]>
Commit | Line | Data |
---|---|---|
15c4dc5a | 1 | //----------------------------------------------------------------------------- |
bd20f8f4 | 2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
15c4dc5a | 6 | // Miscellaneous routines for low frequency tag operations. |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
15c4dc5a | 9 | //----------------------------------------------------------------------------- |
bd20f8f4 | 10 | |
f38a1528 | 11 | #include "../include/proxmark3.h" |
15c4dc5a | 12 | #include "apps.h" |
f7e3ed82 | 13 | #include "util.h" |
f38a1528 | 14 | #include "../common/crc16.h" |
6ff6ade2 | 15 | #include "../common/lfdemod.h" |
9ab7a6c7 | 16 | #include "string.h" |
f38a1528 | 17 | #include "crapto1.h" |
6ff6ade2 | 18 | #include "mifareutil.h" |
19 | #include "../include/hitag2.h" | |
15c4dc5a | 20 | |
a501c82b | 21 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) |
22 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
23 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
24 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
25 | #define T0 192 | |
26 | ||
a61b4976 | 27 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) |
28 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
29 | ||
b014c96d | 30 | void LFSetupFPGAForADC(int divisor, bool lf_field) |
15c4dc5a | 31 | { |
7cc204bf | 32 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
bf7163bd | 33 | if ( (divisor == 1) || (divisor < 0) || (divisor > 255) ) |
15c4dc5a | 34 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
bf7163bd | 35 | else if (divisor == 0) |
15c4dc5a | 36 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
bf7163bd | 37 | else |
38 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); | |
15c4dc5a | 39 | |
b014c96d | 40 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0)); |
15c4dc5a | 41 | |
42 | // Connect the A/D to the peak-detected low-frequency path. | |
43 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
f6c18637 | 44 | |
15c4dc5a | 45 | // Give it a bit of time for the resonant antenna to settle. |
f6c18637 | 46 | SpinDelay(150); |
47 | ||
15c4dc5a | 48 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
49 | FpgaSetupSsc(); | |
b014c96d | 50 | } |
51 | ||
52 | void AcquireRawAdcSamples125k(int divisor) | |
53 | { | |
54 | LFSetupFPGAForADC(divisor, true); | |
72e930ef | 55 | DoAcquisition125k(); |
b014c96d | 56 | } |
15c4dc5a | 57 | |
b014c96d | 58 | void SnoopLFRawAdcSamples(int divisor, int trigger_threshold) |
59 | { | |
60 | LFSetupFPGAForADC(divisor, false); | |
72e930ef | 61 | DoAcquisition125k_threshold(trigger_threshold); |
15c4dc5a | 62 | } |
63 | ||
64 | // split into two routines so we can avoid timing issues after sending commands // | |
72e930ef | 65 | void DoAcquisition125k_internal(int trigger_threshold, bool silent) |
15c4dc5a | 66 | { |
a501c82b | 67 | uint8_t *dest = get_bigbufptr_recvrespbuf(); |
68 | uint16_t i = 0; | |
69 | memset(dest, 0x00, FREE_BUFFER_SIZE); | |
a61b4976 | 70 | |
15c4dc5a | 71 | for(;;) { |
72 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
73 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
74 | LED_D_ON(); | |
75 | } | |
76 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
f7e3ed82 | 77 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; |
15c4dc5a | 78 | LED_D_OFF(); |
b014c96d | 79 | if (trigger_threshold != -1 && dest[i] < trigger_threshold) |
80 | continue; | |
81 | else | |
82 | trigger_threshold = -1; | |
a501c82b | 83 | if (++i >= FREE_BUFFER_SIZE) break; |
15c4dc5a | 84 | } |
85 | } | |
72e930ef | 86 | if (!silent){ |
87 | Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...", | |
15c4dc5a | 88 | dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]); |
72e930ef | 89 | } |
15c4dc5a | 90 | } |
72e930ef | 91 | void DoAcquisition125k_threshold(int trigger_threshold) { |
92 | DoAcquisition125k_internal(trigger_threshold, true); | |
93 | } | |
94 | void DoAcquisition125k() { | |
95 | DoAcquisition125k_internal(-1, true); | |
96 | } | |
97 | ||
f7e3ed82 | 98 | void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command) |
15c4dc5a | 99 | { |
7cc204bf | 100 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
a501c82b | 101 | |
102 | /* Make sure the tag is reset */ | |
15c4dc5a | 103 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
104 | SpinDelay(2500); | |
e30c654b | 105 | |
a501c82b | 106 | int divisor = 95; // 125 KHz |
15c4dc5a | 107 | // see if 'h' was specified |
1010aacc | 108 | if (command[strlen((char *) command) - 1] == 'h') |
a501c82b | 109 | divisor = 88; // 134.8 KHz |
15c4dc5a | 110 | |
a501c82b | 111 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); |
b014c96d | 112 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
15c4dc5a | 113 | // Give it a bit of time for the resonant antenna to settle. |
15c4dc5a | 114 | SpinDelay(2000); |
115 | ||
116 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
117 | FpgaSetupSsc(); | |
118 | ||
119 | // now modulate the reader field | |
120 | while(*command != '\0' && *command != ' ') { | |
121 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
122 | LED_D_OFF(); | |
123 | SpinDelayUs(delay_off); | |
a501c82b | 124 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); |
15c4dc5a | 125 | |
b014c96d | 126 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
15c4dc5a | 127 | LED_D_ON(); |
128 | if(*(command++) == '0') | |
129 | SpinDelayUs(period_0); | |
130 | else | |
131 | SpinDelayUs(period_1); | |
132 | } | |
133 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
134 | LED_D_OFF(); | |
135 | SpinDelayUs(delay_off); | |
a501c82b | 136 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); |
b014c96d | 137 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
15c4dc5a | 138 | |
139 | // now do the read | |
1010aacc | 140 | DoAcquisition125k(-1); |
15c4dc5a | 141 | } |
142 | ||
143 | /* blank r/w tag data stream | |
144 | ...0000000000000000 01111111 | |
145 | 1010101010101010101010101010101010101010101010101010101010101010 | |
146 | 0011010010100001 | |
147 | 01111111 | |
148 | 101010101010101[0]000... | |
149 | ||
150 | [5555fe852c5555555555555555fe0000] | |
151 | */ | |
152 | void ReadTItag(void) | |
153 | { | |
154 | // some hardcoded initial params | |
155 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
156 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
157 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
158 | #define FSAMPLE 2000000 | |
159 | #define FREQLO 123200 | |
160 | #define FREQHI 134200 | |
161 | ||
162 | signed char *dest = (signed char *)BigBuf; | |
163 | int n = sizeof(BigBuf); | |
164 | // int *dest = GraphBuffer; | |
165 | // int n = GraphTraceLen; | |
166 | ||
167 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
f7e3ed82 | 168 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; |
15c4dc5a | 169 | |
170 | int i, cycles=0, samples=0; | |
171 | // how many sample points fit in 16 cycles of each frequency | |
f7e3ed82 | 172 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; |
15c4dc5a | 173 | // when to tell if we're close enough to one freq or another |
f7e3ed82 | 174 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; |
15c4dc5a | 175 | |
176 | // TI tags charge at 134.2Khz | |
7cc204bf | 177 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
15c4dc5a | 178 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz |
179 | ||
180 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
181 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
182 | // whether we're modulating the antenna (high) | |
183 | // or listening to the antenna (low) | |
184 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
185 | ||
186 | // get TI tag data into the buffer | |
187 | AcquireTiType(); | |
188 | ||
189 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
190 | ||
191 | for (i=0; i<n-1; i++) { | |
192 | // count cycles by looking for lo to hi zero crossings | |
193 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
194 | cycles++; | |
195 | // after 16 cycles, measure the frequency | |
196 | if (cycles>15) { | |
197 | cycles=0; | |
198 | samples=i-samples; // number of samples in these 16 cycles | |
199 | ||
200 | // TI bits are coming to us lsb first so shift them | |
201 | // right through our 128 bit right shift register | |
202 | shift0 = (shift0>>1) | (shift1 << 31); | |
203 | shift1 = (shift1>>1) | (shift2 << 31); | |
204 | shift2 = (shift2>>1) | (shift3 << 31); | |
205 | shift3 >>= 1; | |
206 | ||
207 | // check if the cycles fall close to the number | |
208 | // expected for either the low or high frequency | |
209 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
210 | // low frequency represents a 1 | |
211 | shift3 |= (1<<31); | |
212 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
213 | // high frequency represents a 0 | |
214 | } else { | |
215 | // probably detected a gay waveform or noise | |
216 | // use this as gaydar or discard shift register and start again | |
217 | shift3 = shift2 = shift1 = shift0 = 0; | |
218 | } | |
219 | samples = i; | |
220 | ||
221 | // for each bit we receive, test if we've detected a valid tag | |
222 | ||
223 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
224 | // remember the bits are backwards | |
225 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
226 | // if start and end bytes match, we have a tag so break out of the loop | |
227 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
228 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
229 | break; | |
230 | } | |
231 | } | |
232 | } | |
233 | } | |
234 | } | |
235 | ||
236 | // if flag is set we have a tag | |
237 | if (cycles!=0xF0B) { | |
238 | DbpString("Info: No valid tag detected."); | |
239 | } else { | |
240 | // put 64 bit data into shift1 and shift0 | |
241 | shift0 = (shift0>>24) | (shift1 << 8); | |
242 | shift1 = (shift1>>24) | (shift2 << 8); | |
243 | ||
244 | // align 16 bit crc into lower half of shift2 | |
245 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
246 | ||
247 | // if r/w tag, check ident match | |
248 | if ( shift3&(1<<15) ) { | |
249 | DbpString("Info: TI tag is rewriteable"); | |
250 | // only 15 bits compare, last bit of ident is not valid | |
251 | if ( ((shift3>>16)^shift0)&0x7fff ) { | |
252 | DbpString("Error: Ident mismatch!"); | |
253 | } else { | |
254 | DbpString("Info: TI tag ident is valid"); | |
255 | } | |
256 | } else { | |
257 | DbpString("Info: TI tag is readonly"); | |
258 | } | |
259 | ||
260 | // WARNING the order of the bytes in which we calc crc below needs checking | |
261 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
262 | // bytes in reverse or something | |
263 | // calculate CRC | |
f7e3ed82 | 264 | uint32_t crc=0; |
15c4dc5a | 265 | |
266 | crc = update_crc16(crc, (shift0)&0xff); | |
267 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
268 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
269 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
270 | crc = update_crc16(crc, (shift1)&0xff); | |
271 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
272 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
273 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
274 | ||
275 | Dbprintf("Info: Tag data: %x%08x, crc=%x", | |
276 | (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
277 | if (crc != (shift2&0xffff)) { | |
278 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
279 | } else { | |
280 | DbpString("Info: CRC is good"); | |
281 | } | |
282 | } | |
283 | } | |
284 | ||
f7e3ed82 | 285 | void WriteTIbyte(uint8_t b) |
15c4dc5a | 286 | { |
287 | int i = 0; | |
288 | ||
289 | // modulate 8 bits out to the antenna | |
290 | for (i=0; i<8; i++) | |
291 | { | |
292 | if (b&(1<<i)) { | |
293 | // stop modulating antenna | |
a61b4976 | 294 | SHORT_COIL(); |
15c4dc5a | 295 | SpinDelayUs(1000); |
296 | // modulate antenna | |
a61b4976 | 297 | OPEN_COIL(); |
15c4dc5a | 298 | SpinDelayUs(1000); |
299 | } else { | |
300 | // stop modulating antenna | |
a61b4976 | 301 | SHORT_COIL(); |
15c4dc5a | 302 | SpinDelayUs(300); |
303 | // modulate antenna | |
a61b4976 | 304 | OPEN_COIL(); |
15c4dc5a | 305 | SpinDelayUs(1700); |
306 | } | |
307 | } | |
308 | } | |
309 | ||
310 | void AcquireTiType(void) | |
311 | { | |
312 | int i, j, n; | |
313 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
f7e3ed82 | 314 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t |
15c4dc5a | 315 | #define TIBUFLEN 1250 |
316 | ||
317 | // clear buffer | |
318 | memset(BigBuf,0,sizeof(BigBuf)); | |
319 | ||
320 | // Set up the synchronous serial port | |
321 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
322 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
323 | ||
324 | // steal this pin from the SSP and use it to control the modulation | |
325 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
326 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
327 | ||
328 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
329 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
330 | ||
331 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
332 | // 48/2 = 24 MHz clock must be divided by 12 | |
333 | AT91C_BASE_SSC->SSC_CMR = 12; | |
334 | ||
335 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
336 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
337 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
338 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
339 | ||
340 | LED_D_ON(); | |
341 | ||
342 | // modulate antenna | |
343 | HIGH(GPIO_SSC_DOUT); | |
344 | ||
345 | // Charge TI tag for 50ms. | |
346 | SpinDelay(50); | |
347 | ||
348 | // stop modulating antenna and listen | |
349 | LOW(GPIO_SSC_DOUT); | |
350 | ||
351 | LED_D_OFF(); | |
352 | ||
353 | i = 0; | |
354 | for(;;) { | |
355 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
356 | BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
357 | i++; if(i >= TIBUFLEN) break; | |
358 | } | |
359 | WDT_HIT(); | |
360 | } | |
361 | ||
362 | // return stolen pin to SSP | |
363 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
364 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
365 | ||
366 | char *dest = (char *)BigBuf; | |
367 | n = TIBUFLEN*32; | |
368 | // unpack buffer | |
369 | for (i=TIBUFLEN-1; i>=0; i--) { | |
370 | for (j=0; j<32; j++) { | |
371 | if(BigBuf[i] & (1 << j)) { | |
372 | dest[--n] = 1; | |
373 | } else { | |
374 | dest[--n] = -1; | |
375 | } | |
376 | } | |
377 | } | |
378 | } | |
379 | ||
380 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
381 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
382 | // if not provided a valid crc will be computed from the data and written. | |
f7e3ed82 | 383 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) |
15c4dc5a | 384 | { |
7cc204bf | 385 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
15c4dc5a | 386 | if(crc == 0) { |
387 | crc = update_crc16(crc, (idlo)&0xff); | |
388 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
389 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
390 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
391 | crc = update_crc16(crc, (idhi)&0xff); | |
392 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
393 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
394 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
395 | } | |
396 | Dbprintf("Writing to tag: %x%08x, crc=%x", | |
397 | (unsigned int) idhi, (unsigned int) idlo, crc); | |
398 | ||
399 | // TI tags charge at 134.2Khz | |
400 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
401 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
402 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
403 | // whether we're modulating the antenna (high) | |
404 | // or listening to the antenna (low) | |
405 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
406 | LED_A_ON(); | |
407 | ||
408 | // steal this pin from the SSP and use it to control the modulation | |
409 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
410 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
411 | ||
412 | // writing algorithm: | |
413 | // a high bit consists of a field off for 1ms and field on for 1ms | |
414 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
415 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
416 | // start by writing 0xBB (keyword) and 0xEB (password) | |
417 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
418 | // finally end with 0x0300 (write frame) | |
419 | // all data is sent lsb firts | |
420 | // finish with 15ms programming time | |
421 | ||
422 | // modulate antenna | |
423 | HIGH(GPIO_SSC_DOUT); | |
424 | SpinDelay(50); // charge time | |
425 | ||
426 | WriteTIbyte(0xbb); // keyword | |
427 | WriteTIbyte(0xeb); // password | |
428 | WriteTIbyte( (idlo )&0xff ); | |
429 | WriteTIbyte( (idlo>>8 )&0xff ); | |
430 | WriteTIbyte( (idlo>>16)&0xff ); | |
431 | WriteTIbyte( (idlo>>24)&0xff ); | |
432 | WriteTIbyte( (idhi )&0xff ); | |
433 | WriteTIbyte( (idhi>>8 )&0xff ); | |
434 | WriteTIbyte( (idhi>>16)&0xff ); | |
435 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
436 | WriteTIbyte( (crc )&0xff ); // crc lo | |
437 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
438 | WriteTIbyte(0x00); // write frame lo | |
439 | WriteTIbyte(0x03); // write frame hi | |
440 | HIGH(GPIO_SSC_DOUT); | |
441 | SpinDelay(50); // programming time | |
442 | ||
443 | LED_A_OFF(); | |
444 | ||
445 | // get TI tag data into the buffer | |
446 | AcquireTiType(); | |
447 | ||
448 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
449 | DbpString("Now use tiread to check"); | |
450 | } | |
451 | ||
06b58a94 | 452 | |
453 | ||
454 | // PIO_CODR = Clear Output Data Register | |
455 | // PIO_SODR = Set Output Data Register | |
456 | //#define LOW(x) AT91C_BASE_PIOA->PIO_CODR = (x) | |
457 | //#define HIGH(x) AT91C_BASE_PIOA->PIO_SODR = (x) | |
a501c82b | 458 | void SimulateTagLowFrequency( uint16_t period, uint32_t gap, uint8_t ledcontrol) |
15c4dc5a | 459 | { |
a501c82b | 460 | LED_D_ON(); |
461 | ||
462 | uint16_t i = 0; | |
463 | uint8_t send = 0; | |
464 | ||
465 | //int overflow = 0; | |
466 | uint8_t *buf = (uint8_t *)BigBuf; | |
467 | ||
468 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
469 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD); | |
470 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
471 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
472 | RELAY_OFF(); | |
473 | ||
474 | // Configure output pin that is connected to the FPGA (for modulating) | |
475 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
476 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
477 | ||
478 | SHORT_COIL(); | |
479 | ||
480 | // Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering | |
481 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0); | |
482 | ||
483 | // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames | |
484 | AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); | |
485 | AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; | |
486 | ||
487 | // Disable timer during configuration | |
488 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
489 | ||
490 | // Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, | |
491 | // external trigger rising edge, load RA on rising edge of TIOA. | |
492 | AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING; | |
493 | ||
494 | // Enable and reset counter | |
495 | //AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
496 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
497 | ||
498 | while(!BUTTON_PRESS()) { | |
499 | WDT_HIT(); | |
500 | ||
501 | // Receive frame, watch for at most T0*EOF periods | |
502 | while (AT91C_BASE_TC1->TC_CV < T0 * 55) { | |
503 | ||
504 | // Check if rising edge in modulation is detected | |
505 | if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { | |
506 | // Retrieve the new timing values | |
507 | //int ra = (AT91C_BASE_TC1->TC_RA/T0) + overflow; | |
508 | //Dbprintf("Timing value - %d %d", ra, overflow); | |
509 | //overflow = 0; | |
510 | ||
511 | // Reset timer every frame, we have to capture the last edge for timing | |
512 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
513 | send = 1; | |
514 | ||
515 | LED_B_ON(); | |
516 | } | |
517 | } | |
518 | ||
519 | if ( send ) { | |
520 | // Disable timer 1 with external trigger to avoid triggers during our own modulation | |
521 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
522 | ||
523 | // Wait for HITAG_T_WAIT_1 carrier periods after the last reader bit, | |
524 | // not that since the clock counts since the rising edge, but T_Wait1 is | |
525 | // with respect to the falling edge, we need to wait actually (T_Wait1 - T_Low) | |
526 | // periods. The gap time T_Low varies (4..10). All timer values are in | |
527 | // terms of T0 units | |
528 | while(AT91C_BASE_TC0->TC_CV < T0 * 16 ); | |
529 | ||
530 | // datat kommer in som 1 bit för varje position i arrayn | |
531 | for(i = 0; i < period; ++i) { | |
532 | ||
533 | // Reset clock for the next bit | |
534 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; | |
535 | ||
536 | if ( buf[i] > 0 ) | |
537 | HIGH(GPIO_SSC_DOUT); | |
538 | else | |
539 | LOW(GPIO_SSC_DOUT); | |
540 | ||
541 | while(AT91C_BASE_TC0->TC_CV < T0 * 1 ); | |
542 | } | |
543 | // Drop modulation | |
544 | LOW(GPIO_SSC_DOUT); | |
545 | ||
546 | // Enable and reset external trigger in timer for capturing future frames | |
547 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; | |
548 | LED_B_OFF(); | |
549 | } | |
550 | ||
551 | send = 0; | |
552 | ||
553 | // Save the timer overflow, will be 0 when frame was received | |
554 | //overflow += (AT91C_BASE_TC1->TC_CV/T0); | |
555 | ||
556 | // Reset the timer to restart while-loop that receives frames | |
557 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; | |
558 | } | |
559 | ||
560 | LED_B_OFF(); | |
561 | LED_D_OFF(); | |
562 | AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; | |
563 | AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; | |
564 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
565 | ||
566 | DbpString("Sim Stopped"); | |
567 | } | |
568 | ||
569 | ||
570 | void SimulateTagLowFrequencyA(int len, int gap) | |
571 | { | |
572 | //Dbprintf("LEN %d || Gap %d",len, gap); | |
573 | ||
8aa79dee | 574 | uint8_t *buf = (uint8_t *)BigBuf; |
a61b4976 | 575 | |
7cc204bf | 576 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
2ae8a312 | 577 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
a501c82b | 578 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE); // new izsh toggle mode! |
c15d2bdc | 579 | |
580 | // Connect the A/D to the peak-detected low-frequency path. | |
06b58a94 | 581 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); |
a61b4976 | 582 | |
06b58a94 | 583 | // Now set up the SSC to get the ADC samples that are now streaming at us. |
584 | FpgaSetupSsc(); | |
a501c82b | 585 | SpinDelay(5); |
c15d2bdc | 586 | |
a501c82b | 587 | AT91C_BASE_SSC->SSC_THR = 0x00; |
c15d2bdc | 588 | |
a501c82b | 589 | int i = 0; |
c15d2bdc | 590 | while(!BUTTON_PRESS()) { |
591 | WDT_HIT(); | |
a501c82b | 592 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { |
593 | ||
594 | if ( buf[i] > 0 ) | |
595 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
596 | else | |
597 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
a61b4976 | 598 | |
a501c82b | 599 | ++i; |
600 | LED_A_ON(); | |
601 | if (i >= len){ | |
602 | i = 0; | |
15c4dc5a | 603 | } |
06b58a94 | 604 | } |
c15d2bdc | 605 | |
a501c82b | 606 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { |
607 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
608 | (void)r; | |
609 | LED_A_OFF(); | |
15c4dc5a | 610 | } |
611 | } | |
a501c82b | 612 | DbpString("lf simulate stopped"); |
613 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
15c4dc5a | 614 | } |
615 | ||
15c4dc5a | 616 | #define DEBUG_FRAME_CONTENTS 1 |
617 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
618 | { | |
15c4dc5a | 619 | } |
620 | ||
621 | // compose fc/8 fc/10 waveform | |
a501c82b | 622 | static void fc(int c, uint16_t *n) { |
f7e3ed82 | 623 | uint8_t *dest = (uint8_t *)BigBuf; |
15c4dc5a | 624 | int idx; |
625 | ||
626 | // for when we want an fc8 pattern every 4 logical bits | |
627 | if(c==0) { | |
628 | dest[((*n)++)]=1; | |
629 | dest[((*n)++)]=1; | |
630 | dest[((*n)++)]=0; | |
631 | dest[((*n)++)]=0; | |
632 | dest[((*n)++)]=0; | |
633 | dest[((*n)++)]=0; | |
634 | dest[((*n)++)]=0; | |
635 | dest[((*n)++)]=0; | |
636 | } | |
637 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
638 | if(c==8) { | |
639 | for (idx=0; idx<6; idx++) { | |
640 | dest[((*n)++)]=1; | |
641 | dest[((*n)++)]=1; | |
642 | dest[((*n)++)]=0; | |
643 | dest[((*n)++)]=0; | |
644 | dest[((*n)++)]=0; | |
645 | dest[((*n)++)]=0; | |
646 | dest[((*n)++)]=0; | |
647 | dest[((*n)++)]=0; | |
648 | } | |
649 | } | |
650 | ||
651 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
652 | if(c==10) { | |
653 | for (idx=0; idx<5; idx++) { | |
654 | dest[((*n)++)]=1; | |
655 | dest[((*n)++)]=1; | |
656 | dest[((*n)++)]=1; | |
657 | dest[((*n)++)]=0; | |
658 | dest[((*n)++)]=0; | |
659 | dest[((*n)++)]=0; | |
660 | dest[((*n)++)]=0; | |
661 | dest[((*n)++)]=0; | |
662 | dest[((*n)++)]=0; | |
663 | dest[((*n)++)]=0; | |
664 | } | |
665 | } | |
666 | } | |
667 | ||
668 | // prepare a waveform pattern in the buffer based on the ID given then | |
669 | // simulate a HID tag until the button is pressed | |
a501c82b | 670 | void CmdHIDsimTAG(int hi, int lo, uint8_t ledcontrol) |
15c4dc5a | 671 | { |
a501c82b | 672 | uint16_t n=0, i=0; |
15c4dc5a | 673 | /* |
674 | HID tag bitstream format | |
675 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
676 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
677 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
678 | A fc8 is inserted before every 4 bits | |
679 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
680 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
681 | */ | |
682 | ||
683 | if (hi>0xFFF) { | |
684 | DbpString("Tags can only have 44 bits."); | |
685 | return; | |
686 | } | |
687 | fc(0,&n); | |
688 | // special start of frame marker containing invalid bit sequences | |
689 | fc(8, &n); fc(8, &n); // invalid | |
690 | fc(8, &n); fc(10, &n); // logical 0 | |
691 | fc(10, &n); fc(10, &n); // invalid | |
692 | fc(8, &n); fc(10, &n); // logical 0 | |
693 | ||
694 | WDT_HIT(); | |
695 | // manchester encode bits 43 to 32 | |
696 | for (i=11; i>=0; i--) { | |
697 | if ((i%4)==3) fc(0,&n); | |
698 | if ((hi>>i)&1) { | |
699 | fc(10, &n); fc(8, &n); // low-high transition | |
700 | } else { | |
701 | fc(8, &n); fc(10, &n); // high-low transition | |
702 | } | |
703 | } | |
704 | ||
705 | WDT_HIT(); | |
706 | // manchester encode bits 31 to 0 | |
707 | for (i=31; i>=0; i--) { | |
708 | if ((i%4)==3) fc(0,&n); | |
709 | if ((lo>>i)&1) { | |
710 | fc(10, &n); fc(8, &n); // low-high transition | |
711 | } else { | |
712 | fc(8, &n); fc(10, &n); // high-low transition | |
713 | } | |
714 | } | |
715 | ||
716 | if (ledcontrol) | |
717 | LED_A_ON(); | |
a61b4976 | 718 | |
15c4dc5a | 719 | SimulateTagLowFrequency(n, 0, ledcontrol); |
720 | ||
721 | if (ledcontrol) | |
722 | LED_A_OFF(); | |
723 | } | |
724 | ||
1b492a97 | 725 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it |
72e930ef | 726 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) |
727 | { | |
a501c82b | 728 | uint8_t *dest = get_bigbufptr_recvrespbuf(); |
72e930ef | 729 | |
6ff6ade2 | 730 | size_t size=0; //, found=0; |
a501c82b | 731 | uint32_t hi2=0, hi=0, lo=0; |
72e930ef | 732 | |
1010aacc | 733 | // Configure to go in 125Khz listen mode |
734 | LFSetupFPGAForADC(0, true); | |
72e930ef | 735 | |
736 | while(!BUTTON_PRESS()) { | |
737 | ||
15c4dc5a | 738 | WDT_HIT(); |
72e930ef | 739 | if (ledcontrol) LED_A_ON(); |
15c4dc5a | 740 | |
1010aacc | 741 | DoAcquisition125k_internal(-1,true); |
6ff6ade2 | 742 | size = sizeof(BigBuf); |
743 | if (size < 2000) continue; | |
72e930ef | 744 | // FSK demodulator |
15c4dc5a | 745 | |
6ff6ade2 | 746 | int bitLen = HIDdemodFSK(dest,size,&hi2,&hi,&lo); |
15c4dc5a | 747 | |
f5ed4d12 | 748 | WDT_HIT(); |
749 | ||
6ff6ade2 | 750 | if (bitLen>0 && lo>0){ |
15c4dc5a | 751 | // final loop, go over previously decoded manchester data and decode into usable tag ID |
752 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
f5ed4d12 | 753 | if (hi2 != 0){ //extra large HID tags |
a501c82b | 754 | Dbprintf("TAG ID: %x%08x%08x (%d)", |
755 | (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
6ff6ade2 | 756 | }else { //standard HID tags <38 bits |
f5ed4d12 | 757 | //Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd |
758 | uint8_t bitlen = 0; | |
759 | uint32_t fc = 0; | |
760 | uint32_t cardnum = 0; | |
761 | if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used | |
762 | uint32_t lo2=0; | |
763 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
764 | uint8_t idx3 = 1; | |
765 | while(lo2>1){ //find last bit set to 1 (format len bit) | |
766 | lo2=lo2>>1; | |
767 | idx3++; | |
768 | } | |
769 | bitlen =idx3+19; | |
770 | fc =0; | |
771 | cardnum=0; | |
772 | if(bitlen==26){ | |
773 | cardnum = (lo>>1)&0xFFFF; | |
774 | fc = (lo>>17)&0xFF; | |
775 | } | |
776 | if(bitlen==37){ | |
777 | cardnum = (lo>>1)&0x7FFFF; | |
778 | fc = ((hi&0xF)<<12)|(lo>>20); | |
779 | } | |
780 | if(bitlen==34){ | |
781 | cardnum = (lo>>1)&0xFFFF; | |
782 | fc= ((hi&1)<<15)|(lo>>17); | |
783 | } | |
784 | if(bitlen==35){ | |
785 | cardnum = (lo>>1)&0xFFFFF; | |
786 | fc = ((hi&1)<<11)|(lo>>21); | |
787 | } | |
788 | } | |
789 | else { //if bit 38 is not set then 37 bit format is used | |
790 | bitlen= 37; | |
791 | fc =0; | |
792 | cardnum=0; | |
793 | if(bitlen==37){ | |
794 | cardnum = (lo>>1)&0x7FFFF; | |
795 | fc = ((hi&0xF)<<12)|(lo>>20); | |
796 | } | |
797 | } | |
798 | //Dbprintf("TAG ID: %x%08x (%d)", | |
799 | // (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); | |
800 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
801 | (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, | |
802 | (unsigned int) bitlen, (unsigned int) fc, (unsigned int) cardnum); | |
803 | } | |
804 | if (findone){ | |
805 | if (ledcontrol) LED_A_OFF(); | |
806 | return; | |
15c4dc5a | 807 | } |
72e930ef | 808 | // reset |
809 | hi2 = hi = lo = 0; | |
15c4dc5a | 810 | } |
811 | WDT_HIT(); | |
6ff6ade2 | 812 | //SpinDelay(50); |
813 | } | |
72e930ef | 814 | DbpString("Stopped"); |
815 | if (ledcontrol) LED_A_OFF(); | |
15c4dc5a | 816 | } |
ec09b62d | 817 | |
6ff6ade2 | 818 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) |
72e930ef | 819 | { |
6ff6ade2 | 820 | uint8_t *dest = (uint8_t *)BigBuf; |
821 | ||
822 | size_t size=0; //, found=0; | |
823 | uint32_t bitLen=0; | |
824 | int clk=0, invert=0, errCnt=0; | |
825 | uint64_t lo=0; | |
826 | // Configure to go in 125Khz listen mode | |
827 | LFSetupFPGAForADC(95, true); | |
828 | ||
829 | while(!BUTTON_PRESS()) { | |
830 | ||
831 | WDT_HIT(); | |
832 | if (ledcontrol) LED_A_ON(); | |
833 | ||
834 | DoAcquisition125k_internal(-1,true); | |
835 | size = sizeof(BigBuf); | |
836 | if (size < 2000) continue; | |
837 | // FSK demodulator | |
838 | //int askmandemod(uint8_t *BinStream,uint32_t *BitLen,int *clk, int *invert); | |
839 | bitLen=size; | |
840 | //Dbprintf("DEBUG: Buffer got"); | |
841 | errCnt = askmandemod(dest,&bitLen,&clk,&invert); //HIDdemodFSK(dest,size,&hi2,&hi,&lo); | |
842 | //Dbprintf("DEBUG: ASK Got"); | |
843 | WDT_HIT(); | |
844 | ||
845 | if (errCnt>=0){ | |
846 | lo = Em410xDecode(dest,bitLen); | |
847 | //Dbprintf("DEBUG: EM GOT"); | |
848 | //printEM410x(lo); | |
849 | if (lo>0){ | |
850 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",(uint32_t)(lo>>32),(uint32_t)lo,(uint32_t)(lo&0xFFFF),(uint32_t)((lo>>16LL) & 0xFF),(uint32_t)(lo & 0xFFFFFF)); | |
851 | } | |
852 | if (findone){ | |
853 | if (ledcontrol) LED_A_OFF(); | |
854 | return; | |
855 | } | |
856 | } else { | |
857 | //Dbprintf("DEBUG: No Tag"); | |
858 | } | |
859 | WDT_HIT(); | |
860 | lo = 0; | |
861 | clk=0; | |
862 | invert=0; | |
863 | errCnt=0; | |
864 | size=0; | |
865 | //SpinDelay(50); | |
72e930ef | 866 | } |
6ff6ade2 | 867 | DbpString("Stopped"); |
868 | if (ledcontrol) LED_A_OFF(); | |
72e930ef | 869 | } |
870 | ||
a1f3bb12 | 871 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) |
872 | { | |
f5ed4d12 | 873 | uint8_t *dest = (uint8_t *)BigBuf; |
6ff6ade2 | 874 | size_t size=0; |
875 | int idx=0; | |
a1f3bb12 | 876 | uint32_t code=0, code2=0; |
6ff6ade2 | 877 | uint8_t version=0; |
878 | uint8_t facilitycode=0; | |
879 | uint16_t number=0; | |
1010aacc | 880 | // Configure to go in 125Khz listen mode |
881 | LFSetupFPGAForADC(0, true); | |
a1f3bb12 | 882 | |
6ff6ade2 | 883 | while(!BUTTON_PRESS()) { |
a501c82b | 884 | |
a1f3bb12 | 885 | WDT_HIT(); |
a501c82b | 886 | |
72e930ef | 887 | if (ledcontrol) LED_A_ON(); |
a1f3bb12 | 888 | |
1010aacc | 889 | DoAcquisition125k_internal(-1,true); |
f5ed4d12 | 890 | size = sizeof(BigBuf); |
1b492a97 | 891 | //make sure buffer has data |
6ff6ade2 | 892 | if (size < 2000) continue; |
893 | //fskdemod and get start index | |
1b492a97 | 894 | WDT_HIT(); |
6ff6ade2 | 895 | idx = IOdemodFSK(dest,size); |
896 | if (idx>0){ | |
897 | //valid tag found | |
898 | ||
a501c82b | 899 | //Index map |
900 | //0 10 20 30 40 50 60 | |
901 | //| | | | | | | | |
902 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
903 | //----------------------------------------------------------------------------- | |
904 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
905 | // | |
906 | //XSF(version)facility:codeone+codetwo | |
72e930ef | 907 | //Handle the data |
a501c82b | 908 | if(findone){ //only print binary if we are doing one |
909 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
910 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
911 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
912 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
913 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
914 | Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
915 | Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
916 | } | |
917 | code = bytebits_to_byte(dest+idx,32); | |
918 | code2 = bytebits_to_byte(dest+idx+32,32); | |
6ff6ade2 | 919 | version = bytebits_to_byte(dest+idx+27,8); //14,4 |
920 | facilitycode = bytebits_to_byte(dest+idx+18,8) ; | |
921 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
a501c82b | 922 | |
6ff6ade2 | 923 | Dbprintf("XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2); |
a501c82b | 924 | // if we're only looking for one tag |
925 | if (findone){ | |
926 | if (ledcontrol) LED_A_OFF(); | |
6ff6ade2 | 927 | return; |
a501c82b | 928 | } |
6ff6ade2 | 929 | code=code2=0; |
930 | version=facilitycode=0; | |
931 | number=0; | |
932 | idx=0; | |
a1f3bb12 | 933 | } |
a501c82b | 934 | WDT_HIT(); |
72e930ef | 935 | } |
936 | DbpString("Stopped"); | |
937 | if (ledcontrol) LED_A_OFF(); | |
a1f3bb12 | 938 | } |
939 | ||
2d4eae76 | 940 | /*------------------------------ |
941 | * T5555/T5557/T5567 routines | |
942 | *------------------------------ | |
943 | */ | |
944 | ||
945 | /* T55x7 configuration register definitions */ | |
f6c18637 | 946 | #define T55x7_POR_DELAY 0x00000001 |
947 | #define T55x7_ST_TERMINATOR 0x00000008 | |
948 | #define T55x7_PWD 0x00000010 | |
2d4eae76 | 949 | #define T55x7_MAXBLOCK_SHIFT 5 |
f6c18637 | 950 | #define T55x7_AOR 0x00000200 |
951 | #define T55x7_PSKCF_RF_2 0 | |
952 | #define T55x7_PSKCF_RF_4 0x00000400 | |
953 | #define T55x7_PSKCF_RF_8 0x00000800 | |
2d4eae76 | 954 | #define T55x7_MODULATION_DIRECT 0 |
955 | #define T55x7_MODULATION_PSK1 0x00001000 | |
956 | #define T55x7_MODULATION_PSK2 0x00002000 | |
957 | #define T55x7_MODULATION_PSK3 0x00003000 | |
958 | #define T55x7_MODULATION_FSK1 0x00004000 | |
959 | #define T55x7_MODULATION_FSK2 0x00005000 | |
960 | #define T55x7_MODULATION_FSK1a 0x00006000 | |
961 | #define T55x7_MODULATION_FSK2a 0x00007000 | |
962 | #define T55x7_MODULATION_MANCHESTER 0x00008000 | |
963 | #define T55x7_MODULATION_BIPHASE 0x00010000 | |
f6c18637 | 964 | #define T55x7_BITRATE_RF_8 0 |
965 | #define T55x7_BITRATE_RF_16 0x00040000 | |
966 | #define T55x7_BITRATE_RF_32 0x00080000 | |
967 | #define T55x7_BITRATE_RF_40 0x000C0000 | |
968 | #define T55x7_BITRATE_RF_50 0x00100000 | |
969 | #define T55x7_BITRATE_RF_64 0x00140000 | |
2d4eae76 | 970 | #define T55x7_BITRATE_RF_100 0x00180000 |
971 | #define T55x7_BITRATE_RF_128 0x001C0000 | |
972 | ||
973 | /* T5555 (Q5) configuration register definitions */ | |
f6c18637 | 974 | #define T5555_ST_TERMINATOR 0x00000001 |
2d4eae76 | 975 | #define T5555_MAXBLOCK_SHIFT 0x00000001 |
976 | #define T5555_MODULATION_MANCHESTER 0 | |
977 | #define T5555_MODULATION_PSK1 0x00000010 | |
978 | #define T5555_MODULATION_PSK2 0x00000020 | |
979 | #define T5555_MODULATION_PSK3 0x00000030 | |
980 | #define T5555_MODULATION_FSK1 0x00000040 | |
981 | #define T5555_MODULATION_FSK2 0x00000050 | |
982 | #define T5555_MODULATION_BIPHASE 0x00000060 | |
983 | #define T5555_MODULATION_DIRECT 0x00000070 | |
f6c18637 | 984 | #define T5555_INVERT_OUTPUT 0x00000080 |
985 | #define T5555_PSK_RF_2 0 | |
986 | #define T5555_PSK_RF_4 0x00000100 | |
987 | #define T5555_PSK_RF_8 0x00000200 | |
988 | #define T5555_USE_PWD 0x00000400 | |
989 | #define T5555_USE_AOR 0x00000800 | |
990 | #define T5555_BITRATE_SHIFT 12 | |
991 | #define T5555_FAST_WRITE 0x00004000 | |
992 | #define T5555_PAGE_SELECT 0x00008000 | |
2d4eae76 | 993 | |
994 | /* | |
995 | * Relevant times in microsecond | |
996 | * To compensate antenna falling times shorten the write times | |
997 | * and enlarge the gap ones. | |
998 | */ | |
f6c18637 | 999 | #define START_GAP 30*8 // 10 - 50fc 250 |
1000 | #define WRITE_GAP 20*8 // 8 - 30fc | |
1001 | #define WRITE_0 24*8 // 16 - 31fc 24fc 192 | |
1002 | #define WRITE_1 54*8 // 48 - 63fc 54fc 432 for T55x7; 448 for E5550 | |
2d4eae76 | 1003 | |
f6c18637 | 1004 | // VALUES TAKEN FROM EM4x function: SendForward |
1005 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1006 | // WRITE_GAP = 128; (16*8) | |
1007 | // WRITE_1 = 256 32*8; (32*8) | |
f38a1528 | 1008 | |
f6c18637 | 1009 | // These timings work for 4469/4269/4305 (with the 55*8 above) |
1010 | // WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8); | |
f38a1528 | 1011 | |
f6c18637 | 1012 | #define T55xx_SAMPLES_SIZE 12000 // 32 x 32 x 10 (32 bit times numofblock (7), times clock skip..) |
f38a1528 | 1013 | |
2d4eae76 | 1014 | // Write one bit to card |
1015 | void T55xxWriteBit(int bit) | |
ec09b62d | 1016 | { |
7cc204bf | 1017 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
ec09b62d | 1018 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
b014c96d | 1019 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
f6c18637 | 1020 | if (!bit) |
2d4eae76 | 1021 | SpinDelayUs(WRITE_0); |
1022 | else | |
1023 | SpinDelayUs(WRITE_1); | |
ec09b62d | 1024 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2d4eae76 | 1025 | SpinDelayUs(WRITE_GAP); |
ec09b62d | 1026 | } |
1027 | ||
2d4eae76 | 1028 | // Write one card block in page 0, no lock |
54a942b0 | 1029 | void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) |
ec09b62d | 1030 | { |
f6c18637 | 1031 | uint32_t i = 0; |
ec09b62d | 1032 | |
f6c18637 | 1033 | // Set up FPGA, 125kHz |
1034 | // Wait for config.. (192+8190xPOW)x8 == 67ms | |
1035 | LFSetupFPGAForADC(0, true); | |
ec09b62d | 1036 | |
2d4eae76 | 1037 | // Now start writting |
ec09b62d | 1038 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
2d4eae76 | 1039 | SpinDelayUs(START_GAP); |
1040 | ||
1041 | // Opcode | |
1042 | T55xxWriteBit(1); | |
1043 | T55xxWriteBit(0); //Page 0 | |
f6c18637 | 1044 | if (PwdMode == 1){ |
1045 | // Pwd | |
1046 | for (i = 0x80000000; i != 0; i >>= 1) | |
1047 | T55xxWriteBit(Pwd & i); | |
1048 | } | |
2d4eae76 | 1049 | // Lock bit |
1050 | T55xxWriteBit(0); | |
1051 | ||
1052 | // Data | |
1053 | for (i = 0x80000000; i != 0; i >>= 1) | |
1054 | T55xxWriteBit(Data & i); | |
1055 | ||
54a942b0 | 1056 | // Block |
2d4eae76 | 1057 | for (i = 0x04; i != 0; i >>= 1) |
1058 | T55xxWriteBit(Block & i); | |
1059 | ||
1060 | // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1061 | // so wait a little more) | |
1062 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
b014c96d | 1063 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
ec09b62d | 1064 | SpinDelay(20); |
2d4eae76 | 1065 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
ec09b62d | 1066 | } |
1067 | ||
54a942b0 | 1068 | // Read one card block in page 0 |
1069 | void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode) | |
ec09b62d | 1070 | { |
a501c82b | 1071 | uint8_t *dest = get_bigbufptr_recvrespbuf(); |
f6c18637 | 1072 | uint16_t bufferlength = T55xx_SAMPLES_SIZE; |
f38a1528 | 1073 | uint32_t i = 0; |
1074 | ||
1075 | // Clear destination buffer before sending the command 0x80 = average. | |
1076 | memset(dest, 0x80, bufferlength); | |
f6c18637 | 1077 | |
1078 | // Set up FPGA, 125kHz | |
1079 | // Wait for config.. (192+8190xPOW)x8 == 67ms | |
1080 | LFSetupFPGAForADC(0, true); | |
1081 | ||
54a942b0 | 1082 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1083 | SpinDelayUs(START_GAP); | |
1084 | ||
1085 | // Opcode | |
1086 | T55xxWriteBit(1); | |
1087 | T55xxWriteBit(0); //Page 0 | |
1088 | if (PwdMode == 1){ | |
1089 | // Pwd | |
1090 | for (i = 0x80000000; i != 0; i >>= 1) | |
1091 | T55xxWriteBit(Pwd & i); | |
ec09b62d | 1092 | } |
54a942b0 | 1093 | // Lock bit |
1094 | T55xxWriteBit(0); | |
1095 | // Block | |
1096 | for (i = 0x04; i != 0; i >>= 1) | |
1097 | T55xxWriteBit(Block & i); | |
1098 | ||
f6c18637 | 1099 | // Turn field on to read the response |
1100 | TurnReadLFOn(); | |
54a942b0 | 1101 | |
1102 | // Now do the acquisition | |
1103 | i = 0; | |
1104 | for(;;) { | |
1105 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1106 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
a501c82b | 1107 | //AT91C_BASE_SSC->SSC_THR = 0xff; |
f38a1528 | 1108 | LED_D_ON(); |
54a942b0 | 1109 | } |
1110 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1111 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
f38a1528 | 1112 | ++i; |
f6c18637 | 1113 | LED_D_OFF(); |
1b492a97 | 1114 | if (i >= bufferlength) break; |
54a942b0 | 1115 | } |
ec09b62d | 1116 | } |
f38a1528 | 1117 | |
1118 | cmd_send(CMD_ACK,0,0,0,0,0); | |
f6c18637 | 1119 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
54a942b0 | 1120 | LED_D_OFF(); |
54a942b0 | 1121 | } |
2d4eae76 | 1122 | |
54a942b0 | 1123 | // Read card traceability data (page 1) |
1124 | void T55xxReadTrace(void){ | |
a501c82b | 1125 | uint8_t *dest = get_bigbufptr_recvrespbuf(); |
f6c18637 | 1126 | uint16_t bufferlength = T55xx_SAMPLES_SIZE; |
a501c82b | 1127 | uint32_t i = 0; |
f38a1528 | 1128 | |
1129 | // Clear destination buffer before sending the command 0x80 = average | |
1130 | memset(dest, 0x80, bufferlength); | |
54a942b0 | 1131 | |
f6c18637 | 1132 | LFSetupFPGAForADC(0, true); |
54a942b0 | 1133 | |
54a942b0 | 1134 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); |
1135 | SpinDelayUs(START_GAP); | |
1136 | ||
1137 | // Opcode | |
1138 | T55xxWriteBit(1); | |
1139 | T55xxWriteBit(1); //Page 1 | |
1140 | ||
f6c18637 | 1141 | // Turn field on to read the response |
1142 | TurnReadLFOn(); | |
54a942b0 | 1143 | |
1144 | // Now do the acquisition | |
54a942b0 | 1145 | for(;;) { |
1146 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1147 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
f38a1528 | 1148 | LED_D_ON(); |
54a942b0 | 1149 | } |
1150 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1151 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
f6c18637 | 1152 | ++i; |
f38a1528 | 1153 | LED_D_OFF(); |
f6c18637 | 1154 | |
f38a1528 | 1155 | if (i >= bufferlength) break; |
54a942b0 | 1156 | } |
ec09b62d | 1157 | } |
54a942b0 | 1158 | |
f38a1528 | 1159 | cmd_send(CMD_ACK,0,0,0,0,0); |
f6c18637 | 1160 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
54a942b0 | 1161 | LED_D_OFF(); |
54a942b0 | 1162 | } |
ec09b62d | 1163 | |
f6c18637 | 1164 | void TurnReadLFOn(){ |
1165 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
1166 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1167 | // Give it a bit of time for the resonant antenna to settle. | |
1168 | //SpinDelay(30); | |
1169 | SpinDelayUs(8*150); | |
1170 | } | |
1171 | ||
54a942b0 | 1172 | /*-------------- Cloning routines -----------*/ |
1173 | // Copy HID id to card and setup block 0 config | |
1174 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) | |
1175 | { | |
1176 | int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format | |
1177 | int last_block = 0; | |
1178 | ||
1179 | if (longFMT){ | |
1180 | // Ensure no more than 84 bits supplied | |
1181 | if (hi2>0xFFFFF) { | |
1182 | DbpString("Tags can only have 84 bits."); | |
1183 | return; | |
1184 | } | |
1185 | // Build the 6 data blocks for supplied 84bit ID | |
1186 | last_block = 6; | |
1187 | data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded) | |
1188 | for (int i=0;i<4;i++) { | |
1189 | if (hi2 & (1<<(19-i))) | |
1190 | data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10 | |
1191 | else | |
1192 | data1 |= (1<<((3-i)*2)); // 0 -> 01 | |
1193 | } | |
1194 | ||
1195 | data2 = 0; | |
1196 | for (int i=0;i<16;i++) { | |
1197 | if (hi2 & (1<<(15-i))) | |
1198 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1199 | else | |
1200 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1201 | } | |
1202 | ||
1203 | data3 = 0; | |
1204 | for (int i=0;i<16;i++) { | |
1205 | if (hi & (1<<(31-i))) | |
1206 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1207 | else | |
1208 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1209 | } | |
1210 | ||
1211 | data4 = 0; | |
1212 | for (int i=0;i<16;i++) { | |
1213 | if (hi & (1<<(15-i))) | |
1214 | data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1215 | else | |
1216 | data4 |= (1<<((15-i)*2)); // 0 -> 01 | |
1217 | } | |
1218 | ||
1219 | data5 = 0; | |
1220 | for (int i=0;i<16;i++) { | |
1221 | if (lo & (1<<(31-i))) | |
1222 | data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1223 | else | |
1224 | data5 |= (1<<((15-i)*2)); // 0 -> 01 | |
1225 | } | |
1226 | ||
1227 | data6 = 0; | |
1228 | for (int i=0;i<16;i++) { | |
1229 | if (lo & (1<<(15-i))) | |
1230 | data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1231 | else | |
1232 | data6 |= (1<<((15-i)*2)); // 0 -> 01 | |
1233 | } | |
1234 | } | |
1235 | else { | |
1236 | // Ensure no more than 44 bits supplied | |
1237 | if (hi>0xFFF) { | |
1238 | DbpString("Tags can only have 44 bits."); | |
1239 | return; | |
1240 | } | |
1241 | ||
1242 | // Build the 3 data blocks for supplied 44bit ID | |
1243 | last_block = 3; | |
1244 | ||
1245 | data1 = 0x1D000000; // load preamble | |
1246 | ||
1247 | for (int i=0;i<12;i++) { | |
1248 | if (hi & (1<<(11-i))) | |
1249 | data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10 | |
1250 | else | |
1251 | data1 |= (1<<((11-i)*2)); // 0 -> 01 | |
1252 | } | |
1253 | ||
1254 | data2 = 0; | |
1255 | for (int i=0;i<16;i++) { | |
1256 | if (lo & (1<<(31-i))) | |
1257 | data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1258 | else | |
1259 | data2 |= (1<<((15-i)*2)); // 0 -> 01 | |
1260 | } | |
1261 | ||
1262 | data3 = 0; | |
1263 | for (int i=0;i<16;i++) { | |
1264 | if (lo & (1<<(15-i))) | |
1265 | data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10 | |
1266 | else | |
1267 | data3 |= (1<<((15-i)*2)); // 0 -> 01 | |
1268 | } | |
1269 | } | |
1270 | ||
1271 | LED_D_ON(); | |
1272 | // Program the data blocks for supplied ID | |
ec09b62d | 1273 | // and the block 0 for HID format |
54a942b0 | 1274 | T55xxWriteBlock(data1,1,0,0); |
1275 | T55xxWriteBlock(data2,2,0,0); | |
1276 | T55xxWriteBlock(data3,3,0,0); | |
1277 | ||
1278 | if (longFMT) { // if long format there are 6 blocks | |
1279 | T55xxWriteBlock(data4,4,0,0); | |
1280 | T55xxWriteBlock(data5,5,0,0); | |
1281 | T55xxWriteBlock(data6,6,0,0); | |
1282 | } | |
1283 | ||
1284 | // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long) | |
f6c18637 | 1285 | T55xxWriteBlock(T55x7_BITRATE_RF_50 | |
54a942b0 | 1286 | T55x7_MODULATION_FSK2a | |
1287 | last_block << T55x7_MAXBLOCK_SHIFT, | |
1288 | 0,0,0); | |
1289 | ||
1290 | LED_D_OFF(); | |
1291 | ||
ec09b62d | 1292 | DbpString("DONE!"); |
2d4eae76 | 1293 | } |
ec09b62d | 1294 | |
a1f3bb12 | 1295 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT) |
1296 | { | |
1297 | int data1=0, data2=0; //up to six blocks for long format | |
1298 | ||
1299 | data1 = hi; // load preamble | |
1300 | data2 = lo; | |
1301 | ||
1302 | LED_D_ON(); | |
1303 | // Program the data blocks for supplied ID | |
1304 | // and the block 0 for HID format | |
1305 | T55xxWriteBlock(data1,1,0,0); | |
1306 | T55xxWriteBlock(data2,2,0,0); | |
1307 | ||
1308 | //Config Block | |
1309 | T55xxWriteBlock(0x00147040,0,0,0); | |
1310 | LED_D_OFF(); | |
1311 | ||
1312 | DbpString("DONE!"); | |
1313 | } | |
1314 | ||
2d4eae76 | 1315 | // Define 9bit header for EM410x tags |
1316 | #define EM410X_HEADER 0x1FF | |
1317 | #define EM410X_ID_LENGTH 40 | |
ec09b62d | 1318 | |
2d4eae76 | 1319 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) |
1320 | { | |
1321 | int i, id_bit; | |
1322 | uint64_t id = EM410X_HEADER; | |
1323 | uint64_t rev_id = 0; // reversed ID | |
1324 | int c_parity[4]; // column parity | |
1325 | int r_parity = 0; // row parity | |
e67b06b7 | 1326 | uint32_t clock = 0; |
2d4eae76 | 1327 | |
1328 | // Reverse ID bits given as parameter (for simpler operations) | |
1329 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1330 | if (i < 32) { | |
1331 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1332 | id_lo >>= 1; | |
1333 | } else { | |
1334 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1335 | id_hi >>= 1; | |
1336 | } | |
1337 | } | |
1338 | ||
1339 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1340 | id_bit = rev_id & 1; | |
1341 | ||
1342 | if (i % 4 == 0) { | |
1343 | // Don't write row parity bit at start of parsing | |
1344 | if (i) | |
1345 | id = (id << 1) | r_parity; | |
1346 | // Start counting parity for new row | |
1347 | r_parity = id_bit; | |
1348 | } else { | |
1349 | // Count row parity | |
1350 | r_parity ^= id_bit; | |
1351 | } | |
1352 | ||
1353 | // First elements in column? | |
1354 | if (i < 4) | |
1355 | // Fill out first elements | |
1356 | c_parity[i] = id_bit; | |
1357 | else | |
1358 | // Count column parity | |
1359 | c_parity[i % 4] ^= id_bit; | |
1360 | ||
1361 | // Insert ID bit | |
1362 | id = (id << 1) | id_bit; | |
1363 | rev_id >>= 1; | |
1364 | } | |
1365 | ||
1366 | // Insert parity bit of last row | |
1367 | id = (id << 1) | r_parity; | |
1368 | ||
1369 | // Fill out column parity at the end of tag | |
1370 | for (i = 0; i < 4; ++i) | |
1371 | id = (id << 1) | c_parity[i]; | |
1372 | ||
1373 | // Add stop bit | |
1374 | id <<= 1; | |
1375 | ||
1376 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1377 | LED_D_ON(); | |
1378 | ||
1379 | // Write EM410x ID | |
54a942b0 | 1380 | T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0); |
1381 | T55xxWriteBlock((uint32_t)id, 2, 0, 0); | |
2d4eae76 | 1382 | |
1383 | // Config for EM410x (RF/64, Manchester, Maxblock=2) | |
e67b06b7 | 1384 | if (card) { |
1385 | // Clock rate is stored in bits 8-15 of the card value | |
1386 | clock = (card & 0xFF00) >> 8; | |
1387 | Dbprintf("Clock rate: %d", clock); | |
1388 | switch (clock) | |
1389 | { | |
1390 | case 32: | |
1391 | clock = T55x7_BITRATE_RF_32; | |
1392 | break; | |
1393 | case 16: | |
1394 | clock = T55x7_BITRATE_RF_16; | |
1395 | break; | |
1396 | case 0: | |
1397 | // A value of 0 is assumed to be 64 for backwards-compatibility | |
1398 | // Fall through... | |
1399 | case 64: | |
1400 | clock = T55x7_BITRATE_RF_64; | |
1401 | break; | |
1402 | default: | |
1403 | Dbprintf("Invalid clock rate: %d", clock); | |
1404 | return; | |
1405 | } | |
1406 | ||
2d4eae76 | 1407 | // Writing configuration for T55x7 tag |
e67b06b7 | 1408 | T55xxWriteBlock(clock | |
2d4eae76 | 1409 | T55x7_MODULATION_MANCHESTER | |
1410 | 2 << T55x7_MAXBLOCK_SHIFT, | |
54a942b0 | 1411 | 0, 0, 0); |
e67b06b7 | 1412 | } |
2d4eae76 | 1413 | else |
1414 | // Writing configuration for T5555(Q5) tag | |
1415 | T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT | | |
1416 | T5555_MODULATION_MANCHESTER | | |
1417 | 2 << T5555_MAXBLOCK_SHIFT, | |
54a942b0 | 1418 | 0, 0, 0); |
2d4eae76 | 1419 | |
1420 | LED_D_OFF(); | |
1421 | Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555", | |
1422 | (uint32_t)(id >> 32), (uint32_t)id); | |
1423 | } | |
2414f978 | 1424 | |
1425 | // Clone Indala 64-bit tag by UID to T55x7 | |
1426 | void CopyIndala64toT55x7(int hi, int lo) | |
1427 | { | |
2414f978 | 1428 | //Program the 2 data blocks for supplied 64bit UID |
1429 | // and the block 0 for Indala64 format | |
54a942b0 | 1430 | T55xxWriteBlock(hi,1,0,0); |
1431 | T55xxWriteBlock(lo,2,0,0); | |
2414f978 | 1432 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2) |
1433 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1434 | T55x7_MODULATION_PSK1 | | |
1435 | 2 << T55x7_MAXBLOCK_SHIFT, | |
54a942b0 | 1436 | 0, 0, 0); |
2414f978 | 1437 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) |
f6c18637 | 1438 | // T5567WriteBlock(0x603E1042,0); |
2414f978 | 1439 | |
1440 | DbpString("DONE!"); | |
2414f978 | 1441 | } |
1442 | ||
1443 | void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7) | |
1444 | { | |
2414f978 | 1445 | //Program the 7 data blocks for supplied 224bit UID |
1446 | // and the block 0 for Indala224 format | |
54a942b0 | 1447 | T55xxWriteBlock(uid1,1,0,0); |
1448 | T55xxWriteBlock(uid2,2,0,0); | |
1449 | T55xxWriteBlock(uid3,3,0,0); | |
1450 | T55xxWriteBlock(uid4,4,0,0); | |
1451 | T55xxWriteBlock(uid5,5,0,0); | |
1452 | T55xxWriteBlock(uid6,6,0,0); | |
1453 | T55xxWriteBlock(uid7,7,0,0); | |
2414f978 | 1454 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) |
1455 | T55xxWriteBlock(T55x7_BITRATE_RF_32 | | |
1456 | T55x7_MODULATION_PSK1 | | |
1457 | 7 << T55x7_MAXBLOCK_SHIFT, | |
54a942b0 | 1458 | 0,0,0); |
2414f978 | 1459 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) |
f6c18637 | 1460 | // T5567WriteBlock(0x603E10E2,0); |
2414f978 | 1461 | |
1462 | DbpString("DONE!"); | |
2414f978 | 1463 | } |
54a942b0 | 1464 | |
1465 | ||
1466 | #define abs(x) ( ((x)<0) ? -(x) : (x) ) | |
1467 | #define max(x,y) ( x<y ? y:x) | |
1468 | ||
1469 | int DemodPCF7931(uint8_t **outBlocks) { | |
1470 | uint8_t BitStream[256]; | |
1471 | uint8_t Blocks[8][16]; | |
1472 | uint8_t *GraphBuffer = (uint8_t *)BigBuf; | |
1473 | int GraphTraceLen = sizeof(BigBuf); | |
1474 | int i, j, lastval, bitidx, half_switch; | |
1475 | int clock = 64; | |
1476 | int tolerance = clock / 8; | |
1477 | int pmc, block_done; | |
1478 | int lc, warnings = 0; | |
1479 | int num_blocks = 0; | |
1480 | int lmin=128, lmax=128; | |
1481 | uint8_t dir; | |
1482 | ||
1483 | AcquireRawAdcSamples125k(0); | |
1484 | ||
1485 | lmin = 64; | |
1486 | lmax = 192; | |
1487 | ||
1488 | i = 2; | |
1489 | ||
1490 | /* Find first local max/min */ | |
1491 | if(GraphBuffer[1] > GraphBuffer[0]) { | |
1492 | while(i < GraphTraceLen) { | |
1493 | if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax) | |
1494 | break; | |
1495 | i++; | |
1496 | } | |
1497 | dir = 0; | |
1498 | } | |
1499 | else { | |
1500 | while(i < GraphTraceLen) { | |
1501 | if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin) | |
1502 | break; | |
1503 | i++; | |
1504 | } | |
1505 | dir = 1; | |
1506 | } | |
1507 | ||
1508 | lastval = i++; | |
1509 | half_switch = 0; | |
1510 | pmc = 0; | |
1511 | block_done = 0; | |
1512 | ||
1513 | for (bitidx = 0; i < GraphTraceLen; i++) | |
1514 | { | |
1515 | if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin)) | |
1516 | { | |
1517 | lc = i - lastval; | |
1518 | lastval = i; | |
1519 | ||
1520 | // Switch depending on lc length: | |
1521 | // Tolerance is 1/8 of clock rate (arbitrary) | |
1522 | if (abs(lc-clock/4) < tolerance) { | |
1523 | // 16T0 | |
1524 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1525 | /* It's a PMC ! */ | |
1526 | i += (128+127+16+32+33+16)-1; | |
1527 | lastval = i; | |
1528 | pmc = 0; | |
1529 | block_done = 1; | |
1530 | } | |
1531 | else { | |
1532 | pmc = i; | |
1533 | } | |
1534 | } else if (abs(lc-clock/2) < tolerance) { | |
1535 | // 32TO | |
1536 | if((i - pmc) == lc) { /* 16T0 was previous one */ | |
1537 | /* It's a PMC ! */ | |
1538 | i += (128+127+16+32+33)-1; | |
1539 | lastval = i; | |
1540 | pmc = 0; | |
1541 | block_done = 1; | |
1542 | } | |
1543 | else if(half_switch == 1) { | |
1544 | BitStream[bitidx++] = 0; | |
1545 | half_switch = 0; | |
1546 | } | |
1547 | else | |
1548 | half_switch++; | |
1549 | } else if (abs(lc-clock) < tolerance) { | |
1550 | // 64TO | |
1551 | BitStream[bitidx++] = 1; | |
1552 | } else { | |
1553 | // Error | |
1554 | warnings++; | |
1555 | if (warnings > 10) | |
1556 | { | |
1557 | Dbprintf("Error: too many detection errors, aborting."); | |
1558 | return 0; | |
1559 | } | |
1560 | } | |
1561 | ||
1562 | if(block_done == 1) { | |
1563 | if(bitidx == 128) { | |
1564 | for(j=0; j<16; j++) { | |
1565 | Blocks[num_blocks][j] = 128*BitStream[j*8+7]+ | |
1566 | 64*BitStream[j*8+6]+ | |
1567 | 32*BitStream[j*8+5]+ | |
1568 | 16*BitStream[j*8+4]+ | |
1569 | 8*BitStream[j*8+3]+ | |
1570 | 4*BitStream[j*8+2]+ | |
1571 | 2*BitStream[j*8+1]+ | |
1572 | BitStream[j*8]; | |
1573 | } | |
1574 | num_blocks++; | |
1575 | } | |
1576 | bitidx = 0; | |
1577 | block_done = 0; | |
1578 | half_switch = 0; | |
1579 | } | |
f5ed4d12 | 1580 | if(i < GraphTraceLen) |
1581 | { | |
54a942b0 | 1582 | if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0; |
1583 | else dir = 1; | |
1584 | } | |
f5ed4d12 | 1585 | } |
54a942b0 | 1586 | if(bitidx==255) |
1587 | bitidx=0; | |
1588 | warnings = 0; | |
1589 | if(num_blocks == 4) break; | |
1590 | } | |
1591 | memcpy(outBlocks, Blocks, 16*num_blocks); | |
1592 | return num_blocks; | |
1593 | } | |
1594 | ||
1595 | int IsBlock0PCF7931(uint8_t *Block) { | |
1596 | // Assume RFU means 0 :) | |
1597 | if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled | |
1598 | return 1; | |
1599 | if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ? | |
1600 | return 1; | |
1601 | return 0; | |
1602 | } | |
1603 | ||
1604 | int IsBlock1PCF7931(uint8_t *Block) { | |
1605 | // Assume RFU means 0 :) | |
1606 | if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0) | |
1607 | if((Block[14] & 0x7f) <= 9 && Block[15] <= 9) | |
1608 | return 1; | |
1609 | ||
1610 | return 0; | |
1611 | } | |
54a942b0 | 1612 | #define ALLOC 16 |
1613 | ||
1614 | void ReadPCF7931() { | |
1615 | uint8_t Blocks[8][17]; | |
1616 | uint8_t tmpBlocks[4][16]; | |
1617 | int i, j, ind, ind2, n; | |
1618 | int num_blocks = 0; | |
1619 | int max_blocks = 8; | |
1620 | int ident = 0; | |
1621 | int error = 0; | |
1622 | int tries = 0; | |
1623 | ||
1624 | memset(Blocks, 0, 8*17*sizeof(uint8_t)); | |
1625 | ||
1626 | do { | |
1627 | memset(tmpBlocks, 0, 4*16*sizeof(uint8_t)); | |
1628 | n = DemodPCF7931((uint8_t**)tmpBlocks); | |
1629 | if(!n) | |
1630 | error++; | |
1631 | if(error==10 && num_blocks == 0) { | |
1632 | Dbprintf("Error, no tag or bad tag"); | |
1633 | return; | |
1634 | } | |
1635 | else if (tries==20 || error==10) { | |
1636 | Dbprintf("Error reading the tag"); | |
1637 | Dbprintf("Here is the partial content"); | |
1638 | goto end; | |
1639 | } | |
1640 | ||
1641 | for(i=0; i<n; i++) | |
1642 | Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1643 | tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7], | |
1644 | tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]); | |
1645 | if(!ident) { | |
1646 | for(i=0; i<n; i++) { | |
1647 | if(IsBlock0PCF7931(tmpBlocks[i])) { | |
1648 | // Found block 0 ? | |
1649 | if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) { | |
1650 | // Found block 1! | |
1651 | // \o/ | |
1652 | ident = 1; | |
1653 | memcpy(Blocks[0], tmpBlocks[i], 16); | |
1654 | Blocks[0][ALLOC] = 1; | |
1655 | memcpy(Blocks[1], tmpBlocks[i+1], 16); | |
1656 | Blocks[1][ALLOC] = 1; | |
1657 | max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1; | |
1658 | // Debug print | |
1659 | Dbprintf("(dbg) Max blocks: %d", max_blocks); | |
1660 | num_blocks = 2; | |
1661 | // Handle following blocks | |
1662 | for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) { | |
1663 | if(j==n) j=0; | |
1664 | if(j==i) break; | |
1665 | memcpy(Blocks[ind2], tmpBlocks[j], 16); | |
1666 | Blocks[ind2][ALLOC] = 1; | |
1667 | } | |
1668 | break; | |
1669 | } | |
1670 | } | |
1671 | } | |
1672 | } | |
1673 | else { | |
1674 | for(i=0; i<n; i++) { // Look for identical block in known blocks | |
1675 | if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00 | |
1676 | for(j=0; j<max_blocks; j++) { | |
1677 | if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) { | |
1678 | // Found an identical block | |
1679 | for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) { | |
1680 | if(ind2 < 0) | |
1681 | ind2 = max_blocks; | |
1682 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1683 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1684 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1685 | Blocks[ind2][ALLOC] = 1; | |
1686 | num_blocks++; | |
1687 | if(num_blocks == max_blocks) goto end; | |
1688 | } | |
1689 | } | |
1690 | for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) { | |
1691 | if(ind2 > max_blocks) | |
1692 | ind2 = 0; | |
1693 | if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found | |
1694 | // Dbprintf("Tmp %d -> Block %d", ind, ind2); | |
1695 | memcpy(Blocks[ind2], tmpBlocks[ind], 16); | |
1696 | Blocks[ind2][ALLOC] = 1; | |
1697 | num_blocks++; | |
1698 | if(num_blocks == max_blocks) goto end; | |
1699 | } | |
1700 | } | |
1701 | } | |
1702 | } | |
1703 | } | |
1704 | } | |
1705 | } | |
1706 | tries++; | |
1707 | if (BUTTON_PRESS()) return; | |
1708 | } while (num_blocks != max_blocks); | |
1709 | end: | |
1710 | Dbprintf("-----------------------------------------"); | |
1711 | Dbprintf("Memory content:"); | |
1712 | Dbprintf("-----------------------------------------"); | |
1713 | for(i=0; i<max_blocks; i++) { | |
1714 | if(Blocks[i][ALLOC]==1) | |
1715 | Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1716 | Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7], | |
1717 | Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]); | |
1718 | else | |
1719 | Dbprintf("<missing block %d>", i); | |
1720 | } | |
1721 | Dbprintf("-----------------------------------------"); | |
1722 | ||
1723 | return ; | |
1724 | } | |
1725 | ||
1726 | ||
1727 | //----------------------------------- | |
1728 | // EM4469 / EM4305 routines | |
1729 | //----------------------------------- | |
1730 | #define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored | |
1731 | #define FWD_CMD_WRITE 0xA | |
1732 | #define FWD_CMD_READ 0x9 | |
1733 | #define FWD_CMD_DISABLE 0x5 | |
1734 | ||
1735 | ||
1736 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1737 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1738 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1739 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1740 | ||
1741 | //==================================================================== | |
1742 | // prepares command bits | |
1743 | // see EM4469 spec | |
1744 | //==================================================================== | |
1745 | //-------------------------------------------------------------------- | |
1746 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1747 | //-------------------------------------------------------------------- | |
1748 | ||
1749 | *forward_ptr++ = 0; //start bit | |
1750 | *forward_ptr++ = 0; //second pause for 4050 code | |
1751 | ||
1752 | *forward_ptr++ = cmd; | |
1753 | cmd >>= 1; | |
1754 | *forward_ptr++ = cmd; | |
1755 | cmd >>= 1; | |
1756 | *forward_ptr++ = cmd; | |
1757 | cmd >>= 1; | |
1758 | *forward_ptr++ = cmd; | |
1759 | ||
1760 | return 6; //return number of emited bits | |
1761 | } | |
1762 | ||
1763 | //==================================================================== | |
1764 | // prepares address bits | |
1765 | // see EM4469 spec | |
1766 | //==================================================================== | |
1767 | ||
1768 | //-------------------------------------------------------------------- | |
1769 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1770 | //-------------------------------------------------------------------- | |
1771 | ||
1772 | register uint8_t line_parity; | |
1773 | ||
1774 | uint8_t i; | |
1775 | line_parity = 0; | |
1776 | for(i=0;i<6;i++) { | |
1777 | *forward_ptr++ = addr; | |
1778 | line_parity ^= addr; | |
1779 | addr >>= 1; | |
1780 | } | |
1781 | ||
1782 | *forward_ptr++ = (line_parity & 1); | |
1783 | ||
1784 | return 7; //return number of emited bits | |
1785 | } | |
1786 | ||
1787 | //==================================================================== | |
1788 | // prepares data bits intreleaved with parity bits | |
1789 | // see EM4469 spec | |
1790 | //==================================================================== | |
1791 | ||
1792 | //-------------------------------------------------------------------- | |
1793 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1794 | //-------------------------------------------------------------------- | |
1795 | ||
1796 | register uint8_t line_parity; | |
1797 | register uint8_t column_parity; | |
1798 | register uint8_t i, j; | |
1799 | register uint16_t data; | |
1800 | ||
1801 | data = data_low; | |
1802 | column_parity = 0; | |
1803 | ||
1804 | for(i=0; i<4; i++) { | |
1805 | line_parity = 0; | |
1806 | for(j=0; j<8; j++) { | |
1807 | line_parity ^= data; | |
1808 | column_parity ^= (data & 1) << j; | |
1809 | *forward_ptr++ = data; | |
1810 | data >>= 1; | |
1811 | } | |
1812 | *forward_ptr++ = line_parity; | |
1813 | if(i == 1) | |
1814 | data = data_hi; | |
1815 | } | |
1816 | ||
1817 | for(j=0; j<8; j++) { | |
1818 | *forward_ptr++ = column_parity; | |
1819 | column_parity >>= 1; | |
1820 | } | |
1821 | *forward_ptr = 0; | |
1822 | ||
1823 | return 45; //return number of emited bits | |
1824 | } | |
1825 | ||
1826 | //==================================================================== | |
1827 | // Forward Link send function | |
1828 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1829 | // fwd_bit_count set with number of bits to be sent | |
1830 | //==================================================================== | |
1831 | void SendForward(uint8_t fwd_bit_count) { | |
1832 | ||
1833 | fwd_write_ptr = forwardLink_data; | |
1834 | fwd_bit_sz = fwd_bit_count; | |
1835 | ||
1836 | LED_D_ON(); | |
1837 | ||
1838 | //Field on | |
7cc204bf | 1839 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); |
54a942b0 | 1840 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz |
b014c96d | 1841 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); |
54a942b0 | 1842 | |
1843 | // Give it a bit of time for the resonant antenna to settle. | |
1844 | // And for the tag to fully power up | |
1845 | SpinDelay(150); | |
1846 | ||
1847 | // force 1st mod pulse (start gap must be longer for 4305) | |
1848 | fwd_bit_sz--; //prepare next bit modulation | |
1849 | fwd_write_ptr++; | |
1850 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1851 | SpinDelayUs(55*8); //55 cycles off (8us each)for 4305 | |
1852 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
b014c96d | 1853 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
54a942b0 | 1854 | SpinDelayUs(16*8); //16 cycles on (8us each) |
1855 | ||
1856 | // now start writting | |
1857 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1858 | if(((*fwd_write_ptr++) & 1) == 1) | |
1859 | SpinDelayUs(32*8); //32 cycles at 125Khz (8us each) | |
1860 | else { | |
1861 | //These timings work for 4469/4269/4305 (with the 55*8 above) | |
1862 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1863 | SpinDelayUs(23*8); //16-4 cycles off (8us each) | |
1864 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
b014c96d | 1865 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on |
54a942b0 | 1866 | SpinDelayUs(9*8); //16 cycles on (8us each) |
1867 | } | |
1868 | } | |
1869 | } | |
1870 | ||
f38a1528 | 1871 | |
54a942b0 | 1872 | void EM4xLogin(uint32_t Password) { |
1873 | ||
1874 | uint8_t fwd_bit_count; | |
1875 | ||
1876 | forward_ptr = forwardLink_data; | |
1877 | fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1878 | fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 ); | |
1879 | ||
1880 | SendForward(fwd_bit_count); | |
1881 | ||
1882 | //Wait for command to complete | |
1883 | SpinDelay(20); | |
1884 | ||
1885 | } | |
1886 | ||
1887 | void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1888 | ||
a501c82b | 1889 | uint8_t *dest = get_bigbufptr_recvrespbuf(); |
f6c18637 | 1890 | uint16_t bufferlength = 12000; |
f38a1528 | 1891 | uint32_t i = 0; |
1892 | ||
1893 | // Clear destination buffer before sending the command 0x80 = average. | |
1894 | memset(dest, 0x80, bufferlength); | |
1895 | ||
f6c18637 | 1896 | uint8_t fwd_bit_count; |
54a942b0 | 1897 | |
f6c18637 | 1898 | //If password mode do login |
1899 | if (PwdMode == 1) EM4xLogin(Pwd); | |
54a942b0 | 1900 | |
f6c18637 | 1901 | forward_ptr = forwardLink_data; |
1902 | fwd_bit_count = Prepare_Cmd( FWD_CMD_READ ); | |
1903 | fwd_bit_count += Prepare_Addr( Address ); | |
54a942b0 | 1904 | |
f6c18637 | 1905 | // Connect the A/D to the peak-detected low-frequency path. |
1906 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1907 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1908 | FpgaSetupSsc(); | |
54a942b0 | 1909 | |
f6c18637 | 1910 | SendForward(fwd_bit_count); |
54a942b0 | 1911 | |
f6c18637 | 1912 | // // Turn field on to read the response |
1913 | // TurnReadLFOn(); | |
1914 | ||
1915 | // Now do the acquisition | |
1916 | i = 0; | |
1917 | for(;;) { | |
1918 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { | |
1919 | AT91C_BASE_SSC->SSC_THR = 0x43; | |
1920 | } | |
1921 | if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
1922 | dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1923 | ++i; | |
1924 | if (i >= bufferlength) break; | |
1925 | } | |
1926 | } | |
f38a1528 | 1927 | |
1928 | cmd_send(CMD_ACK,0,0,0,0,0); | |
f6c18637 | 1929 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off |
1930 | LED_D_OFF(); | |
54a942b0 | 1931 | } |
1932 | ||
1933 | void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) { | |
1934 | ||
1935 | uint8_t fwd_bit_count; | |
1936 | ||
1937 | //If password mode do login | |
1938 | if (PwdMode == 1) EM4xLogin(Pwd); | |
1939 | ||
1940 | forward_ptr = forwardLink_data; | |
1941 | fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE ); | |
1942 | fwd_bit_count += Prepare_Addr( Address ); | |
1943 | fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 ); | |
1944 | ||
1945 | SendForward(fwd_bit_count); | |
1946 | ||
1947 | //Wait for write to complete | |
1948 | SpinDelay(20); | |
1949 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1950 | LED_D_OFF(); | |
1951 | } |