]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/lfops.c
Fixed several issues found using a coverity-scan
[proxmark3-svn] / armsrc / lfops.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
bd20f8f4 2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
15c4dc5a 6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
15c4dc5a 9//-----------------------------------------------------------------------------
bd20f8f4 10
e30c654b 11#include "proxmark3.h"
15c4dc5a 12#include "apps.h"
f7e3ed82 13#include "util.h"
15c4dc5a 14#include "hitag2.h"
15#include "crc16.h"
9ab7a6c7 16#include "string.h"
15c4dc5a 17
b2256785
MHS
18
19/**
20* Does the sample acquisition. If threshold is specified, the actual sampling
21* is not commenced until the threshold has been reached.
22* @param trigger_threshold - the threshold
23* @param silent - is true, now outputs are made. If false, dbprints the status
24*/
f97d4e23 25void DoAcquisition125k_internal(int trigger_threshold,bool silent)
69d88ec4
MHS
26{
27 uint8_t *dest = (uint8_t *)BigBuf;
28 int n = sizeof(BigBuf);
29 int i;
30
31 memset(dest, 0, n);
32 i = 0;
33 for(;;) {
34 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
35 AT91C_BASE_SSC->SSC_THR = 0x43;
36 LED_D_ON();
37 }
38 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
39 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
69d88ec4 40 LED_D_OFF();
f97d4e23
MHS
41 if (trigger_threshold != -1 && dest[i] < trigger_threshold)
42 continue;
43 else
44 trigger_threshold = -1;
45 if (++i >= n) break;
69d88ec4
MHS
46 }
47 }
f97d4e23 48 if(!silent)
69d88ec4
MHS
49 {
50 Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
51 dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
f97d4e23 52
69d88ec4
MHS
53 }
54}
b2256785
MHS
55/**
56* Perform sample aquisition.
57*/
f97d4e23 58void DoAcquisition125k(int trigger_threshold)
69d88ec4 59{
f97d4e23 60 DoAcquisition125k_internal(trigger_threshold, false);
69d88ec4
MHS
61}
62
b2256785
MHS
63/**
64* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
65* if not already loaded, sets divisor and starts up the antenna.
66* @param divisor : 1, 88> 255 or negative ==> 134.8 KHz
67* 0 or 95 ==> 125 KHz
68*
69**/
b014c96d 70void LFSetupFPGAForADC(int divisor, bool lf_field)
15c4dc5a 71{
7cc204bf 72 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
bf7163bd 73 if ( (divisor == 1) || (divisor < 0) || (divisor > 255) )
15c4dc5a 74 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
bf7163bd 75 else if (divisor == 0)
15c4dc5a 76 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
bf7163bd 77 else
78 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor);
15c4dc5a 79
b014c96d 80 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | (lf_field ? FPGA_LF_ADC_READER_FIELD : 0));
15c4dc5a 81
82 // Connect the A/D to the peak-detected low-frequency path.
83 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
15c4dc5a 84 // Give it a bit of time for the resonant antenna to settle.
85 SpinDelay(50);
15c4dc5a 86 // Now set up the SSC to get the ADC samples that are now streaming at us.
87 FpgaSetupSsc();
15c4dc5a 88}
b2256785
MHS
89/**
90* Initializes the FPGA, and acquires the samples.
91**/
69d88ec4 92void AcquireRawAdcSamples125k(int divisor)
15c4dc5a 93{
b014c96d 94 LFSetupFPGAForADC(divisor, true);
69d88ec4 95 // Now call the acquisition routine
f97d4e23 96 DoAcquisition125k_internal(-1,false);
b014c96d 97}
b2256785
MHS
98/**
99* Initializes the FPGA for snoop-mode, and acquires the samples.
100**/
101
b014c96d 102void SnoopLFRawAdcSamples(int divisor, int trigger_threshold)
103{
104 LFSetupFPGAForADC(divisor, false);
1a5a0d75 105 DoAcquisition125k(trigger_threshold);
15c4dc5a 106}
107
f7e3ed82 108void ModThenAcquireRawAdcSamples125k(int delay_off, int period_0, int period_1, uint8_t *command)
15c4dc5a 109{
15c4dc5a 110
111 /* Make sure the tag is reset */
7cc204bf 112 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 113 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
114 SpinDelay(2500);
e30c654b 115
b2256785
MHS
116
117 int divisor_used = 95; // 125 KHz
15c4dc5a 118 // see if 'h' was specified
b2256785 119
15c4dc5a 120 if (command[strlen((char *) command) - 1] == 'h')
b2256785 121 divisor_used = 88; // 134.8 KHz
15c4dc5a 122
15c4dc5a 123
b2256785 124 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
b014c96d 125 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
15c4dc5a 126 // Give it a bit of time for the resonant antenna to settle.
127 SpinDelay(50);
b2256785 128
15c4dc5a 129 // And a little more time for the tag to fully power up
130 SpinDelay(2000);
131
132 // Now set up the SSC to get the ADC samples that are now streaming at us.
133 FpgaSetupSsc();
134
135 // now modulate the reader field
136 while(*command != '\0' && *command != ' ') {
137 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
138 LED_D_OFF();
139 SpinDelayUs(delay_off);
b2256785 140 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
15c4dc5a 141
b014c96d 142 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
15c4dc5a 143 LED_D_ON();
144 if(*(command++) == '0')
145 SpinDelayUs(period_0);
146 else
147 SpinDelayUs(period_1);
148 }
149 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
150 LED_D_OFF();
151 SpinDelayUs(delay_off);
b2256785 152 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor_used);
15c4dc5a 153
b014c96d 154 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
15c4dc5a 155
156 // now do the read
b014c96d 157 DoAcquisition125k(-1);
15c4dc5a 158}
159
160/* blank r/w tag data stream
161...0000000000000000 01111111
1621010101010101010101010101010101010101010101010101010101010101010
1630011010010100001
16401111111
165101010101010101[0]000...
166
167[5555fe852c5555555555555555fe0000]
168*/
169void ReadTItag(void)
170{
171 // some hardcoded initial params
172 // when we read a TI tag we sample the zerocross line at 2Mhz
173 // TI tags modulate a 1 as 16 cycles of 123.2Khz
174 // TI tags modulate a 0 as 16 cycles of 134.2Khz
175 #define FSAMPLE 2000000
176 #define FREQLO 123200
177 #define FREQHI 134200
178
179 signed char *dest = (signed char *)BigBuf;
180 int n = sizeof(BigBuf);
181// int *dest = GraphBuffer;
182// int n = GraphTraceLen;
183
184 // 128 bit shift register [shift3:shift2:shift1:shift0]
f7e3ed82 185 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
15c4dc5a 186
187 int i, cycles=0, samples=0;
188 // how many sample points fit in 16 cycles of each frequency
f7e3ed82 189 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
15c4dc5a 190 // when to tell if we're close enough to one freq or another
f7e3ed82 191 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
15c4dc5a 192
193 // TI tags charge at 134.2Khz
7cc204bf 194 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 195 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
196
197 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
198 // connects to SSP_DIN and the SSP_DOUT logic level controls
199 // whether we're modulating the antenna (high)
200 // or listening to the antenna (low)
201 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
202
203 // get TI tag data into the buffer
204 AcquireTiType();
205
206 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
207
208 for (i=0; i<n-1; i++) {
209 // count cycles by looking for lo to hi zero crossings
210 if ( (dest[i]<0) && (dest[i+1]>0) ) {
211 cycles++;
212 // after 16 cycles, measure the frequency
213 if (cycles>15) {
214 cycles=0;
215 samples=i-samples; // number of samples in these 16 cycles
216
217 // TI bits are coming to us lsb first so shift them
218 // right through our 128 bit right shift register
219 shift0 = (shift0>>1) | (shift1 << 31);
220 shift1 = (shift1>>1) | (shift2 << 31);
221 shift2 = (shift2>>1) | (shift3 << 31);
222 shift3 >>= 1;
223
224 // check if the cycles fall close to the number
225 // expected for either the low or high frequency
226 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
227 // low frequency represents a 1
228 shift3 |= (1<<31);
229 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
230 // high frequency represents a 0
231 } else {
232 // probably detected a gay waveform or noise
233 // use this as gaydar or discard shift register and start again
234 shift3 = shift2 = shift1 = shift0 = 0;
235 }
236 samples = i;
237
238 // for each bit we receive, test if we've detected a valid tag
239
240 // if we see 17 zeroes followed by 6 ones, we might have a tag
241 // remember the bits are backwards
242 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
243 // if start and end bytes match, we have a tag so break out of the loop
244 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
245 cycles = 0xF0B; //use this as a flag (ugly but whatever)
246 break;
247 }
248 }
249 }
250 }
251 }
252
253 // if flag is set we have a tag
254 if (cycles!=0xF0B) {
255 DbpString("Info: No valid tag detected.");
256 } else {
257 // put 64 bit data into shift1 and shift0
258 shift0 = (shift0>>24) | (shift1 << 8);
259 shift1 = (shift1>>24) | (shift2 << 8);
260
261 // align 16 bit crc into lower half of shift2
262 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
263
264 // if r/w tag, check ident match
265 if ( shift3&(1<<15) ) {
266 DbpString("Info: TI tag is rewriteable");
267 // only 15 bits compare, last bit of ident is not valid
268 if ( ((shift3>>16)^shift0)&0x7fff ) {
269 DbpString("Error: Ident mismatch!");
270 } else {
271 DbpString("Info: TI tag ident is valid");
272 }
273 } else {
274 DbpString("Info: TI tag is readonly");
275 }
276
277 // WARNING the order of the bytes in which we calc crc below needs checking
278 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
279 // bytes in reverse or something
280 // calculate CRC
f7e3ed82 281 uint32_t crc=0;
15c4dc5a 282
283 crc = update_crc16(crc, (shift0)&0xff);
284 crc = update_crc16(crc, (shift0>>8)&0xff);
285 crc = update_crc16(crc, (shift0>>16)&0xff);
286 crc = update_crc16(crc, (shift0>>24)&0xff);
287 crc = update_crc16(crc, (shift1)&0xff);
288 crc = update_crc16(crc, (shift1>>8)&0xff);
289 crc = update_crc16(crc, (shift1>>16)&0xff);
290 crc = update_crc16(crc, (shift1>>24)&0xff);
291
292 Dbprintf("Info: Tag data: %x%08x, crc=%x",
293 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
294 if (crc != (shift2&0xffff)) {
295 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
296 } else {
297 DbpString("Info: CRC is good");
298 }
299 }
300}
301
f7e3ed82 302void WriteTIbyte(uint8_t b)
15c4dc5a 303{
304 int i = 0;
305
306 // modulate 8 bits out to the antenna
307 for (i=0; i<8; i++)
308 {
309 if (b&(1<<i)) {
310 // stop modulating antenna
311 LOW(GPIO_SSC_DOUT);
312 SpinDelayUs(1000);
313 // modulate antenna
314 HIGH(GPIO_SSC_DOUT);
315 SpinDelayUs(1000);
316 } else {
317 // stop modulating antenna
318 LOW(GPIO_SSC_DOUT);
319 SpinDelayUs(300);
320 // modulate antenna
321 HIGH(GPIO_SSC_DOUT);
322 SpinDelayUs(1700);
323 }
324 }
325}
326
327void AcquireTiType(void)
328{
329 int i, j, n;
330 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
f7e3ed82 331 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
15c4dc5a 332 #define TIBUFLEN 1250
333
334 // clear buffer
335 memset(BigBuf,0,sizeof(BigBuf));
336
337 // Set up the synchronous serial port
338 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
339 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
346 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
347
348 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
349 // 48/2 = 24 MHz clock must be divided by 12
350 AT91C_BASE_SSC->SSC_CMR = 12;
351
352 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
353 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
354 AT91C_BASE_SSC->SSC_TCMR = 0;
355 AT91C_BASE_SSC->SSC_TFMR = 0;
356
357 LED_D_ON();
358
359 // modulate antenna
360 HIGH(GPIO_SSC_DOUT);
361
362 // Charge TI tag for 50ms.
363 SpinDelay(50);
364
365 // stop modulating antenna and listen
366 LOW(GPIO_SSC_DOUT);
367
368 LED_D_OFF();
369
370 i = 0;
371 for(;;) {
372 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
373 BigBuf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
374 i++; if(i >= TIBUFLEN) break;
375 }
376 WDT_HIT();
377 }
378
379 // return stolen pin to SSP
380 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
381 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
382
383 char *dest = (char *)BigBuf;
384 n = TIBUFLEN*32;
385 // unpack buffer
386 for (i=TIBUFLEN-1; i>=0; i--) {
387 for (j=0; j<32; j++) {
388 if(BigBuf[i] & (1 << j)) {
389 dest[--n] = 1;
390 } else {
391 dest[--n] = -1;
392 }
393 }
394 }
395}
396
397// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
398// if crc provided, it will be written with the data verbatim (even if bogus)
399// if not provided a valid crc will be computed from the data and written.
f7e3ed82 400void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
15c4dc5a 401{
7cc204bf 402 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 403 if(crc == 0) {
404 crc = update_crc16(crc, (idlo)&0xff);
405 crc = update_crc16(crc, (idlo>>8)&0xff);
406 crc = update_crc16(crc, (idlo>>16)&0xff);
407 crc = update_crc16(crc, (idlo>>24)&0xff);
408 crc = update_crc16(crc, (idhi)&0xff);
409 crc = update_crc16(crc, (idhi>>8)&0xff);
410 crc = update_crc16(crc, (idhi>>16)&0xff);
411 crc = update_crc16(crc, (idhi>>24)&0xff);
412 }
413 Dbprintf("Writing to tag: %x%08x, crc=%x",
414 (unsigned int) idhi, (unsigned int) idlo, crc);
415
416 // TI tags charge at 134.2Khz
417 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
418 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
419 // connects to SSP_DIN and the SSP_DOUT logic level controls
420 // whether we're modulating the antenna (high)
421 // or listening to the antenna (low)
422 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
423 LED_A_ON();
424
425 // steal this pin from the SSP and use it to control the modulation
426 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
427 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
428
429 // writing algorithm:
430 // a high bit consists of a field off for 1ms and field on for 1ms
431 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
432 // initiate a charge time of 50ms (field on) then immediately start writing bits
433 // start by writing 0xBB (keyword) and 0xEB (password)
434 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
435 // finally end with 0x0300 (write frame)
436 // all data is sent lsb firts
437 // finish with 15ms programming time
438
439 // modulate antenna
440 HIGH(GPIO_SSC_DOUT);
441 SpinDelay(50); // charge time
442
443 WriteTIbyte(0xbb); // keyword
444 WriteTIbyte(0xeb); // password
445 WriteTIbyte( (idlo )&0xff );
446 WriteTIbyte( (idlo>>8 )&0xff );
447 WriteTIbyte( (idlo>>16)&0xff );
448 WriteTIbyte( (idlo>>24)&0xff );
449 WriteTIbyte( (idhi )&0xff );
450 WriteTIbyte( (idhi>>8 )&0xff );
451 WriteTIbyte( (idhi>>16)&0xff );
452 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
453 WriteTIbyte( (crc )&0xff ); // crc lo
454 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
455 WriteTIbyte(0x00); // write frame lo
456 WriteTIbyte(0x03); // write frame hi
457 HIGH(GPIO_SSC_DOUT);
458 SpinDelay(50); // programming time
459
460 LED_A_OFF();
461
462 // get TI tag data into the buffer
463 AcquireTiType();
464
465 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
466 DbpString("Now use tiread to check");
467}
468
469void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
470{
471 int i;
f7e3ed82 472 uint8_t *tab = (uint8_t *)BigBuf;
d19929cb 473
7cc204bf 474 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
d19929cb 475 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
476
15c4dc5a 477 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
d19929cb 478
15c4dc5a 479 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
480 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
d19929cb 481
15c4dc5a 482#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
483#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
d19929cb 484
15c4dc5a 485 i = 0;
486 for(;;) {
487 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
488 if(BUTTON_PRESS()) {
489 DbpString("Stopped");
490 return;
491 }
492 WDT_HIT();
493 }
d19929cb 494
15c4dc5a 495 if (ledcontrol)
496 LED_D_ON();
d19929cb 497
15c4dc5a 498 if(tab[i])
499 OPEN_COIL();
500 else
501 SHORT_COIL();
d19929cb 502
15c4dc5a 503 if (ledcontrol)
504 LED_D_OFF();
d19929cb 505
15c4dc5a 506 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
507 if(BUTTON_PRESS()) {
508 DbpString("Stopped");
509 return;
510 }
511 WDT_HIT();
512 }
d19929cb 513
15c4dc5a 514 i++;
515 if(i == period) {
516 i = 0;
e30c654b 517 if (gap) {
15c4dc5a 518 SHORT_COIL();
519 SpinDelayUs(gap);
520 }
521 }
522 }
523}
524
15c4dc5a 525#define DEBUG_FRAME_CONTENTS 1
526void SimulateTagLowFrequencyBidir(int divisor, int t0)
527{
15c4dc5a 528}
529
530// compose fc/8 fc/10 waveform
531static void fc(int c, int *n) {
f7e3ed82 532 uint8_t *dest = (uint8_t *)BigBuf;
15c4dc5a 533 int idx;
534
535 // for when we want an fc8 pattern every 4 logical bits
536 if(c==0) {
537 dest[((*n)++)]=1;
538 dest[((*n)++)]=1;
539 dest[((*n)++)]=0;
540 dest[((*n)++)]=0;
541 dest[((*n)++)]=0;
542 dest[((*n)++)]=0;
543 dest[((*n)++)]=0;
544 dest[((*n)++)]=0;
545 }
546 // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples
547 if(c==8) {
548 for (idx=0; idx<6; idx++) {
549 dest[((*n)++)]=1;
550 dest[((*n)++)]=1;
551 dest[((*n)++)]=0;
552 dest[((*n)++)]=0;
553 dest[((*n)++)]=0;
554 dest[((*n)++)]=0;
555 dest[((*n)++)]=0;
556 dest[((*n)++)]=0;
557 }
558 }
559
560 // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples
561 if(c==10) {
562 for (idx=0; idx<5; idx++) {
563 dest[((*n)++)]=1;
564 dest[((*n)++)]=1;
565 dest[((*n)++)]=1;
566 dest[((*n)++)]=0;
567 dest[((*n)++)]=0;
568 dest[((*n)++)]=0;
569 dest[((*n)++)]=0;
570 dest[((*n)++)]=0;
571 dest[((*n)++)]=0;
572 dest[((*n)++)]=0;
573 }
574 }
575}
576
577// prepare a waveform pattern in the buffer based on the ID given then
578// simulate a HID tag until the button is pressed
579void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
580{
581 int n=0, i=0;
582 /*
583 HID tag bitstream format
584 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
585 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
586 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
587 A fc8 is inserted before every 4 bits
588 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
589 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
590 */
591
592 if (hi>0xFFF) {
593 DbpString("Tags can only have 44 bits.");
594 return;
595 }
596 fc(0,&n);
597 // special start of frame marker containing invalid bit sequences
598 fc(8, &n); fc(8, &n); // invalid
599 fc(8, &n); fc(10, &n); // logical 0
600 fc(10, &n); fc(10, &n); // invalid
601 fc(8, &n); fc(10, &n); // logical 0
602
603 WDT_HIT();
604 // manchester encode bits 43 to 32
605 for (i=11; i>=0; i--) {
606 if ((i%4)==3) fc(0,&n);
607 if ((hi>>i)&1) {
608 fc(10, &n); fc(8, &n); // low-high transition
609 } else {
610 fc(8, &n); fc(10, &n); // high-low transition
611 }
612 }
613
614 WDT_HIT();
615 // manchester encode bits 31 to 0
616 for (i=31; i>=0; i--) {
617 if ((i%4)==3) fc(0,&n);
618 if ((lo>>i)&1) {
619 fc(10, &n); fc(8, &n); // low-high transition
620 } else {
621 fc(8, &n); fc(10, &n); // high-low transition
622 }
623 }
624
625 if (ledcontrol)
626 LED_A_ON();
627 SimulateTagLowFrequency(n, 0, ledcontrol);
628
629 if (ledcontrol)
630 LED_A_OFF();
631}
69d88ec4 632
07976a25 633size_t fsk_demod(uint8_t * dest, size_t size)
69d88ec4 634{
07976a25
MHS
635 uint32_t last_transition = 0;
636 uint32_t idx = 1;
69d88ec4
MHS
637
638 // we don't care about actual value, only if it's more or less than a
639 // threshold essentially we capture zero crossings for later analysis
640 uint8_t threshold_value = 127;
641
69d88ec4
MHS
642 // sync to first lo-hi transition, and threshold
643
644 //Need to threshold first sample
645 if(dest[0] < threshold_value) dest[0] = 0;
646 else dest[0] = 1;
647
07976a25 648 size_t numBits = 0;
69d88ec4
MHS
649 // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8)
650 // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere
651 // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10
652 for(idx = 1; idx < size; idx++) {
69d88ec4
MHS
653 // threshold current value
654 if (dest[idx] < threshold_value) dest[idx] = 0;
655 else dest[idx] = 1;
656
657 // Check for 0->1 transition
658 if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition
659
660 if (idx-last_transition < 9) {
661 dest[numBits]=1;
662 } else {
663 dest[numBits]=0;
664 }
665 last_transition = idx;
666 numBits++;
667 }
668 }
669 return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0
670}
671
07976a25
MHS
672
673size_t aggregate_bits(uint8_t *dest,size_t size, uint8_t h2l_crossing_value,uint8_t l2h_crossing_value, uint8_t maxConsequtiveBits )
69d88ec4
MHS
674{
675 uint8_t lastval=dest[0];
07976a25
MHS
676 uint32_t idx=0;
677 size_t numBits=0;
678 uint32_t n=1;
69d88ec4
MHS
679
680 for( idx=1; idx < size; idx++) {
681
682 if (dest[idx]==lastval) {
683 n++;
684 continue;
685 }
686 //if lastval was 1, we have a 1->0 crossing
07976a25
MHS
687 if ( dest[idx-1] ) {
688 n=(n+1) / h2l_crossing_value;
69d88ec4 689 } else {// 0->1 crossing
07976a25 690 n=(n+1) / l2h_crossing_value;
69d88ec4 691 }
07976a25
MHS
692 if (n == 0) n = 1;
693
694 if(n < maxConsequtiveBits)
69d88ec4 695 {
07976a25 696 memset(dest+numBits, dest[idx-1] , n);
69d88ec4
MHS
697 numBits += n;
698 }
699 n=0;
700 lastval=dest[idx];
701 }//end for
702
703 return numBits;
704
705}
706// loop to capture raw HID waveform then FSK demodulate the TAG ID from it
707void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
708{
709 uint8_t *dest = (uint8_t *)BigBuf;
710
07976a25 711 size_t size=0,idx=0; //, found=0;
69d88ec4
MHS
712 uint32_t hi2=0, hi=0, lo=0;
713
9cc8a1e5
MHS
714 // Configure to go in 125Khz listen mode
715 LFSetupFPGAForADC(95, true);
69d88ec4 716
07976a25 717 while(!BUTTON_PRESS()) {
15c4dc5a 718
07976a25
MHS
719 WDT_HIT();
720 if (ledcontrol) LED_A_ON();
69d88ec4 721
1a5a0d75 722 DoAcquisition125k_internal(-1,true);
69d88ec4 723 size = sizeof(BigBuf);
15c4dc5a 724
725 // FSK demodulator
69d88ec4 726 size = fsk_demod(dest, size);
15c4dc5a 727
69d88ec4 728 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
69d88ec4
MHS
729 // 1->0 : fc/8 in sets of 6
730 // 0->1 : fc/10 in sets of 5
731 size = aggregate_bits(dest,size, 6,5,5);
15c4dc5a 732
15c4dc5a 733 WDT_HIT();
734
735 // final loop, go over previously decoded manchester data and decode into usable tag ID
736 // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
69d88ec4 737 uint8_t frame_marker_mask[] = {1,1,1,0,0,0};
07976a25
MHS
738 int numshifts = 0;
739 idx = 0;
740 while( idx + sizeof(frame_marker_mask) < size) {
741 // search for a start of frame marker
742 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
743 { // frame marker found
744 idx+=sizeof(frame_marker_mask);
69d88ec4 745
07976a25 746 while(dest[idx] != dest[idx+1] && idx < size-2)
9cc8a1e5
MHS
747 {
748 // Keep going until next frame marker (or error)
07976a25 749 // Shift in a bit. Start by shifting high registers
69d88ec4
MHS
750 hi2 = (hi2<<1)|(hi>>31);
751 hi = (hi<<1)|(lo>>31);
752 //Then, shift in a 0 or one into low
753 if (dest[idx] && !dest[idx+1]) // 1 0
754 lo=(lo<<1)|0;
755 else // 0 1
07976a25
MHS
756 lo=(lo<<1)|
757 1;
758 numshifts ++;
759 idx += 2;
15c4dc5a 760 }
07976a25
MHS
761 //Dbprintf("Num shifts: %d ", numshifts);
762 // Hopefully, we read a tag and hit upon the next frame marker
9cc8a1e5 763 if(idx + sizeof(frame_marker_mask) < size)
07976a25 764 {
9cc8a1e5
MHS
765 if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
766 {
767 if (hi2 != 0){
768 Dbprintf("TAG ID: %x%08x%08x (%d)",
769 (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
770 }
771 else {
772 Dbprintf("TAG ID: %x%08x (%d)",
773 (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
774 }
69d88ec4 775 }
9cc8a1e5 776
15c4dc5a 777 }
07976a25
MHS
778
779 // reset
780 hi2 = hi = lo = 0;
781 numshifts = 0;
782 }else
783 {
784 idx++;
15c4dc5a 785 }
786 }
787 WDT_HIT();
07976a25 788
15c4dc5a 789 }
07976a25
MHS
790 DbpString("Stopped");
791 if (ledcontrol) LED_A_OFF();
15c4dc5a 792}
ec09b62d 793
69d88ec4
MHS
794uint32_t bytebits_to_byte(uint8_t* src, int numbits)
795{
796 uint32_t num = 0;
797 for(int i = 0 ; i < numbits ; i++)
798 {
799 num = (num << 1) | (*src);
800 src++;
801 }
802 return num;
803}
804
805
a1f3bb12 806void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
807{
808 uint8_t *dest = (uint8_t *)BigBuf;
07976a25
MHS
809
810 size_t size=0, idx=0;
a1f3bb12 811 uint32_t code=0, code2=0;
a1f3bb12 812
9cc8a1e5
MHS
813 // Configure to go in 125Khz listen mode
814 LFSetupFPGAForADC(95, true);
a1f3bb12 815
07976a25
MHS
816 while(!BUTTON_PRESS()) {
817
07976a25 818
a1f3bb12 819 WDT_HIT();
07976a25 820 if (ledcontrol) LED_A_ON();
a1f3bb12 821
1a5a0d75 822 DoAcquisition125k_internal(-1,true);
69d88ec4 823 size = sizeof(BigBuf);
a1f3bb12 824
825 // FSK demodulator
69d88ec4 826 size = fsk_demod(dest, size);
07976a25 827
a1f3bb12 828 // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns
69d88ec4
MHS
829 // 1->0 : fc/8 in sets of 7
830 // 0->1 : fc/10 in sets of 6
831 size = aggregate_bits(dest, size, 7,6,13);
832
a1f3bb12 833 WDT_HIT();
834
07976a25 835 //Handle the data
69d88ec4
MHS
836 uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1};
837 for( idx=0; idx < size - 64; idx++) {
838
839 if ( memcmp(dest + idx, mask, sizeof(mask)) ) continue;
840
a1f3bb12 841 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7]);
842 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+8], dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15]);
843 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+16],dest[idx+17],dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23]);
844 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+24],dest[idx+25],dest[idx+26],dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31]);
845 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35],dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39]);
846 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44],dest[idx+45],dest[idx+46],dest[idx+47]);
847 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53],dest[idx+54],dest[idx+55]);
848 Dbprintf("%d%d%d%d%d%d%d%d",dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
69d88ec4
MHS
849
850 code = bytebits_to_byte(dest+idx,32);
851 code2 = bytebits_to_byte(dest+idx+32,32);
852
853 short version = bytebits_to_byte(dest+idx+14,4);
854 char unknown = bytebits_to_byte(dest+idx+19,8) ;
855 uint16_t number = bytebits_to_byte(dest+idx+36,9);
a1f3bb12 856
857 Dbprintf("XSF(%02d)%02x:%d (%08x%08x)",version,unknown,number,code,code2);
69d88ec4 858 if (ledcontrol) LED_D_OFF();
a1f3bb12 859
69d88ec4
MHS
860 // if we're only looking for one tag
861 if (findone){
862 LED_A_OFF();
863 return;
864 }
865 }
07976a25 866 WDT_HIT();
a1f3bb12 867 }
07976a25
MHS
868 DbpString("Stopped");
869 if (ledcontrol) LED_A_OFF();
a1f3bb12 870}
871
2d4eae76 872/*------------------------------
873 * T5555/T5557/T5567 routines
874 *------------------------------
875 */
876
877/* T55x7 configuration register definitions */
878#define T55x7_POR_DELAY 0x00000001
879#define T55x7_ST_TERMINATOR 0x00000008
880#define T55x7_PWD 0x00000010
881#define T55x7_MAXBLOCK_SHIFT 5
882#define T55x7_AOR 0x00000200
883#define T55x7_PSKCF_RF_2 0
884#define T55x7_PSKCF_RF_4 0x00000400
885#define T55x7_PSKCF_RF_8 0x00000800
886#define T55x7_MODULATION_DIRECT 0
887#define T55x7_MODULATION_PSK1 0x00001000
888#define T55x7_MODULATION_PSK2 0x00002000
889#define T55x7_MODULATION_PSK3 0x00003000
890#define T55x7_MODULATION_FSK1 0x00004000
891#define T55x7_MODULATION_FSK2 0x00005000
892#define T55x7_MODULATION_FSK1a 0x00006000
893#define T55x7_MODULATION_FSK2a 0x00007000
894#define T55x7_MODULATION_MANCHESTER 0x00008000
895#define T55x7_MODULATION_BIPHASE 0x00010000
896#define T55x7_BITRATE_RF_8 0
897#define T55x7_BITRATE_RF_16 0x00040000
898#define T55x7_BITRATE_RF_32 0x00080000
899#define T55x7_BITRATE_RF_40 0x000C0000
900#define T55x7_BITRATE_RF_50 0x00100000
901#define T55x7_BITRATE_RF_64 0x00140000
902#define T55x7_BITRATE_RF_100 0x00180000
903#define T55x7_BITRATE_RF_128 0x001C0000
904
905/* T5555 (Q5) configuration register definitions */
906#define T5555_ST_TERMINATOR 0x00000001
907#define T5555_MAXBLOCK_SHIFT 0x00000001
908#define T5555_MODULATION_MANCHESTER 0
909#define T5555_MODULATION_PSK1 0x00000010
910#define T5555_MODULATION_PSK2 0x00000020
911#define T5555_MODULATION_PSK3 0x00000030
912#define T5555_MODULATION_FSK1 0x00000040
913#define T5555_MODULATION_FSK2 0x00000050
914#define T5555_MODULATION_BIPHASE 0x00000060
915#define T5555_MODULATION_DIRECT 0x00000070
916#define T5555_INVERT_OUTPUT 0x00000080
917#define T5555_PSK_RF_2 0
918#define T5555_PSK_RF_4 0x00000100
919#define T5555_PSK_RF_8 0x00000200
920#define T5555_USE_PWD 0x00000400
921#define T5555_USE_AOR 0x00000800
922#define T5555_BITRATE_SHIFT 12
923#define T5555_FAST_WRITE 0x00004000
924#define T5555_PAGE_SELECT 0x00008000
925
926/*
927 * Relevant times in microsecond
928 * To compensate antenna falling times shorten the write times
929 * and enlarge the gap ones.
930 */
931#define START_GAP 250
932#define WRITE_GAP 160
933#define WRITE_0 144 // 192
934#define WRITE_1 400 // 432 for T55x7; 448 for E5550
935
936// Write one bit to card
937void T55xxWriteBit(int bit)
ec09b62d 938{
7cc204bf 939 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
ec09b62d 940 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 941 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
2d4eae76 942 if (bit == 0)
943 SpinDelayUs(WRITE_0);
944 else
945 SpinDelayUs(WRITE_1);
ec09b62d 946 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2d4eae76 947 SpinDelayUs(WRITE_GAP);
ec09b62d 948}
949
2d4eae76 950// Write one card block in page 0, no lock
54a942b0 951void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
ec09b62d 952{
2d4eae76 953 unsigned int i;
ec09b62d 954
7cc204bf 955 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
ec09b62d 956 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 957 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
ec09b62d 958
959 // Give it a bit of time for the resonant antenna to settle.
960 // And for the tag to fully power up
961 SpinDelay(150);
962
2d4eae76 963 // Now start writting
ec09b62d 964 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
2d4eae76 965 SpinDelayUs(START_GAP);
966
967 // Opcode
968 T55xxWriteBit(1);
969 T55xxWriteBit(0); //Page 0
54a942b0 970 if (PwdMode == 1){
971 // Pwd
972 for (i = 0x80000000; i != 0; i >>= 1)
973 T55xxWriteBit(Pwd & i);
974 }
2d4eae76 975 // Lock bit
976 T55xxWriteBit(0);
977
978 // Data
979 for (i = 0x80000000; i != 0; i >>= 1)
980 T55xxWriteBit(Data & i);
981
54a942b0 982 // Block
2d4eae76 983 for (i = 0x04; i != 0; i >>= 1)
984 T55xxWriteBit(Block & i);
985
986 // Now perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
987 // so wait a little more)
988 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 989 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
ec09b62d 990 SpinDelay(20);
2d4eae76 991 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ec09b62d 992}
993
54a942b0 994// Read one card block in page 0
995void T55xxReadBlock(uint32_t Block, uint32_t Pwd, uint8_t PwdMode)
ec09b62d 996{
54a942b0 997 uint8_t *dest = (uint8_t *)BigBuf;
998 int m=0, i=0;
999
7cc204bf 1000 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
54a942b0 1001 m = sizeof(BigBuf);
1002 // Clear destination buffer before sending the command
1003 memset(dest, 128, m);
1004 // Connect the A/D to the peak-detected low-frequency path.
1005 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1006 // Now set up the SSC to get the ADC samples that are now streaming at us.
1007 FpgaSetupSsc();
1008
1009 LED_D_ON();
1010 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 1011 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
54a942b0 1012
1013 // Give it a bit of time for the resonant antenna to settle.
1014 // And for the tag to fully power up
1015 SpinDelay(150);
1016
1017 // Now start writting
1018 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1019 SpinDelayUs(START_GAP);
1020
1021 // Opcode
1022 T55xxWriteBit(1);
1023 T55xxWriteBit(0); //Page 0
1024 if (PwdMode == 1){
1025 // Pwd
1026 for (i = 0x80000000; i != 0; i >>= 1)
1027 T55xxWriteBit(Pwd & i);
ec09b62d 1028 }
54a942b0 1029 // Lock bit
1030 T55xxWriteBit(0);
1031 // Block
1032 for (i = 0x04; i != 0; i >>= 1)
1033 T55xxWriteBit(Block & i);
1034
1035 // Turn field on to read the response
1036 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 1037 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
54a942b0 1038
1039 // Now do the acquisition
1040 i = 0;
1041 for(;;) {
1042 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1043 AT91C_BASE_SSC->SSC_THR = 0x43;
1044 }
1045 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1046 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1047 // we don't care about actual value, only if it's more or less than a
1048 // threshold essentially we capture zero crossings for later analysis
1049 // if(dest[i] < 127) dest[i] = 0; else dest[i] = 1;
1050 i++;
1051 if (i >= m) break;
1052 }
ec09b62d 1053 }
54a942b0 1054
1055 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1056 LED_D_OFF();
1057 DbpString("DONE!");
1058}
2d4eae76 1059
54a942b0 1060// Read card traceability data (page 1)
1061void T55xxReadTrace(void){
1062 uint8_t *dest = (uint8_t *)BigBuf;
1063 int m=0, i=0;
1064
7cc204bf 1065 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
54a942b0 1066 m = sizeof(BigBuf);
1067 // Clear destination buffer before sending the command
1068 memset(dest, 128, m);
1069 // Connect the A/D to the peak-detected low-frequency path.
1070 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1071 // Now set up the SSC to get the ADC samples that are now streaming at us.
1072 FpgaSetupSsc();
1073
1074 LED_D_ON();
1075 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 1076 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
54a942b0 1077
1078 // Give it a bit of time for the resonant antenna to settle.
1079 // And for the tag to fully power up
1080 SpinDelay(150);
1081
1082 // Now start writting
1083 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1084 SpinDelayUs(START_GAP);
1085
1086 // Opcode
1087 T55xxWriteBit(1);
1088 T55xxWriteBit(1); //Page 1
1089
1090 // Turn field on to read the response
1091 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 1092 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
54a942b0 1093
1094 // Now do the acquisition
1095 i = 0;
1096 for(;;) {
1097 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1098 AT91C_BASE_SSC->SSC_THR = 0x43;
1099 }
1100 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1101 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1102 i++;
1103 if (i >= m) break;
1104 }
ec09b62d 1105 }
54a942b0 1106
1107 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1108 LED_D_OFF();
1109 DbpString("DONE!");
1110}
ec09b62d 1111
54a942b0 1112/*-------------- Cloning routines -----------*/
1113// Copy HID id to card and setup block 0 config
1114void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1115{
1116 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1117 int last_block = 0;
1118
1119 if (longFMT){
1120 // Ensure no more than 84 bits supplied
1121 if (hi2>0xFFFFF) {
1122 DbpString("Tags can only have 84 bits.");
1123 return;
1124 }
1125 // Build the 6 data blocks for supplied 84bit ID
1126 last_block = 6;
1127 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1128 for (int i=0;i<4;i++) {
1129 if (hi2 & (1<<(19-i)))
1130 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1131 else
1132 data1 |= (1<<((3-i)*2)); // 0 -> 01
1133 }
1134
1135 data2 = 0;
1136 for (int i=0;i<16;i++) {
1137 if (hi2 & (1<<(15-i)))
1138 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1139 else
1140 data2 |= (1<<((15-i)*2)); // 0 -> 01
1141 }
1142
1143 data3 = 0;
1144 for (int i=0;i<16;i++) {
1145 if (hi & (1<<(31-i)))
1146 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1147 else
1148 data3 |= (1<<((15-i)*2)); // 0 -> 01
1149 }
1150
1151 data4 = 0;
1152 for (int i=0;i<16;i++) {
1153 if (hi & (1<<(15-i)))
1154 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1155 else
1156 data4 |= (1<<((15-i)*2)); // 0 -> 01
1157 }
1158
1159 data5 = 0;
1160 for (int i=0;i<16;i++) {
1161 if (lo & (1<<(31-i)))
1162 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1163 else
1164 data5 |= (1<<((15-i)*2)); // 0 -> 01
1165 }
1166
1167 data6 = 0;
1168 for (int i=0;i<16;i++) {
1169 if (lo & (1<<(15-i)))
1170 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1171 else
1172 data6 |= (1<<((15-i)*2)); // 0 -> 01
1173 }
1174 }
1175 else {
1176 // Ensure no more than 44 bits supplied
1177 if (hi>0xFFF) {
1178 DbpString("Tags can only have 44 bits.");
1179 return;
1180 }
1181
1182 // Build the 3 data blocks for supplied 44bit ID
1183 last_block = 3;
1184
1185 data1 = 0x1D000000; // load preamble
1186
1187 for (int i=0;i<12;i++) {
1188 if (hi & (1<<(11-i)))
1189 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1190 else
1191 data1 |= (1<<((11-i)*2)); // 0 -> 01
1192 }
1193
1194 data2 = 0;
1195 for (int i=0;i<16;i++) {
1196 if (lo & (1<<(31-i)))
1197 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1198 else
1199 data2 |= (1<<((15-i)*2)); // 0 -> 01
1200 }
1201
1202 data3 = 0;
1203 for (int i=0;i<16;i++) {
1204 if (lo & (1<<(15-i)))
1205 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1206 else
1207 data3 |= (1<<((15-i)*2)); // 0 -> 01
1208 }
1209 }
1210
1211 LED_D_ON();
1212 // Program the data blocks for supplied ID
ec09b62d 1213 // and the block 0 for HID format
54a942b0 1214 T55xxWriteBlock(data1,1,0,0);
1215 T55xxWriteBlock(data2,2,0,0);
1216 T55xxWriteBlock(data3,3,0,0);
1217
1218 if (longFMT) { // if long format there are 6 blocks
1219 T55xxWriteBlock(data4,4,0,0);
1220 T55xxWriteBlock(data5,5,0,0);
1221 T55xxWriteBlock(data6,6,0,0);
1222 }
1223
1224 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
2414f978 1225 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
54a942b0 1226 T55x7_MODULATION_FSK2a |
1227 last_block << T55x7_MAXBLOCK_SHIFT,
1228 0,0,0);
1229
1230 LED_D_OFF();
1231
ec09b62d 1232 DbpString("DONE!");
2d4eae76 1233}
ec09b62d 1234
a1f3bb12 1235void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1236{
1237 int data1=0, data2=0; //up to six blocks for long format
1238
1239 data1 = hi; // load preamble
1240 data2 = lo;
1241
1242 LED_D_ON();
1243 // Program the data blocks for supplied ID
1244 // and the block 0 for HID format
1245 T55xxWriteBlock(data1,1,0,0);
1246 T55xxWriteBlock(data2,2,0,0);
1247
1248 //Config Block
1249 T55xxWriteBlock(0x00147040,0,0,0);
1250 LED_D_OFF();
1251
1252 DbpString("DONE!");
1253}
1254
2d4eae76 1255// Define 9bit header for EM410x tags
1256#define EM410X_HEADER 0x1FF
1257#define EM410X_ID_LENGTH 40
ec09b62d 1258
2d4eae76 1259void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1260{
1261 int i, id_bit;
1262 uint64_t id = EM410X_HEADER;
1263 uint64_t rev_id = 0; // reversed ID
1264 int c_parity[4]; // column parity
1265 int r_parity = 0; // row parity
e67b06b7 1266 uint32_t clock = 0;
2d4eae76 1267
1268 // Reverse ID bits given as parameter (for simpler operations)
1269 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1270 if (i < 32) {
1271 rev_id = (rev_id << 1) | (id_lo & 1);
1272 id_lo >>= 1;
1273 } else {
1274 rev_id = (rev_id << 1) | (id_hi & 1);
1275 id_hi >>= 1;
1276 }
1277 }
1278
1279 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1280 id_bit = rev_id & 1;
1281
1282 if (i % 4 == 0) {
1283 // Don't write row parity bit at start of parsing
1284 if (i)
1285 id = (id << 1) | r_parity;
1286 // Start counting parity for new row
1287 r_parity = id_bit;
1288 } else {
1289 // Count row parity
1290 r_parity ^= id_bit;
1291 }
1292
1293 // First elements in column?
1294 if (i < 4)
1295 // Fill out first elements
1296 c_parity[i] = id_bit;
1297 else
1298 // Count column parity
1299 c_parity[i % 4] ^= id_bit;
1300
1301 // Insert ID bit
1302 id = (id << 1) | id_bit;
1303 rev_id >>= 1;
1304 }
1305
1306 // Insert parity bit of last row
1307 id = (id << 1) | r_parity;
1308
1309 // Fill out column parity at the end of tag
1310 for (i = 0; i < 4; ++i)
1311 id = (id << 1) | c_parity[i];
1312
1313 // Add stop bit
1314 id <<= 1;
1315
1316 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1317 LED_D_ON();
1318
1319 // Write EM410x ID
54a942b0 1320 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1321 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
2d4eae76 1322
1323 // Config for EM410x (RF/64, Manchester, Maxblock=2)
e67b06b7 1324 if (card) {
1325 // Clock rate is stored in bits 8-15 of the card value
1326 clock = (card & 0xFF00) >> 8;
1327 Dbprintf("Clock rate: %d", clock);
1328 switch (clock)
1329 {
1330 case 32:
1331 clock = T55x7_BITRATE_RF_32;
1332 break;
1333 case 16:
1334 clock = T55x7_BITRATE_RF_16;
1335 break;
1336 case 0:
1337 // A value of 0 is assumed to be 64 for backwards-compatibility
1338 // Fall through...
1339 case 64:
1340 clock = T55x7_BITRATE_RF_64;
1341 break;
1342 default:
1343 Dbprintf("Invalid clock rate: %d", clock);
1344 return;
1345 }
1346
2d4eae76 1347 // Writing configuration for T55x7 tag
e67b06b7 1348 T55xxWriteBlock(clock |
2d4eae76 1349 T55x7_MODULATION_MANCHESTER |
1350 2 << T55x7_MAXBLOCK_SHIFT,
54a942b0 1351 0, 0, 0);
e67b06b7 1352 }
2d4eae76 1353 else
1354 // Writing configuration for T5555(Q5) tag
1355 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1356 T5555_MODULATION_MANCHESTER |
1357 2 << T5555_MAXBLOCK_SHIFT,
54a942b0 1358 0, 0, 0);
2d4eae76 1359
1360 LED_D_OFF();
1361 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1362 (uint32_t)(id >> 32), (uint32_t)id);
1363}
2414f978 1364
1365// Clone Indala 64-bit tag by UID to T55x7
1366void CopyIndala64toT55x7(int hi, int lo)
1367{
1368
1369 //Program the 2 data blocks for supplied 64bit UID
1370 // and the block 0 for Indala64 format
54a942b0 1371 T55xxWriteBlock(hi,1,0,0);
1372 T55xxWriteBlock(lo,2,0,0);
2414f978 1373 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1374 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1375 T55x7_MODULATION_PSK1 |
1376 2 << T55x7_MAXBLOCK_SHIFT,
54a942b0 1377 0, 0, 0);
2414f978 1378 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1379// T5567WriteBlock(0x603E1042,0);
1380
1381 DbpString("DONE!");
1382
1383}
1384
1385void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1386{
1387
1388 //Program the 7 data blocks for supplied 224bit UID
1389 // and the block 0 for Indala224 format
54a942b0 1390 T55xxWriteBlock(uid1,1,0,0);
1391 T55xxWriteBlock(uid2,2,0,0);
1392 T55xxWriteBlock(uid3,3,0,0);
1393 T55xxWriteBlock(uid4,4,0,0);
1394 T55xxWriteBlock(uid5,5,0,0);
1395 T55xxWriteBlock(uid6,6,0,0);
1396 T55xxWriteBlock(uid7,7,0,0);
2414f978 1397 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1398 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1399 T55x7_MODULATION_PSK1 |
1400 7 << T55x7_MAXBLOCK_SHIFT,
54a942b0 1401 0,0,0);
2414f978 1402 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1403// T5567WriteBlock(0x603E10E2,0);
1404
1405 DbpString("DONE!");
1406
1407}
54a942b0 1408
1409
1410#define abs(x) ( ((x)<0) ? -(x) : (x) )
1411#define max(x,y) ( x<y ? y:x)
1412
1413int DemodPCF7931(uint8_t **outBlocks) {
1414 uint8_t BitStream[256];
1415 uint8_t Blocks[8][16];
1416 uint8_t *GraphBuffer = (uint8_t *)BigBuf;
1417 int GraphTraceLen = sizeof(BigBuf);
1418 int i, j, lastval, bitidx, half_switch;
1419 int clock = 64;
1420 int tolerance = clock / 8;
1421 int pmc, block_done;
1422 int lc, warnings = 0;
1423 int num_blocks = 0;
1424 int lmin=128, lmax=128;
1425 uint8_t dir;
1426
1427 AcquireRawAdcSamples125k(0);
1428
1429 lmin = 64;
1430 lmax = 192;
1431
1432 i = 2;
1433
1434 /* Find first local max/min */
1435 if(GraphBuffer[1] > GraphBuffer[0]) {
1436 while(i < GraphTraceLen) {
1437 if( !(GraphBuffer[i] > GraphBuffer[i-1]) && GraphBuffer[i] > lmax)
1438 break;
1439 i++;
1440 }
1441 dir = 0;
1442 }
1443 else {
1444 while(i < GraphTraceLen) {
1445 if( !(GraphBuffer[i] < GraphBuffer[i-1]) && GraphBuffer[i] < lmin)
1446 break;
1447 i++;
1448 }
1449 dir = 1;
1450 }
1451
1452 lastval = i++;
1453 half_switch = 0;
1454 pmc = 0;
1455 block_done = 0;
1456
1457 for (bitidx = 0; i < GraphTraceLen; i++)
1458 {
1459 if ( (GraphBuffer[i-1] > GraphBuffer[i] && dir == 1 && GraphBuffer[i] > lmax) || (GraphBuffer[i-1] < GraphBuffer[i] && dir == 0 && GraphBuffer[i] < lmin))
1460 {
1461 lc = i - lastval;
1462 lastval = i;
1463
1464 // Switch depending on lc length:
1465 // Tolerance is 1/8 of clock rate (arbitrary)
1466 if (abs(lc-clock/4) < tolerance) {
1467 // 16T0
1468 if((i - pmc) == lc) { /* 16T0 was previous one */
1469 /* It's a PMC ! */
1470 i += (128+127+16+32+33+16)-1;
1471 lastval = i;
1472 pmc = 0;
1473 block_done = 1;
1474 }
1475 else {
1476 pmc = i;
1477 }
1478 } else if (abs(lc-clock/2) < tolerance) {
1479 // 32TO
1480 if((i - pmc) == lc) { /* 16T0 was previous one */
1481 /* It's a PMC ! */
1482 i += (128+127+16+32+33)-1;
1483 lastval = i;
1484 pmc = 0;
1485 block_done = 1;
1486 }
1487 else if(half_switch == 1) {
1488 BitStream[bitidx++] = 0;
1489 half_switch = 0;
1490 }
1491 else
1492 half_switch++;
1493 } else if (abs(lc-clock) < tolerance) {
1494 // 64TO
1495 BitStream[bitidx++] = 1;
1496 } else {
1497 // Error
1498 warnings++;
1499 if (warnings > 10)
1500 {
1501 Dbprintf("Error: too many detection errors, aborting.");
1502 return 0;
1503 }
1504 }
1505
1506 if(block_done == 1) {
1507 if(bitidx == 128) {
1508 for(j=0; j<16; j++) {
1509 Blocks[num_blocks][j] = 128*BitStream[j*8+7]+
1510 64*BitStream[j*8+6]+
1511 32*BitStream[j*8+5]+
1512 16*BitStream[j*8+4]+
1513 8*BitStream[j*8+3]+
1514 4*BitStream[j*8+2]+
1515 2*BitStream[j*8+1]+
1516 BitStream[j*8];
1517 }
1518 num_blocks++;
1519 }
1520 bitidx = 0;
1521 block_done = 0;
1522 half_switch = 0;
1523 }
1524 if (GraphBuffer[i-1] > GraphBuffer[i]) dir=0;
1525 else dir = 1;
1526 }
1527 if(bitidx==255)
1528 bitidx=0;
1529 warnings = 0;
1530 if(num_blocks == 4) break;
1531 }
1532 memcpy(outBlocks, Blocks, 16*num_blocks);
1533 return num_blocks;
1534}
1535
1536int IsBlock0PCF7931(uint8_t *Block) {
1537 // Assume RFU means 0 :)
1538 if((memcmp(Block, "\x00\x00\x00\x00\x00\x00\x00\x01", 8) == 0) && memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) // PAC enabled
1539 return 1;
1540 if((memcmp(Block+9, "\x00\x00\x00\x00\x00\x00\x00", 7) == 0) && Block[7] == 0) // PAC disabled, can it *really* happen ?
1541 return 1;
1542 return 0;
1543}
1544
1545int IsBlock1PCF7931(uint8_t *Block) {
1546 // Assume RFU means 0 :)
1547 if(Block[10] == 0 && Block[11] == 0 && Block[12] == 0 && Block[13] == 0)
1548 if((Block[14] & 0x7f) <= 9 && Block[15] <= 9)
1549 return 1;
1550
1551 return 0;
1552}
1553
1554#define ALLOC 16
1555
1556void ReadPCF7931() {
1557 uint8_t Blocks[8][17];
1558 uint8_t tmpBlocks[4][16];
1559 int i, j, ind, ind2, n;
1560 int num_blocks = 0;
1561 int max_blocks = 8;
1562 int ident = 0;
1563 int error = 0;
1564 int tries = 0;
1565
1566 memset(Blocks, 0, 8*17*sizeof(uint8_t));
1567
1568 do {
1569 memset(tmpBlocks, 0, 4*16*sizeof(uint8_t));
1570 n = DemodPCF7931((uint8_t**)tmpBlocks);
1571 if(!n)
1572 error++;
1573 if(error==10 && num_blocks == 0) {
1574 Dbprintf("Error, no tag or bad tag");
1575 return;
1576 }
1577 else if (tries==20 || error==10) {
1578 Dbprintf("Error reading the tag");
1579 Dbprintf("Here is the partial content");
1580 goto end;
1581 }
1582
1583 for(i=0; i<n; i++)
1584 Dbprintf("(dbg) %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1585 tmpBlocks[i][0], tmpBlocks[i][1], tmpBlocks[i][2], tmpBlocks[i][3], tmpBlocks[i][4], tmpBlocks[i][5], tmpBlocks[i][6], tmpBlocks[i][7],
1586 tmpBlocks[i][8], tmpBlocks[i][9], tmpBlocks[i][10], tmpBlocks[i][11], tmpBlocks[i][12], tmpBlocks[i][13], tmpBlocks[i][14], tmpBlocks[i][15]);
1587 if(!ident) {
1588 for(i=0; i<n; i++) {
1589 if(IsBlock0PCF7931(tmpBlocks[i])) {
1590 // Found block 0 ?
1591 if(i < n-1 && IsBlock1PCF7931(tmpBlocks[i+1])) {
1592 // Found block 1!
1593 // \o/
1594 ident = 1;
1595 memcpy(Blocks[0], tmpBlocks[i], 16);
1596 Blocks[0][ALLOC] = 1;
1597 memcpy(Blocks[1], tmpBlocks[i+1], 16);
1598 Blocks[1][ALLOC] = 1;
1599 max_blocks = max((Blocks[1][14] & 0x7f), Blocks[1][15]) + 1;
1600 // Debug print
1601 Dbprintf("(dbg) Max blocks: %d", max_blocks);
1602 num_blocks = 2;
1603 // Handle following blocks
1604 for(j=i+2, ind2=2; j!=i; j++, ind2++, num_blocks++) {
1605 if(j==n) j=0;
1606 if(j==i) break;
1607 memcpy(Blocks[ind2], tmpBlocks[j], 16);
1608 Blocks[ind2][ALLOC] = 1;
1609 }
1610 break;
1611 }
1612 }
1613 }
1614 }
1615 else {
1616 for(i=0; i<n; i++) { // Look for identical block in known blocks
1617 if(memcmp(tmpBlocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { // Block is not full of 00
1618 for(j=0; j<max_blocks; j++) {
1619 if(Blocks[j][ALLOC] == 1 && !memcmp(tmpBlocks[i], Blocks[j], 16)) {
1620 // Found an identical block
1621 for(ind=i-1,ind2=j-1; ind >= 0; ind--,ind2--) {
1622 if(ind2 < 0)
1623 ind2 = max_blocks;
1624 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1625 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1626 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1627 Blocks[ind2][ALLOC] = 1;
1628 num_blocks++;
1629 if(num_blocks == max_blocks) goto end;
1630 }
1631 }
1632 for(ind=i+1,ind2=j+1; ind < n; ind++,ind2++) {
1633 if(ind2 > max_blocks)
1634 ind2 = 0;
1635 if(!Blocks[ind2][ALLOC]) { // Block ind2 not already found
1636 // Dbprintf("Tmp %d -> Block %d", ind, ind2);
1637 memcpy(Blocks[ind2], tmpBlocks[ind], 16);
1638 Blocks[ind2][ALLOC] = 1;
1639 num_blocks++;
1640 if(num_blocks == max_blocks) goto end;
1641 }
1642 }
1643 }
1644 }
1645 }
1646 }
1647 }
1648 tries++;
1649 if (BUTTON_PRESS()) return;
1650 } while (num_blocks != max_blocks);
1651end:
1652 Dbprintf("-----------------------------------------");
1653 Dbprintf("Memory content:");
1654 Dbprintf("-----------------------------------------");
1655 for(i=0; i<max_blocks; i++) {
1656 if(Blocks[i][ALLOC]==1)
1657 Dbprintf("%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
1658 Blocks[i][0], Blocks[i][1], Blocks[i][2], Blocks[i][3], Blocks[i][4], Blocks[i][5], Blocks[i][6], Blocks[i][7],
1659 Blocks[i][8], Blocks[i][9], Blocks[i][10], Blocks[i][11], Blocks[i][12], Blocks[i][13], Blocks[i][14], Blocks[i][15]);
1660 else
1661 Dbprintf("<missing block %d>", i);
1662 }
1663 Dbprintf("-----------------------------------------");
1664
1665 return ;
1666}
1667
1668
1669//-----------------------------------
1670// EM4469 / EM4305 routines
1671//-----------------------------------
1672#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1673#define FWD_CMD_WRITE 0xA
1674#define FWD_CMD_READ 0x9
1675#define FWD_CMD_DISABLE 0x5
1676
1677
1678uint8_t forwardLink_data[64]; //array of forwarded bits
1679uint8_t * forward_ptr; //ptr for forward message preparation
1680uint8_t fwd_bit_sz; //forwardlink bit counter
1681uint8_t * fwd_write_ptr; //forwardlink bit pointer
1682
1683//====================================================================
1684// prepares command bits
1685// see EM4469 spec
1686//====================================================================
1687//--------------------------------------------------------------------
1688uint8_t Prepare_Cmd( uint8_t cmd ) {
1689 //--------------------------------------------------------------------
1690
1691 *forward_ptr++ = 0; //start bit
1692 *forward_ptr++ = 0; //second pause for 4050 code
1693
1694 *forward_ptr++ = cmd;
1695 cmd >>= 1;
1696 *forward_ptr++ = cmd;
1697 cmd >>= 1;
1698 *forward_ptr++ = cmd;
1699 cmd >>= 1;
1700 *forward_ptr++ = cmd;
1701
1702 return 6; //return number of emited bits
1703}
1704
1705//====================================================================
1706// prepares address bits
1707// see EM4469 spec
1708//====================================================================
1709
1710//--------------------------------------------------------------------
1711uint8_t Prepare_Addr( uint8_t addr ) {
1712 //--------------------------------------------------------------------
1713
1714 register uint8_t line_parity;
1715
1716 uint8_t i;
1717 line_parity = 0;
1718 for(i=0;i<6;i++) {
1719 *forward_ptr++ = addr;
1720 line_parity ^= addr;
1721 addr >>= 1;
1722 }
1723
1724 *forward_ptr++ = (line_parity & 1);
1725
1726 return 7; //return number of emited bits
1727}
1728
1729//====================================================================
1730// prepares data bits intreleaved with parity bits
1731// see EM4469 spec
1732//====================================================================
1733
1734//--------------------------------------------------------------------
1735uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
1736 //--------------------------------------------------------------------
1737
1738 register uint8_t line_parity;
1739 register uint8_t column_parity;
1740 register uint8_t i, j;
1741 register uint16_t data;
1742
1743 data = data_low;
1744 column_parity = 0;
1745
1746 for(i=0; i<4; i++) {
1747 line_parity = 0;
1748 for(j=0; j<8; j++) {
1749 line_parity ^= data;
1750 column_parity ^= (data & 1) << j;
1751 *forward_ptr++ = data;
1752 data >>= 1;
1753 }
1754 *forward_ptr++ = line_parity;
1755 if(i == 1)
1756 data = data_hi;
1757 }
1758
1759 for(j=0; j<8; j++) {
1760 *forward_ptr++ = column_parity;
1761 column_parity >>= 1;
1762 }
1763 *forward_ptr = 0;
1764
1765 return 45; //return number of emited bits
1766}
1767
1768//====================================================================
1769// Forward Link send function
1770// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1771// fwd_bit_count set with number of bits to be sent
1772//====================================================================
1773void SendForward(uint8_t fwd_bit_count) {
1774
1775 fwd_write_ptr = forwardLink_data;
1776 fwd_bit_sz = fwd_bit_count;
1777
1778 LED_D_ON();
1779
1780 //Field on
7cc204bf 1781 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
54a942b0 1782 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 1783 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
54a942b0 1784
1785 // Give it a bit of time for the resonant antenna to settle.
1786 // And for the tag to fully power up
1787 SpinDelay(150);
1788
1789 // force 1st mod pulse (start gap must be longer for 4305)
1790 fwd_bit_sz--; //prepare next bit modulation
1791 fwd_write_ptr++;
1792 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1793 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
1794 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 1795 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
54a942b0 1796 SpinDelayUs(16*8); //16 cycles on (8us each)
1797
1798 // now start writting
1799 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1800 if(((*fwd_write_ptr++) & 1) == 1)
1801 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1802 else {
1803 //These timings work for 4469/4269/4305 (with the 55*8 above)
1804 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1805 SpinDelayUs(23*8); //16-4 cycles off (8us each)
1806 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
b014c96d 1807 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
54a942b0 1808 SpinDelayUs(9*8); //16 cycles on (8us each)
1809 }
1810 }
1811}
1812
1813void EM4xLogin(uint32_t Password) {
1814
1815 uint8_t fwd_bit_count;
1816
1817 forward_ptr = forwardLink_data;
1818 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1819 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
1820
1821 SendForward(fwd_bit_count);
1822
1823 //Wait for command to complete
1824 SpinDelay(20);
1825
1826}
1827
1828void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1829
1830 uint8_t fwd_bit_count;
1831 uint8_t *dest = (uint8_t *)BigBuf;
1832 int m=0, i=0;
1833
1834 //If password mode do login
1835 if (PwdMode == 1) EM4xLogin(Pwd);
1836
1837 forward_ptr = forwardLink_data;
1838 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1839 fwd_bit_count += Prepare_Addr( Address );
1840
1841 m = sizeof(BigBuf);
1842 // Clear destination buffer before sending the command
1843 memset(dest, 128, m);
1844 // Connect the A/D to the peak-detected low-frequency path.
1845 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1846 // Now set up the SSC to get the ADC samples that are now streaming at us.
1847 FpgaSetupSsc();
1848
1849 SendForward(fwd_bit_count);
1850
1851 // Now do the acquisition
1852 i = 0;
1853 for(;;) {
1854 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1855 AT91C_BASE_SSC->SSC_THR = 0x43;
1856 }
1857 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1858 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
1859 i++;
1860 if (i >= m) break;
1861 }
1862 }
1863 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1864 LED_D_OFF();
1865}
1866
1867void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1868
1869 uint8_t fwd_bit_count;
1870
1871 //If password mode do login
1872 if (PwdMode == 1) EM4xLogin(Pwd);
1873
1874 forward_ptr = forwardLink_data;
1875 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1876 fwd_bit_count += Prepare_Addr( Address );
1877 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
1878
1879 SendForward(fwd_bit_count);
1880
1881 //Wait for write to complete
1882 SpinDelay(20);
1883 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1884 LED_D_OFF();
1885}
Impressum, Datenschutz