ba06a4b6 |
1 | //----------------------------------------------------------------------------- |
2 | // |
3 | // Jonathan Westhues, April 2006 |
4 | //----------------------------------------------------------------------------- |
5 | |
6 | module hi_read_rx_xcorr( |
7 | pck0, ck_1356meg, ck_1356megb, |
8 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, |
9 | adc_d, adc_clk, |
10 | ssp_frame, ssp_din, ssp_dout, ssp_clk, |
11 | cross_hi, cross_lo, |
12 | dbg, |
13 | xcorr_is_848, snoop, xcorr_quarter_freq |
14 | ); |
15 | input pck0, ck_1356meg, ck_1356megb; |
16 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; |
17 | input [7:0] adc_d; |
18 | output adc_clk; |
19 | input ssp_dout; |
20 | output ssp_frame, ssp_din, ssp_clk; |
21 | input cross_hi, cross_lo; |
22 | output dbg; |
23 | input xcorr_is_848, snoop, xcorr_quarter_freq; |
24 | |
25 | // Carrier is steady on through this, unless we're snooping. |
26 | assign pwr_hi = ck_1356megb & (~snoop); |
27 | assign pwr_oe1 = 1'b0; |
28 | assign pwr_oe2 = 1'b0; |
29 | assign pwr_oe3 = 1'b0; |
30 | assign pwr_oe4 = 1'b0; |
31 | |
32 | reg ssp_clk; |
33 | reg ssp_frame; |
34 | |
35 | reg fc_div_2; |
36 | always @(posedge ck_1356meg) |
37 | fc_div_2 = ~fc_div_2; |
38 | |
39 | reg fc_div_4; |
40 | always @(posedge fc_div_2) |
41 | fc_div_4 = ~fc_div_4; |
42 | |
43 | reg fc_div_8; |
44 | always @(posedge fc_div_4) |
45 | fc_div_8 = ~fc_div_8; |
46 | |
47 | reg adc_clk; |
48 | |
49 | always @(xcorr_is_848 or xcorr_quarter_freq or ck_1356meg) |
50 | if(~xcorr_quarter_freq) |
51 | begin |
52 | if(xcorr_is_848) |
53 | // The subcarrier frequency is fc/16; we will sample at fc, so that |
54 | // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ... |
55 | adc_clk <= ck_1356meg; |
56 | else |
57 | // The subcarrier frequency is fc/32; we will sample at fc/2, and |
58 | // the subcarrier will look identical. |
59 | adc_clk <= fc_div_2; |
60 | end |
61 | else |
62 | begin |
63 | if(xcorr_is_848) |
64 | // The subcarrier frequency is fc/64 |
65 | adc_clk <= fc_div_4; |
66 | else |
67 | // The subcarrier frequency is fc/128 |
68 | adc_clk <= fc_div_8; |
69 | end |
70 | |
71 | // When we're a reader, we just need to do the BPSK demod; but when we're an |
72 | // eavesdropper, we also need to pick out the commands sent by the reader, |
73 | // using AM. Do this the same way that we do it for the simulated tag. |
74 | reg after_hysteresis, after_hysteresis_prev; |
75 | reg [11:0] has_been_low_for; |
76 | always @(negedge adc_clk) |
77 | begin |
78 | if(& adc_d[7:0]) after_hysteresis <= 1'b1; |
79 | else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0; |
80 | |
81 | if(after_hysteresis) |
82 | begin |
83 | has_been_low_for <= 7'b0; |
84 | end |
85 | else |
86 | begin |
87 | if(has_been_low_for == 12'd4095) |
88 | begin |
89 | has_been_low_for <= 12'd0; |
90 | after_hysteresis <= 1'b1; |
91 | end |
92 | else |
93 | has_been_low_for <= has_been_low_for + 1; |
94 | end |
95 | end |
96 | |
97 | // Let us report a correlation every 4 subcarrier cycles, or 4*16 samples, |
98 | // so we need a 6-bit counter. |
99 | reg [5:0] corr_i_cnt; |
100 | reg [5:0] corr_q_cnt; |
101 | // And a couple of registers in which to accumulate the correlations. |
102 | reg signed [15:0] corr_i_accum; |
103 | reg signed [15:0] corr_q_accum; |
104 | reg signed [7:0] corr_i_out; |
105 | reg signed [7:0] corr_q_out; |
106 | |
107 | // ADC data appears on the rising edge, so sample it on the falling edge |
108 | always @(negedge adc_clk) |
109 | begin |
110 | // These are the correlators: we correlate against in-phase and quadrature |
111 | // versions of our reference signal, and keep the (signed) result to |
112 | // send out later over the SSP. |
113 | if(corr_i_cnt == 7'd63) |
114 | begin |
115 | if(snoop) |
116 | begin |
117 | corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev}; |
118 | corr_q_out <= {corr_q_accum[12:6], after_hysteresis}; |
119 | end |
120 | else |
121 | begin |
122 | // Only correlations need to be delivered. |
123 | corr_i_out <= corr_i_accum[13:6]; |
124 | corr_q_out <= corr_q_accum[13:6]; |
125 | end |
126 | |
127 | corr_i_accum <= adc_d; |
128 | corr_q_accum <= adc_d; |
129 | corr_q_cnt <= 4; |
130 | corr_i_cnt <= 0; |
131 | end |
132 | else |
133 | begin |
134 | if(corr_i_cnt[3]) |
135 | corr_i_accum <= corr_i_accum - adc_d; |
136 | else |
137 | corr_i_accum <= corr_i_accum + adc_d; |
138 | |
139 | if(corr_q_cnt[3]) |
140 | corr_q_accum <= corr_q_accum - adc_d; |
141 | else |
142 | corr_q_accum <= corr_q_accum + adc_d; |
143 | |
144 | corr_i_cnt <= corr_i_cnt + 1; |
145 | corr_q_cnt <= corr_q_cnt + 1; |
146 | end |
147 | |
148 | // The logic in hi_simulate.v reports 4 samples per bit. We report two |
149 | // (I, Q) pairs per bit, so we should do 2 samples per pair. |
150 | if(corr_i_cnt == 6'd31) |
151 | after_hysteresis_prev <= after_hysteresis; |
152 | |
153 | // Then the result from last time is serialized and send out to the ARM. |
154 | // We get one report each cycle, and each report is 16 bits, so the |
155 | // ssp_clk should be the adc_clk divided by 64/16 = 4. |
156 | |
157 | if(corr_i_cnt[1:0] == 2'b10) |
158 | ssp_clk <= 1'b0; |
159 | |
160 | if(corr_i_cnt[1:0] == 2'b00) |
161 | begin |
162 | ssp_clk <= 1'b1; |
163 | // Don't shift if we just loaded new data, obviously. |
164 | if(corr_i_cnt != 7'd0) |
165 | begin |
166 | corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; |
167 | corr_q_out[7:1] <= corr_q_out[6:0]; |
168 | end |
169 | end |
170 | |
171 | if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000) |
172 | ssp_frame = 1'b1; |
173 | else |
174 | ssp_frame = 1'b0; |
175 | |
176 | end |
177 | |
178 | assign ssp_din = corr_i_out[7]; |
179 | |
180 | assign dbg = corr_i_cnt[3]; |
181 | |
182 | // Unused. |
183 | assign pwr_lo = 1'b0; |
184 | |
185 | endmodule |