | |
223 | { | |
224 | if (b&(1<<i)) { | |
225 | // stop modulating antenna | |
226 | LOW(GPIO_SSC_DOUT); | |
227 | SpinDelayUs(1000); | |
228 | // modulate antenna | |
229 | HIGH(GPIO_SSC_DOUT); | |
230 | SpinDelayUs(1000); | |
231 | } else { | |
232 | // stop modulating antenna | |
233 | LOW(GPIO_SSC_DOUT); | |
234 | SpinDelayUs(300); | |
235 | // modulate antenna | |
236 | HIGH(GPIO_SSC_DOUT); | |
237 | SpinDelayUs(1700); | |
238 | } | |
239 | } | |
e09f21fa | 240 | } |
241 | ||
242 | void AcquireTiType(void) | |
243 | { | |
e0165dcf | 244 | int i, j, n; |
245 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
246 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
e09f21fa | 247 | #define TIBUFLEN 1250 |
248 | ||
e0165dcf | 249 | // clear buffer |
e09f21fa | 250 | uint32_t *BigBuf = (uint32_t *)BigBuf_get_addr(); |
709665b5 | 251 | BigBuf_Clear_ext(false); |
e0165dcf | 252 | |
253 | // Set up the synchronous serial port | |
254 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
255 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
256 | ||
257 | // steal this pin from the SSP and use it to control the modulation | |
258 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
259 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
260 | ||
261 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
262 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
263 | ||
264 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
265 | // 48/2 = 24 MHz clock must be divided by 12 | |
266 | AT91C_BASE_SSC->SSC_CMR = 12; | |
267 | ||
268 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
269 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
270 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
271 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
272 | ||
273 | LED_D_ON(); | |
274 | ||
275 | // modulate antenna | |
276 | HIGH(GPIO_SSC_DOUT); | |
277 | ||
278 | // Charge TI tag for 50ms. | |
279 | SpinDelay(50); | |
280 | ||
281 | // stop modulating antenna and listen | |
282 | LOW(GPIO_SSC_DOUT); | |
283 | ||
284 | LED_D_OFF(); | |
285 | ||
286 | i = 0; | |
287 | for(;;) { | |
288 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
289 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
290 | i++; if(i >= TIBUFLEN) break; | |
291 | } | |
292 | WDT_HIT(); | |
293 | } | |
294 | ||
295 | // return stolen pin to SSP | |
296 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
297 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
298 | ||
299 | char *dest = (char *)BigBuf_get_addr(); | |
300 | n = TIBUFLEN*32; | |
301 | // unpack buffer | |
302 | for (i=TIBUFLEN-1; i>=0; i--) { | |
303 | for (j=0; j<32; j++) { | |
304 | if(BigBuf[i] & (1 << j)) { | |
305 | dest[--n] = 1; | |
306 | } else { | |
307 | dest[--n] = -1; | |
308 | } | |
309 | } | |
310 | } | |
e09f21fa | 311 | } |
312 | ||
313 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
314 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
315 | // if not provided a valid crc will be computed from the data and written. | |
316 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
317 | { | |
fff58476 | 318 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
e0165dcf | 319 | if(crc == 0) { |
320 | crc = update_crc16(crc, (idlo)&0xff); | |
321 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
322 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
323 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
324 | crc = update_crc16(crc, (idhi)&0xff); | |
325 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
326 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
327 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
328 | } | |
329 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
330 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
331 | ||
332 | // TI tags charge at 134.2Khz | |
333 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
334 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
335 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
336 | // whether we're modulating the antenna (high) | |
337 | // or listening to the antenna (low) | |
338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
339 | LED_A_ON(); | |
340 | ||
341 | // steal this pin from the SSP and use it to control the modulation | |
342 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
343 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
344 | ||
345 | // writing algorithm: | |
346 | // a high bit consists of a field off for 1ms and field on for 1ms | |
347 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
348 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
349 | // start by writing 0xBB (keyword) and 0xEB (password) | |
350 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
351 | // finally end with 0x0300 (write frame) | |
352 | // all data is sent lsb firts | |
353 | // finish with 15ms programming time | |
354 | ||
355 | // modulate antenna | |
356 | HIGH(GPIO_SSC_DOUT); | |
357 | SpinDelay(50); // charge time | |
358 | ||
359 | WriteTIbyte(0xbb); // keyword | |
360 | WriteTIbyte(0xeb); // password | |
361 | WriteTIbyte( (idlo )&0xff ); | |
362 | WriteTIbyte( (idlo>>8 )&0xff ); | |
363 | WriteTIbyte( (idlo>>16)&0xff ); | |
364 | WriteTIbyte( (idlo>>24)&0xff ); | |
365 | WriteTIbyte( (idhi )&0xff ); | |
366 | WriteTIbyte( (idhi>>8 )&0xff ); | |
367 | WriteTIbyte( (idhi>>16)&0xff ); | |
368 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
369 | WriteTIbyte( (crc )&0xff ); // crc lo | |
370 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
371 | WriteTIbyte(0x00); // write frame lo | |
372 | WriteTIbyte(0x03); // write frame hi | |
373 | HIGH(GPIO_SSC_DOUT); | |
374 | SpinDelay(50); // programming time | |
375 | ||
376 | LED_A_OFF(); | |
377 | ||
378 | // get TI tag data into the buffer | |
379 | AcquireTiType(); | |
380 | ||
381 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
72c5877a | 382 | DbpString("Now use `lf ti read` to check"); |
e09f21fa | 383 | } |
384 | ||
385 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
386 | { | |
e0165dcf | 387 | int i; |
388 | uint8_t *tab = BigBuf_get_addr(); | |
e09f21fa | 389 | |
e0165dcf | 390 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
391 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
e09f21fa | 392 | |
e0165dcf | 393 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; |
e09f21fa | 394 | |
e0165dcf | 395 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; |
396 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
e09f21fa | 397 | |
709665b5 | 398 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
399 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
e09f21fa | 400 | |
e0165dcf | 401 | i = 0; |
402 | for(;;) { | |
403 | //wait until SSC_CLK goes HIGH | |
404 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
83f3f8ac | 405 | if(BUTTON_PRESS() || (usb_poll_validate_length() )) { |
e0165dcf | 406 | DbpString("Stopped"); |
407 | return; | |
408 | } | |
409 | WDT_HIT(); | |
410 | } | |
411 | if (ledcontrol) | |
412 | LED_D_ON(); | |
413 | ||
414 | if(tab[i]) | |
415 | OPEN_COIL(); | |
416 | else | |
417 | SHORT_COIL(); | |
418 | ||
419 | if (ledcontrol) | |
420 | LED_D_OFF(); | |
421 | //wait until SSC_CLK goes LOW | |
422 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
423 | if(BUTTON_PRESS()) { | |
424 | DbpString("Stopped"); | |
425 | return; | |
426 | } | |
427 | WDT_HIT(); | |
428 | } | |
429 | ||
430 | i++; | |
431 | if(i == period) { | |
432 | ||
433 | i = 0; | |
434 | if (gap) { | |
435 | SHORT_COIL(); | |
436 | SpinDelayUs(gap); | |
437 | } | |
438 | } | |
439 | } | |
e09f21fa | 440 | } |
441 | ||
e09f21fa | 442 | #define DEBUG_FRAME_CONTENTS 1 |
443 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
444 | { | |
445 | } | |
446 | ||
447 | // compose fc/8 fc/10 waveform (FSK2) | |
448 | static void fc(int c, int *n) | |
449 | { | |
e0165dcf | 450 | uint8_t *dest = BigBuf_get_addr(); |
451 | int idx; | |
452 | ||
453 | // for when we want an fc8 pattern every 4 logical bits | |
454 | if(c==0) { | |
455 | dest[((*n)++)]=1; | |
456 | dest[((*n)++)]=1; | |
457 | dest[((*n)++)]=1; | |
458 | dest[((*n)++)]=1; | |
459 | dest[((*n)++)]=0; | |
460 | dest[((*n)++)]=0; | |
461 | dest[((*n)++)]=0; | |
462 | dest[((*n)++)]=0; | |
463 | } | |
464 | ||
465 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
466 | if(c==8) { | |
467 | for (idx=0; idx<6; idx++) { | |
468 | dest[((*n)++)]=1; | |
469 | dest[((*n)++)]=1; | |
470 | dest[((*n)++)]=1; | |
471 | dest[((*n)++)]=1; | |
472 | dest[((*n)++)]=0; | |
473 | dest[((*n)++)]=0; | |
474 | dest[((*n)++)]=0; | |
475 | dest[((*n)++)]=0; | |
476 | } | |
477 | } | |
478 | ||
479 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
480 | if(c==10) { | |
481 | for (idx=0; idx<5; idx++) { | |
482 | dest[((*n)++)]=1; | |
483 | dest[((*n)++)]=1; | |
484 | dest[((*n)++)]=1; | |
485 | dest[((*n)++)]=1; | |
486 | dest[((*n)++)]=1; | |
487 | dest[((*n)++)]=0; | |
488 | dest[((*n)++)]=0; | |
489 | dest[((*n)++)]=0; | |
490 | dest[((*n)++)]=0; | |
491 | dest[((*n)++)]=0; | |
492 | } | |
493 | } | |
e09f21fa | 494 | } |
495 | // compose fc/X fc/Y waveform (FSKx) | |
712ebfa6 | 496 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) |
e09f21fa | 497 | { |
e0165dcf | 498 | uint8_t *dest = BigBuf_get_addr(); |
499 | uint8_t halfFC = fc/2; | |
500 | uint8_t wavesPerClock = clock/fc; | |
501 | uint8_t mod = clock % fc; //modifier | |
502 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
503 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
504 | // loop through clock - step field clock | |
505 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
506 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
507 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
508 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
509 | *n += fc; | |
510 | } | |
511 | if (mod>0) (*modCnt)++; | |
512 | if ((mod>0) && modAdjOk){ //fsk2 | |
513 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
514 | memset(dest+(*n), 0, fc-halfFC); | |
515 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
516 | *n += fc; | |
517 | } | |
518 | } | |
519 | if (mod>0 && !modAdjOk){ //fsk1 | |
520 | memset(dest+(*n), 0, mod-(mod/2)); | |
521 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
522 | *n += mod; | |
523 | } | |
e09f21fa | 524 | } |
525 | ||
526 | // prepare a waveform pattern in the buffer based on the ID given then | |
527 | // simulate a HID tag until the button is pressed | |
528 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
529 | { | |
e0165dcf | 530 | int n=0, i=0; |
531 | /* | |
532 | HID tag bitstream format | |
533 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
534 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
535 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
536 | A fc8 is inserted before every 4 bits | |
537 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
538 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
539 | */ | |
540 | ||
541 | if (hi>0xFFF) { | |
542 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
543 | return; | |
544 | } | |
545 | fc(0,&n); | |
546 | // special start of frame marker containing invalid bit sequences | |
547 | fc(8, &n); fc(8, &n); // invalid | |
548 | fc(8, &n); fc(10, &n); // logical 0 | |
549 | fc(10, &n); fc(10, &n); // invalid | |
550 | fc(8, &n); fc(10, &n); // logical 0 | |
551 | ||
552 | WDT_HIT(); | |
553 | // manchester encode bits 43 to 32 | |
554 | for (i=11; i>=0; i--) { | |
555 | if ((i%4)==3) fc(0,&n); | |
556 | if ((hi>>i)&1) { | |
557 | fc(10, &n); fc(8, &n); // low-high transition | |
558 | } else { | |
559 | fc(8, &n); fc(10, &n); // high-low transition | |
560 | } | |
561 | } | |
562 | ||
563 | WDT_HIT(); | |
564 | // manchester encode bits 31 to 0 | |
565 | for (i=31; i>=0; i--) { | |
566 | if ((i%4)==3) fc(0,&n); | |
567 | if ((lo>>i)&1) { | |
568 | fc(10, &n); fc(8, &n); // low-high transition | |
569 | } else { | |
570 | fc(8, &n); fc(10, &n); // high-low transition | |
571 | } | |
572 | } | |
573 | ||
574 | if (ledcontrol) | |
575 | LED_A_ON(); | |
576 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
577 | ||
578 | if (ledcontrol) | |
579 | LED_A_OFF(); | |
e09f21fa | 580 | } |
581 | ||
582 | // prepare a waveform pattern in the buffer based on the ID given then | |
583 | // simulate a FSK tag until the button is pressed | |
584 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
585 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
586 | { | |
e0165dcf | 587 | int ledcontrol=1; |
588 | int n=0, i=0; | |
589 | uint8_t fcHigh = arg1 >> 8; | |
590 | uint8_t fcLow = arg1 & 0xFF; | |
591 | uint16_t modCnt = 0; | |
592 | uint8_t clk = arg2 & 0xFF; | |
593 | uint8_t invert = (arg2 >> 8) & 1; | |
594 | ||
595 | for (i=0; i<size; i++){ | |
596 | if (BitStream[i] == invert){ | |
597 | fcAll(fcLow, &n, clk, &modCnt); | |
598 | } else { | |
599 | fcAll(fcHigh, &n, clk, &modCnt); | |
600 | } | |
601 | } | |
602 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n); | |
603 | /*Dbprintf("DEBUG: First 32:"); | |
604 | uint8_t *dest = BigBuf_get_addr(); | |
605 | i=0; | |
606 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
607 | i+=16; | |
608 | Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
609 | */ | |
610 | if (ledcontrol) | |
611 | LED_A_ON(); | |
612 | ||
613 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
614 | ||
615 | if (ledcontrol) | |
616 | LED_A_OFF(); | |
e09f21fa | 617 | } |
618 | ||
619 | // compose ask waveform for one bit(ASK) | |
e0165dcf | 620 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) |
e09f21fa | 621 | { |
e0165dcf | 622 | uint8_t *dest = BigBuf_get_addr(); |
623 | uint8_t halfClk = clock/2; | |
624 | // c = current bit 1 or 0 | |
625 | if (manchester==1){ | |
626 | memset(dest+(*n), c, halfClk); | |
627 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
628 | } else { | |
629 | memset(dest+(*n), c, clock); | |
630 | } | |
631 | *n += clock; | |
e09f21fa | 632 | } |
633 | ||
b41534d1 | 634 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) |
635 | { | |
e0165dcf | 636 | uint8_t *dest = BigBuf_get_addr(); |
637 | uint8_t halfClk = clock/2; | |
638 | if (c){ | |
639 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
640 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
641 | } else { | |
642 | memset(dest+(*n), c ^ *phase, clock); | |
643 | *phase ^= 1; | |
644 | } | |
39611e3d | 645 | *n += clock; |
b41534d1 | 646 | } |
647 | ||
e09f21fa | 648 | // args clock, ask/man or askraw, invert, transmission separator |
649 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
650 | { | |
e0165dcf | 651 | int ledcontrol = 1; |
652 | int n=0, i=0; | |
653 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
2b3af97d | 654 | uint8_t encoding = arg1 & 0xFF; |
e0165dcf | 655 | uint8_t separator = arg2 & 1; |
656 | uint8_t invert = (arg2 >> 8) & 1; | |
657 | ||
658 | if (encoding==2){ //biphase | |
659 | uint8_t phase=0; | |
660 | for (i=0; i<size; i++){ | |
661 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
662 | } | |
39611e3d | 663 | if (phase==1) { //run a second set inverted to keep phase in check |
e0165dcf | 664 | for (i=0; i<size; i++){ |
665 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
666 | } | |
667 | } | |
668 | } else { // ask/manchester || ask/raw | |
669 | for (i=0; i<size; i++){ | |
670 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
671 | } | |
672 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase) | |
673 | for (i=0; i<size; i++){ | |
674 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
675 | } | |
676 | } | |
677 | } | |
678 | ||
679 | if (separator==1) Dbprintf("sorry but separator option not yet available"); | |
680 | ||
681 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
682 | //DEBUG | |
683 | //Dbprintf("First 32:"); | |
684 | //uint8_t *dest = BigBuf_get_addr(); | |
685 | //i=0; | |
686 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
687 | //i+=16; | |
688 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
39611e3d | 689 | |
709665b5 | 690 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 691 | SimulateTagLowFrequency(n, 0, ledcontrol); |
709665b5 | 692 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 693 | } |
694 | ||
695 | //carrier can be 2,4 or 8 | |
696 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
697 | { | |
e0165dcf | 698 | uint8_t *dest = BigBuf_get_addr(); |
699 | uint8_t halfWave = waveLen/2; | |
700 | //uint8_t idx; | |
701 | int i = 0; | |
702 | if (phaseChg){ | |
703 | // write phase change | |
704 | memset(dest+(*n), *curPhase^1, halfWave); | |
705 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
706 | *n += waveLen; | |
707 | *curPhase ^= 1; | |
708 | i += waveLen; | |
709 | } | |
710 | //write each normal clock wave for the clock duration | |
711 | for (; i < clk; i+=waveLen){ | |
712 | memset(dest+(*n), *curPhase, halfWave); | |
713 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
714 | *n += waveLen; | |
715 | } | |
e09f21fa | 716 | } |
717 | ||
718 | // args clock, carrier, invert, | |
719 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
720 | { | |
e0165dcf | 721 | int ledcontrol=1; |
722 | int n=0, i=0; | |
723 | uint8_t clk = arg1 >> 8; | |
724 | uint8_t carrier = arg1 & 0xFF; | |
725 | uint8_t invert = arg2 & 0xFF; | |
726 | uint8_t curPhase = 0; | |
727 | for (i=0; i<size; i++){ | |
728 | if (BitStream[i] == curPhase){ | |
729 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
730 | } else { | |
731 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
732 | } | |
733 | } | |
734 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
735 | //Dbprintf("DEBUG: First 32:"); | |
736 | //uint8_t *dest = BigBuf_get_addr(); | |
737 | //i=0; | |
738 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
739 | //i+=16; | |
740 | //Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]); | |
741 | ||
709665b5 | 742 | if (ledcontrol) LED_A_ON(); |
e0165dcf | 743 | SimulateTagLowFrequency(n, 0, ledcontrol); |
709665b5 | 744 | if (ledcontrol) LED_A_OFF(); |
e09f21fa | 745 | } |
746 | ||
747 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
748 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
749 | { | |
e0165dcf | 750 | uint8_t *dest = BigBuf_get_addr(); |
2eec55c8 | 751 | //const size_t sizeOfBigBuff = BigBuf_max_traceLen(); |
752 | size_t size; | |
e0165dcf | 753 | uint32_t hi2=0, hi=0, lo=0; |
754 | int idx=0; | |
755 | // Configure to go in 125Khz listen mode | |
756 | LFSetupFPGAForADC(95, true); | |
e09f21fa | 757 | |
3cec7061 | 758 | //clear read buffer |
29b75739 | 759 | BigBuf_Clear_keep_EM(); |
3cec7061 | 760 | |
d10e08ae | 761 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e09f21fa | 762 | |
e0165dcf | 763 | WDT_HIT(); |
764 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 765 | |
766 | DoAcquisition_default(-1,true); | |
767 | // FSK demodulator | |
2eec55c8 | 768 | //size = sizeOfBigBuff; //variable size will change after demod so re initialize it before use |
769 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
e09f21fa | 770 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); |
e0165dcf | 771 | |
2eec55c8 | 772 | if (idx>0 && lo>0 && (size==96 || size==192)){ |
773 | // go over previously decoded manchester data and decode into usable tag ID | |
774 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
e0165dcf | 775 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
776 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
2eec55c8 | 777 | }else { //standard HID tags 44/96 bits |
e0165dcf | 778 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd |
779 | uint8_t bitlen = 0; | |
780 | uint32_t fc = 0; | |
781 | uint32_t cardnum = 0; | |
e09f21fa | 782 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used |
e0165dcf | 783 | uint32_t lo2=0; |
784 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
785 | uint8_t idx3 = 1; | |
e09f21fa | 786 | while(lo2 > 1){ //find last bit set to 1 (format len bit) |
787 | lo2=lo2 >> 1; | |
e0165dcf | 788 | idx3++; |
789 | } | |
e09f21fa | 790 | bitlen = idx3+19; |
e0165dcf | 791 | fc =0; |
792 | cardnum=0; | |
e09f21fa | 793 | if(bitlen == 26){ |
e0165dcf | 794 | cardnum = (lo>>1)&0xFFFF; |
795 | fc = (lo>>17)&0xFF; | |
796 | } | |
e09f21fa | 797 | if(bitlen == 37){ |
e0165dcf | 798 | cardnum = (lo>>1)&0x7FFFF; |
799 | fc = ((hi&0xF)<<12)|(lo>>20); | |
800 | } | |
e09f21fa | 801 | if(bitlen == 34){ |
e0165dcf | 802 | cardnum = (lo>>1)&0xFFFF; |
803 | fc= ((hi&1)<<15)|(lo>>17); | |
804 | } | |
e09f21fa | 805 | if(bitlen == 35){ |
e0165dcf | 806 | cardnum = (lo>>1)&0xFFFFF; |
807 | fc = ((hi&1)<<11)|(lo>>21); | |
808 | } | |
809 | } | |
810 | else { //if bit 38 is not set then 37 bit format is used | |
811 | bitlen= 37; | |
812 | fc =0; | |
813 | cardnum=0; | |
814 | if(bitlen==37){ | |
815 | cardnum = (lo>>1)&0x7FFFF; | |
816 | fc = ((hi&0xF)<<12)|(lo>>20); | |
817 | } | |
818 | } | |
819 | //Dbprintf("TAG ID: %x%08x (%d)", | |
820 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
821 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
822 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
823 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
824 | } | |
825 | if (findone){ | |
826 | if (ledcontrol) LED_A_OFF(); | |
827 | *high = hi; | |
828 | *low = lo; | |
829 | return; | |
830 | } | |
831 | // reset | |
e0165dcf | 832 | } |
2eec55c8 | 833 | hi2 = hi = lo = idx = 0; |
e0165dcf | 834 | WDT_HIT(); |
835 | } | |
836 | DbpString("Stopped"); | |
837 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 838 | } |
839 | ||
dbf6e824 CY |
840 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
841 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
842 | { | |
843 | uint8_t *dest = BigBuf_get_addr(); | |
dbf6e824 CY |
844 | size_t size; |
845 | int idx=0; | |
3cec7061 | 846 | //clear read buffer |
29b75739 | 847 | BigBuf_Clear_keep_EM(); |
dbf6e824 CY |
848 | // Configure to go in 125Khz listen mode |
849 | LFSetupFPGAForADC(95, true); | |
850 | ||
d10e08ae | 851 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
dbf6e824 CY |
852 | |
853 | WDT_HIT(); | |
854 | if (ledcontrol) LED_A_ON(); | |
855 | ||
856 | DoAcquisition_default(-1,true); | |
857 | // FSK demodulator | |
dbf6e824 CY |
858 | size = 50*128*2; //big enough to catch 2 sequences of largest format |
859 | idx = AWIDdemodFSK(dest, &size); | |
860 | ||
709665b5 | 861 | if (idx<=0 || size!=96) continue; |
862 | // Index map | |
863 | // 0 10 20 30 40 50 60 | |
864 | // | | | | | | | | |
865 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
866 | // ----------------------------------------------------------------------------- | |
867 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
868 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
869 | // |---26 bit---| |-----117----||-------------142-------------| | |
870 | // b = format bit len, o = odd parity of last 3 bits | |
871 | // f = facility code, c = card number | |
872 | // w = wiegand parity | |
873 | // (26 bit format shown) | |
874 | ||
875 | //get raw ID before removing parities | |
876 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
877 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
878 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
879 | ||
880 | size = removeParity(dest, idx+8, 4, 1, 88); | |
881 | if (size != 66) continue; | |
882 | // ok valid card found! | |
883 | ||
884 | // Index map | |
885 | // 0 10 20 30 40 50 60 | |
886 | // | | | | | | | | |
887 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
888 | // ----------------------------------------------------------------------------- | |
889 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
890 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
891 | // |26 bit| |-117--| |-----142------| | |
892 | // b = format bit len, o = odd parity of last 3 bits | |
893 | // f = facility code, c = card number | |
894 | // w = wiegand parity | |
895 | // (26 bit format shown) | |
896 | ||
897 | uint32_t fc = 0; | |
898 | uint32_t cardnum = 0; | |
899 | uint32_t code1 = 0; | |
900 | uint32_t code2 = 0; | |
901 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
902 | if (fmtLen==26){ | |
903 | fc = bytebits_to_byte(dest+9, 8); | |
904 | cardnum = bytebits_to_byte(dest+17, 16); | |
905 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
906 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
907 | } else { | |
908 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
909 | if (fmtLen>32){ | |
910 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
911 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
912 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
913 | } else{ | |
914 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
915 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
dbf6e824 | 916 | } |
dbf6e824 | 917 | } |
709665b5 | 918 | if (findone){ |
919 | if (ledcontrol) LED_A_OFF(); | |
920 | return; | |
921 | } | |
922 | // reset | |
dbf6e824 CY |
923 | idx = 0; |
924 | WDT_HIT(); | |
925 | } | |
926 | DbpString("Stopped"); | |
927 | if (ledcontrol) LED_A_OFF(); | |
928 | } | |
929 | ||
e09f21fa | 930 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
931 | { | |
e0165dcf | 932 | uint8_t *dest = BigBuf_get_addr(); |
933 | ||
934 | size_t size=0, idx=0; | |
935 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
936 | uint32_t hi=0; | |
937 | uint64_t lo=0; | |
3cec7061 | 938 | //clear read buffer |
29b75739 | 939 | BigBuf_Clear_keep_EM(); |
e0165dcf | 940 | // Configure to go in 125Khz listen mode |
941 | LFSetupFPGAForADC(95, true); | |
942 | ||
d10e08ae | 943 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 944 | |
945 | WDT_HIT(); | |
946 | if (ledcontrol) LED_A_ON(); | |
947 | ||
948 | DoAcquisition_default(-1,true); | |
949 | size = BigBuf_max_traceLen(); | |
e0165dcf | 950 | //askdemod and manchester decode |
2eec55c8 | 951 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format |
fef74fdc | 952 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); |
e0165dcf | 953 | WDT_HIT(); |
954 | ||
2eec55c8 | 955 | if (errCnt<0) continue; |
956 | ||
957 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); | |
958 | if (errCnt){ | |
959 | if (size>64){ | |
960 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
961 | hi, | |
962 | (uint32_t)(lo>>32), | |
963 | (uint32_t)lo, | |
964 | (uint32_t)(lo&0xFFFF), | |
965 | (uint32_t)((lo>>16LL) & 0xFF), | |
966 | (uint32_t)(lo & 0xFFFFFF)); | |
967 | } else { | |
968 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
969 | (uint32_t)(lo>>32), | |
970 | (uint32_t)lo, | |
971 | (uint32_t)(lo&0xFFFF), | |
972 | (uint32_t)((lo>>16LL) & 0xFF), | |
973 | (uint32_t)(lo & 0xFFFFFF)); | |
e0165dcf | 974 | } |
2eec55c8 | 975 | |
e0165dcf | 976 | if (findone){ |
977 | if (ledcontrol) LED_A_OFF(); | |
978 | *high=lo>>32; | |
979 | *low=lo & 0xFFFFFFFF; | |
980 | return; | |
981 | } | |
e0165dcf | 982 | } |
983 | WDT_HIT(); | |
2eec55c8 | 984 | hi = lo = size = idx = 0; |
985 | clk = invert = errCnt = 0; | |
e0165dcf | 986 | } |
987 | DbpString("Stopped"); | |
988 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 989 | } |
990 | ||
991 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
992 | { | |
e0165dcf | 993 | uint8_t *dest = BigBuf_get_addr(); |
994 | int idx=0; | |
995 | uint32_t code=0, code2=0; | |
996 | uint8_t version=0; | |
997 | uint8_t facilitycode=0; | |
998 | uint16_t number=0; | |
3cec7061 | 999 | //clear read buffer |
29b75739 | 1000 | BigBuf_Clear_keep_EM(); |
e0165dcf | 1001 | // Configure to go in 125Khz listen mode |
1002 | LFSetupFPGAForADC(95, true); | |
1003 | ||
d10e08ae | 1004 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { |
e0165dcf | 1005 | WDT_HIT(); |
1006 | if (ledcontrol) LED_A_ON(); | |
e09f21fa | 1007 | DoAcquisition_default(-1,true); |
1008 | //fskdemod and get start index | |
e0165dcf | 1009 | WDT_HIT(); |
1010 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
2eec55c8 | 1011 | if (idx<0) continue; |
1012 | //valid tag found | |
1013 | ||
1014 | //Index map | |
1015 | //0 10 20 30 40 50 60 | |
1016 | //| | | | | | | | |
1017 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
1018 | //----------------------------------------------------------------------------- | |
1019 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
1020 | // | |
1021 | //XSF(version)facility:codeone+codetwo | |
1022 | //Handle the data | |
1023 | if(findone){ //only print binary if we are doing one | |
1024 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1025 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1026 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1027 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1028 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1029 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1030 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1031 | } | |
1032 | code = bytebits_to_byte(dest+idx,32); | |
1033 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1034 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
1035 | facilitycode = bytebits_to_byte(dest+idx+18,8); | |
1036 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
1037 | ||
1038 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); | |
1039 | // if we're only looking for one tag | |
1040 | if (findone){ | |
1041 | if (ledcontrol) LED_A_OFF(); | |
1042 | //LED_A_OFF(); | |
1043 | *high=code; | |
1044 | *low=code2; | |
1045 | return; | |
e0165dcf | 1046 | } |
2eec55c8 | 1047 | code=code2=0; |
1048 | version=facilitycode=0; | |
1049 | number=0; | |
1050 | idx=0; | |
1051 | ||
e0165dcf | 1052 | WDT_HIT(); |
1053 | } | |
1054 | DbpString("Stopped"); | |
1055 | if (ledcontrol) LED_A_OFF(); | |
e09f21fa | 1056 | } |
1057 | ||
1058 | /*------------------------------ | |
3606ac0a | 1059 | * T5555/T5557/T5567/T5577 routines |
e09f21fa | 1060 | *------------------------------ |
709665b5 | 1061 | * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h |
1062 | * | |
3606ac0a | 1063 | * Relevant communication times in microsecond |
e09f21fa | 1064 | * To compensate antenna falling times shorten the write times |
1065 | * and enlarge the gap ones. | |
7cfc777b | 1066 | * Q5 tags seems to have issues when these values changes. |
e09f21fa | 1067 | */ |
4a3f1a37 | 1068 | #define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc) |
1069 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc) | |
1070 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc) | |
1071 | #define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550 | |
6fe5c94b | 1072 | #define READ_GAP 15*8 |
7cfc777b | 1073 | |
1074 | void TurnReadLFOn(int delay) { | |
1075 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1076 | // Give it a bit of time for the resonant antenna to settle. | |
1077 | SpinDelayUs(delay); //155*8 //50*8 | |
1078 | } | |
13d77ef9 | 1079 | |
e09f21fa | 1080 | // Write one bit to card |
7cfc777b | 1081 | void T55xxWriteBit(int bit) { |
7cfc777b | 1082 | if (!bit) |
3606ac0a | 1083 | TurnReadLFOn(WRITE_0); |
e0165dcf | 1084 | else |
3606ac0a | 1085 | TurnReadLFOn(WRITE_1); |
e0165dcf | 1086 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1087 | SpinDelayUs(WRITE_GAP); | |
e09f21fa | 1088 | } |
1089 | ||
66837a03 | 1090 | // Send T5577 reset command then read stream (see if we can identify the start of the stream) |
1091 | void T55xxResetRead(void) { | |
1092 | LED_A_ON(); | |
9f669cb2 | 1093 | //clear buffer now so it does not interfere with timing later |
29b75739 | 1094 | BigBuf_Clear_keep_EM(); |
9f669cb2 | 1095 | |
66837a03 | 1096 | // Set up FPGA, 125kHz |
1097 | LFSetupFPGAForADC(95, true); | |
1098 | ||
1099 | // Trigger T55x7 in mode. | |
1100 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1101 | SpinDelayUs(START_GAP); | |
1102 | ||
1103 | // reset tag - op code 00 | |
1104 | T55xxWriteBit(0); | |
1105 | T55xxWriteBit(0); | |
1106 | ||
1107 | // Turn field on to read the response | |
1108 | TurnReadLFOn(READ_GAP); | |
1109 | ||
1110 | // Acquisition | |
9f669cb2 | 1111 | doT55x7Acquisition(BigBuf_max_traceLen()); |
66837a03 | 1112 | |
1113 | // Turn the field off | |
1114 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1115 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1116 | LED_A_OFF(); | |
1117 | } | |
1118 | ||
e09f21fa | 1119 | // Write one card block in page 0, no lock |
66837a03 | 1120 | void T55xxWriteBlockExt(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { |
7cfc777b | 1121 | LED_A_ON(); |
be2d41b7 | 1122 | bool PwdMode = arg & 0x1; |
1123 | uint8_t Page = (arg & 0x2)>>1; | |
e0165dcf | 1124 | uint32_t i = 0; |
1125 | ||
1126 | // Set up FPGA, 125kHz | |
f4eadf8a | 1127 | LFSetupFPGAForADC(95, true); |
e0165dcf | 1128 | |
7cfc777b | 1129 | // Trigger T55x7 in mode. |
e0165dcf | 1130 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1131 | SpinDelayUs(START_GAP); | |
1132 | ||
7cfc777b | 1133 | // Opcode 10 |
e0165dcf | 1134 | T55xxWriteBit(1); |
be2d41b7 | 1135 | T55xxWriteBit(Page); //Page 0 |
1136 | if (PwdMode){ | |
7cfc777b | 1137 | // Send Pwd |
e0165dcf | 1138 | for (i = 0x80000000; i != 0; i >>= 1) |
1139 | T55xxWriteBit(Pwd & i); | |
1140 | } | |
7cfc777b | 1141 | // Send Lock bit |
e0165dcf | 1142 | T55xxWriteBit(0); |
1143 | ||
7cfc777b | 1144 | // Send Data |
e0165dcf | 1145 | for (i = 0x80000000; i != 0; i >>= 1) |
1146 | T55xxWriteBit(Data & i); | |
1147 | ||
7cfc777b | 1148 | // Send Block number |
e0165dcf | 1149 | for (i = 0x04; i != 0; i >>= 1) |
1150 | T55xxWriteBit(Block & i); | |
1151 | ||
7cfc777b | 1152 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, |
e0165dcf | 1153 | // so wait a little more) |
7cfc777b | 1154 | TurnReadLFOn(20 * 1000); |
be2d41b7 | 1155 | //could attempt to do a read to confirm write took |
1156 | // as the tag should repeat back the new block | |
1157 | // until it is reset, but to confirm it we would | |
1158 | // need to know the current block 0 config mode | |
e09f21fa | 1159 | |
7cfc777b | 1160 | // turn field off |
1161 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
7cfc777b | 1162 | LED_A_OFF(); |
13d77ef9 | 1163 | } |
1164 | ||
66837a03 | 1165 | // Write one card block in page 0, no lock |
1166 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t arg) { | |
1167 | T55xxWriteBlockExt(Data, Block, Pwd, arg); | |
1168 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1169 | } | |
1170 | ||
db829602 | 1171 | // Read one card block in page [page] |
8e99ec25 | 1172 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { |
7cfc777b | 1173 | LED_A_ON(); |
be2d41b7 | 1174 | bool PwdMode = arg0 & 0x1; |
1175 | uint8_t Page = (arg0 & 0x2) >> 1; | |
e0165dcf | 1176 | uint32_t i = 0; |
be2d41b7 | 1177 | bool RegReadMode = (Block == 0xFF); |
e0165dcf | 1178 | |
7cfc777b | 1179 | //clear buffer now so it does not interfere with timing later |
1180 | BigBuf_Clear_ext(false); | |
f4eadf8a | 1181 | |
7cfc777b | 1182 | //make sure block is at max 7 |
1183 | Block &= 0x7; | |
1184 | ||
0c8200f1 | 1185 | // Set up FPGA, 125kHz to power up the tag |
f4eadf8a | 1186 | LFSetupFPGAForADC(95, true); |
f4eadf8a | 1187 | |
0c8200f1 | 1188 | // Trigger T55x7 Direct Access Mode with start gap |
e0165dcf | 1189 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1190 | SpinDelayUs(START_GAP); | |
1191 | ||
3606ac0a | 1192 | // Opcode 1[page] |
e0165dcf | 1193 | T55xxWriteBit(1); |
be2d41b7 | 1194 | T55xxWriteBit(Page); //Page 0 |
7cfc777b | 1195 | |
be2d41b7 | 1196 | if (PwdMode){ |
7cfc777b | 1197 | // Send Pwd |
e0165dcf | 1198 | for (i = 0x80000000; i != 0; i >>= 1) |
1199 | T55xxWriteBit(Pwd & i); | |
1200 | } | |
be2d41b7 | 1201 | // Send a zero bit separation |
1202 | T55xxWriteBit(0); | |
7cfc777b | 1203 | |
be2d41b7 | 1204 | // Send Block number (if direct access mode) |
1205 | if (!RegReadMode) | |
8e99ec25 | 1206 | for (i = 0x04; i != 0; i >>= 1) |
1207 | T55xxWriteBit(Block & i); | |
e0165dcf | 1208 | |
1209 | // Turn field on to read the response | |
7cfc777b | 1210 | TurnReadLFOn(READ_GAP); |
f4eadf8a | 1211 | |
7cfc777b | 1212 | // Acquisition |
66837a03 | 1213 | doT55x7Acquisition(12000); |
e0165dcf | 1214 | |
7cfc777b | 1215 | // Turn the field off |
e0165dcf | 1216 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
7cfc777b | 1217 | cmd_send(CMD_ACK,0,0,0,0,0); |
1218 | LED_A_OFF(); | |
e09f21fa | 1219 | } |
1220 | ||
be2d41b7 | 1221 | void T55xxWakeUp(uint32_t Pwd){ |
1222 | LED_B_ON(); | |
1223 | uint32_t i = 0; | |
1224 | ||
1225 | // Set up FPGA, 125kHz | |
1226 | LFSetupFPGAForADC(95, true); | |
1227 | ||
1228 | // Trigger T55x7 Direct Access Mode | |
1229 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1230 | SpinDelayUs(START_GAP); | |
1231 | ||
1232 | // Opcode 10 | |
1233 | T55xxWriteBit(1); | |
1234 | T55xxWriteBit(0); //Page 0 | |
1235 | ||
1236 | // Send Pwd | |
1237 | for (i = 0x80000000; i != 0; i >>= 1) | |
1238 | T55xxWriteBit(Pwd & i); | |
1239 | ||
1240 | // Turn and leave field on to let the begin repeating transmission | |
1241 | TurnReadLFOn(20*1000); | |
1242 | } | |
e09f21fa | 1243 | |
1244 | /*-------------- Cloning routines -----------*/ | |
3606ac0a | 1245 | |
1246 | void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { | |
1247 | // write last block first and config block last (if included) | |
66837a03 | 1248 | for (uint8_t i = numblocks+startblock; i > startblock; i--) { |
66837a03 | 1249 | T55xxWriteBlockExt(blockdata[i-1],i-1,0,0); |
1250 | } | |
3606ac0a | 1251 | } |
1252 | ||
e09f21fa | 1253 | // Copy HID id to card and setup block 0 config |
3606ac0a | 1254 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { |
1255 | uint32_t data[] = {0,0,0,0,0,0,0}; | |
3606ac0a | 1256 | uint8_t last_block = 0; |
e0165dcf | 1257 | |
3606ac0a | 1258 | if (longFMT) { |
e0165dcf | 1259 | // Ensure no more than 84 bits supplied |
1260 | if (hi2>0xFFFFF) { | |
1261 | DbpString("Tags can only have 84 bits."); | |
1262 | return; | |
1263 | } | |
1264 | // Build the 6 data blocks for supplied 84bit ID | |
1265 | last_block = 6; | |
3606ac0a | 1266 | // load preamble (1D) & long format identifier (9E manchester encoded) |
66837a03 | 1267 | data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); |
3606ac0a | 1268 | // load raw id from hi2, hi, lo to data blocks (manchester encoded) |
1269 | data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); | |
1270 | data[3] = manchesterEncode2Bytes(hi >> 16); | |
1271 | data[4] = manchesterEncode2Bytes(hi & 0xFFFF); | |
1272 | data[5] = manchesterEncode2Bytes(lo >> 16); | |
1273 | data[6] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1274 | } else { | |
e0165dcf | 1275 | // Ensure no more than 44 bits supplied |
1276 | if (hi>0xFFF) { | |
1277 | DbpString("Tags can only have 44 bits."); | |
1278 | return; | |
1279 | } | |
e0165dcf | 1280 | // Build the 3 data blocks for supplied 44bit ID |
1281 | last_block = 3; | |
3606ac0a | 1282 | // load preamble |
66837a03 | 1283 | data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); |
3606ac0a | 1284 | data[2] = manchesterEncode2Bytes(lo >> 16); |
1285 | data[3] = manchesterEncode2Bytes(lo & 0xFFFF); | |
e0165dcf | 1286 | } |
3606ac0a | 1287 | // load chip config block |
1288 | data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; | |
e0165dcf | 1289 | |
76346455 | 1290 | //TODO add selection of chip for Q5 or T55x7 |
1291 | // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; | |
1292 | ||
e0165dcf | 1293 | LED_D_ON(); |
1294 | // Program the data blocks for supplied ID | |
1295 | // and the block 0 for HID format | |
3606ac0a | 1296 | WriteT55xx(data, 0, last_block+1); |
e0165dcf | 1297 | |
1298 | LED_D_OFF(); | |
1299 | ||
1300 | DbpString("DONE!"); | |
e09f21fa | 1301 | } |
1302 | ||
9f669cb2 | 1303 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { |
3606ac0a | 1304 | uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; |
76346455 | 1305 | //TODO add selection of chip for Q5 or T55x7 |
1306 | // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; | |
e09f21fa | 1307 | |
e0165dcf | 1308 | LED_D_ON(); |
1309 | // Program the data blocks for supplied ID | |
3606ac0a | 1310 | // and the block 0 config |
1311 | WriteT55xx(data, 0, 3); | |
e09f21fa | 1312 | |
e0165dcf | 1313 | LED_D_OFF(); |
e09f21fa | 1314 | |
e0165dcf | 1315 | DbpString("DONE!"); |
e09f21fa | 1316 | } |
1317 | ||
3606ac0a | 1318 | // Clone Indala 64-bit tag by UID to T55x7 |
1319 | void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { | |
1320 | //Program the 2 data blocks for supplied 64bit UID | |
1321 | // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) | |
1322 | uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
76346455 | 1323 | //TODO add selection of chip for Q5 or T55x7 |
1324 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; | |
1325 | ||
3606ac0a | 1326 | WriteT55xx(data, 0, 3); |
1327 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1328 | // T5567WriteBlock(0x603E1042,0); | |
1329 | DbpString("DONE!"); | |
1330 | } | |
1331 | // Clone Indala 224-bit tag by UID to T55x7 | |
66837a03 | 1332 | void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { |
3606ac0a | 1333 | //Program the 7 data blocks for supplied 224bit UID |
1334 | uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; | |
1335 | // and the block 0 for Indala224 format | |
1336 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1337 | data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); | |
76346455 | 1338 | //TODO add selection of chip for Q5 or T55x7 |
1339 | // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; | |
3606ac0a | 1340 | WriteT55xx(data, 0, 8); |
1341 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1342 | // T5567WriteBlock(0x603E10E2,0); | |
1343 | DbpString("DONE!"); | |
1344 | } | |
709665b5 | 1345 | // clone viking tag to T55xx |
1346 | void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { | |
1347 | uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; | |
1348 | if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; | |
1349 | // Program the data blocks for supplied ID and the block 0 config | |
1350 | WriteT55xx(data, 0, 3); | |
1351 | LED_D_OFF(); | |
1352 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1353 | } | |
3606ac0a | 1354 | |
e09f21fa | 1355 | // Define 9bit header for EM410x tags |
3606ac0a | 1356 | #define EM410X_HEADER 0x1FF |
e09f21fa | 1357 | #define EM410X_ID_LENGTH 40 |
1358 | ||
66837a03 | 1359 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { |
e0165dcf | 1360 | int i, id_bit; |
1361 | uint64_t id = EM410X_HEADER; | |
1362 | uint64_t rev_id = 0; // reversed ID | |
1363 | int c_parity[4]; // column parity | |
1364 | int r_parity = 0; // row parity | |
1365 | uint32_t clock = 0; | |
1366 | ||
1367 | // Reverse ID bits given as parameter (for simpler operations) | |
1368 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1369 | if (i < 32) { | |
1370 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1371 | id_lo >>= 1; | |
1372 | } else { | |
1373 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1374 | id_hi >>= 1; | |
1375 | } | |
1376 | } | |
1377 | ||
1378 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1379 | id_bit = rev_id & 1; | |
1380 | ||
1381 | if (i % 4 == 0) { | |
1382 | // Don't write row parity bit at start of parsing | |
1383 | if (i) | |
1384 | id = (id << 1) | r_parity; | |
1385 | // Start counting parity for new row | |
1386 | r_parity = id_bit; | |
1387 | } else { | |
1388 | // Count row parity | |
1389 | r_parity ^= id_bit; | |
1390 | } | |
1391 | ||
1392 | // First elements in column? | |
1393 | if (i < 4) | |
1394 | // Fill out first elements | |
1395 | c_parity[i] = id_bit; | |
1396 | else | |
1397 | // Count column parity | |
1398 | c_parity[i % 4] ^= id_bit; | |
1399 | ||
1400 | // Insert ID bit | |
1401 | id = (id << 1) | id_bit; | |
1402 | rev_id >>= 1; | |
1403 | } | |
1404 | ||
1405 | // Insert parity bit of last row | |
1406 | id = (id << 1) | r_parity; | |
1407 | ||
1408 | // Fill out column parity at the end of tag | |
1409 | for (i = 0; i < 4; ++i) | |
1410 | id = (id << 1) | c_parity[i]; | |
1411 | ||
1412 | // Add stop bit | |
1413 | id <<= 1; | |
1414 | ||
1415 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1416 | LED_D_ON(); | |
1417 | ||
1418 | // Write EM410x ID | |
72c5877a | 1419 | uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)}; |
76346455 | 1420 | |
1421 | clock = (card & 0xFF00) >> 8; | |
1422 | clock = (clock == 0) ? 64 : clock; | |
1423 | Dbprintf("Clock rate: %d", clock); | |
1424 | if (card & 0xFF) { //t55x7 | |
1425 | clock = GetT55xxClockBit(clock); | |
3606ac0a | 1426 | if (clock == 0) { |
e0165dcf | 1427 | Dbprintf("Invalid clock rate: %d", clock); |
1428 | return; | |
1429 | } | |
3606ac0a | 1430 | data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); |
76346455 | 1431 | } else { //t5555 (Q5) |
1432 | clock = (clock-2)>>1; //n = (RF-2)/2 | |
1433 | data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); | |
e0165dcf | 1434 | } |
3606ac0a | 1435 | |
1436 | WriteT55xx(data, 0, 3); | |
e0165dcf | 1437 | |
1438 | LED_D_OFF(); | |
1439 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1440 | (uint32_t)(id >> 32), (uint32_t)id); | |
e09f21fa | 1441 | } |
1442 | ||
e09f21fa | 1443 | //----------------------------------- |
1444 | // EM4469 / EM4305 routines | |
1445 | //----------------------------------- | |
1446 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1447 | #define FWD_CMD_WRITE 0xA | |
1448 | #define FWD_CMD_READ 0x9 | |
1449 | #define FWD_CMD_DISABLE 0x5 | |
1450 | ||
e09f21fa | 1451 | uint8_t forwardLink_data[64]; //array of forwarded bits |
1452 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1453 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1454 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1455 | ||
1456 | //==================================================================== | |
1457 | // prepares command bits | |
1458 | // see EM4469 spec | |
1459 | //==================================================================== | |
1460 | //-------------------------------------------------------------------- | |
db829602 | 1461 | // VALUES TAKEN FROM EM4x function: SendForward |
1462 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1463 | // WRITE_GAP = 128; (16*8) | |
1464 | // WRITE_1 = 256 32*8; (32*8) | |
1465 | ||
1466 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1467 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
1468 | ||
e09f21fa | 1469 | uint8_t Prepare_Cmd( uint8_t cmd ) { |
e09f21fa | 1470 | |
e0165dcf | 1471 | *forward_ptr++ = 0; //start bit |
1472 | *forward_ptr++ = 0; //second pause for 4050 code | |
e09f21fa | 1473 | |
e0165dcf | 1474 | *forward_ptr++ = cmd; |
1475 | cmd >>= 1; | |
1476 | *forward_ptr++ = cmd; | |
1477 | cmd >>= 1; | |
1478 | *forward_ptr++ = cmd; | |
1479 | cmd >>= 1; | |
1480 | *forward_ptr++ = cmd; | |
e09f21fa | 1481 | |
e0165dcf | 1482 | return 6; //return number of emited bits |
e09f21fa | 1483 | } |
1484 | ||
1485 | //==================================================================== | |
1486 | // prepares address bits | |
1487 | // see EM4469 spec | |
1488 | //==================================================================== | |
e09f21fa | 1489 | uint8_t Prepare_Addr( uint8_t addr ) { |
e09f21fa | 1490 | |
e0165dcf | 1491 | register uint8_t line_parity; |
e09f21fa | 1492 | |
e0165dcf | 1493 | uint8_t i; |
1494 | line_parity = 0; | |
1495 | for(i=0;i<6;i++) { | |
1496 | *forward_ptr++ = addr; | |
1497 | line_parity ^= addr; | |
1498 | addr >>= 1; | |
1499 | } | |
e09f21fa | 1500 | |
e0165dcf | 1501 | *forward_ptr++ = (line_parity & 1); |
e09f21fa | 1502 | |
e0165dcf | 1503 | return 7; //return number of emited bits |
e09f21fa | 1504 | } |
1505 | ||
1506 | //==================================================================== | |
1507 | // prepares data bits intreleaved with parity bits | |
1508 | // see EM4469 spec | |
1509 | //==================================================================== | |
e09f21fa | 1510 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { |
e0165dcf | 1511 | |
1512 | register uint8_t line_parity; | |
1513 | register uint8_t column_parity; | |
1514 | register uint8_t i, j; | |
1515 | register uint16_t data; | |
1516 | ||
1517 | data = data_low; | |
1518 | column_parity = 0; | |
1519 | ||
1520 | for(i=0; i<4; i++) { | |
1521 | line_parity = 0; | |
1522 | for(j=0; j<8; j++) { | |
1523 | line_parity ^= data; | |
1524 | column_parity ^= (data & 1) << j; | |
1525 | *forward_ptr++ = data; | |
1526 | data >>= 1; | |
1527 | } | |
1528 | *forward_ptr++ = line_parity; | |
1529 | if(i == 1) | |
1530 | data = data_hi; | |
1531 | } | |
1532 | ||
1533 | for(j=0; j<8; j++) { | |
1534 | *forward_ptr++ = column_parity; | |
1535 | column_parity >>= 1; | |
1536 | } | |
1537 | *forward_ptr = 0; | |
1538 | ||
1539 | return 45; //return number of emited bits | |
e09f21fa | 1540 | } |
1541 | ||
1542 | //==================================================================== | |
1543 | // Forward Link send function | |
1544 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1545 | // fwd_bit_count set with number of bits to be sent | |
1546 | //==================================================================== | |
1547 | void SendForward(uint8_t fwd_bit_count) { | |
1548 | ||
e0165dcf | 1549 | fwd_write_ptr = forwardLink_data; |
1550 | fwd_bit_sz = fwd_bit_count; | |
1551 | ||
1552 | LED_D_ON(); | |
1553 | ||
7cfc777b | 1554 | // Set up FPGA, 125kHz |
1555 | LFSetupFPGAForADC(95, true); | |
e0165dcf | 1556 | |
1557 | // force 1st mod pulse (start gap must be longer for 4305) | |
1558 | fwd_bit_sz--; //prepare next bit modulation | |
1559 | fwd_write_ptr++; | |
1560 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1561 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
e0165dcf | 1562 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1563 | SpinDelayUs(16*8); //16 cycles on (8us each) | |
1564 | ||
1565 | // now start writting | |
1566 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1567 | if(((*fwd_write_ptr++) & 1) == 1) | |
1568 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1569 | else { | |
1570 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1571 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1572 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
e0165dcf | 1573 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
1574 | SpinDelayUs(9*8); //16 cycles on (8us each) | |
1575 | } | |
1576 | } | |
e09f21fa | 1577 | } |
1578 | ||
1579 | void EM4xLogin(uint32_t Password) { | |
1580 | ||
e0165dcf | 1581 | uint8_t fwd_bit_count; |
e09f21fa | 1582 | |
e0165dcf | 1583 | forward_ptr = forwardLink_data; |
1584 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1585 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
e09f21fa | 1586 | |
e0165dcf | 1587 | SendForward(fwd_bit_count); |
e09f21fa | 1588 | |
e0165dcf | 1589 | //Wait for command to complete |
1590 | SpinDelay(20); | |
e09f21fa | 1591 | } |
1592 | ||
1593 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1594 | ||
e0165dcf | 1595 | uint8_t fwd_bit_count; |
1596 | uint8_t *dest = BigBuf_get_addr(); | |
7cfc777b | 1597 | uint16_t bufferlength = BigBuf_max_traceLen(); |
1598 | uint32_t i = 0; | |
1599 | ||
1600 | // Clear destination buffer before sending the command | |
709665b5 | 1601 | BigBuf_Clear_ext(false); |
e0165dcf | 1602 | |
1603 | //If password mode do login | |
1604 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1605 | ||
1606 | forward_ptr = forwardLink_data; | |
1607 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1608 | fwd_bit_count += Prepare_Addr( Address ); | |
1609 | ||
e0165dcf | 1610 | // Connect the A/D to the peak-detected low-frequency path. |
1611 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1612 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1613 | FpgaSetupSsc(); | |
1614 | ||
1615 | SendForward(fwd_bit_count); | |
1616 | ||
1617 | // Now do the acquisition | |
1618 | i = 0; | |
1619 | for(;;) { | |
1620 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1621 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1622 | } | |
1623 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1624 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1625 | i++; | |
7cfc777b | 1626 | if (i >= bufferlength) break; |
e0165dcf | 1627 | } |
1628 | } | |
1629 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
7cfc777b | 1630 | cmd_send(CMD_ACK,0,0,0,0,0); |
e0165dcf | 1631 | LED_D_OFF(); |
e09f21fa | 1632 | } |
1633 | ||
1634 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1635 | ||
e0165dcf | 1636 | uint8_t fwd_bit_count; |
e09f21fa | 1637 | |
e0165dcf | 1638 | //If password mode do login |
1639 | if (PwdMode == 1) EM4xLogin(Pwd); | |
e09f21fa | 1640 | |
e0165dcf | 1641 | forward_ptr = forwardLink_data; |
1642 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1643 | fwd_bit_count += Prepare_Addr( Address ); | |
1644 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
e09f21fa | 1645 | |
e0165dcf | 1646 | SendForward(fwd_bit_count); |
e09f21fa | 1647 | |
e0165dcf | 1648 | //Wait for write to complete |
1649 | SpinDelay(20); | |
1650 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1651 | LED_D_OFF(); | |
e09f21fa | 1652 | } |