]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/lfops.c
FIX: mental note to self, don't forget to adjust messages to new logic
[proxmark3-svn] / armsrc / lfops.c
CommitLineData
e09f21fa 1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
1d0ccbe0 19#include "protocols.h"
c0f15a05 20#include "usb_cdc.h" // for usb_poll_validate_length
e09f21fa 21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
9276e859 29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
e09f21fa 30{
31
e0165dcf 32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
e09f21fa 34
e0165dcf 35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
e09f21fa 37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
c0f15a05 40 //clear read buffer
41 BigBuf_Clear_keep_EM();
e09f21fa 42
43 /* Make sure the tag is reset */
44 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
45 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
46 SpinDelay(2500);
47
48 LFSetupFPGAForADC(sc.divisor, 1);
49
50 // And a little more time for the tag to fully power up
51 SpinDelay(2000);
52
e0165dcf 53 // now modulate the reader field
54 while(*command != '\0' && *command != ' ') {
55 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
56 LED_D_OFF();
57 SpinDelayUs(delay_off);
e09f21fa 58 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
59
e0165dcf 60 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
61 LED_D_ON();
62 if(*(command++) == '0')
63 SpinDelayUs(period_0);
64 else
65 SpinDelayUs(period_1);
66 }
67 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
68 LED_D_OFF();
69 SpinDelayUs(delay_off);
e09f21fa 70 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
71
e0165dcf 72 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
e09f21fa 73
e0165dcf 74 // now do the read
e09f21fa 75 DoAcquisition_config(false);
76}
77
e09f21fa 78/* blank r/w tag data stream
79...0000000000000000 01111111
801010101010101010101010101010101010101010101010101010101010101010
810011010010100001
8201111111
83101010101010101[0]000...
84
85[5555fe852c5555555555555555fe0000]
86*/
87void ReadTItag(void)
88{
e0165dcf 89 // some hardcoded initial params
90 // when we read a TI tag we sample the zerocross line at 2Mhz
91 // TI tags modulate a 1 as 16 cycles of 123.2Khz
92 // TI tags modulate a 0 as 16 cycles of 134.2Khz
0de8e387 93 #define FSAMPLE 2000000
94 #define FREQLO 123200
95 #define FREQHI 134200
e09f21fa 96
e0165dcf 97 signed char *dest = (signed char *)BigBuf_get_addr();
98 uint16_t n = BigBuf_max_traceLen();
99 // 128 bit shift register [shift3:shift2:shift1:shift0]
100 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
101
102 int i, cycles=0, samples=0;
103 // how many sample points fit in 16 cycles of each frequency
104 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
105 // when to tell if we're close enough to one freq or another
106 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
107
108 // TI tags charge at 134.2Khz
109 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
110 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
111
112 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
113 // connects to SSP_DIN and the SSP_DOUT logic level controls
114 // whether we're modulating the antenna (high)
115 // or listening to the antenna (low)
116 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
117
118 // get TI tag data into the buffer
119 AcquireTiType();
120
121 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
122
123 for (i=0; i<n-1; i++) {
124 // count cycles by looking for lo to hi zero crossings
125 if ( (dest[i]<0) && (dest[i+1]>0) ) {
126 cycles++;
127 // after 16 cycles, measure the frequency
128 if (cycles>15) {
129 cycles=0;
130 samples=i-samples; // number of samples in these 16 cycles
131
132 // TI bits are coming to us lsb first so shift them
133 // right through our 128 bit right shift register
134 shift0 = (shift0>>1) | (shift1 << 31);
135 shift1 = (shift1>>1) | (shift2 << 31);
136 shift2 = (shift2>>1) | (shift3 << 31);
137 shift3 >>= 1;
138
139 // check if the cycles fall close to the number
140 // expected for either the low or high frequency
141 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
142 // low frequency represents a 1
143 shift3 |= (1<<31);
144 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
145 // high frequency represents a 0
146 } else {
147 // probably detected a gay waveform or noise
148 // use this as gaydar or discard shift register and start again
149 shift3 = shift2 = shift1 = shift0 = 0;
150 }
151 samples = i;
152
153 // for each bit we receive, test if we've detected a valid tag
154
155 // if we see 17 zeroes followed by 6 ones, we might have a tag
156 // remember the bits are backwards
157 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
158 // if start and end bytes match, we have a tag so break out of the loop
159 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
160 cycles = 0xF0B; //use this as a flag (ugly but whatever)
161 break;
162 }
163 }
164 }
165 }
166 }
167
168 // if flag is set we have a tag
169 if (cycles!=0xF0B) {
170 DbpString("Info: No valid tag detected.");
171 } else {
172 // put 64 bit data into shift1 and shift0
173 shift0 = (shift0>>24) | (shift1 << 8);
174 shift1 = (shift1>>24) | (shift2 << 8);
175
176 // align 16 bit crc into lower half of shift2
177 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
178
179 // if r/w tag, check ident match
e09f21fa 180 if (shift3 & (1<<15) ) {
e0165dcf 181 DbpString("Info: TI tag is rewriteable");
182 // only 15 bits compare, last bit of ident is not valid
e09f21fa 183 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
e0165dcf 184 DbpString("Error: Ident mismatch!");
185 } else {
186 DbpString("Info: TI tag ident is valid");
187 }
188 } else {
189 DbpString("Info: TI tag is readonly");
190 }
191
192 // WARNING the order of the bytes in which we calc crc below needs checking
193 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
194 // bytes in reverse or something
195 // calculate CRC
196 uint32_t crc=0;
197
198 crc = update_crc16(crc, (shift0)&0xff);
199 crc = update_crc16(crc, (shift0>>8)&0xff);
200 crc = update_crc16(crc, (shift0>>16)&0xff);
201 crc = update_crc16(crc, (shift0>>24)&0xff);
202 crc = update_crc16(crc, (shift1)&0xff);
203 crc = update_crc16(crc, (shift1>>8)&0xff);
204 crc = update_crc16(crc, (shift1>>16)&0xff);
205 crc = update_crc16(crc, (shift1>>24)&0xff);
206
1a570b0a 207 Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
e0165dcf 208 if (crc != (shift2&0xffff)) {
209 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
210 } else {
211 DbpString("Info: CRC is good");
212 }
213 }
e09f21fa 214}
215
216void WriteTIbyte(uint8_t b)
217{
e0165dcf 218 int i = 0;
219
220 // modulate 8 bits out to the antenna
221 for (i=0; i<8; i++)
222 {
223 if (b&(1<<i)) {
224 // stop modulating antenna
225 LOW(GPIO_SSC_DOUT);
226 SpinDelayUs(1000);
227 // modulate antenna
228 HIGH(GPIO_SSC_DOUT);
229 SpinDelayUs(1000);
230 } else {
231 // stop modulating antenna
232 LOW(GPIO_SSC_DOUT);
233 SpinDelayUs(300);
234 // modulate antenna
235 HIGH(GPIO_SSC_DOUT);
236 SpinDelayUs(1700);
237 }
238 }
e09f21fa 239}
240
241void AcquireTiType(void)
242{
e0165dcf 243 int i, j, n;
244 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
245 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
a739812e 246 #define TIBUFLEN 1250
e09f21fa 247
e0165dcf 248 // clear buffer
a739812e 249 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
250
251 //clear buffer now so it does not interfere with timing later
252 BigBuf_Clear_ext(false);
e0165dcf 253
254 // Set up the synchronous serial port
255 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
256 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
257
258 // steal this pin from the SSP and use it to control the modulation
259 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
260 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
261
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
263 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
264
265 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
266 // 48/2 = 24 MHz clock must be divided by 12
267 AT91C_BASE_SSC->SSC_CMR = 12;
268
269 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
270 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
271 AT91C_BASE_SSC->SSC_TCMR = 0;
272 AT91C_BASE_SSC->SSC_TFMR = 0;
273
274 LED_D_ON();
275
276 // modulate antenna
277 HIGH(GPIO_SSC_DOUT);
278
279 // Charge TI tag for 50ms.
280 SpinDelay(50);
281
282 // stop modulating antenna and listen
283 LOW(GPIO_SSC_DOUT);
284
285 LED_D_OFF();
286
287 i = 0;
288 for(;;) {
289 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
a739812e 290 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
e0165dcf 291 i++; if(i >= TIBUFLEN) break;
292 }
293 WDT_HIT();
294 }
295
296 // return stolen pin to SSP
297 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
298 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
299
300 char *dest = (char *)BigBuf_get_addr();
a739812e 301 n = TIBUFLEN * 32;
302
e0165dcf 303 // unpack buffer
a739812e 304 for (i = TIBUFLEN-1; i >= 0; i--) {
305 for (j = 0; j < 32; j++) {
306 if(buf[i] & (1 << j)) {
e0165dcf 307 dest[--n] = 1;
308 } else {
309 dest[--n] = -1;
310 }
311 }
312 }
e09f21fa 313}
314
315// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
316// if crc provided, it will be written with the data verbatim (even if bogus)
317// if not provided a valid crc will be computed from the data and written.
318void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
319{
e0165dcf 320 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
321 if(crc == 0) {
322 crc = update_crc16(crc, (idlo)&0xff);
323 crc = update_crc16(crc, (idlo>>8)&0xff);
324 crc = update_crc16(crc, (idlo>>16)&0xff);
325 crc = update_crc16(crc, (idlo>>24)&0xff);
326 crc = update_crc16(crc, (idhi)&0xff);
327 crc = update_crc16(crc, (idhi>>8)&0xff);
328 crc = update_crc16(crc, (idhi>>16)&0xff);
329 crc = update_crc16(crc, (idhi>>24)&0xff);
330 }
a739812e 331 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
e0165dcf 332
333 // TI tags charge at 134.2Khz
334 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
335 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
336 // connects to SSP_DIN and the SSP_DOUT logic level controls
337 // whether we're modulating the antenna (high)
338 // or listening to the antenna (low)
339 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
340 LED_A_ON();
341
342 // steal this pin from the SSP and use it to control the modulation
343 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
344 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
345
346 // writing algorithm:
347 // a high bit consists of a field off for 1ms and field on for 1ms
348 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
349 // initiate a charge time of 50ms (field on) then immediately start writing bits
350 // start by writing 0xBB (keyword) and 0xEB (password)
351 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
352 // finally end with 0x0300 (write frame)
1a570b0a 353 // all data is sent lsb first
e0165dcf 354 // finish with 15ms programming time
355
356 // modulate antenna
357 HIGH(GPIO_SSC_DOUT);
358 SpinDelay(50); // charge time
359
360 WriteTIbyte(0xbb); // keyword
361 WriteTIbyte(0xeb); // password
362 WriteTIbyte( (idlo )&0xff );
363 WriteTIbyte( (idlo>>8 )&0xff );
364 WriteTIbyte( (idlo>>16)&0xff );
365 WriteTIbyte( (idlo>>24)&0xff );
366 WriteTIbyte( (idhi )&0xff );
367 WriteTIbyte( (idhi>>8 )&0xff );
368 WriteTIbyte( (idhi>>16)&0xff );
369 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
370 WriteTIbyte( (crc )&0xff ); // crc lo
371 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
372 WriteTIbyte(0x00); // write frame lo
373 WriteTIbyte(0x03); // write frame hi
374 HIGH(GPIO_SSC_DOUT);
375 SpinDelay(50); // programming time
376
377 LED_A_OFF();
378
379 // get TI tag data into the buffer
380 AcquireTiType();
381
382 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
6c68b84a 383 DbpString("Now use `lf ti read` to check");
e09f21fa 384}
385
cd073027 386void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
e09f21fa 387{
e0165dcf 388 int i;
389 uint8_t *tab = BigBuf_get_addr();
e09f21fa 390
e0165dcf 391 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
392 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
e09f21fa 393
e0165dcf 394 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
e0165dcf 395 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
396 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
e09f21fa 397
398 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
a739812e 399 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
e09f21fa 400
e0165dcf 401 i = 0;
402 for(;;) {
403 //wait until SSC_CLK goes HIGH
404 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
c35145bf 405 if(BUTTON_PRESS() || usb_poll_validate_length() ) {
e0165dcf 406 DbpString("Stopped");
407 return;
408 }
409 WDT_HIT();
410 }
a739812e 411 if (ledcontrol) LED_D_ON();
e0165dcf 412
413 if(tab[i])
414 OPEN_COIL();
415 else
416 SHORT_COIL();
417
a739812e 418 if (ledcontrol) LED_D_OFF();
419
e0165dcf 420 //wait until SSC_CLK goes LOW
421 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
c35145bf 422 if( BUTTON_PRESS() || usb_poll_validate_length() ) {
e0165dcf 423 DbpString("Stopped");
424 return;
425 }
426 WDT_HIT();
427 }
428
429 i++;
430 if(i == period) {
431
432 i = 0;
433 if (gap) {
434 SHORT_COIL();
435 SpinDelayUs(gap);
436 }
437 }
438 }
e09f21fa 439}
440
e09f21fa 441#define DEBUG_FRAME_CONTENTS 1
442void SimulateTagLowFrequencyBidir(int divisor, int t0)
443{
444}
445
446// compose fc/8 fc/10 waveform (FSK2)
447static void fc(int c, int *n)
448{
e0165dcf 449 uint8_t *dest = BigBuf_get_addr();
450 int idx;
451
452 // for when we want an fc8 pattern every 4 logical bits
453 if(c==0) {
454 dest[((*n)++)]=1;
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=1;
457 dest[((*n)++)]=1;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 dest[((*n)++)]=0;
461 dest[((*n)++)]=0;
462 }
463
464 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
465 if(c==8) {
466 for (idx=0; idx<6; idx++) {
467 dest[((*n)++)]=1;
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=1;
470 dest[((*n)++)]=1;
471 dest[((*n)++)]=0;
472 dest[((*n)++)]=0;
473 dest[((*n)++)]=0;
474 dest[((*n)++)]=0;
475 }
476 }
477
478 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
479 if(c==10) {
480 for (idx=0; idx<5; idx++) {
481 dest[((*n)++)]=1;
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=1;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 dest[((*n)++)]=0;
491 }
492 }
e09f21fa 493}
494// compose fc/X fc/Y waveform (FSKx)
712ebfa6 495static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
e09f21fa 496{
e0165dcf 497 uint8_t *dest = BigBuf_get_addr();
498 uint8_t halfFC = fc/2;
499 uint8_t wavesPerClock = clock/fc;
500 uint8_t mod = clock % fc; //modifier
501 uint8_t modAdj = fc/mod; //how often to apply modifier
502 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
503 // loop through clock - step field clock
504 for (uint8_t idx=0; idx < wavesPerClock; idx++){
505 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
506 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
507 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
508 *n += fc;
509 }
510 if (mod>0) (*modCnt)++;
511 if ((mod>0) && modAdjOk){ //fsk2
512 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
513 memset(dest+(*n), 0, fc-halfFC);
514 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
515 *n += fc;
516 }
517 }
518 if (mod>0 && !modAdjOk){ //fsk1
519 memset(dest+(*n), 0, mod-(mod/2));
520 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
521 *n += mod;
522 }
e09f21fa 523}
524
525// prepare a waveform pattern in the buffer based on the ID given then
526// simulate a HID tag until the button is pressed
527void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
528{
e0165dcf 529 int n=0, i=0;
530 /*
531 HID tag bitstream format
532 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
533 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
534 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
535 A fc8 is inserted before every 4 bits
536 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
537 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
538 */
539
540 if (hi>0xFFF) {
541 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
542 return;
543 }
544 fc(0,&n);
545 // special start of frame marker containing invalid bit sequences
546 fc(8, &n); fc(8, &n); // invalid
547 fc(8, &n); fc(10, &n); // logical 0
548 fc(10, &n); fc(10, &n); // invalid
549 fc(8, &n); fc(10, &n); // logical 0
550
551 WDT_HIT();
552 // manchester encode bits 43 to 32
553 for (i=11; i>=0; i--) {
554 if ((i%4)==3) fc(0,&n);
555 if ((hi>>i)&1) {
556 fc(10, &n); fc(8, &n); // low-high transition
557 } else {
558 fc(8, &n); fc(10, &n); // high-low transition
559 }
560 }
561
562 WDT_HIT();
563 // manchester encode bits 31 to 0
564 for (i=31; i>=0; i--) {
565 if ((i%4)==3) fc(0,&n);
566 if ((lo>>i)&1) {
567 fc(10, &n); fc(8, &n); // low-high transition
568 } else {
569 fc(8, &n); fc(10, &n); // high-low transition
570 }
571 }
572
a739812e 573 if (ledcontrol) LED_A_ON();
e0165dcf 574 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 575 if (ledcontrol) LED_A_OFF();
e09f21fa 576}
577
578// prepare a waveform pattern in the buffer based on the ID given then
579// simulate a FSK tag until the button is pressed
580// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
581void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
582{
e0165dcf 583 int ledcontrol=1;
584 int n=0, i=0;
585 uint8_t fcHigh = arg1 >> 8;
586 uint8_t fcLow = arg1 & 0xFF;
587 uint16_t modCnt = 0;
588 uint8_t clk = arg2 & 0xFF;
589 uint8_t invert = (arg2 >> 8) & 1;
590
591 for (i=0; i<size; i++){
592 if (BitStream[i] == invert){
593 fcAll(fcLow, &n, clk, &modCnt);
594 } else {
595 fcAll(fcHigh, &n, clk, &modCnt);
596 }
597 }
598 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
e0165dcf 599
508b37ba 600 if (ledcontrol) LED_A_ON();
e0165dcf 601 SimulateTagLowFrequency(n, 0, ledcontrol);
508b37ba 602 if (ledcontrol) LED_A_OFF();
e09f21fa 603}
604
605// compose ask waveform for one bit(ASK)
e0165dcf 606static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
e09f21fa 607{
e0165dcf 608 uint8_t *dest = BigBuf_get_addr();
609 uint8_t halfClk = clock/2;
610 // c = current bit 1 or 0
611 if (manchester==1){
612 memset(dest+(*n), c, halfClk);
613 memset(dest+(*n) + halfClk, c^1, halfClk);
614 } else {
615 memset(dest+(*n), c, clock);
616 }
617 *n += clock;
e09f21fa 618}
619
b41534d1 620static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
621{
e0165dcf 622 uint8_t *dest = BigBuf_get_addr();
623 uint8_t halfClk = clock/2;
624 if (c){
625 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
626 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
627 } else {
628 memset(dest+(*n), c ^ *phase, clock);
629 *phase ^= 1;
630 }
c728b2b4 631 *n += clock;
b41534d1 632}
633
6c68b84a 634static void stAskSimBit(int *n, uint8_t clock) {
635 uint8_t *dest = BigBuf_get_addr();
636 uint8_t halfClk = clock/2;
637 //ST = .5 high .5 low 1.5 high .5 low 1 high
638 memset(dest+(*n), 1, halfClk);
639 memset(dest+(*n) + halfClk, 0, halfClk);
640 memset(dest+(*n) + clock, 1, clock + halfClk);
641 memset(dest+(*n) + clock*2 + halfClk, 0, halfClk);
642 memset(dest+(*n) + clock*3, 1, clock);
643 *n += clock*4;
644}
645
e09f21fa 646// args clock, ask/man or askraw, invert, transmission separator
647void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
648{
e0165dcf 649 int ledcontrol = 1;
650 int n=0, i=0;
651 uint8_t clk = (arg1 >> 8) & 0xFF;
2b3af97d 652 uint8_t encoding = arg1 & 0xFF;
e0165dcf 653 uint8_t separator = arg2 & 1;
654 uint8_t invert = (arg2 >> 8) & 1;
655
656 if (encoding==2){ //biphase
657 uint8_t phase=0;
658 for (i=0; i<size; i++){
659 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
660 }
c728b2b4 661 if (phase==1) { //run a second set inverted to keep phase in check
e0165dcf 662 for (i=0; i<size; i++){
663 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
664 }
665 }
666 } else { // ask/manchester || ask/raw
667 for (i=0; i<size; i++){
668 askSimBit(BitStream[i]^invert, &n, clk, encoding);
669 }
670 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
671 for (i=0; i<size; i++){
672 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
673 }
674 }
675 }
6c68b84a 676 if (separator==1 && encoding == 1)
677 stAskSimBit(&n, clk);
678 else if (separator==1)
679 Dbprintf("sorry but separator option not yet available");
e0165dcf 680
681 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
e0165dcf 682
a739812e 683 if (ledcontrol) LED_A_ON();
e0165dcf 684 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 685 if (ledcontrol) LED_A_OFF();
e09f21fa 686}
687
688//carrier can be 2,4 or 8
689static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
690{
e0165dcf 691 uint8_t *dest = BigBuf_get_addr();
692 uint8_t halfWave = waveLen/2;
693 //uint8_t idx;
694 int i = 0;
695 if (phaseChg){
696 // write phase change
697 memset(dest+(*n), *curPhase^1, halfWave);
698 memset(dest+(*n) + halfWave, *curPhase, halfWave);
699 *n += waveLen;
700 *curPhase ^= 1;
701 i += waveLen;
702 }
703 //write each normal clock wave for the clock duration
704 for (; i < clk; i+=waveLen){
705 memset(dest+(*n), *curPhase, halfWave);
706 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
707 *n += waveLen;
708 }
e09f21fa 709}
710
711// args clock, carrier, invert,
712void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
713{
a739812e 714 int ledcontrol = 1;
e0165dcf 715 int n=0, i=0;
716 uint8_t clk = arg1 >> 8;
717 uint8_t carrier = arg1 & 0xFF;
718 uint8_t invert = arg2 & 0xFF;
719 uint8_t curPhase = 0;
720 for (i=0; i<size; i++){
721 if (BitStream[i] == curPhase){
722 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
723 } else {
724 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
725 }
726 }
727 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
e0165dcf 728
a739812e 729 if (ledcontrol) LED_A_ON();
e0165dcf 730 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 731 if (ledcontrol) LED_A_OFF();
e09f21fa 732}
733
734// loop to get raw HID waveform then FSK demodulate the TAG ID from it
735void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
736{
e0165dcf 737 uint8_t *dest = BigBuf_get_addr();
e0165dcf 738 size_t size = 0;
739 uint32_t hi2=0, hi=0, lo=0;
740 int idx=0;
741 // Configure to go in 125Khz listen mode
742 LFSetupFPGAForADC(95, true);
e09f21fa 743
c0f15a05 744 //clear read buffer
745 BigBuf_Clear_keep_EM();
746
6427695b 747 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e09f21fa 748
e0165dcf 749 WDT_HIT();
750 if (ledcontrol) LED_A_ON();
e09f21fa 751
752 DoAcquisition_default(-1,true);
753 // FSK demodulator
b8f705e7 754 size = 50*128*2; //big enough to catch 2 sequences of largest format
e09f21fa 755 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
e0165dcf 756
b8f705e7 757 if (idx>0 && lo>0 && (size==96 || size==192)){
758 // go over previously decoded manchester data and decode into usable tag ID
759 if (hi2 != 0){ //extra large HID tags 88/192 bits
e0165dcf 760 Dbprintf("TAG ID: %x%08x%08x (%d)",
a739812e 761 (unsigned int) hi2,
762 (unsigned int) hi,
763 (unsigned int) lo,
764 (unsigned int) (lo>>1) & 0xFFFF
765 );
614da335 766 } else { //standard HID tags 44/96 bits
e0165dcf 767 uint8_t bitlen = 0;
768 uint32_t fc = 0;
769 uint32_t cardnum = 0;
a739812e 770
e09f21fa 771 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
e0165dcf 772 uint32_t lo2=0;
773 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
774 uint8_t idx3 = 1;
e09f21fa 775 while(lo2 > 1){ //find last bit set to 1 (format len bit)
776 lo2=lo2 >> 1;
e0165dcf 777 idx3++;
778 }
e09f21fa 779 bitlen = idx3+19;
e0165dcf 780 fc =0;
781 cardnum=0;
e09f21fa 782 if(bitlen == 26){
e0165dcf 783 cardnum = (lo>>1)&0xFFFF;
784 fc = (lo>>17)&0xFF;
785 }
e09f21fa 786 if(bitlen == 37){
e0165dcf 787 cardnum = (lo>>1)&0x7FFFF;
788 fc = ((hi&0xF)<<12)|(lo>>20);
789 }
e09f21fa 790 if(bitlen == 34){
e0165dcf 791 cardnum = (lo>>1)&0xFFFF;
792 fc= ((hi&1)<<15)|(lo>>17);
793 }
e09f21fa 794 if(bitlen == 35){
e0165dcf 795 cardnum = (lo>>1)&0xFFFFF;
796 fc = ((hi&1)<<11)|(lo>>21);
797 }
798 }
799 else { //if bit 38 is not set then 37 bit format is used
800 bitlen= 37;
801 fc =0;
802 cardnum=0;
803 if(bitlen==37){
804 cardnum = (lo>>1)&0x7FFFF;
805 fc = ((hi&0xF)<<12)|(lo>>20);
806 }
807 }
e0165dcf 808 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
a739812e 809 (unsigned int) hi,
810 (unsigned int) lo,
811 (unsigned int) (lo>>1) & 0xFFFF,
812 (unsigned int) bitlen,
813 (unsigned int) fc,
814 (unsigned int) cardnum);
e0165dcf 815 }
816 if (findone){
817 if (ledcontrol) LED_A_OFF();
818 *high = hi;
819 *low = lo;
820 return;
821 }
822 // reset
e0165dcf 823 }
b8f705e7 824 hi2 = hi = lo = idx = 0;
e0165dcf 825 WDT_HIT();
826 }
827 DbpString("Stopped");
828 if (ledcontrol) LED_A_OFF();
e09f21fa 829}
830
db25599d 831// loop to get raw HID waveform then FSK demodulate the TAG ID from it
832void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
833{
834 uint8_t *dest = BigBuf_get_addr();
db25599d 835 size_t size;
836 int idx=0;
c0f15a05 837 //clear read buffer
838 BigBuf_Clear_keep_EM();
db25599d 839 // Configure to go in 125Khz listen mode
840 LFSetupFPGAForADC(95, true);
841
6427695b 842 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
db25599d 843
844 WDT_HIT();
845 if (ledcontrol) LED_A_ON();
846
847 DoAcquisition_default(-1,true);
848 // FSK demodulator
db25599d 849 size = 50*128*2; //big enough to catch 2 sequences of largest format
850 idx = AWIDdemodFSK(dest, &size);
851
a126332a 852 if (idx<=0 || size!=96) continue;
db25599d 853 // Index map
854 // 0 10 20 30 40 50 60
855 // | | | | | | |
856 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
857 // -----------------------------------------------------------------------------
858 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
859 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
860 // |---26 bit---| |-----117----||-------------142-------------|
861 // b = format bit len, o = odd parity of last 3 bits
862 // f = facility code, c = card number
863 // w = wiegand parity
864 // (26 bit format shown)
865
866 //get raw ID before removing parities
867 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
868 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
869 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
870
871 size = removeParity(dest, idx+8, 4, 1, 88);
a126332a 872 if (size != 66) continue;
db25599d 873 // ok valid card found!
874
875 // Index map
876 // 0 10 20 30 40 50 60
877 // | | | | | | |
878 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
879 // -----------------------------------------------------------------------------
880 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
881 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
882 // |26 bit| |-117--| |-----142------|
883 // b = format bit len, o = odd parity of last 3 bits
884 // f = facility code, c = card number
885 // w = wiegand parity
886 // (26 bit format shown)
887
888 uint32_t fc = 0;
889 uint32_t cardnum = 0;
890 uint32_t code1 = 0;
891 uint32_t code2 = 0;
892 uint8_t fmtLen = bytebits_to_byte(dest,8);
893 if (fmtLen==26){
894 fc = bytebits_to_byte(dest+9, 8);
895 cardnum = bytebits_to_byte(dest+17, 16);
896 code1 = bytebits_to_byte(dest+8,fmtLen);
897 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
898 } else {
899 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
900 if (fmtLen>32){
901 code1 = bytebits_to_byte(dest+8,fmtLen-32);
902 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
903 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
904 } else{
905 code1 = bytebits_to_byte(dest+8,fmtLen);
906 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
907 }
908 }
909 if (findone){
910 if (ledcontrol) LED_A_OFF();
911 return;
912 }
913 // reset
db25599d 914 idx = 0;
915 WDT_HIT();
916 }
917 DbpString("Stopped");
918 if (ledcontrol) LED_A_OFF();
919}
920
e09f21fa 921void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
922{
e0165dcf 923 uint8_t *dest = BigBuf_get_addr();
924
925 size_t size=0, idx=0;
926 int clk=0, invert=0, errCnt=0, maxErr=20;
927 uint32_t hi=0;
928 uint64_t lo=0;
c0f15a05 929 //clear read buffer
930 BigBuf_Clear_keep_EM();
e0165dcf 931 // Configure to go in 125Khz listen mode
932 LFSetupFPGAForADC(95, true);
933
6427695b 934 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 935
936 WDT_HIT();
937 if (ledcontrol) LED_A_ON();
938
939 DoAcquisition_default(-1,true);
940 size = BigBuf_max_traceLen();
e0165dcf 941 //askdemod and manchester decode
b8f705e7 942 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
fef74fdc 943 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
e0165dcf 944 WDT_HIT();
945
b8f705e7 946 if (errCnt<0) continue;
947
e0165dcf 948 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
e0165dcf 949 if (errCnt){
950 if (size>64){
951 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
952 hi,
953 (uint32_t)(lo>>32),
954 (uint32_t)lo,
955 (uint32_t)(lo&0xFFFF),
956 (uint32_t)((lo>>16LL) & 0xFF),
957 (uint32_t)(lo & 0xFFFFFF));
958 } else {
959 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
960 (uint32_t)(lo>>32),
961 (uint32_t)lo,
962 (uint32_t)(lo&0xFFFF),
963 (uint32_t)((lo>>16LL) & 0xFF),
964 (uint32_t)(lo & 0xFFFFFF));
965 }
b8f705e7 966
e0165dcf 967 if (findone){
968 if (ledcontrol) LED_A_OFF();
969 *high=lo>>32;
970 *low=lo & 0xFFFFFFFF;
971 return;
972 }
e0165dcf 973 }
974 WDT_HIT();
b8f705e7 975 hi = lo = size = idx = 0;
976 clk = invert = errCnt = 0;
e0165dcf 977 }
978 DbpString("Stopped");
979 if (ledcontrol) LED_A_OFF();
e09f21fa 980}
981
982void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
983{
e0165dcf 984 uint8_t *dest = BigBuf_get_addr();
985 int idx=0;
986 uint32_t code=0, code2=0;
987 uint8_t version=0;
988 uint8_t facilitycode=0;
989 uint16_t number=0;
b8f705e7 990 uint8_t crc = 0;
991 uint16_t calccrc = 0;
c0f15a05 992
993 //clear read buffer
994 BigBuf_Clear_keep_EM();
995
996// Configure to go in 125Khz listen mode
e0165dcf 997 LFSetupFPGAForADC(95, true);
998
6427695b 999 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 1000 WDT_HIT();
1001 if (ledcontrol) LED_A_ON();
e09f21fa 1002 DoAcquisition_default(-1,true);
1003 //fskdemod and get start index
e0165dcf 1004 WDT_HIT();
1005 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
b8f705e7 1006 if (idx<0) continue;
e0165dcf 1007 //valid tag found
1008
1009 //Index map
1010 //0 10 20 30 40 50 60
1011 //| | | | | | |
1012 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
1013 //-----------------------------------------------------------------------------
b8f705e7 1014 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
e0165dcf 1015 //
b8f705e7 1016 //Checksum:
1017 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1018 //preamble F0 E0 01 03 B6 75
1019 // How to calc checksum,
1020 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1021 // F0 + E0 + 01 + 03 + B6 = 28A
1022 // 28A & FF = 8A
1023 // FF - 8A = 75
1024 // Checksum: 0x75
e0165dcf 1025 //XSF(version)facility:codeone+codetwo
1026 //Handle the data
1027 if(findone){ //only print binary if we are doing one
1028 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1029 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1030 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1031 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1032 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1033 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1034 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1035 }
1036 code = bytebits_to_byte(dest+idx,32);
1037 code2 = bytebits_to_byte(dest+idx+32,32);
1038 version = bytebits_to_byte(dest+idx+27,8); //14,4
a739812e 1039 facilitycode = bytebits_to_byte(dest+idx+18,8);
e0165dcf 1040 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1041
b8f705e7 1042 crc = bytebits_to_byte(dest+idx+54,8);
1043 for (uint8_t i=1; i<6; ++i)
1044 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1045 calccrc &= 0xff;
1046 calccrc = 0xff - calccrc;
1047
1048 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1049
1050 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
e0165dcf 1051 // if we're only looking for one tag
1052 if (findone){
1053 if (ledcontrol) LED_A_OFF();
e0165dcf 1054 *high=code;
1055 *low=code2;
1056 return;
1057 }
1058 code=code2=0;
1059 version=facilitycode=0;
1060 number=0;
1061 idx=0;
b8f705e7 1062
e0165dcf 1063 WDT_HIT();
1064 }
1065 DbpString("Stopped");
1066 if (ledcontrol) LED_A_OFF();
e09f21fa 1067}
1068
1069/*------------------------------
94422fa2 1070 * T5555/T5557/T5567/T5577 routines
e09f21fa 1071 *------------------------------
1d0ccbe0 1072 * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h
1073 *
1074 * Relevant communication times in microsecond
e09f21fa 1075 * To compensate antenna falling times shorten the write times
1076 * and enlarge the gap ones.
6a09bea4 1077 * Q5 tags seems to have issues when these values changes.
e09f21fa 1078 */
0de8e387 1079
8ce3e4b4 1080#define START_GAP 31*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
4a3f1a37 1081#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
8ce3e4b4 1082#define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
4a3f1a37 1083#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
6426f6ba 1084#define READ_GAP 15*8
b8f705e7 1085
1086// VALUES TAKEN FROM EM4x function: SendForward
1087// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1088// WRITE_GAP = 128; (16*8)
1089// WRITE_1 = 256 32*8; (32*8)
1090
1091// These timings work for 4469/4269/4305 (with the 55*8 above)
1092// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1093
1094// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1095// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1096// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1097// T0 = TIMER_CLOCK1 / 125000 = 192
e16054a4 1098// 1 Cycle = 8 microseconds(us) == 1 field clock
e09f21fa 1099
a739812e 1100void TurnReadLFOn(int delay) {
1101 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1102 // Give it a bit of time for the resonant antenna to settle.
1d0ccbe0 1103
1104 // measure antenna strength.
1105 //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
1106 // where to save it
1107
1108 SpinDelayUs(delay);
a739812e 1109}
1110
e09f21fa 1111// Write one bit to card
e16054a4 1112void T55xxWriteBit(int bit) {
b8f705e7 1113 if (!bit)
1d0ccbe0 1114 TurnReadLFOn(WRITE_0);
e0165dcf 1115 else
1d0ccbe0 1116 TurnReadLFOn(WRITE_1);
e0165dcf 1117 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1118 SpinDelayUs(WRITE_GAP);
e09f21fa 1119}
1120
94422fa2 1121// Send T5577 reset command then read stream (see if we can identify the start of the stream)
1122void T55xxResetRead(void) {
1123 LED_A_ON();
1124 //clear buffer now so it does not interfere with timing later
c0f15a05 1125 BigBuf_Clear_keep_EM();
94422fa2 1126
1127 // Set up FPGA, 125kHz
1128 LFSetupFPGAForADC(95, true);
1129
1130 // Trigger T55x7 in mode.
1131 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1132 SpinDelayUs(START_GAP);
1133
1134 // reset tag - op code 00
1135 T55xxWriteBit(0);
1136 T55xxWriteBit(0);
1137
1138 // Turn field on to read the response
1139 TurnReadLFOn(READ_GAP);
1140
1141 // Acquisition
1142 doT55x7Acquisition(BigBuf_max_traceLen());
1143
1144 // Turn the field off
1145 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1146 cmd_send(CMD_ACK,0,0,0,0,0);
1147 LED_A_OFF();
1148}
1149
e09f21fa 1150// Write one card block in page 0, no lock
70459879 1151void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
e16054a4 1152 LED_A_ON();
1d0ccbe0 1153 bool PwdMode = arg & 0x1;
1154 uint8_t Page = (arg & 0x2)>>1;
e0165dcf 1155 uint32_t i = 0;
1156
1157 // Set up FPGA, 125kHz
ac2df346 1158 LFSetupFPGAForADC(95, true);
0de8e387 1159
e16054a4 1160 // Trigger T55x7 in mode.
e0165dcf 1161 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1162 SpinDelayUs(START_GAP);
1163
e16054a4 1164 // Opcode 10
e0165dcf 1165 T55xxWriteBit(1);
1d0ccbe0 1166 T55xxWriteBit(Page); //Page 0
9276e859 1167 if (PwdMode){
a739812e 1168 // Send Pwd
e0165dcf 1169 for (i = 0x80000000; i != 0; i >>= 1)
1170 T55xxWriteBit(Pwd & i);
1171 }
a739812e 1172 // Send Lock bit
e0165dcf 1173 T55xxWriteBit(0);
1174
a739812e 1175 // Send Data
e0165dcf 1176 for (i = 0x80000000; i != 0; i >>= 1)
1177 T55xxWriteBit(Data & i);
1178
a739812e 1179 // Send Block number
e0165dcf 1180 for (i = 0x04; i != 0; i >>= 1)
1181 T55xxWriteBit(Block & i);
1182
e16054a4 1183 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
e0165dcf 1184 // so wait a little more)
e16054a4 1185 TurnReadLFOn(20 * 1000);
1d0ccbe0 1186 //could attempt to do a read to confirm write took
1187 // as the tag should repeat back the new block
1188 // until it is reset, but to confirm it we would
1189 // need to know the current block 0 config mode
e16054a4 1190
a739812e 1191 // turn field off
e0165dcf 1192 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
9276e859 1193 LED_A_OFF();
e09f21fa 1194}
1195
94422fa2 1196// Write one card block in page 0, no lock
70459879 1197void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) {
94422fa2 1198 T55xxWriteBlockExt(Data, Block, Pwd, arg);
1199 cmd_send(CMD_ACK,0,0,0,0,0);
1200}
1201
6426f6ba 1202// Read one card block in page [page]
9276e859 1203void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
e16054a4 1204 LED_A_ON();
1d0ccbe0 1205 bool PwdMode = arg0 & 0x1;
1206 uint8_t Page = (arg0 & 0x2) >> 1;
e0165dcf 1207 uint32_t i = 0;
1d0ccbe0 1208 bool RegReadMode = (Block == 0xFF);
ac2df346 1209
a739812e 1210 //clear buffer now so it does not interfere with timing later
1211 BigBuf_Clear_ext(false);
1212
ac2df346 1213 //make sure block is at max 7
1214 Block &= 0x7;
e0165dcf 1215
1d0ccbe0 1216 // Set up FPGA, 125kHz to power up the tag
ac2df346 1217 LFSetupFPGAForADC(95, true);
0de8e387 1218
1d0ccbe0 1219 // Trigger T55x7 Direct Access Mode with start gap
e0165dcf 1220 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ac2df346 1221 SpinDelayUs(START_GAP);
1222
1d0ccbe0 1223 // Opcode 1[page]
e0165dcf 1224 T55xxWriteBit(1);
1c8fbeb9 1225 T55xxWriteBit(Page); //Page 0
ac2df346 1226
9276e859 1227 if (PwdMode){
a739812e 1228 // Send Pwd
e0165dcf 1229 for (i = 0x80000000; i != 0; i >>= 1)
1230 T55xxWriteBit(Pwd & i);
1231 }
a739812e 1232 // Send a zero bit separation
e0165dcf 1233 T55xxWriteBit(0);
ac2df346 1234
1d0ccbe0 1235 // Send Block number (if direct access mode)
1236 if (!RegReadMode)
e16054a4 1237 for (i = 0x04; i != 0; i >>= 1)
e0165dcf 1238 T55xxWriteBit(Block & i);
e0165dcf 1239
ac2df346 1240 // Turn field on to read the response
a739812e 1241 TurnReadLFOn(READ_GAP);
ac2df346 1242
1243 // Acquisition
94422fa2 1244 doT55x7Acquisition(12000);
ac2df346 1245
1d0ccbe0 1246 // Turn the field off
1247 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
e0165dcf 1248 cmd_send(CMD_ACK,0,0,0,0,0);
e16054a4 1249 LED_A_OFF();
9276e859 1250}
1251
1252void T55xxWakeUp(uint32_t Pwd){
1253 LED_B_ON();
1254 uint32_t i = 0;
1255
1256 // Set up FPGA, 125kHz
1257 LFSetupFPGAForADC(95, true);
1258
1259 // Trigger T55x7 Direct Access Mode
1260 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1261 SpinDelayUs(START_GAP);
1262
1263 // Opcode 10
1264 T55xxWriteBit(1);
1265 T55xxWriteBit(0); //Page 0
1266
1267 // Send Pwd
1268 for (i = 0x80000000; i != 0; i >>= 1)
1269 T55xxWriteBit(Pwd & i);
1270
1d0ccbe0 1271 // Turn and leave field on to let the begin repeating transmission
1c8fbeb9 1272 TurnReadLFOn(20*1000);
e09f21fa 1273}
1274
1275/*-------------- Cloning routines -----------*/
1d0ccbe0 1276void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
1277 // write last block first and config block last (if included)
70459879 1278 for (uint8_t i = numblocks+startblock; i > startblock; i--)
8ce3e4b4 1279 T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0);
1d0ccbe0 1280}
1281
e09f21fa 1282// Copy HID id to card and setup block 0 config
1d0ccbe0 1283void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
1284 uint32_t data[] = {0,0,0,0,0,0,0};
1d0ccbe0 1285 uint8_t last_block = 0;
e0165dcf 1286
1287 if (longFMT){
1288 // Ensure no more than 84 bits supplied
614da335 1289 if (hi2 > 0xFFFFF) {
e0165dcf 1290 DbpString("Tags can only have 84 bits.");
1291 return;
1292 }
1293 // Build the 6 data blocks for supplied 84bit ID
1294 last_block = 6;
1d0ccbe0 1295 // load preamble (1D) & long format identifier (9E manchester encoded)
94422fa2 1296 data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF);
1d0ccbe0 1297 // load raw id from hi2, hi, lo to data blocks (manchester encoded)
1298 data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF);
1299 data[3] = manchesterEncode2Bytes(hi >> 16);
1300 data[4] = manchesterEncode2Bytes(hi & 0xFFFF);
1301 data[5] = manchesterEncode2Bytes(lo >> 16);
1302 data[6] = manchesterEncode2Bytes(lo & 0xFFFF);
1303 } else {
e0165dcf 1304 // Ensure no more than 44 bits supplied
614da335 1305 if (hi > 0xFFF) {
e0165dcf 1306 DbpString("Tags can only have 44 bits.");
1307 return;
1308 }
e0165dcf 1309 // Build the 3 data blocks for supplied 44bit ID
1310 last_block = 3;
1d0ccbe0 1311 // load preamble
94422fa2 1312 data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF);
1d0ccbe0 1313 data[2] = manchesterEncode2Bytes(lo >> 16);
1314 data[3] = manchesterEncode2Bytes(lo & 0xFFFF);
e0165dcf 1315 }
1d0ccbe0 1316 // load chip config block
1317 data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT;
e0165dcf 1318
edaf10af 1319 //TODO add selection of chip for Q5 or T55x7
1320 // data[0] = (((50-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT;
1321
e0165dcf 1322 LED_D_ON();
1323 // Program the data blocks for supplied ID
1324 // and the block 0 for HID format
1d0ccbe0 1325 WriteT55xx(data, 0, last_block+1);
e0165dcf 1326
1327 LED_D_OFF();
1328
1329 DbpString("DONE!");
e09f21fa 1330}
1331
94422fa2 1332void CopyIOtoT55x7(uint32_t hi, uint32_t lo) {
1d0ccbe0 1333 uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
edaf10af 1334 //TODO add selection of chip for Q5 or T55x7
1335 // data[0] = (((64-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT;
e09f21fa 1336
e0165dcf 1337 LED_D_ON();
1338 // Program the data blocks for supplied ID
1d0ccbe0 1339 // and the block 0 config
1340 WriteT55xx(data, 0, 3);
e09f21fa 1341
e0165dcf 1342 LED_D_OFF();
e09f21fa 1343
e0165dcf 1344 DbpString("DONE!");
e09f21fa 1345}
1346
1d0ccbe0 1347// Clone Indala 64-bit tag by UID to T55x7
1348void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) {
1349 //Program the 2 data blocks for supplied 64bit UID
1350 // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2)
1351 uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo};
edaf10af 1352 //TODO add selection of chip for Q5 or T55x7
1353 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT;
1354
1d0ccbe0 1355 WriteT55xx(data, 0, 3);
1356 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1357 // T5567WriteBlock(0x603E1042,0);
1358 DbpString("DONE!");
1359}
1360// Clone Indala 224-bit tag by UID to T55x7
94422fa2 1361void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) {
1d0ccbe0 1362 //Program the 7 data blocks for supplied 224bit UID
1363 uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7};
1364 // and the block 0 for Indala224 format
1365 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1366 data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT);
edaf10af 1367 //TODO add selection of chip for Q5 or T55x7
1368 // data[0] = (((32-2)/2)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT;
1d0ccbe0 1369 WriteT55xx(data, 0, 8);
1370 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1371 // T5567WriteBlock(0x603E10E2,0);
1372 DbpString("DONE!");
1373}
a126332a 1374// clone viking tag to T55xx
1375void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
1376 uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
1377 if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
1378 // Program the data blocks for supplied ID and the block 0 config
1379 WriteT55xx(data, 0, 3);
1380 LED_D_OFF();
1381 cmd_send(CMD_ACK,0,0,0,0,0);
1382}
1d0ccbe0 1383
e09f21fa 1384// Define 9bit header for EM410x tags
1385#define EM410X_HEADER 0x1FF
1386#define EM410X_ID_LENGTH 40
1387
94422fa2 1388void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) {
e0165dcf 1389 int i, id_bit;
1390 uint64_t id = EM410X_HEADER;
1391 uint64_t rev_id = 0; // reversed ID
1392 int c_parity[4]; // column parity
1393 int r_parity = 0; // row parity
1394 uint32_t clock = 0;
1395
1396 // Reverse ID bits given as parameter (for simpler operations)
1397 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1398 if (i < 32) {
1399 rev_id = (rev_id << 1) | (id_lo & 1);
1400 id_lo >>= 1;
1401 } else {
1402 rev_id = (rev_id << 1) | (id_hi & 1);
1403 id_hi >>= 1;
1404 }
1405 }
1406
1407 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1408 id_bit = rev_id & 1;
1409
1410 if (i % 4 == 0) {
1411 // Don't write row parity bit at start of parsing
1412 if (i)
1413 id = (id << 1) | r_parity;
1414 // Start counting parity for new row
1415 r_parity = id_bit;
1416 } else {
1417 // Count row parity
1418 r_parity ^= id_bit;
1419 }
1420
1421 // First elements in column?
1422 if (i < 4)
1423 // Fill out first elements
1424 c_parity[i] = id_bit;
1425 else
1426 // Count column parity
1427 c_parity[i % 4] ^= id_bit;
1428
1429 // Insert ID bit
1430 id = (id << 1) | id_bit;
1431 rev_id >>= 1;
1432 }
1433
1434 // Insert parity bit of last row
1435 id = (id << 1) | r_parity;
1436
1437 // Fill out column parity at the end of tag
1438 for (i = 0; i < 4; ++i)
1439 id = (id << 1) | c_parity[i];
1440
1441 // Add stop bit
1442 id <<= 1;
1443
1444 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1445 LED_D_ON();
1446
1447 // Write EM410x ID
6c68b84a 1448 uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)};
edaf10af 1449
8ce3e4b4 1450 clock = (card & 0xFF00) >> 8;
1451 clock = (clock == 0) ? 64 : clock;
1452 Dbprintf("Clock rate: %d", clock);
edaf10af 1453 if (card & 0xFF) { //t55x7
1d0ccbe0 1454 clock = GetT55xxClockBit(clock);
1455 if (clock == 0) {
e0165dcf 1456 Dbprintf("Invalid clock rate: %d", clock);
1457 return;
1458 }
1d0ccbe0 1459 data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT);
edaf10af 1460 } else { //t5555 (Q5)
1461 clock = (clock-2)>>1; //n = (RF-2)/2
1462 data[0] = (clock << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT);
e0165dcf 1463 }
1d0ccbe0 1464
1465 WriteT55xx(data, 0, 3);
e0165dcf 1466
1467 LED_D_OFF();
8ce3e4b4 1468 Dbprintf("Tag %s written with 0x%08x%08x\n",
1469 card ? "T55x7":"T5555",
1470 (uint32_t)(id >> 32),
1471 (uint32_t)id);
e09f21fa 1472}
1473
e09f21fa 1474//-----------------------------------
1475// EM4469 / EM4305 routines
1476//-----------------------------------
1477#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1478#define FWD_CMD_WRITE 0xA
1479#define FWD_CMD_READ 0x9
1480#define FWD_CMD_DISABLE 0x5
1481
e09f21fa 1482uint8_t forwardLink_data[64]; //array of forwarded bits
1483uint8_t * forward_ptr; //ptr for forward message preparation
1484uint8_t fwd_bit_sz; //forwardlink bit counter
1485uint8_t * fwd_write_ptr; //forwardlink bit pointer
1486
1487//====================================================================
1488// prepares command bits
1489// see EM4469 spec
1490//====================================================================
6426f6ba 1491//--------------------------------------------------------------------
1492// VALUES TAKEN FROM EM4x function: SendForward
1493// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1494// WRITE_GAP = 128; (16*8)
1495// WRITE_1 = 256 32*8; (32*8)
1496
1497// These timings work for 4469/4269/4305 (with the 55*8 above)
1498// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1499
e09f21fa 1500uint8_t Prepare_Cmd( uint8_t cmd ) {
e09f21fa 1501
e0165dcf 1502 *forward_ptr++ = 0; //start bit
1503 *forward_ptr++ = 0; //second pause for 4050 code
e09f21fa 1504
e0165dcf 1505 *forward_ptr++ = cmd;
1506 cmd >>= 1;
1507 *forward_ptr++ = cmd;
1508 cmd >>= 1;
1509 *forward_ptr++ = cmd;
1510 cmd >>= 1;
1511 *forward_ptr++ = cmd;
e09f21fa 1512
e0165dcf 1513 return 6; //return number of emited bits
e09f21fa 1514}
1515
1516//====================================================================
1517// prepares address bits
1518// see EM4469 spec
1519//====================================================================
e09f21fa 1520uint8_t Prepare_Addr( uint8_t addr ) {
e09f21fa 1521
e0165dcf 1522 register uint8_t line_parity;
e09f21fa 1523
e0165dcf 1524 uint8_t i;
1525 line_parity = 0;
1526 for(i=0;i<6;i++) {
1527 *forward_ptr++ = addr;
1528 line_parity ^= addr;
1529 addr >>= 1;
1530 }
e09f21fa 1531
e0165dcf 1532 *forward_ptr++ = (line_parity & 1);
e09f21fa 1533
e0165dcf 1534 return 7; //return number of emited bits
e09f21fa 1535}
1536
1537//====================================================================
1538// prepares data bits intreleaved with parity bits
1539// see EM4469 spec
1540//====================================================================
e09f21fa 1541uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
e0165dcf 1542
1543 register uint8_t line_parity;
1544 register uint8_t column_parity;
1545 register uint8_t i, j;
1546 register uint16_t data;
1547
1548 data = data_low;
1549 column_parity = 0;
1550
1551 for(i=0; i<4; i++) {
1552 line_parity = 0;
1553 for(j=0; j<8; j++) {
1554 line_parity ^= data;
1555 column_parity ^= (data & 1) << j;
1556 *forward_ptr++ = data;
1557 data >>= 1;
1558 }
1559 *forward_ptr++ = line_parity;
1560 if(i == 1)
1561 data = data_hi;
1562 }
1563
1564 for(j=0; j<8; j++) {
1565 *forward_ptr++ = column_parity;
1566 column_parity >>= 1;
1567 }
1568 *forward_ptr = 0;
1569
1570 return 45; //return number of emited bits
e09f21fa 1571}
1572
1573//====================================================================
1574// Forward Link send function
1575// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1576// fwd_bit_count set with number of bits to be sent
1577//====================================================================
1578void SendForward(uint8_t fwd_bit_count) {
1579
e0165dcf 1580 fwd_write_ptr = forwardLink_data;
1581 fwd_bit_sz = fwd_bit_count;
1582
1583 LED_D_ON();
1584
6a09bea4 1585 // Set up FPGA, 125kHz
1586 LFSetupFPGAForADC(95, true);
1587
e0165dcf 1588 // force 1st mod pulse (start gap must be longer for 4305)
1589 fwd_bit_sz--; //prepare next bit modulation
1590 fwd_write_ptr++;
1591 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1592 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
e0165dcf 1593 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1594 SpinDelayUs(16*8); //16 cycles on (8us each)
1595
1596 // now start writting
1597 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1598 if(((*fwd_write_ptr++) & 1) == 1)
1599 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1600 else {
1601 //These timings work for 4469/4269/4305 (with the 55*8 above)
1602 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1603 SpinDelayUs(23*8); //16-4 cycles off (8us each)
e0165dcf 1604 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1605 SpinDelayUs(9*8); //16 cycles on (8us each)
1606 }
1607 }
e09f21fa 1608}
1609
1610void EM4xLogin(uint32_t Password) {
1611
e0165dcf 1612 uint8_t fwd_bit_count;
e09f21fa 1613
e0165dcf 1614 forward_ptr = forwardLink_data;
1615 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1616 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
e09f21fa 1617
e0165dcf 1618 SendForward(fwd_bit_count);
e09f21fa 1619
e0165dcf 1620 //Wait for command to complete
1621 SpinDelay(20);
e09f21fa 1622}
1623
1624void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1625
a739812e 1626 uint8_t fwd_bit_count;
e0165dcf 1627 uint8_t *dest = BigBuf_get_addr();
a739812e 1628 uint16_t bufsize = BigBuf_max_traceLen();
b8f705e7 1629 uint32_t i = 0;
1630
c0f15a05 1631 // Clear destination buffer before sending the command
a739812e 1632 BigBuf_Clear_ext(false);
b8f705e7 1633
e0165dcf 1634 //If password mode do login
1635 if (PwdMode == 1) EM4xLogin(Pwd);
1636
1637 forward_ptr = forwardLink_data;
1638 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1639 fwd_bit_count += Prepare_Addr( Address );
1640
e0165dcf 1641 // Connect the A/D to the peak-detected low-frequency path.
1642 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1643 // Now set up the SSC to get the ADC samples that are now streaming at us.
1644 FpgaSetupSsc();
1645
1646 SendForward(fwd_bit_count);
1647
1648 // Now do the acquisition
1649 i = 0;
1650 for(;;) {
1651 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1652 AT91C_BASE_SSC->SSC_THR = 0x43;
1653 }
1654 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1655 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
b8f705e7 1656 ++i;
a739812e 1657 if (i >= bufsize) break;
e0165dcf 1658 }
1659 }
6a09bea4 1660
1661 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
b8f705e7 1662 cmd_send(CMD_ACK,0,0,0,0,0);
e0165dcf 1663 LED_D_OFF();
e09f21fa 1664}
1665
1666void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1667
e0165dcf 1668 uint8_t fwd_bit_count;
e09f21fa 1669
e0165dcf 1670 //If password mode do login
1671 if (PwdMode == 1) EM4xLogin(Pwd);
e09f21fa 1672
e0165dcf 1673 forward_ptr = forwardLink_data;
1674 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1675 fwd_bit_count += Prepare_Addr( Address );
1676 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
e09f21fa 1677
e0165dcf 1678 SendForward(fwd_bit_count);
e09f21fa 1679
e0165dcf 1680 //Wait for write to complete
1681 SpinDelay(20);
1682 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1683 LED_D_OFF();
e09f21fa 1684}
Impressum, Datenschutz