]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
CHG: this timeout doesn't influence the bad performance with my older pm3 device...
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
c3c241f3 12#include "usb_cdc.h"
13#include "cmd.h"
c3c241f3 14#include "proxmark3.h"
15c4dc5a 15#include "apps.h"
f7e3ed82 16#include "util.h"
9ab7a6c7 17#include "printf.h"
18#include "string.h"
9ab7a6c7 19#include <stdarg.h>
15c4dc5a 20#include "legicrf.h"
0db11b71 21#include "hitag2.h"
22#include "hitagS.h"
31abe49f 23#include "lfsampling.h"
3000dc4e 24#include "BigBuf.h"
7838f4be 25#include "mifareutil.h"
36804420 26#include "pcf7931.h"
f2c2b174 27
15c4dc5a 28#ifdef WITH_LCD
902cb3c0 29 #include "LCD.h"
15c4dc5a 30#endif
31
7838f4be 32// Craig Young - 14a stand-alone code
33#ifdef WITH_ISO14443a_StandAlone
34 #include "iso14443a.h"
c2731f37 35 #include "protocols.h"
7838f4be 36#endif
37
15c4dc5a 38//=============================================================================
39// A buffer where we can queue things up to be sent through the FPGA, for
40// any purpose (fake tag, as reader, whatever). We go MSB first, since that
41// is the order in which they go out on the wire.
42//=============================================================================
43
6a1f2d82 44#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
a501c82b 45uint8_t ToSend[TOSEND_BUFFER_SIZE];
7838f4be 46int ToSendMax = 0;
15c4dc5a 47static int ToSendBit;
48struct common_area common_area __attribute__((section(".commonarea")));
49
15c4dc5a 50void ToSendReset(void)
51{
52 ToSendMax = -1;
53 ToSendBit = 8;
54}
55
da198be4 56void ToSendStuffBit(int b) {
15c4dc5a 57 if(ToSendBit >= 8) {
da198be4 58 ++ToSendMax;
15c4dc5a 59 ToSend[ToSendMax] = 0;
60 ToSendBit = 0;
61 }
62
da198be4 63 if(b)
15c4dc5a 64 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
15c4dc5a 65
da198be4 66 ++ToSendBit;
15c4dc5a 67
6a1f2d82 68 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 69 ToSendBit = 0;
70 DbpString("ToSendStuffBit overflowed!");
71 }
72}
73
dccddaef 74void PrintToSendBuffer(void){
75 DbpString("Printing ToSendBuffer:");
76 Dbhexdump(ToSendMax, ToSend, 0);
77}
78
15c4dc5a 79//=============================================================================
80// Debug print functions, to go out over USB, to the usual PC-side client.
81//=============================================================================
82
38e41917 83void DbpStringEx(char *str, uint32_t cmd){
84 byte_t len = strlen(str);
85 cmd_send(CMD_DEBUG_PRINT_STRING,len, cmd,0,(byte_t*)str,len);
86}
87
da198be4 88void DbpString(char *str) {
38e41917 89 DbpStringEx(str, 0);
15c4dc5a 90}
91
92#if 0
da198be4 93void DbpIntegers(int x1, int x2, int x3) {
38e41917 94 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 95}
96#endif
38e41917 97void DbprintfEx(uint32_t cmd, const char *fmt, ...) {
98 // should probably limit size here; oh well, let's just use a big buffer
99 char output_string[128] = {0x00};
100 va_list ap;
101
102 va_start(ap, fmt);
103 kvsprintf(fmt, output_string, 10, ap);
104 va_end(ap);
105
106 DbpStringEx(output_string, cmd);
107}
15c4dc5a 108
109void Dbprintf(const char *fmt, ...) {
da198be4 110 // should probably limit size here; oh well, let's just use a big buffer
111 char output_string[128] = {0x00};
15c4dc5a 112 va_list ap;
113
114 va_start(ap, fmt);
115 kvsprintf(fmt, output_string, 10, ap);
116 va_end(ap);
e30c654b 117
15c4dc5a 118 DbpString(output_string);
119}
120
9455b51c 121// prints HEX & ASCII
d19929cb 122void Dbhexdump(int len, uint8_t *d, bool bAsci) {
da198be4 123 int l=0, i;
9455b51c 124 char ascii[9];
d19929cb 125
9455b51c 126 while (len>0) {
da198be4 127
128 l = (len>8) ? 8 : len;
9455b51c 129
130 memcpy(ascii,d,l);
d19929cb 131 ascii[l]=0;
9455b51c 132
133 // filter safe ascii
da198be4 134 for (i=0; i<l; ++i)
9455b51c 135 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 136
da198be4 137 if (bAsci)
d19929cb 138 Dbprintf("%-8s %*D",ascii,l,d," ");
da198be4 139 else
d19929cb 140 Dbprintf("%*D",l,d," ");
d19929cb 141
da198be4 142 len -= 8;
143 d += 8;
9455b51c 144 }
145}
146
15c4dc5a 147//-----------------------------------------------------------------------------
148// Read an ADC channel and block till it completes, then return the result
149// in ADC units (0 to 1023). Also a routine to average 32 samples and
150// return that.
151//-----------------------------------------------------------------------------
152static int ReadAdc(int ch)
153{
f7e3ed82 154 uint32_t d;
15c4dc5a 155
156 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
157 AT91C_BASE_ADC->ADC_MR =
3b692427 158 ADC_MODE_PRESCALE(63 /* was 32 */) | // ADC_CLK = MCK / ((63+1) * 2) = 48MHz / 128 = 375kHz
159 ADC_MODE_STARTUP_TIME(1 /* was 16 */) | // Startup Time = (1+1) * 8 / ADC_CLK = 16 / 375kHz = 42,7us Note: must be > 20us
160 ADC_MODE_SAMPLE_HOLD_TIME(15 /* was 8 */); // Sample & Hold Time SHTIM = 15 / ADC_CLK = 15 / 375kHz = 40us
161
162 // Note: ADC_MODE_PRESCALE and ADC_MODE_SAMPLE_HOLD_TIME are set to the maximum allowed value.
163 // Both AMPL_LO and AMPL_HI are very high impedance (10MOhm) outputs, the input capacitance of the ADC is 12pF (typical). This results in a time constant
164 // of RC = 10MOhm * 12pF = 120us. Even after the maximum configurable sample&hold time of 40us the input capacitor will not be fully charged.
165 //
166 // The maths are:
167 // If there is a voltage v_in at the input, the voltage v_cap at the capacitor (this is what we are measuring) will be
168 //
169 // v_cap = v_in * (1 - exp(-RC/SHTIM)) = v_in * (1 - exp(-3)) = v_in * 0,95 (i.e. an error of 5%)
170 //
171 // Note: with the "historic" values in the comments above, the error was 34% !!!
172
15c4dc5a 173 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
174
175 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
3b692427 176
da198be4 177 while (!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch))) ;
178
15c4dc5a 179 d = AT91C_BASE_ADC->ADC_CDR[ch];
15c4dc5a 180 return d;
181}
182
9ca155ba 183int AvgAdc(int ch) // was static - merlok
15c4dc5a 184{
185 int i;
186 int a = 0;
187
da198be4 188 for(i = 0; i < 32; ++i)
15c4dc5a 189 a += ReadAdc(ch);
15c4dc5a 190
191 return (a + 15) >> 5;
192}
193
f121b478 194
da198be4 195void MeasureAntennaTuning(void) {
15c4dc5a 196
f121b478 197 uint8_t* LF_Results = BigBuf_malloc(256);
198 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0;
199 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
7838f4be 200 LED_B_ON();
15c4dc5a 201
202/*
203 * Sweeps the useful LF range of the proxmark from
204 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
205 * read the voltage in the antenna, the result left
206 * in the buffer is a graph which should clearly show
207 * the resonating frequency of your LF antenna
208 * ( hopefully around 95 if it is tuned to 125kHz!)
209 */
d19929cb 210
7cc204bf 211 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 212 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
da198be4 213
f121b478 214 for (i = 255; i >= 19; i--) {
da198be4 215 WDT_HIT();
15c4dc5a 216 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
217 SpinDelay(20);
3b692427 218 adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
15c4dc5a 219 if (i==95) vLf125 = adcval; // voltage at 125Khz
220 if (i==89) vLf134 = adcval; // voltage at 134Khz
221
d3499d36 222 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
223 if(LF_Results[i] > peak) {
15c4dc5a 224 peakv = adcval;
d3499d36 225 peak = LF_Results[i];
15c4dc5a 226 peakf = i;
15c4dc5a 227 }
228 }
229
f121b478 230 for (i = 18; i >= 0; i--) LF_Results[i] = 0;
d3499d36 231
7838f4be 232 LED_A_ON();
15c4dc5a 233 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7838f4be 234 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 235 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
236 SpinDelay(20);
3b692427 237 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
15c4dc5a 238
3b692427 239 cmd_send(CMD_MEASURED_ANTENNA_TUNING, vLf125 | (vLf134<<16), vHf, peakf | (peakv<<16), LF_Results, 256);
d19929cb 240 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
da198be4 241
f121b478 242 BigBuf_free(); BigBuf_Clear_ext(false);
da198be4 243 LEDsoff();
15c4dc5a 244}
245
da198be4 246void MeasureAntennaTuningHf(void) {
15c4dc5a 247 int vHf = 0; // in mV
3b692427 248 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
249 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
250 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
251
38e41917 252 while ( !BUTTON_PRESS() ){
15c4dc5a 253 SpinDelay(20);
3b692427 254 vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
38e41917 255 //Dbprintf("%d mV",vHf);
256 DbprintfEx(CMD_MEASURE_ANTENNA_TUNING_HF, "%d mV",vHf);
15c4dc5a 257 }
3b692427 258 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
38e41917 259 DbpString("cancelled");
15c4dc5a 260}
261
262
da198be4 263void ReadMem(int addr) {
f7e3ed82 264 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 265
266 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
267 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
268}
269
270/* osimage version information is linked in */
271extern struct version_information version_information;
272/* bootrom version information is pointed to from _bootphase1_version_pointer */
9783989b 273extern char *_bootphase1_version_pointer, _flash_start, _flash_end, _bootrom_start, _bootrom_end, __data_src_start__;
15c4dc5a 274void SendVersion(void)
275{
9783989b 276 char temp[USB_CMD_DATA_SIZE]; /* Limited data payload in USB packets */
277 char VersionString[USB_CMD_DATA_SIZE] = { '\0' };
e30c654b 278
279 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 280 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
281 * pointer, then use it.
282 */
283 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
da198be4 284
15c4dc5a 285 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
9783989b 286 strcat(VersionString, "bootrom version information appears invalid\n");
15c4dc5a 287 } else {
288 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
9783989b 289 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
15c4dc5a 290 }
e30c654b 291
15c4dc5a 292 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
9783989b 293 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
e30c654b 294
9783989b 295 FpgaGatherVersion(FPGA_BITSTREAM_LF, temp, sizeof(temp));
296 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
da198be4 297
9783989b 298 FpgaGatherVersion(FPGA_BITSTREAM_HF, temp, sizeof(temp));
299 strncat(VersionString, temp, sizeof(VersionString) - strlen(VersionString) - 1);
300
301 // Send Chip ID and used flash memory
302 uint32_t text_and_rodata_section_size = (uint32_t)&__data_src_start__ - (uint32_t)&_flash_start;
303 uint32_t compressed_data_section_size = common_area.arg1;
304 cmd_send(CMD_ACK, *(AT91C_DBGU_CIDR), text_and_rodata_section_size + compressed_data_section_size, 0, VersionString, strlen(VersionString));
15c4dc5a 305}
f62b5e12 306
307// measure the USB Speed by sending SpeedTestBufferSize bytes to client and measuring the elapsed time.
308// Note: this mimics GetFromBigbuf(), i.e. we have the overhead of the UsbCommand structure included.
0de8e387 309void printUSBSpeed(void)
f62b5e12 310{
311 Dbprintf("USB Speed:");
0de8e387 312 Dbprintf(" Sending USB packets to client...");
f62b5e12 313
0de8e387 314 #define USB_SPEED_TEST_MIN_TIME 1500 // in milliseconds
f62b5e12 315 uint8_t *test_data = BigBuf_get_addr();
0de8e387 316 uint32_t end_time;
f62b5e12 317
0de8e387 318 uint32_t start_time = end_time = GetTickCount();
319 uint32_t bytes_transferred = 0;
f62b5e12 320
321 LED_B_ON();
0de8e387 322 while(end_time < start_time + USB_SPEED_TEST_MIN_TIME) {
323 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K, 0, USB_CMD_DATA_SIZE, 0, test_data, USB_CMD_DATA_SIZE);
324 end_time = GetTickCount();
325 bytes_transferred += USB_CMD_DATA_SIZE;
f62b5e12 326 }
327 LED_B_OFF();
328
0de8e387 329 Dbprintf(" Time elapsed: %dms", end_time - start_time);
330 Dbprintf(" Bytes transferred: %d", bytes_transferred);
331 Dbprintf(" USB Transfer Speed PM3 -> Client = %d Bytes/s",
332 1000 * bytes_transferred / (end_time - start_time));
f62b5e12 333
334}
335
7838f4be 336/**
337 * Prints runtime information about the PM3.
338**/
da198be4 339void SendStatus(void) {
7838f4be 340 BigBuf_print_status();
341 Fpga_print_status();
342 printConfig(); //LF Sampling config
0de8e387 343 printUSBSpeed();
7838f4be 344 Dbprintf("Various");
f62b5e12 345 Dbprintf(" MF_DBGLEVEL........%d", MF_DBGLEVEL);
346 Dbprintf(" ToSendMax..........%d", ToSendMax);
347 Dbprintf(" ToSendBit..........%d", ToSendBit);
348 Dbprintf(" ToSend BUFFERSIZE..%d", TOSEND_BUFFER_SIZE);
349
350 cmd_send(CMD_ACK,1,0,0,0,0);
7838f4be 351}
15c4dc5a 352
7838f4be 353#if defined(WITH_ISO14443a_StandAlone) || defined(WITH_LF)
15c4dc5a 354
7838f4be 355#define OPTS 2
7838f4be 356void StandAloneMode()
357{
358 DbpString("Stand-alone mode! No PC necessary.");
15c4dc5a 359 // Oooh pretty -- notify user we're in elite samy mode now
360 LED(LED_RED, 200);
361 LED(LED_ORANGE, 200);
362 LED(LED_GREEN, 200);
363 LED(LED_ORANGE, 200);
364 LED(LED_RED, 200);
365 LED(LED_ORANGE, 200);
366 LED(LED_GREEN, 200);
367 LED(LED_ORANGE, 200);
368 LED(LED_RED, 200);
7838f4be 369}
7838f4be 370#endif
371
7838f4be 372#ifdef WITH_ISO14443a_StandAlone
373void StandAloneMode14a()
374{
375 StandAloneMode();
376 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
377
378 int selected = 0;
0db6ed9a 379 int playing = 0, iGotoRecord = 0, iGotoClone = 0;
7838f4be 380 int cardRead[OPTS] = {0};
381 uint8_t readUID[10] = {0};
382 uint32_t uid_1st[OPTS]={0};
383 uint32_t uid_2nd[OPTS]={0};
0db6ed9a 384 uint32_t uid_tmp1 = 0;
385 uint32_t uid_tmp2 = 0;
386 iso14a_card_select_t hi14a_card[OPTS];
7838f4be 387
c2731f37 388 uint8_t params = (MAGIC_SINGLE | MAGIC_DATAIN);
389
7838f4be 390 LED(selected + 1, 0);
391
392 for (;;)
393 {
394 usb_poll();
395 WDT_HIT();
7838f4be 396 SpinDelay(300);
397
0db6ed9a 398 if (iGotoRecord == 1 || cardRead[selected] == 0)
7838f4be 399 {
0db6ed9a 400 iGotoRecord = 0;
7838f4be 401 LEDsoff();
402 LED(selected + 1, 0);
403 LED(LED_RED2, 0);
404
405 // record
406 Dbprintf("Enabling iso14443a reader mode for [Bank: %u]...", selected);
7838f4be 407 /* need this delay to prevent catching some weird data */
408 SpinDelay(500);
409 /* Code for reading from 14a tag */
810f5379 410 uint8_t uid[10] = {0};
411 uint32_t cuid = 0;
7838f4be 412 iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD);
413
414 for ( ; ; )
415 {
416 WDT_HIT();
0db6ed9a 417 if (BUTTON_PRESS()) {
418 if (cardRead[selected]) {
419 Dbprintf("Button press detected -- replaying card in bank[%d]", selected);
420 break;
421 }
422 else if (cardRead[(selected+1)%OPTS]) {
423 Dbprintf("Button press detected but no card in bank[%d] so playing from bank[%d]", selected, (selected+1)%OPTS);
424 selected = (selected+1)%OPTS;
425 break; // playing = 1;
426 }
427 else {
428 Dbprintf("Button press detected but no stored tag to play. (Ignoring button)");
429 SpinDelay(300);
430 }
431 }
c188b1b9 432 if (!iso14443a_select_card(uid, &hi14a_card[selected], &cuid, true, 0))
7838f4be 433 continue;
434 else
435 {
436 Dbprintf("Read UID:"); Dbhexdump(10,uid,0);
437 memcpy(readUID,uid,10*sizeof(uint8_t));
0db6ed9a 438 uint8_t *dst = (uint8_t *)&uid_tmp1;
7838f4be 439 // Set UID byte order
440 for (int i=0; i<4; i++)
441 dst[i] = uid[3-i];
0db6ed9a 442 dst = (uint8_t *)&uid_tmp2;
7838f4be 443 for (int i=0; i<4; i++)
444 dst[i] = uid[7-i];
0db6ed9a 445 if (uid_1st[(selected+1)%OPTS] == uid_tmp1 && uid_2nd[(selected+1)%OPTS] == uid_tmp2) {
446 Dbprintf("Card selected has same UID as what is stored in the other bank. Skipping.");
447 }
448 else {
449 if (uid_tmp2) {
450 Dbprintf("Bank[%d] received a 7-byte UID",selected);
451 uid_1st[selected] = (uid_tmp1)>>8;
452 uid_2nd[selected] = (uid_tmp1<<24) + (uid_tmp2>>8);
453 }
454 else {
455 Dbprintf("Bank[%d] received a 4-byte UID",selected);
456 uid_1st[selected] = uid_tmp1;
457 uid_2nd[selected] = uid_tmp2;
458 }
7838f4be 459 break;
460 }
461 }
0db6ed9a 462 }
463 Dbprintf("ATQA = %02X%02X",hi14a_card[selected].atqa[0],hi14a_card[selected].atqa[1]);
464 Dbprintf("SAK = %02X",hi14a_card[selected].sak);
7838f4be 465 LEDsoff();
466 LED(LED_GREEN, 200);
467 LED(LED_ORANGE, 200);
468 LED(LED_GREEN, 200);
469 LED(LED_ORANGE, 200);
470
471 LEDsoff();
472 LED(selected + 1, 0);
7838f4be 473
0db6ed9a 474 // Next state is replay:
475 playing = 1;
7838f4be 476
477 cardRead[selected] = 1;
7838f4be 478 }
0db6ed9a 479 /* MF Classic UID clone */
480 else if (iGotoClone==1)
7838f4be 481 {
0db6ed9a 482 iGotoClone=0;
c2731f37 483 LEDsoff();
484 LED(selected + 1, 0);
485 LED(LED_ORANGE, 250);
7838f4be 486
c2731f37 487 // record
488 Dbprintf("Preparing to Clone card [Bank: %x]; uid: %08x", selected, uid_1st[selected]);
7838f4be 489
c2731f37 490 // wait for button to be released
491 // Delay cloning until card is in place
492 while(BUTTON_PRESS())
493 WDT_HIT();
7838f4be 494
c2731f37 495 Dbprintf("Starting clone. [Bank: %u]", selected);
496 // need this delay to prevent catching some weird data
497 SpinDelay(500);
498 // Begin clone function here:
499 /* Example from client/mifarehost.c for commanding a block write for "magic Chinese" cards:
500 UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params & (0xFE | (uid == NULL ? 0:1)), blockNo, 0}};
501 memcpy(c.d.asBytes, data, 16);
502 SendCommand(&c);
503
504 Block read is similar:
505 UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
506 We need to imitate that call with blockNo 0 to set a uid.
507
508 The get and set commands are handled in this file:
509 // Work with "magic Chinese" card
510 case CMD_MIFARE_CSETBLOCK:
511 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
512 break;
513 case CMD_MIFARE_CGETBLOCK:
514 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
515 break;
516
517 mfCSetUID provides example logic for UID set workflow:
518 -Read block0 from card in field with MifareCGetBlock()
519 -Configure new values without replacing reserved bytes
520 memcpy(block0, uid, 4); // Copy UID bytes from byte array
521 // Mifare UID BCC
522 block0[4] = block0[0]^block0[1]^block0[2]^block0[3]; // BCC on byte 5
523 Bytes 5-7 are reserved SAK and ATQA for mifare classic
524 -Use mfCSetBlock(0, block0, oldUID, wantWipe, MAGIC_SINGLE) to write it
525 */
526 uint8_t oldBlock0[16] = {0}, newBlock0[16] = {0}, testBlock0[16] = {0};
527 // arg0 = Flags, arg1=blockNo
528 MifareCGetBlock(params, 0, oldBlock0);
0db6ed9a 529 if (oldBlock0[0] == 0 && oldBlock0[0] == oldBlock0[1] && oldBlock0[1] == oldBlock0[2] && oldBlock0[2] == oldBlock0[3]) {
530 Dbprintf("No changeable tag detected. Returning to replay mode for bank[%d]", selected);
531 playing = 1;
532 }
533 else {
c2731f37 534 Dbprintf("UID from target tag: %02X%02X%02X%02X", oldBlock0[0],oldBlock0[1],oldBlock0[2],oldBlock0[3]);
535 memcpy(newBlock0,oldBlock0,16);
536 // Copy uid_1st for bank (2nd is for longer UIDs not supported if classic)
537
538 newBlock0[0] = uid_1st[selected]>>24;
539 newBlock0[1] = 0xFF & (uid_1st[selected]>>16);
540 newBlock0[2] = 0xFF & (uid_1st[selected]>>8);
541 newBlock0[3] = 0xFF & (uid_1st[selected]);
542 newBlock0[4] = newBlock0[0]^newBlock0[1]^newBlock0[2]^newBlock0[3];
543
544 // arg0 = workFlags, arg1 = blockNo, datain
545 MifareCSetBlock(params, 0, newBlock0);
546 MifareCGetBlock(params, 0, testBlock0);
547
548 if (memcmp(testBlock0, newBlock0, 16)==0) {
549 DbpString("Cloned successfull!");
550 cardRead[selected] = 0; // Only if the card was cloned successfully should we clear it
7838f4be 551 playing = 0;
0db6ed9a 552 iGotoRecord = 1;
c2731f37 553 selected = (selected + 1) % OPTS;
554 } else {
0db6ed9a 555 Dbprintf("Clone failed. Back to replay mode on bank[%d]", selected);
556 playing = 1;
557 }
558 }
559 LEDsoff();
560 LED(selected + 1, 0);
7838f4be 561 }
562 // Change where to record (or begin playing)
0db6ed9a 563 else if (playing==1) // button_pressed == BUTTON_SINGLE_CLICK && cardRead[selected])
7838f4be 564 {
7838f4be 565 LEDsoff();
566 LED(selected + 1, 0);
567
568 // Begin transmitting
569 if (playing)
570 {
571 LED(LED_GREEN, 0);
572 DbpString("Playing");
0db6ed9a 573 for ( ; ; ) {
574 WDT_HIT();
575 int button_action = BUTTON_HELD(1000);
576 if (button_action == 0) { // No button action, proceed with sim
577 uint8_t data[512] = {0}; // in case there is a read command received we shouldn't break
578 uint8_t flags = ( uid_2nd[selected] > 0x00 ) ? FLAG_7B_UID_IN_DATA : FLAG_4B_UID_IN_DATA;
579 num_to_bytes(uid_1st[selected], 3, data);
580 num_to_bytes(uid_2nd[selected], 4, data);
581
7838f4be 582 Dbprintf("Simulating ISO14443a tag with uid[0]: %08x, uid[1]: %08x [Bank: %u]", uid_1st[selected],uid_2nd[selected],selected);
0db6ed9a 583 if (hi14a_card[selected].sak == 8 && hi14a_card[selected].atqa[0] == 4 && hi14a_card[selected].atqa[1] == 0) {
584 DbpString("Mifare Classic");
585 SimulateIso14443aTag(1, flags, data); // Mifare Classic
586 }
587 else if (hi14a_card[selected].sak == 0 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 0) {
588 DbpString("Mifare Ultralight");
589 SimulateIso14443aTag(2, flags, data); // Mifare Ultralight
590 }
591 else if (hi14a_card[selected].sak == 20 && hi14a_card[selected].atqa[0] == 0x44 && hi14a_card[selected].atqa[1] == 3) {
592 DbpString("Mifare DESFire");
593 SimulateIso14443aTag(3, flags, data); // Mifare DESFire
594 }
595 else {
596 Dbprintf("Unrecognized tag type -- defaulting to Mifare Classic emulation");
597 SimulateIso14443aTag(1, flags, data);
598 }
599 }
600 else if (button_action == BUTTON_SINGLE_CLICK) {
601 selected = (selected + 1) % OPTS;
602 Dbprintf("Done playing. Switching to record mode on bank %d",selected);
603 iGotoRecord = 1;
604 break;
605 }
606 else if (button_action == BUTTON_HOLD) {
607 Dbprintf("Playtime over. Begin cloning...");
608 iGotoClone = 1;
609 break;
7838f4be 610 }
0db6ed9a 611 WDT_HIT();
612 }
7838f4be 613
614 /* We pressed a button so ignore it here with a delay */
615 SpinDelay(300);
7838f4be 616 LEDsoff();
617 LED(selected + 1, 0);
618 }
619 else
620 while(BUTTON_PRESS())
621 WDT_HIT();
622 }
623 }
624}
625#elif WITH_LF
626// samy's sniff and repeat routine
627void SamyRun()
628{
629 StandAloneMode();
630 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
631
632 int high[OPTS], low[OPTS];
15c4dc5a 633 int selected = 0;
634 int playing = 0;
72e930ef 635 int cardRead = 0;
15c4dc5a 636
637 // Turn on selected LED
638 LED(selected + 1, 0);
639
614da335 640 for (;;) {
6e82300d 641 usb_poll();
95e63594 642 WDT_HIT();
15c4dc5a 643
644 // Was our button held down or pressed?
645 int button_pressed = BUTTON_HELD(1000);
646 SpinDelay(300);
647
648 // Button was held for a second, begin recording
72e930ef 649 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 650 {
651 LEDsoff();
652 LED(selected + 1, 0);
653 LED(LED_RED2, 0);
654
655 // record
656 DbpString("Starting recording");
657
658 // wait for button to be released
659 while(BUTTON_PRESS())
660 WDT_HIT();
661
662 /* need this delay to prevent catching some weird data */
663 SpinDelay(500);
664
665 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
b7536e11 666 Dbprintf("Recorded %x %x %08x", selected, high[selected], low[selected]);
15c4dc5a 667
668 LEDsoff();
669 LED(selected + 1, 0);
670 // Finished recording
15c4dc5a 671 // If we were previously playing, set playing off
672 // so next button push begins playing what we recorded
614da335 673 playing = 0;
674 cardRead = 1;
72e930ef 675 }
614da335 676 else if (button_pressed > 0 && cardRead == 1) {
677 LEDsoff();
678 LED(selected + 1, 0);
679 LED(LED_ORANGE, 0);
72e930ef 680
614da335 681 // record
b7536e11 682 Dbprintf("Cloning %x %x %08x", selected, high[selected], low[selected]);
72e930ef 683
614da335 684 // wait for button to be released
685 while(BUTTON_PRESS())
686 WDT_HIT();
72e930ef 687
614da335 688 /* need this delay to prevent catching some weird data */
689 SpinDelay(500);
72e930ef 690
b7536e11 691 CopyHIDtoT55x7(0, high[selected], low[selected], 0);
692 Dbprintf("Cloned %x %x %08x", selected, high[selected], low[selected]);
72e930ef 693
614da335 694 LEDsoff();
695 LED(selected + 1, 0);
696 // Finished recording
72e930ef 697
614da335 698 // If we were previously playing, set playing off
699 // so next button push begins playing what we recorded
700 playing = 0;
701 cardRead = 0;
15c4dc5a 702 }
703
704 // Change where to record (or begin playing)
614da335 705 else if (button_pressed) {
15c4dc5a 706 // Next option if we were previously playing
707 if (playing)
708 selected = (selected + 1) % OPTS;
709 playing = !playing;
710
711 LEDsoff();
712 LED(selected + 1, 0);
713
714 // Begin transmitting
715 if (playing)
716 {
717 LED(LED_GREEN, 0);
718 DbpString("Playing");
719 // wait for button to be released
720 while(BUTTON_PRESS())
721 WDT_HIT();
0d5ee8e2 722
b7536e11 723 Dbprintf("%x %x %08x", selected, high[selected], low[selected]);
0d5ee8e2 724 CmdHIDsimTAG(high[selected], low[selected], 0);
15c4dc5a 725 DbpString("Done playing");
0d5ee8e2 726
727 if (BUTTON_HELD(1000) > 0) {
15c4dc5a 728 DbpString("Exiting");
729 LEDsoff();
730 return;
0d5ee8e2 731 }
15c4dc5a 732
733 /* We pressed a button so ignore it here with a delay */
734 SpinDelay(300);
735
736 // when done, we're done playing, move to next option
737 selected = (selected + 1) % OPTS;
738 playing = !playing;
739 LEDsoff();
740 LED(selected + 1, 0);
741 }
742 else
743 while(BUTTON_PRESS())
744 WDT_HIT();
745 }
746 }
747}
15c4dc5a 748
7838f4be 749#endif
15c4dc5a 750/*
751OBJECTIVE
752Listen and detect an external reader. Determine the best location
753for the antenna.
754
755INSTRUCTIONS:
756Inside the ListenReaderField() function, there is two mode.
757By default, when you call the function, you will enter mode 1.
758If you press the PM3 button one time, you will enter mode 2.
759If you press the PM3 button a second time, you will exit the function.
760
761DESCRIPTION OF MODE 1:
762This mode just listens for an external reader field and lights up green
763for HF and/or red for LF. This is the original mode of the detectreader
764function.
765
766DESCRIPTION OF MODE 2:
767This mode will visually represent, using the LEDs, the actual strength of the
768current compared to the maximum current detected. Basically, once you know
769what kind of external reader is present, it will help you spot the best location to place
770your antenna. You will probably not get some good results if there is a LF and a HF reader
771at the same place! :-)
772
773LIGHT SCHEME USED:
774*/
775static const char LIGHT_SCHEME[] = {
776 0x0, /* ---- | No field detected */
777 0x1, /* X--- | 14% of maximum current detected */
778 0x2, /* -X-- | 29% of maximum current detected */
779 0x4, /* --X- | 43% of maximum current detected */
780 0x8, /* ---X | 57% of maximum current detected */
781 0xC, /* --XX | 71% of maximum current detected */
782 0xE, /* -XXX | 86% of maximum current detected */
783 0xF, /* XXXX | 100% of maximum current detected */
784};
785static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
786
da198be4 787void ListenReaderField(int limit) {
3b692427 788#define LF_ONLY 1
789#define HF_ONLY 2
790#define REPORT_CHANGE 10 // report new values only if they have changed at least by REPORT_CHANGE
791
da198be4 792 int lf_av, lf_av_new, lf_baseline= 0, lf_max;
793 int hf_av, hf_av_new, hf_baseline= 0, hf_max;
794 int mode=1, display_val, display_max, i;
3b692427 795
796 // switch off FPGA - we don't want to measure our own signal
797 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
798 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
15c4dc5a 799
800 LEDsoff();
801
3b692427 802 lf_av = lf_max = AvgAdc(ADC_CHAN_LF);
15c4dc5a 803
804 if(limit != HF_ONLY) {
3b692427 805 Dbprintf("LF 125/134kHz Baseline: %dmV", (MAX_ADC_LF_VOLTAGE * lf_av) >> 10);
15c4dc5a 806 lf_baseline = lf_av;
807 }
808
3b692427 809 hf_av = hf_max = AvgAdc(ADC_CHAN_HF);
15c4dc5a 810
811 if (limit != LF_ONLY) {
3b692427 812 Dbprintf("HF 13.56MHz Baseline: %dmV", (MAX_ADC_HF_VOLTAGE * hf_av) >> 10);
15c4dc5a 813 hf_baseline = hf_av;
814 }
815
816 for(;;) {
817 if (BUTTON_PRESS()) {
818 SpinDelay(500);
819 switch (mode) {
820 case 1:
821 mode=2;
822 DbpString("Signal Strength Mode");
823 break;
824 case 2:
825 default:
826 DbpString("Stopped");
827 LEDsoff();
828 return;
829 break;
830 }
831 }
832 WDT_HIT();
833
834 if (limit != HF_ONLY) {
3b692427 835 if(mode == 1) {
f2c2b174 836 if (ABS(lf_av - lf_baseline) > REPORT_CHANGE)
3b692427 837 LED_D_ON();
838 else
839 LED_D_OFF();
15c4dc5a 840 }
e30c654b 841
3b692427 842 lf_av_new = AvgAdc(ADC_CHAN_LF);
15c4dc5a 843 // see if there's a significant change
f2c2b174 844 if(ABS(lf_av - lf_av_new) > REPORT_CHANGE) {
3b692427 845 Dbprintf("LF 125/134kHz Field Change: %5dmV", (MAX_ADC_LF_VOLTAGE * lf_av_new) >> 10);
15c4dc5a 846 lf_av = lf_av_new;
847 if (lf_av > lf_max)
848 lf_max = lf_av;
15c4dc5a 849 }
850 }
851
852 if (limit != LF_ONLY) {
853 if (mode == 1){
f2c2b174 854 if (ABS(hf_av - hf_baseline) > REPORT_CHANGE)
3b692427 855 LED_B_ON();
856 else
857 LED_B_OFF();
15c4dc5a 858 }
e30c654b 859
3b692427 860 hf_av_new = AvgAdc(ADC_CHAN_HF);
15c4dc5a 861 // see if there's a significant change
f2c2b174 862 if(ABS(hf_av - hf_av_new) > REPORT_CHANGE) {
3b692427 863 Dbprintf("HF 13.56MHz Field Change: %5dmV", (MAX_ADC_HF_VOLTAGE * hf_av_new) >> 10);
15c4dc5a 864 hf_av = hf_av_new;
865 if (hf_av > hf_max)
866 hf_max = hf_av;
15c4dc5a 867 }
868 }
e30c654b 869
15c4dc5a 870 if(mode == 2) {
871 if (limit == LF_ONLY) {
872 display_val = lf_av;
873 display_max = lf_max;
874 } else if (limit == HF_ONLY) {
875 display_val = hf_av;
876 display_max = hf_max;
877 } else { /* Pick one at random */
878 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
879 display_val = hf_av;
880 display_max = hf_max;
881 } else {
882 display_val = lf_av;
883 display_max = lf_max;
884 }
885 }
886 for (i=0; i<LIGHT_LEN; i++) {
887 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
888 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
889 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
890 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
891 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
892 break;
893 }
894 }
895 }
896 }
897}
898
f7e3ed82 899void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 900{
901 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 902
f121b478 903 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 904
15c4dc5a 905 switch(c->cmd) {
906#ifdef WITH_LF
31abe49f
MHS
907 case CMD_SET_LF_SAMPLING_CONFIG:
908 setSamplingConfig((sample_config *) c->d.asBytes);
909 break;
15c4dc5a 910 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
1c8fbeb9 911 cmd_send(CMD_ACK, SampleLF(c->arg[0]),0,0,0,0);
15c4dc5a 912 break;
15c4dc5a 913 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
d0724780 914 ModThenAcquireRawAdcSamples125k(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
15c4dc5a 915 break;
b014c96d 916 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
31abe49f 917 cmd_send(CMD_ACK,SnoopLF(),0,0,0,0);
b014c96d 918 break;
7e67e42f 919 case CMD_HID_DEMOD_FSK:
a501c82b 920 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 921 break;
922 case CMD_HID_SIM_TAG:
a501c82b 923 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 924 break;
abd6112f 925 case CMD_FSK_SIM_TAG:
926 CmdFSKsimTAG(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
927 break;
928 case CMD_ASK_SIM_TAG:
929 CmdASKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
930 break;
872e3d4d 931 case CMD_PSK_SIM_TAG:
932 CmdPSKsimTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
933 break;
a501c82b 934 case CMD_HID_CLONE_TAG:
1c611bbd 935 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 936 break;
a1f3bb12 937 case CMD_IO_DEMOD_FSK:
a501c82b 938 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 939 break;
a501c82b 940 case CMD_IO_CLONE_TAG:
94422fa2 941 CopyIOtoT55x7(c->arg[0], c->arg[1]);
a1f3bb12 942 break;
6ff6ade2 943 case CMD_EM410X_DEMOD:
944 CmdEM410xdemod(c->arg[0], 0, 0, 1);
945 break;
2d4eae76 946 case CMD_EM410X_WRITE_TAG:
947 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
948 break;
7e67e42f 949 case CMD_READ_TI_TYPE:
950 ReadTItag();
951 break;
952 case CMD_WRITE_TI_TYPE:
953 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
954 break;
955 case CMD_SIMULATE_TAG_125K:
f121b478 956 LED_A_ON();
74daee24 957 SimulateTagLowFrequency(c->arg[0], c->arg[1], 1);
958 LED_A_OFF();
7e67e42f 959 break;
960 case CMD_LF_SIMULATE_BIDIR:
961 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
962 break;
a501c82b 963 case CMD_INDALA_CLONE_TAG:
2414f978 964 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
965 break;
a501c82b 966 case CMD_INDALA_CLONE_TAG_L:
2414f978 967 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
968 break;
1c611bbd 969 case CMD_T55XX_READ_BLOCK:
9276e859 970 T55xxReadBlock(c->arg[0], c->arg[1], c->arg[2]);
1c611bbd 971 break;
972 case CMD_T55XX_WRITE_BLOCK:
973 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
974 break;
9276e859 975 case CMD_T55XX_WAKEUP:
976 T55xxWakeUp(c->arg[0]);
977 break;
94422fa2 978 case CMD_T55XX_RESET_READ:
979 T55xxResetRead();
980 break;
a501c82b 981 case CMD_PCF7931_READ:
1c611bbd 982 ReadPCF7931();
1c611bbd 983 break;
e98572a1 984 case CMD_PCF7931_WRITE:
ac2df346 985 WritePCF7931(c->d.asBytes[0],c->d.asBytes[1],c->d.asBytes[2],c->d.asBytes[3],c->d.asBytes[4],c->d.asBytes[5],c->d.asBytes[6], c->d.asBytes[9], c->d.asBytes[7]-128,c->d.asBytes[8]-128, c->arg[0], c->arg[1], c->arg[2]);
e98572a1 986 break;
1c611bbd 987 case CMD_EM4X_READ_WORD:
988 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
989 break;
990 case CMD_EM4X_WRITE_WORD:
991 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
992 break;
db25599d 993 case CMD_AWID_DEMOD_FSK: // Set realtime AWID demodulation
994 CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
70459879 995 break;
0de8e387 996 case CMD_VIKING_CLONE_TAG:
a126332a 997 CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
0de8e387 998 break;
15c4dc5a 999#endif
1000
d19929cb 1001#ifdef WITH_HITAG
1002 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
1003 SnoopHitag(c->arg[0]);
1004 break;
1005 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
1006 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1007 break;
1008 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
1009 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1010 break;
0db11b71 1011 case CMD_SIMULATE_HITAG_S:// Simulate Hitag s tag, args = memory content
1012 SimulateHitagSTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
1013 break;
1014 case CMD_TEST_HITAGS_TRACES:// Tests every challenge within the given file
1015 check_challenges((bool)c->arg[0],(byte_t*)c->d.asBytes);
1016 break;
6fc68747 1017 case CMD_READ_HITAG_S: //Reader for only Hitag S tags, args = key or challenge
0db11b71 1018 ReadHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
1019 break;
6fc68747 1020 case CMD_WR_HITAG_S: //writer for Hitag tags args=data to write,page and key or challenge
0db11b71 1021 WritePageHitagS((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes,c->arg[2]);
1022 break;
d19929cb 1023#endif
f168b263 1024
15c4dc5a 1025#ifdef WITH_ISO15693
1026 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
1027 AcquireRawAdcSamplesIso15693();
1028 break;
9455b51c 1029 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
1030 RecordRawAdcSamplesIso15693();
1031 break;
1032
1033 case CMD_ISO_15693_COMMAND:
1034 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1035 break;
1036
1037 case CMD_ISO_15693_FIND_AFI:
1038 BruteforceIso15693Afi(c->arg[0]);
1039 break;
1040
1041 case CMD_ISO_15693_DEBUG:
1042 SetDebugIso15693(c->arg[0]);
1043 break;
15c4dc5a 1044
15c4dc5a 1045 case CMD_READER_ISO_15693:
1046 ReaderIso15693(c->arg[0]);
1047 break;
7e67e42f 1048 case CMD_SIMTAG_ISO_15693:
3649b640 1049 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 1050 break;
15c4dc5a 1051#endif
1052
7e67e42f 1053#ifdef WITH_LEGICRF
1054 case CMD_SIMULATE_TAG_LEGIC_RF:
1055 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
1056 break;
3612a8a8 1057
7e67e42f 1058 case CMD_WRITER_LEGIC_RF:
f121b478 1059 LegicRfWriter( c->arg[0], c->arg[1], c->arg[2]);
7e67e42f 1060 break;
3612a8a8 1061
3e134b4c 1062 case CMD_RAW_WRITER_LEGIC_RF:
f121b478 1063 LegicRfRawWriter(c->arg[0], c->arg[1], c->arg[2]);
3e134b4c 1064 break;
1065
15c4dc5a 1066 case CMD_READER_LEGIC_RF:
f121b478 1067 LegicRfReader(c->arg[0], c->arg[1], c->arg[2]);
15c4dc5a 1068 break;
15c4dc5a 1069#endif
1070
1071#ifdef WITH_ISO14443b
6fc68747 1072 case CMD_READ_SRI_TAG:
1073 ReadSTMemoryIso14443b(c->arg[0]);
7e67e42f 1074 break;
22e24700 1075 case CMD_SNOOP_ISO_14443B:
abb21530 1076 SnoopIso14443b();
7e67e42f 1077 break;
22e24700 1078 case CMD_SIMULATE_TAG_ISO_14443B:
dccddaef 1079 SimulateIso14443bTag(c->arg[0]);
7e67e42f 1080 break;
7cf3ef20 1081 case CMD_ISO_14443B_COMMAND:
6fc68747 1082 //SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
1083 SendRawCommand14443B_Ex(c);
7cf3ef20 1084 break;
15c4dc5a 1085#endif
1086
1087#ifdef WITH_ISO14443a
7e67e42f 1088 case CMD_SNOOP_ISO_14443a:
4d2e4eea 1089 SniffIso14443a(c->arg[0]);
7e67e42f 1090 break;
15c4dc5a 1091 case CMD_READER_ISO_14443a:
902cb3c0 1092 ReaderIso14443a(c);
15c4dc5a 1093 break;
7e67e42f 1094 case CMD_SIMULATE_TAG_ISO_14443a:
0db6ed9a 1095 SimulateIso14443aTag(c->arg[0], c->arg[1], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 1096 break;
5acd09bd 1097 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 1098 EPA_PACE_Collect_Nonce(c);
5acd09bd 1099 break;
d0f3338e 1100 case CMD_EPA_PACE_REPLAY:
1101 EPA_PACE_Replay(c);
1102 break;
15c4dc5a 1103 case CMD_READER_MIFARE:
df007486 1104 ReaderMifare(c->arg[0], c->arg[1], c->arg[2]);
15c4dc5a 1105 break;
20f9a2a1
M
1106 case CMD_MIFARE_READBL:
1107 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1108 break;
981bd429 1109 case CMD_MIFAREU_READBL:
aa60d156 1110 MifareUReadBlock(c->arg[0],c->arg[1], c->d.asBytes);
981bd429 1111 break;
4d2e4eea 1112 case CMD_MIFAREUC_AUTH:
1113 MifareUC_Auth(c->arg[0],c->d.asBytes);
f38a1528 1114 break;
981bd429 1115 case CMD_MIFAREU_READCARD:
74daee24 1116 MifareUReadCard(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
117d9ec2 1117 break;
aa60d156 1118 case CMD_MIFAREUC_SETPWD:
1119 MifareUSetPwd(c->arg[0], c->d.asBytes);
117d9ec2 1120 break;
20f9a2a1
M
1121 case CMD_MIFARE_READSC:
1122 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1123 break;
1124 case CMD_MIFARE_WRITEBL:
1125 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1126 break;
95aeb706 1127 //case CMD_MIFAREU_WRITEBL_COMPAT:
1128 //MifareUWriteBlockCompat(c->arg[0], c->d.asBytes);
1129 //break;
981bd429 1130 case CMD_MIFAREU_WRITEBL:
95aeb706 1131 MifareUWriteBlock(c->arg[0], c->arg[1], c->d.asBytes);
aa60d156 1132 break;
c188b1b9 1133 case CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES:
1134 MifareAcquireEncryptedNonces(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1135 break;
20f9a2a1
M
1136 case CMD_MIFARE_NESTED:
1137 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
1138 break;
1139 case CMD_MIFARE_CHKKEYS:
1140 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
1141 break;
1142 case CMD_SIMULATE_MIFARE_CARD:
1143 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1144 break;
8556b852
M
1145
1146 // emulator
1147 case CMD_MIFARE_SET_DBGMODE:
1148 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1149 break;
1150 case CMD_MIFARE_EML_MEMCLR:
1151 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1152 break;
1153 case CMD_MIFARE_EML_MEMSET:
1154 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1155 break;
1156 case CMD_MIFARE_EML_MEMGET:
1157 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1158 break;
1159 case CMD_MIFARE_EML_CARDLOAD:
1160 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
1161 break;
1162
1163 // Work with "magic Chinese" card
d52e4e88 1164 case CMD_MIFARE_CSETBLOCK:
c2731f37 1165 MifareCSetBlock(c->arg[0], c->arg[1], c->d.asBytes);
545a1f38 1166 break;
d52e4e88 1167 case CMD_MIFARE_CGETBLOCK:
c2731f37 1168 MifareCGetBlock(c->arg[0], c->arg[1], c->d.asBytes);
8556b852 1169 break;
d52e4e88 1170 case CMD_MIFARE_CIDENT:
1171 MifareCIdent();
1172 break;
b62a5a84
M
1173
1174 // mifare sniffer
1175 case CMD_MIFARE_SNIFFER:
5cd9ec01 1176 SniffMifare(c->arg[0]);
b62a5a84 1177 break;
313ee67e 1178
aa60d156 1179 //mifare desfire
1180 case CMD_MIFARE_DESFIRE_READBL: break;
1181 case CMD_MIFARE_DESFIRE_WRITEBL: break;
1182 case CMD_MIFARE_DESFIRE_AUTH1:
1183 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1184 break;
1185 case CMD_MIFARE_DESFIRE_AUTH2:
1186 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
1187 break;
1188 case CMD_MIFARE_DES_READER:
1189 //readermifaredes(c->arg[0], c->arg[1], c->d.asBytes);
1190 break;
1191 case CMD_MIFARE_DESFIRE_INFO:
1192 MifareDesfireGetInformation();
1193 break;
1194 case CMD_MIFARE_DESFIRE:
1195 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
1196 break;
1197
add0504d 1198 case CMD_MIFARE_COLLECT_NONCES:
add0504d 1199 break;
20f9a2a1 1200#endif
810f5379 1201#ifdef WITH_EMV
1202 case CMD_EMV_TRANSACTION:
1203 EMVTransaction();
1204 break;
1205 case CMD_EMV_GET_RANDOM_NUM:
1206 //EMVgetUDOL();
1207 break;
1208 case CMD_EMV_LOAD_VALUE:
1209 EMVloadvalue(c->arg[0], c->d.asBytes);
1210 break;
1211 case CMD_EMV_DUMP_CARD:
1212 EMVdumpcard();
1213#endif
7e67e42f 1214#ifdef WITH_ICLASS
cee5a30d 1215 // Makes use of ISO14443a FPGA Firmware
1216 case CMD_SNOOP_ICLASS:
1217 SnoopIClass();
1218 break;
1e262141 1219 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 1220 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 1221 break;
1222 case CMD_READER_ICLASS:
1223 ReaderIClass(c->arg[0]);
1224 break;
f38a1528 1225 case CMD_READER_ICLASS_REPLAY:
f62b5e12 1226 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
f38a1528 1227 break;
e80aeb96
MHS
1228 case CMD_ICLASS_EML_MEMSET:
1229 emlSet(c->d.asBytes,c->arg[0], c->arg[1]);
1230 break;
e98572a1 1231 case CMD_ICLASS_WRITEBLOCK:
1232 iClass_WriteBlock(c->arg[0], c->d.asBytes);
1233 break;
1234 case CMD_ICLASS_READCHECK: // auth step 1
1235 iClass_ReadCheck(c->arg[0], c->arg[1]);
1236 break;
1237 case CMD_ICLASS_READBLOCK:
1238 iClass_ReadBlk(c->arg[0]);
1239 break;
1240 case CMD_ICLASS_AUTHENTICATION: //check
1241 iClass_Authentication(c->d.asBytes);
1242 break;
1243 case CMD_ICLASS_DUMP:
1244 iClass_Dump(c->arg[0], c->arg[1]);
1245 break;
1246 case CMD_ICLASS_CLONE:
1247 iClass_Clone(c->arg[0], c->arg[1], c->d.asBytes);
1248 break;
cee5a30d 1249#endif
1d0ccbe0 1250#ifdef WITH_HFSNOOP
1251 case CMD_HF_SNIFFER:
1252 HfSnoop(c->arg[0], c->arg[1]);
1253 break;
1254#endif
cee5a30d 1255
7e67e42f 1256 case CMD_BUFF_CLEAR:
117d9ec2 1257 BigBuf_Clear();
15c4dc5a 1258 break;
15c4dc5a 1259
1260 case CMD_MEASURE_ANTENNA_TUNING:
1261 MeasureAntennaTuning();
1262 break;
1263
1264 case CMD_MEASURE_ANTENNA_TUNING_HF:
1265 MeasureAntennaTuningHf();
1266 break;
1267
1268 case CMD_LISTEN_READER_FIELD:
1269 ListenReaderField(c->arg[0]);
1270 break;
1271
15c4dc5a 1272 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
1273 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1274 SpinDelay(200);
1275 LED_D_OFF(); // LED D indicates field ON or OFF
1276 break;
1277
aaa1a9a2 1278 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: {
1c611bbd 1279 LED_B_ON();
117d9ec2 1280 uint8_t *BigBuf = BigBuf_get_addr();
0de8e387 1281 size_t len = 0;
1c611bbd 1282 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
0de8e387 1283 len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
3000dc4e 1284 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,BigBuf_get_traceLen(),BigBuf+c->arg[0]+i,len);
1c611bbd 1285 }
1286 // Trigger a finish downloading signal with an ACK frame
3000dc4e 1287 cmd_send(CMD_ACK,1,0,BigBuf_get_traceLen(),getSamplingConfig(),sizeof(sample_config));
d3b1f4e4 1288 LED_B_OFF();
1c611bbd 1289 break;
aaa1a9a2 1290 }
15c4dc5a 1291 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
117d9ec2 1292 uint8_t *b = BigBuf_get_addr();
aaa1a9a2 1293 memcpy( b + c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 1294 cmd_send(CMD_ACK,0,0,0,0,0);
1295 break;
aaa1a9a2 1296 }
1297 case CMD_DOWNLOAD_EML_BIGBUF: {
1298 LED_B_ON();
1299 uint8_t *cardmem = BigBuf_get_EM_addr();
1300 size_t len = 0;
1301 for(size_t i=0; i < c->arg[1]; i += USB_CMD_DATA_SIZE) {
1302 len = MIN((c->arg[1] - i), USB_CMD_DATA_SIZE);
1303 cmd_send(CMD_DOWNLOADED_EML_BIGBUF, i, len, CARD_MEMORY_SIZE, cardmem + c->arg[0] + i, len);
1304 }
1305 // Trigger a finish downloading signal with an ACK frame
1306 cmd_send(CMD_ACK, 1, 0, CARD_MEMORY_SIZE, 0, 0);
1307 LED_B_OFF();
1308 break;
1309 }
15c4dc5a 1310 case CMD_READ_MEM:
1311 ReadMem(c->arg[0]);
1312 break;
1313
1314 case CMD_SET_LF_DIVISOR:
7cc204bf 1315 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 1316 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
1317 break;
1318
1319 case CMD_SET_ADC_MUX:
1320 switch(c->arg[0]) {
1321 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
1322 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
1323 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
1324 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
1325 }
1326 break;
1327
1328 case CMD_VERSION:
1329 SendVersion();
1330 break;
7838f4be 1331 case CMD_STATUS:
0de8e387 1332 SendStatus();
7838f4be 1333 break;
1334 case CMD_PING:
1335 cmd_send(CMD_ACK,0,0,0,0,0);
1336 break;
15c4dc5a 1337#ifdef WITH_LCD
1338 case CMD_LCD_RESET:
1339 LCDReset();
1340 break;
1341 case CMD_LCD:
1342 LCDSend(c->arg[0]);
1343 break;
1344#endif
1345 case CMD_SETUP_WRITE:
1346 case CMD_FINISH_WRITE:
1c611bbd 1347 case CMD_HARDWARE_RESET:
1348 usb_disable();
f62b5e12 1349 SpinDelay(2000);
15c4dc5a 1350 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1351 for(;;) {
1352 // We're going to reset, and the bootrom will take control.
1353 }
1c611bbd 1354 break;
15c4dc5a 1355
1c611bbd 1356 case CMD_START_FLASH:
15c4dc5a 1357 if(common_area.flags.bootrom_present) {
1358 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1359 }
1c611bbd 1360 usb_disable();
15c4dc5a 1361 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1362 for(;;);
1c611bbd 1363 break;
e30c654b 1364
15c4dc5a 1365 case CMD_DEVICE_INFO: {
902cb3c0 1366 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1367 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1368 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1369 break;
1370 }
1371 default:
15c4dc5a 1372 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1373 break;
15c4dc5a 1374 }
1375}
1376
1377void __attribute__((noreturn)) AppMain(void)
1378{
1379 SpinDelay(100);
9e8255d4 1380 clear_trace();
15c4dc5a 1381 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1382 /* Initialize common area */
1383 memset(&common_area, 0, sizeof(common_area));
1384 common_area.magic = COMMON_AREA_MAGIC;
1385 common_area.version = 1;
1386 }
1387 common_area.flags.osimage_present = 1;
1388
f121b478 1389 LEDsoff();
15c4dc5a 1390
b44e5233 1391 // Init USB device
313ee67e 1392 usb_enable();
15c4dc5a 1393
1394 // The FPGA gets its clock from us from PCK0 output, so set that up.
1395 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1396 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1397 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1398 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
f121b478 1399 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK | AT91C_PMC_PRES_CLK_4; // 4 for 24Mhz pck0, 2 for 48 MHZ pck0
15c4dc5a 1400 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1401
1402 // Reset SPI
1403 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1404 // Reset SSC
1405 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1406
1407 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1408 // (the HF version by default)
1409 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1410
9ca155ba 1411 StartTickCount();
902cb3c0 1412
15c4dc5a 1413#ifdef WITH_LCD
15c4dc5a 1414 LCDInit();
15c4dc5a 1415#endif
1416
f62b5e12 1417 byte_t rx[sizeof(UsbCommand)];
902cb3c0 1418 size_t rx_len;
1419
15c4dc5a 1420 for(;;) {
f121b478 1421 if ( usb_poll_validate_length() ) {
1422 rx_len = usb_read(rx, sizeof(UsbCommand));
1423
da198be4 1424 if (rx_len)
f121b478 1425 UsbPacketReceived(rx, rx_len);
313ee67e 1426 }
15c4dc5a 1427 WDT_HIT();
1428
1429#ifdef WITH_LF
7838f4be 1430#ifndef WITH_ISO14443a_StandAlone
15c4dc5a 1431 if (BUTTON_HELD(1000) > 0)
1432 SamyRun();
7838f4be 1433#endif
1434#endif
1435#ifdef WITH_ISO14443a
1436#ifdef WITH_ISO14443a_StandAlone
1437 if (BUTTON_HELD(1000) > 0)
1438 StandAloneMode14a();
1439#endif
15c4dc5a 1440#endif
1441 }
1442}
Impressum, Datenschutz