]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/lfops.c
ADD: @marshmellows42 's fixes for "lf cmdread" and CHANGELOG.md
[proxmark3-svn] / armsrc / lfops.c
CommitLineData
e09f21fa 1//-----------------------------------------------------------------------------
2// This code is licensed to you under the terms of the GNU GPL, version 2 or,
3// at your option, any later version. See the LICENSE.txt file for the text of
4// the license.
5//-----------------------------------------------------------------------------
6// Miscellaneous routines for low frequency tag operations.
7// Tags supported here so far are Texas Instruments (TI), HID
8// Also routines for raw mode reading/simulating of LF waveform
9//-----------------------------------------------------------------------------
10
11#include "proxmark3.h"
12#include "apps.h"
13#include "util.h"
14#include "hitag2.h"
15#include "crc16.h"
16#include "string.h"
17#include "lfdemod.h"
18#include "lfsampling.h"
f7048dc8 19#include "usb_cdc.h"
e09f21fa 20
21
22/**
23 * Function to do a modulation and then get samples.
24 * @param delay_off
25 * @param period_0
26 * @param period_1
27 * @param command
28 */
9276e859 29void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t period_0, uint32_t period_1, uint8_t *command)
e09f21fa 30{
31
e0165dcf 32 int divisor_used = 95; // 125 KHz
33 // see if 'h' was specified
e09f21fa 34
e0165dcf 35 if (command[strlen((char *) command) - 1] == 'h')
36 divisor_used = 88; // 134.8 KHz
e09f21fa 37
38 sample_config sc = { 0,0,1, divisor_used, 0};
39 setSamplingConfig(&sc);
40
41 /* Make sure the tag is reset */
42 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
43 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
44 SpinDelay(2500);
45
46 LFSetupFPGAForADC(sc.divisor, 1);
47
48 // And a little more time for the tag to fully power up
49 SpinDelay(2000);
50
e0165dcf 51 // now modulate the reader field
52 while(*command != '\0' && *command != ' ') {
53 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
54 LED_D_OFF();
55 SpinDelayUs(delay_off);
e09f21fa 56 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
57
e0165dcf 58 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
59 LED_D_ON();
60 if(*(command++) == '0')
61 SpinDelayUs(period_0);
62 else
63 SpinDelayUs(period_1);
64 }
65 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
66 LED_D_OFF();
67 SpinDelayUs(delay_off);
e09f21fa 68 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor);
69
e0165dcf 70 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
e09f21fa 71
e0165dcf 72 // now do the read
e09f21fa 73 DoAcquisition_config(false);
74}
75
e09f21fa 76/* blank r/w tag data stream
77...0000000000000000 01111111
781010101010101010101010101010101010101010101010101010101010101010
790011010010100001
8001111111
81101010101010101[0]000...
82
83[5555fe852c5555555555555555fe0000]
84*/
85void ReadTItag(void)
86{
e0165dcf 87 // some hardcoded initial params
88 // when we read a TI tag we sample the zerocross line at 2Mhz
89 // TI tags modulate a 1 as 16 cycles of 123.2Khz
90 // TI tags modulate a 0 as 16 cycles of 134.2Khz
0de8e387 91 #define FSAMPLE 2000000
92 #define FREQLO 123200
93 #define FREQHI 134200
e09f21fa 94
e0165dcf 95 signed char *dest = (signed char *)BigBuf_get_addr();
96 uint16_t n = BigBuf_max_traceLen();
97 // 128 bit shift register [shift3:shift2:shift1:shift0]
98 uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
99
100 int i, cycles=0, samples=0;
101 // how many sample points fit in 16 cycles of each frequency
102 uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
103 // when to tell if we're close enough to one freq or another
104 uint32_t threshold = (sampleslo - sampleshi + 1)>>1;
105
106 // TI tags charge at 134.2Khz
107 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
108 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
109
110 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
111 // connects to SSP_DIN and the SSP_DOUT logic level controls
112 // whether we're modulating the antenna (high)
113 // or listening to the antenna (low)
114 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
115
116 // get TI tag data into the buffer
117 AcquireTiType();
118
119 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
120
121 for (i=0; i<n-1; i++) {
122 // count cycles by looking for lo to hi zero crossings
123 if ( (dest[i]<0) && (dest[i+1]>0) ) {
124 cycles++;
125 // after 16 cycles, measure the frequency
126 if (cycles>15) {
127 cycles=0;
128 samples=i-samples; // number of samples in these 16 cycles
129
130 // TI bits are coming to us lsb first so shift them
131 // right through our 128 bit right shift register
132 shift0 = (shift0>>1) | (shift1 << 31);
133 shift1 = (shift1>>1) | (shift2 << 31);
134 shift2 = (shift2>>1) | (shift3 << 31);
135 shift3 >>= 1;
136
137 // check if the cycles fall close to the number
138 // expected for either the low or high frequency
139 if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
140 // low frequency represents a 1
141 shift3 |= (1<<31);
142 } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
143 // high frequency represents a 0
144 } else {
145 // probably detected a gay waveform or noise
146 // use this as gaydar or discard shift register and start again
147 shift3 = shift2 = shift1 = shift0 = 0;
148 }
149 samples = i;
150
151 // for each bit we receive, test if we've detected a valid tag
152
153 // if we see 17 zeroes followed by 6 ones, we might have a tag
154 // remember the bits are backwards
155 if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
156 // if start and end bytes match, we have a tag so break out of the loop
157 if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
158 cycles = 0xF0B; //use this as a flag (ugly but whatever)
159 break;
160 }
161 }
162 }
163 }
164 }
165
166 // if flag is set we have a tag
167 if (cycles!=0xF0B) {
168 DbpString("Info: No valid tag detected.");
169 } else {
170 // put 64 bit data into shift1 and shift0
171 shift0 = (shift0>>24) | (shift1 << 8);
172 shift1 = (shift1>>24) | (shift2 << 8);
173
174 // align 16 bit crc into lower half of shift2
175 shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
176
177 // if r/w tag, check ident match
e09f21fa 178 if (shift3 & (1<<15) ) {
e0165dcf 179 DbpString("Info: TI tag is rewriteable");
180 // only 15 bits compare, last bit of ident is not valid
e09f21fa 181 if (((shift3 >> 16) ^ shift0) & 0x7fff ) {
e0165dcf 182 DbpString("Error: Ident mismatch!");
183 } else {
184 DbpString("Info: TI tag ident is valid");
185 }
186 } else {
187 DbpString("Info: TI tag is readonly");
188 }
189
190 // WARNING the order of the bytes in which we calc crc below needs checking
191 // i'm 99% sure the crc algorithm is correct, but it may need to eat the
192 // bytes in reverse or something
193 // calculate CRC
194 uint32_t crc=0;
195
196 crc = update_crc16(crc, (shift0)&0xff);
197 crc = update_crc16(crc, (shift0>>8)&0xff);
198 crc = update_crc16(crc, (shift0>>16)&0xff);
199 crc = update_crc16(crc, (shift0>>24)&0xff);
200 crc = update_crc16(crc, (shift1)&0xff);
201 crc = update_crc16(crc, (shift1>>8)&0xff);
202 crc = update_crc16(crc, (shift1>>16)&0xff);
203 crc = update_crc16(crc, (shift1>>24)&0xff);
204
205 Dbprintf("Info: Tag data: %x%08x, crc=%x",
206 (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF);
207 if (crc != (shift2&0xffff)) {
208 Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc);
209 } else {
210 DbpString("Info: CRC is good");
211 }
212 }
e09f21fa 213}
214
215void WriteTIbyte(uint8_t b)
216{
e0165dcf 217 int i = 0;
218
219 // modulate 8 bits out to the antenna
220 for (i=0; i<8; i++)
221 {
222 if (b&(1<<i)) {
223 // stop modulating antenna
224 LOW(GPIO_SSC_DOUT);
225 SpinDelayUs(1000);
226 // modulate antenna
227 HIGH(GPIO_SSC_DOUT);
228 SpinDelayUs(1000);
229 } else {
230 // stop modulating antenna
231 LOW(GPIO_SSC_DOUT);
232 SpinDelayUs(300);
233 // modulate antenna
234 HIGH(GPIO_SSC_DOUT);
235 SpinDelayUs(1700);
236 }
237 }
e09f21fa 238}
239
240void AcquireTiType(void)
241{
e0165dcf 242 int i, j, n;
243 // tag transmission is <20ms, sampling at 2M gives us 40K samples max
244 // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t
a739812e 245 #define TIBUFLEN 1250
e09f21fa 246
e0165dcf 247 // clear buffer
a739812e 248 uint32_t *buf = (uint32_t *)BigBuf_get_addr();
249
250 //clear buffer now so it does not interfere with timing later
251 BigBuf_Clear_ext(false);
e0165dcf 252
253 // Set up the synchronous serial port
254 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN;
255 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN;
256
257 // steal this pin from the SSP and use it to control the modulation
258 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
259 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
260
261 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
262 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN;
263
264 // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long
265 // 48/2 = 24 MHz clock must be divided by 12
266 AT91C_BASE_SSC->SSC_CMR = 12;
267
268 AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0);
269 AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF;
270 AT91C_BASE_SSC->SSC_TCMR = 0;
271 AT91C_BASE_SSC->SSC_TFMR = 0;
272
273 LED_D_ON();
274
275 // modulate antenna
276 HIGH(GPIO_SSC_DOUT);
277
278 // Charge TI tag for 50ms.
279 SpinDelay(50);
280
281 // stop modulating antenna and listen
282 LOW(GPIO_SSC_DOUT);
283
284 LED_D_OFF();
285
286 i = 0;
287 for(;;) {
288 if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
a739812e 289 buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer
e0165dcf 290 i++; if(i >= TIBUFLEN) break;
291 }
292 WDT_HIT();
293 }
294
295 // return stolen pin to SSP
296 AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT;
297 AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT;
298
299 char *dest = (char *)BigBuf_get_addr();
a739812e 300 n = TIBUFLEN * 32;
301
e0165dcf 302 // unpack buffer
a739812e 303 for (i = TIBUFLEN-1; i >= 0; i--) {
304 for (j = 0; j < 32; j++) {
305 if(buf[i] & (1 << j)) {
e0165dcf 306 dest[--n] = 1;
307 } else {
308 dest[--n] = -1;
309 }
310 }
311 }
e09f21fa 312}
313
314// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
315// if crc provided, it will be written with the data verbatim (even if bogus)
316// if not provided a valid crc will be computed from the data and written.
317void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc)
318{
e0165dcf 319 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
320 if(crc == 0) {
321 crc = update_crc16(crc, (idlo)&0xff);
322 crc = update_crc16(crc, (idlo>>8)&0xff);
323 crc = update_crc16(crc, (idlo>>16)&0xff);
324 crc = update_crc16(crc, (idlo>>24)&0xff);
325 crc = update_crc16(crc, (idhi)&0xff);
326 crc = update_crc16(crc, (idhi>>8)&0xff);
327 crc = update_crc16(crc, (idhi>>16)&0xff);
328 crc = update_crc16(crc, (idhi>>24)&0xff);
329 }
a739812e 330 Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc);
e0165dcf 331
332 // TI tags charge at 134.2Khz
333 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
334 // Place FPGA in passthrough mode, in this mode the CROSS_LO line
335 // connects to SSP_DIN and the SSP_DOUT logic level controls
336 // whether we're modulating the antenna (high)
337 // or listening to the antenna (low)
338 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
339 LED_A_ON();
340
341 // steal this pin from the SSP and use it to control the modulation
342 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
343 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
344
345 // writing algorithm:
346 // a high bit consists of a field off for 1ms and field on for 1ms
347 // a low bit consists of a field off for 0.3ms and field on for 1.7ms
348 // initiate a charge time of 50ms (field on) then immediately start writing bits
349 // start by writing 0xBB (keyword) and 0xEB (password)
350 // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer)
351 // finally end with 0x0300 (write frame)
352 // all data is sent lsb firts
353 // finish with 15ms programming time
354
355 // modulate antenna
356 HIGH(GPIO_SSC_DOUT);
357 SpinDelay(50); // charge time
358
359 WriteTIbyte(0xbb); // keyword
360 WriteTIbyte(0xeb); // password
361 WriteTIbyte( (idlo )&0xff );
362 WriteTIbyte( (idlo>>8 )&0xff );
363 WriteTIbyte( (idlo>>16)&0xff );
364 WriteTIbyte( (idlo>>24)&0xff );
365 WriteTIbyte( (idhi )&0xff );
366 WriteTIbyte( (idhi>>8 )&0xff );
367 WriteTIbyte( (idhi>>16)&0xff );
368 WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo
369 WriteTIbyte( (crc )&0xff ); // crc lo
370 WriteTIbyte( (crc>>8 )&0xff ); // crc hi
371 WriteTIbyte(0x00); // write frame lo
372 WriteTIbyte(0x03); // write frame hi
373 HIGH(GPIO_SSC_DOUT);
374 SpinDelay(50); // programming time
375
376 LED_A_OFF();
377
378 // get TI tag data into the buffer
379 AcquireTiType();
380
381 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
b8f705e7 382 DbpString("Now use 'lf ti read' to check");
e09f21fa 383}
384
cd073027 385void SimulateTagLowFrequency(int period, int gap, int ledcontrol)
e09f21fa 386{
e0165dcf 387 int i;
388 uint8_t *tab = BigBuf_get_addr();
e09f21fa 389
e0165dcf 390 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
391 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
e09f21fa 392
e0165dcf 393 AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK;
e0165dcf 394 AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
395 AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
e09f21fa 396
397 #define SHORT_COIL() LOW(GPIO_SSC_DOUT)
a739812e 398 #define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
e09f21fa 399
e0165dcf 400 i = 0;
401 for(;;) {
402 //wait until SSC_CLK goes HIGH
403 while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) {
7838f4be 404 if(BUTTON_PRESS() || (usb_poll_validate_length() )) {
e0165dcf 405 DbpString("Stopped");
406 return;
407 }
408 WDT_HIT();
409 }
a739812e 410 if (ledcontrol) LED_D_ON();
e0165dcf 411
412 if(tab[i])
413 OPEN_COIL();
414 else
415 SHORT_COIL();
416
a739812e 417 if (ledcontrol) LED_D_OFF();
418
e0165dcf 419 //wait until SSC_CLK goes LOW
420 while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
421 if(BUTTON_PRESS()) {
422 DbpString("Stopped");
423 return;
424 }
425 WDT_HIT();
426 }
427
428 i++;
429 if(i == period) {
430
431 i = 0;
432 if (gap) {
433 SHORT_COIL();
434 SpinDelayUs(gap);
435 }
436 }
437 }
e09f21fa 438}
439
e09f21fa 440#define DEBUG_FRAME_CONTENTS 1
441void SimulateTagLowFrequencyBidir(int divisor, int t0)
442{
443}
444
445// compose fc/8 fc/10 waveform (FSK2)
446static void fc(int c, int *n)
447{
e0165dcf 448 uint8_t *dest = BigBuf_get_addr();
449 int idx;
450
451 // for when we want an fc8 pattern every 4 logical bits
452 if(c==0) {
453 dest[((*n)++)]=1;
454 dest[((*n)++)]=1;
455 dest[((*n)++)]=1;
456 dest[((*n)++)]=1;
457 dest[((*n)++)]=0;
458 dest[((*n)++)]=0;
459 dest[((*n)++)]=0;
460 dest[((*n)++)]=0;
461 }
462
463 // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples
464 if(c==8) {
465 for (idx=0; idx<6; idx++) {
466 dest[((*n)++)]=1;
467 dest[((*n)++)]=1;
468 dest[((*n)++)]=1;
469 dest[((*n)++)]=1;
470 dest[((*n)++)]=0;
471 dest[((*n)++)]=0;
472 dest[((*n)++)]=0;
473 dest[((*n)++)]=0;
474 }
475 }
476
477 // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples
478 if(c==10) {
479 for (idx=0; idx<5; idx++) {
480 dest[((*n)++)]=1;
481 dest[((*n)++)]=1;
482 dest[((*n)++)]=1;
483 dest[((*n)++)]=1;
484 dest[((*n)++)]=1;
485 dest[((*n)++)]=0;
486 dest[((*n)++)]=0;
487 dest[((*n)++)]=0;
488 dest[((*n)++)]=0;
489 dest[((*n)++)]=0;
490 }
491 }
e09f21fa 492}
493// compose fc/X fc/Y waveform (FSKx)
712ebfa6 494static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt)
e09f21fa 495{
e0165dcf 496 uint8_t *dest = BigBuf_get_addr();
497 uint8_t halfFC = fc/2;
498 uint8_t wavesPerClock = clock/fc;
499 uint8_t mod = clock % fc; //modifier
500 uint8_t modAdj = fc/mod; //how often to apply modifier
501 bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE;
502 // loop through clock - step field clock
503 for (uint8_t idx=0; idx < wavesPerClock; idx++){
504 // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave)
505 memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here
506 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
507 *n += fc;
508 }
509 if (mod>0) (*modCnt)++;
510 if ((mod>0) && modAdjOk){ //fsk2
511 if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave
512 memset(dest+(*n), 0, fc-halfFC);
513 memset(dest+(*n)+(fc-halfFC), 1, halfFC);
514 *n += fc;
515 }
516 }
517 if (mod>0 && !modAdjOk){ //fsk1
518 memset(dest+(*n), 0, mod-(mod/2));
519 memset(dest+(*n)+(mod-(mod/2)), 1, mod/2);
520 *n += mod;
521 }
e09f21fa 522}
523
524// prepare a waveform pattern in the buffer based on the ID given then
525// simulate a HID tag until the button is pressed
526void CmdHIDsimTAG(int hi, int lo, int ledcontrol)
527{
e0165dcf 528 int n=0, i=0;
529 /*
530 HID tag bitstream format
531 The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits
532 A 1 bit is represented as 6 fc8 and 5 fc10 patterns
533 A 0 bit is represented as 5 fc10 and 6 fc8 patterns
534 A fc8 is inserted before every 4 bits
535 A special start of frame pattern is used consisting a0b0 where a and b are neither 0
536 nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10)
537 */
538
539 if (hi>0xFFF) {
540 DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags");
541 return;
542 }
543 fc(0,&n);
544 // special start of frame marker containing invalid bit sequences
545 fc(8, &n); fc(8, &n); // invalid
546 fc(8, &n); fc(10, &n); // logical 0
547 fc(10, &n); fc(10, &n); // invalid
548 fc(8, &n); fc(10, &n); // logical 0
549
550 WDT_HIT();
551 // manchester encode bits 43 to 32
552 for (i=11; i>=0; i--) {
553 if ((i%4)==3) fc(0,&n);
554 if ((hi>>i)&1) {
555 fc(10, &n); fc(8, &n); // low-high transition
556 } else {
557 fc(8, &n); fc(10, &n); // high-low transition
558 }
559 }
560
561 WDT_HIT();
562 // manchester encode bits 31 to 0
563 for (i=31; i>=0; i--) {
564 if ((i%4)==3) fc(0,&n);
565 if ((lo>>i)&1) {
566 fc(10, &n); fc(8, &n); // low-high transition
567 } else {
568 fc(8, &n); fc(10, &n); // high-low transition
569 }
570 }
571
a739812e 572 if (ledcontrol) LED_A_ON();
e0165dcf 573 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 574 if (ledcontrol) LED_A_OFF();
e09f21fa 575}
576
577// prepare a waveform pattern in the buffer based on the ID given then
578// simulate a FSK tag until the button is pressed
579// arg1 contains fcHigh and fcLow, arg2 contains invert and clock
580void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
581{
e0165dcf 582 int ledcontrol=1;
583 int n=0, i=0;
584 uint8_t fcHigh = arg1 >> 8;
585 uint8_t fcLow = arg1 & 0xFF;
586 uint16_t modCnt = 0;
587 uint8_t clk = arg2 & 0xFF;
588 uint8_t invert = (arg2 >> 8) & 1;
589
590 for (i=0; i<size; i++){
591 if (BitStream[i] == invert){
592 fcAll(fcLow, &n, clk, &modCnt);
593 } else {
594 fcAll(fcHigh, &n, clk, &modCnt);
595 }
596 }
597 Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d",fcHigh, fcLow, clk, invert, n);
598 /*Dbprintf("DEBUG: First 32:");
599 uint8_t *dest = BigBuf_get_addr();
600 i=0;
601 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
602 i+=16;
603 Dbprintf("%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d%d", dest[i],dest[i+1],dest[i+2],dest[i+3],dest[i+4],dest[i+5],dest[i+6],dest[i+7],dest[i+8],dest[i+9],dest[i+10],dest[i+11],dest[i+12],dest[i+13],dest[i+14],dest[i+15]);
604 */
605 if (ledcontrol)
606 LED_A_ON();
607
608 SimulateTagLowFrequency(n, 0, ledcontrol);
609
610 if (ledcontrol)
611 LED_A_OFF();
e09f21fa 612}
613
614// compose ask waveform for one bit(ASK)
e0165dcf 615static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester)
e09f21fa 616{
e0165dcf 617 uint8_t *dest = BigBuf_get_addr();
618 uint8_t halfClk = clock/2;
619 // c = current bit 1 or 0
620 if (manchester==1){
621 memset(dest+(*n), c, halfClk);
622 memset(dest+(*n) + halfClk, c^1, halfClk);
623 } else {
624 memset(dest+(*n), c, clock);
625 }
626 *n += clock;
e09f21fa 627}
628
b41534d1 629static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase)
630{
e0165dcf 631 uint8_t *dest = BigBuf_get_addr();
632 uint8_t halfClk = clock/2;
633 if (c){
634 memset(dest+(*n), c ^ 1 ^ *phase, halfClk);
635 memset(dest+(*n) + halfClk, c ^ *phase, halfClk);
636 } else {
637 memset(dest+(*n), c ^ *phase, clock);
638 *phase ^= 1;
639 }
b41534d1 640
641}
642
e09f21fa 643// args clock, ask/man or askraw, invert, transmission separator
644void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
645{
e0165dcf 646 int ledcontrol = 1;
647 int n=0, i=0;
648 uint8_t clk = (arg1 >> 8) & 0xFF;
2b3af97d 649 uint8_t encoding = arg1 & 0xFF;
e0165dcf 650 uint8_t separator = arg2 & 1;
651 uint8_t invert = (arg2 >> 8) & 1;
652
653 if (encoding==2){ //biphase
654 uint8_t phase=0;
655 for (i=0; i<size; i++){
656 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
657 }
658 if (BitStream[0]==BitStream[size-1]){ //run a second set inverted to keep phase in check
659 for (i=0; i<size; i++){
660 biphaseSimBit(BitStream[i]^invert, &n, clk, &phase);
661 }
662 }
663 } else { // ask/manchester || ask/raw
664 for (i=0; i<size; i++){
665 askSimBit(BitStream[i]^invert, &n, clk, encoding);
666 }
667 if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for biphase phase)
668 for (i=0; i<size; i++){
669 askSimBit(BitStream[i]^invert^1, &n, clk, encoding);
670 }
671 }
672 }
673
674 if (separator==1) Dbprintf("sorry but separator option not yet available");
675
676 Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n);
e0165dcf 677
a739812e 678 if (ledcontrol) LED_A_ON();
e0165dcf 679 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 680 if (ledcontrol) LED_A_OFF();
e09f21fa 681}
682
683//carrier can be 2,4 or 8
684static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg)
685{
e0165dcf 686 uint8_t *dest = BigBuf_get_addr();
687 uint8_t halfWave = waveLen/2;
688 //uint8_t idx;
689 int i = 0;
690 if (phaseChg){
691 // write phase change
692 memset(dest+(*n), *curPhase^1, halfWave);
693 memset(dest+(*n) + halfWave, *curPhase, halfWave);
694 *n += waveLen;
695 *curPhase ^= 1;
696 i += waveLen;
697 }
698 //write each normal clock wave for the clock duration
699 for (; i < clk; i+=waveLen){
700 memset(dest+(*n), *curPhase, halfWave);
701 memset(dest+(*n) + halfWave, *curPhase^1, halfWave);
702 *n += waveLen;
703 }
e09f21fa 704}
705
706// args clock, carrier, invert,
707void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream)
708{
a739812e 709 int ledcontrol = 1;
e0165dcf 710 int n=0, i=0;
711 uint8_t clk = arg1 >> 8;
712 uint8_t carrier = arg1 & 0xFF;
713 uint8_t invert = arg2 & 0xFF;
714 uint8_t curPhase = 0;
715 for (i=0; i<size; i++){
716 if (BitStream[i] == curPhase){
717 pskSimBit(carrier, &n, clk, &curPhase, FALSE);
718 } else {
719 pskSimBit(carrier, &n, clk, &curPhase, TRUE);
720 }
721 }
722 Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n);
e0165dcf 723
a739812e 724 if (ledcontrol) LED_A_ON();
e0165dcf 725 SimulateTagLowFrequency(n, 0, ledcontrol);
a739812e 726 if (ledcontrol) LED_A_OFF();
e09f21fa 727}
728
729// loop to get raw HID waveform then FSK demodulate the TAG ID from it
730void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
731{
e0165dcf 732 uint8_t *dest = BigBuf_get_addr();
e0165dcf 733 size_t size = 0;
734 uint32_t hi2=0, hi=0, lo=0;
735 int idx=0;
736 // Configure to go in 125Khz listen mode
737 LFSetupFPGAForADC(95, true);
e09f21fa 738
6427695b 739 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e09f21fa 740
e0165dcf 741 WDT_HIT();
742 if (ledcontrol) LED_A_ON();
e09f21fa 743
744 DoAcquisition_default(-1,true);
745 // FSK demodulator
b8f705e7 746 size = 50*128*2; //big enough to catch 2 sequences of largest format
e09f21fa 747 idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
e0165dcf 748
b8f705e7 749 if (idx>0 && lo>0 && (size==96 || size==192)){
750 // go over previously decoded manchester data and decode into usable tag ID
751 if (hi2 != 0){ //extra large HID tags 88/192 bits
e0165dcf 752 Dbprintf("TAG ID: %x%08x%08x (%d)",
a739812e 753 (unsigned int) hi2,
754 (unsigned int) hi,
755 (unsigned int) lo,
756 (unsigned int) (lo>>1) & 0xFFFF
757 );
b8f705e7 758 }else { //standard HID tags 44/96 bits
e0165dcf 759 uint8_t bitlen = 0;
760 uint32_t fc = 0;
761 uint32_t cardnum = 0;
a739812e 762
e09f21fa 763 if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used
e0165dcf 764 uint32_t lo2=0;
765 lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit
766 uint8_t idx3 = 1;
e09f21fa 767 while(lo2 > 1){ //find last bit set to 1 (format len bit)
768 lo2=lo2 >> 1;
e0165dcf 769 idx3++;
770 }
e09f21fa 771 bitlen = idx3+19;
e0165dcf 772 fc =0;
773 cardnum=0;
e09f21fa 774 if(bitlen == 26){
e0165dcf 775 cardnum = (lo>>1)&0xFFFF;
776 fc = (lo>>17)&0xFF;
777 }
e09f21fa 778 if(bitlen == 37){
e0165dcf 779 cardnum = (lo>>1)&0x7FFFF;
780 fc = ((hi&0xF)<<12)|(lo>>20);
781 }
e09f21fa 782 if(bitlen == 34){
e0165dcf 783 cardnum = (lo>>1)&0xFFFF;
784 fc= ((hi&1)<<15)|(lo>>17);
785 }
e09f21fa 786 if(bitlen == 35){
e0165dcf 787 cardnum = (lo>>1)&0xFFFFF;
788 fc = ((hi&1)<<11)|(lo>>21);
789 }
790 }
791 else { //if bit 38 is not set then 37 bit format is used
792 bitlen= 37;
793 fc =0;
794 cardnum=0;
795 if(bitlen==37){
796 cardnum = (lo>>1)&0x7FFFF;
797 fc = ((hi&0xF)<<12)|(lo>>20);
798 }
799 }
e0165dcf 800 Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
a739812e 801 (unsigned int) hi,
802 (unsigned int) lo,
803 (unsigned int) (lo>>1) & 0xFFFF,
804 (unsigned int) bitlen,
805 (unsigned int) fc,
806 (unsigned int) cardnum);
e0165dcf 807 }
808 if (findone){
809 if (ledcontrol) LED_A_OFF();
810 *high = hi;
811 *low = lo;
812 return;
813 }
814 // reset
e0165dcf 815 }
b8f705e7 816 hi2 = hi = lo = idx = 0;
e0165dcf 817 WDT_HIT();
818 }
819 DbpString("Stopped");
820 if (ledcontrol) LED_A_OFF();
e09f21fa 821}
822
db25599d 823// loop to get raw HID waveform then FSK demodulate the TAG ID from it
824void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
825{
826 uint8_t *dest = BigBuf_get_addr();
db25599d 827 size_t size;
828 int idx=0;
829 // Configure to go in 125Khz listen mode
830 LFSetupFPGAForADC(95, true);
831
6427695b 832 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
db25599d 833
834 WDT_HIT();
835 if (ledcontrol) LED_A_ON();
836
837 DoAcquisition_default(-1,true);
838 // FSK demodulator
db25599d 839 size = 50*128*2; //big enough to catch 2 sequences of largest format
840 idx = AWIDdemodFSK(dest, &size);
841
842 if (idx>0 && size==96){
843 // Index map
844 // 0 10 20 30 40 50 60
845 // | | | | | | |
846 // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
847 // -----------------------------------------------------------------------------
848 // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
849 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
850 // |---26 bit---| |-----117----||-------------142-------------|
851 // b = format bit len, o = odd parity of last 3 bits
852 // f = facility code, c = card number
853 // w = wiegand parity
854 // (26 bit format shown)
855
856 //get raw ID before removing parities
857 uint32_t rawLo = bytebits_to_byte(dest+idx+64,32);
858 uint32_t rawHi = bytebits_to_byte(dest+idx+32,32);
859 uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
860
861 size = removeParity(dest, idx+8, 4, 1, 88);
862 // ok valid card found!
863
864 // Index map
865 // 0 10 20 30 40 50 60
866 // | | | | | | |
867 // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
868 // -----------------------------------------------------------------------------
869 // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
870 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
871 // |26 bit| |-117--| |-----142------|
872 // b = format bit len, o = odd parity of last 3 bits
873 // f = facility code, c = card number
874 // w = wiegand parity
875 // (26 bit format shown)
876
877 uint32_t fc = 0;
878 uint32_t cardnum = 0;
879 uint32_t code1 = 0;
880 uint32_t code2 = 0;
881 uint8_t fmtLen = bytebits_to_byte(dest,8);
882 if (fmtLen==26){
883 fc = bytebits_to_byte(dest+9, 8);
884 cardnum = bytebits_to_byte(dest+17, 16);
885 code1 = bytebits_to_byte(dest+8,fmtLen);
886 Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
887 } else {
888 cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16);
889 if (fmtLen>32){
890 code1 = bytebits_to_byte(dest+8,fmtLen-32);
891 code2 = bytebits_to_byte(dest+8+(fmtLen-32),32);
892 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
893 } else{
894 code1 = bytebits_to_byte(dest+8,fmtLen);
895 Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
896 }
897 }
898 if (findone){
899 if (ledcontrol) LED_A_OFF();
900 return;
901 }
902 // reset
903 }
904 idx = 0;
905 WDT_HIT();
906 }
907 DbpString("Stopped");
908 if (ledcontrol) LED_A_OFF();
909}
910
e09f21fa 911void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
912{
e0165dcf 913 uint8_t *dest = BigBuf_get_addr();
914
915 size_t size=0, idx=0;
916 int clk=0, invert=0, errCnt=0, maxErr=20;
917 uint32_t hi=0;
918 uint64_t lo=0;
919 // Configure to go in 125Khz listen mode
920 LFSetupFPGAForADC(95, true);
921
6427695b 922 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 923
924 WDT_HIT();
925 if (ledcontrol) LED_A_ON();
926
927 DoAcquisition_default(-1,true);
928 size = BigBuf_max_traceLen();
e0165dcf 929 //askdemod and manchester decode
b8f705e7 930 if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format
fef74fdc 931 errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1);
e0165dcf 932 WDT_HIT();
933
b8f705e7 934 if (errCnt<0) continue;
935
e0165dcf 936 errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo);
e0165dcf 937 if (errCnt){
938 if (size>64){
939 Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)",
940 hi,
941 (uint32_t)(lo>>32),
942 (uint32_t)lo,
943 (uint32_t)(lo&0xFFFF),
944 (uint32_t)((lo>>16LL) & 0xFF),
945 (uint32_t)(lo & 0xFFFFFF));
946 } else {
947 Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",
948 (uint32_t)(lo>>32),
949 (uint32_t)lo,
950 (uint32_t)(lo&0xFFFF),
951 (uint32_t)((lo>>16LL) & 0xFF),
952 (uint32_t)(lo & 0xFFFFFF));
953 }
b8f705e7 954
e0165dcf 955 if (findone){
956 if (ledcontrol) LED_A_OFF();
957 *high=lo>>32;
958 *low=lo & 0xFFFFFFFF;
959 return;
960 }
e0165dcf 961 }
962 WDT_HIT();
b8f705e7 963 hi = lo = size = idx = 0;
964 clk = invert = errCnt = 0;
e0165dcf 965 }
966 DbpString("Stopped");
967 if (ledcontrol) LED_A_OFF();
e09f21fa 968}
969
970void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol)
971{
e0165dcf 972 uint8_t *dest = BigBuf_get_addr();
973 int idx=0;
974 uint32_t code=0, code2=0;
975 uint8_t version=0;
976 uint8_t facilitycode=0;
977 uint16_t number=0;
b8f705e7 978 uint8_t crc = 0;
979 uint16_t calccrc = 0;
e0165dcf 980 // Configure to go in 125Khz listen mode
981 LFSetupFPGAForADC(95, true);
982
6427695b 983 while(!BUTTON_PRESS() && !usb_poll_validate_length()) {
e0165dcf 984 WDT_HIT();
985 if (ledcontrol) LED_A_ON();
e09f21fa 986 DoAcquisition_default(-1,true);
987 //fskdemod and get start index
e0165dcf 988 WDT_HIT();
989 idx = IOdemodFSK(dest, BigBuf_max_traceLen());
b8f705e7 990 if (idx<0) continue;
e0165dcf 991 //valid tag found
992
993 //Index map
994 //0 10 20 30 40 50 60
995 //| | | | | | |
996 //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23
997 //-----------------------------------------------------------------------------
b8f705e7 998 //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11
e0165dcf 999 //
b8f705e7 1000 //Checksum:
1001 //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11
1002 //preamble F0 E0 01 03 B6 75
1003 // How to calc checksum,
1004 // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6
1005 // F0 + E0 + 01 + 03 + B6 = 28A
1006 // 28A & FF = 8A
1007 // FF - 8A = 75
1008 // Checksum: 0x75
e0165dcf 1009 //XSF(version)facility:codeone+codetwo
1010 //Handle the data
1011 if(findone){ //only print binary if we are doing one
1012 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]);
1013 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]);
1014 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]);
1015 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]);
1016 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]);
1017 Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]);
1018 Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]);
1019 }
1020 code = bytebits_to_byte(dest+idx,32);
1021 code2 = bytebits_to_byte(dest+idx+32,32);
1022 version = bytebits_to_byte(dest+idx+27,8); //14,4
a739812e 1023 facilitycode = bytebits_to_byte(dest+idx+18,8);
e0165dcf 1024 number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9
1025
b8f705e7 1026 crc = bytebits_to_byte(dest+idx+54,8);
1027 for (uint8_t i=1; i<6; ++i)
1028 calccrc += bytebits_to_byte(dest+idx+9*i,8);
1029 calccrc &= 0xff;
1030 calccrc = 0xff - calccrc;
1031
1032 char *crcStr = (crc == calccrc) ? "ok":"!crc";
1033
1034 Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr);
e0165dcf 1035 // if we're only looking for one tag
1036 if (findone){
1037 if (ledcontrol) LED_A_OFF();
e0165dcf 1038 *high=code;
1039 *low=code2;
1040 return;
1041 }
1042 code=code2=0;
1043 version=facilitycode=0;
1044 number=0;
1045 idx=0;
b8f705e7 1046
e0165dcf 1047 WDT_HIT();
1048 }
1049 DbpString("Stopped");
1050 if (ledcontrol) LED_A_OFF();
e09f21fa 1051}
1052
1053/*------------------------------
1054 * T5555/T5557/T5567 routines
1055 *------------------------------
1056 */
1057
1058/* T55x7 configuration register definitions */
0de8e387 1059#define T55x7_POR_DELAY 0x00000001
1060#define T55x7_ST_TERMINATOR 0x00000008
1061#define T55x7_PWD 0x00000010
e09f21fa 1062#define T55x7_MAXBLOCK_SHIFT 5
0de8e387 1063#define T55x7_AOR 0x00000200
1064#define T55x7_PSKCF_RF_2 0
1065#define T55x7_PSKCF_RF_4 0x00000400
1066#define T55x7_PSKCF_RF_8 0x00000800
e09f21fa 1067#define T55x7_MODULATION_DIRECT 0
1068#define T55x7_MODULATION_PSK1 0x00001000
1069#define T55x7_MODULATION_PSK2 0x00002000
1070#define T55x7_MODULATION_PSK3 0x00003000
1071#define T55x7_MODULATION_FSK1 0x00004000
1072#define T55x7_MODULATION_FSK2 0x00005000
1073#define T55x7_MODULATION_FSK1a 0x00006000
1074#define T55x7_MODULATION_FSK2a 0x00007000
1075#define T55x7_MODULATION_MANCHESTER 0x00008000
1076#define T55x7_MODULATION_BIPHASE 0x00010000
ac2df346 1077#define T55x7_MODULATION_DIPHASE 0x00018000
0de8e387 1078//#define T55x7_MODULATION_BIPHASE57 0x00011000
1079#define T55x7_BITRATE_RF_8 0
1080#define T55x7_BITRATE_RF_16 0x00040000
1081#define T55x7_BITRATE_RF_32 0x00080000
1082#define T55x7_BITRATE_RF_40 0x000C0000
1083#define T55x7_BITRATE_RF_50 0x00100000
1084#define T55x7_BITRATE_RF_64 0x00140000
e09f21fa 1085#define T55x7_BITRATE_RF_100 0x00180000
1086#define T55x7_BITRATE_RF_128 0x001C0000
1087
1088/* T5555 (Q5) configuration register definitions */
0de8e387 1089#define T5555_ST_TERMINATOR 0x00000001
e09f21fa 1090#define T5555_MAXBLOCK_SHIFT 0x00000001
1091#define T5555_MODULATION_MANCHESTER 0
1092#define T5555_MODULATION_PSK1 0x00000010
1093#define T5555_MODULATION_PSK2 0x00000020
1094#define T5555_MODULATION_PSK3 0x00000030
1095#define T5555_MODULATION_FSK1 0x00000040
1096#define T5555_MODULATION_FSK2 0x00000050
1097#define T5555_MODULATION_BIPHASE 0x00000060
1098#define T5555_MODULATION_DIRECT 0x00000070
0de8e387 1099#define T5555_INVERT_OUTPUT 0x00000080
1100#define T5555_PSK_RF_2 0
1101#define T5555_PSK_RF_4 0x00000100
1102#define T5555_PSK_RF_8 0x00000200
1103#define T5555_USE_PWD 0x00000400
1104#define T5555_USE_AOR 0x00000800
1105#define T5555_BITRATE_SHIFT 12
1106#define T5555_FAST_WRITE 0x00004000
1107#define T5555_PAGE_SELECT 0x00008000
e09f21fa 1108
1109/*
1110 * Relevant times in microsecond
1111 * To compensate antenna falling times shorten the write times
1112 * and enlarge the gap ones.
6a09bea4 1113 * Q5 tags seems to have issues when these values changes.
e09f21fa 1114 */
0de8e387 1115
1116#define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (or 15fc)
4a3f1a37 1117#define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (or 10fc)
ac2df346 1118#define WRITE_0 16*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (or 24fc)
4a3f1a37 1119#define WRITE_1 50*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (or 56fc) 432 for T55x7; 448 for E5550
a739812e 1120#define READ_GAP 52*8
b8f705e7 1121
1122// VALUES TAKEN FROM EM4x function: SendForward
1123// START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle)
1124// WRITE_GAP = 128; (16*8)
1125// WRITE_1 = 256 32*8; (32*8)
1126
1127// These timings work for 4469/4269/4305 (with the 55*8 above)
1128// WRITE_0 = 23*8 , 9*8 SpinDelayUs(23*8);
1129
1130// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
1131// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
1132// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
1133// T0 = TIMER_CLOCK1 / 125000 = 192
e16054a4 1134// 1 Cycle = 8 microseconds(us) == 1 field clock
e09f21fa 1135
a739812e 1136void TurnReadLFOn(int delay) {
1137 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
1138 // Give it a bit of time for the resonant antenna to settle.
1139 SpinDelayUs(delay); //155*8 //50*8
1140}
1141
e09f21fa 1142// Write one bit to card
e16054a4 1143void T55xxWriteBit(int bit) {
e0165dcf 1144 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
b8f705e7 1145 if (!bit)
e0165dcf 1146 SpinDelayUs(WRITE_0);
1147 else
1148 SpinDelayUs(WRITE_1);
1149 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1150 SpinDelayUs(WRITE_GAP);
e09f21fa 1151}
1152
1153// Write one card block in page 0, no lock
e16054a4 1154void T55xxWriteBlock(uint32_t Data, uint32_t Block, uint32_t Pwd, uint8_t PwdMode) {
1155 LED_A_ON();
1156
e0165dcf 1157 uint32_t i = 0;
1158
1159 // Set up FPGA, 125kHz
ac2df346 1160 LFSetupFPGAForADC(95, true);
0de8e387 1161
e16054a4 1162 // Trigger T55x7 in mode.
e0165dcf 1163 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1164 SpinDelayUs(START_GAP);
1165
e16054a4 1166 // Opcode 10
e0165dcf 1167 T55xxWriteBit(1);
1168 T55xxWriteBit(0); //Page 0
e16054a4 1169
9276e859 1170 if (PwdMode){
a739812e 1171 // Send Pwd
e0165dcf 1172 for (i = 0x80000000; i != 0; i >>= 1)
1173 T55xxWriteBit(Pwd & i);
1174 }
a739812e 1175 // Send Lock bit
e0165dcf 1176 T55xxWriteBit(0);
1177
a739812e 1178 // Send Data
e0165dcf 1179 for (i = 0x80000000; i != 0; i >>= 1)
1180 T55xxWriteBit(Data & i);
1181
a739812e 1182 // Send Block number
e0165dcf 1183 for (i = 0x04; i != 0; i >>= 1)
1184 T55xxWriteBit(Block & i);
1185
e16054a4 1186 // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550,
e0165dcf 1187 // so wait a little more)
e16054a4 1188 TurnReadLFOn(20 * 1000);
1189
a739812e 1190 // turn field off
e0165dcf 1191 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
e16054a4 1192 cmd_send(CMD_ACK,0,0,0,0,0);
9276e859 1193 LED_A_OFF();
1194 LED_B_OFF();
e09f21fa 1195}
1196
1197// Read one card block in page 0
9276e859 1198void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) {
e16054a4 1199 LED_A_ON();
9276e859 1200 uint8_t PwdMode = arg0 & 0xFF;
e0165dcf 1201 uint32_t i = 0;
ac2df346 1202
a739812e 1203 //clear buffer now so it does not interfere with timing later
1204 BigBuf_Clear_ext(false);
1205
ac2df346 1206 //make sure block is at max 7
1207 Block &= 0x7;
e0165dcf 1208
1209 // Set up FPGA, 125kHz
ac2df346 1210 LFSetupFPGAForADC(95, true);
0de8e387 1211
9276e859 1212 // Trigger T55x7 Direct Access Mode
e0165dcf 1213 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
ac2df346 1214 SpinDelayUs(START_GAP);
1215
1216 // Opcode 10
e0165dcf 1217 T55xxWriteBit(1);
1218 T55xxWriteBit(0); //Page 0
ac2df346 1219
9276e859 1220 if (PwdMode){
a739812e 1221 // Send Pwd
e0165dcf 1222 for (i = 0x80000000; i != 0; i >>= 1)
1223 T55xxWriteBit(Pwd & i);
1224 }
9276e859 1225
a739812e 1226 // Send a zero bit separation
e0165dcf 1227 T55xxWriteBit(0);
ac2df346 1228
a739812e 1229 // Send Block number
e16054a4 1230 for (i = 0x04; i != 0; i >>= 1)
e0165dcf 1231 T55xxWriteBit(Block & i);
e0165dcf 1232
ac2df346 1233 // Turn field on to read the response
a739812e 1234 TurnReadLFOn(READ_GAP);
ac2df346 1235
1236 // Acquisition
1237 doT55x7Acquisition();
1238
a739812e 1239 // turn field off
ac2df346 1240 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
e0165dcf 1241 cmd_send(CMD_ACK,0,0,0,0,0);
e16054a4 1242 LED_A_OFF();
9276e859 1243 LED_B_OFF();
e09f21fa 1244}
1245
1246// Read card traceability data (page 1)
1247void T55xxReadTrace(void){
e16054a4 1248 LED_A_ON();
1249
a739812e 1250 //clear buffer now so it does not interfere with timing later
1251 BigBuf_Clear_ext(false);
1252
e16054a4 1253 // Set up FPGA, 125kHz
1254 LFSetupFPGAForADC(95, true);
e0165dcf 1255
a739812e 1256 // Trigger T55x7 Direct Access Mode
e0165dcf 1257 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1258 SpinDelayUs(START_GAP);
1259
ac2df346 1260 // Opcode 11
e0165dcf 1261 T55xxWriteBit(1);
1262 T55xxWriteBit(1); //Page 1
1263
1264 // Turn field on to read the response
a739812e 1265 TurnReadLFOn(READ_GAP);
e0165dcf 1266
ac2df346 1267 // Acquisition
1268 doT55x7Acquisition();
e0165dcf 1269
a739812e 1270 // turn field off
ac2df346 1271 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
e0165dcf 1272 cmd_send(CMD_ACK,0,0,0,0,0);
e16054a4 1273 LED_A_OFF();
9276e859 1274 LED_B_OFF();
1275}
1276
1277void T55xxWakeUp(uint32_t Pwd){
1278 LED_B_ON();
1279 uint32_t i = 0;
1280
1281 // Set up FPGA, 125kHz
1282 LFSetupFPGAForADC(95, true);
1283
1284 // Trigger T55x7 Direct Access Mode
1285 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
1286 SpinDelayUs(START_GAP);
1287
1288 // Opcode 10
1289 T55xxWriteBit(1);
1290 T55xxWriteBit(0); //Page 0
1291
1292 // Send Pwd
1293 for (i = 0x80000000; i != 0; i >>= 1)
1294 T55xxWriteBit(Pwd & i);
1295
1296 // Turn field on to read the response
1297 TurnReadLFOn(READ_GAP);
e09f21fa 1298}
1299
1300/*-------------- Cloning routines -----------*/
1301// Copy HID id to card and setup block 0 config
1302void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT)
1303{
e0165dcf 1304 int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
1305 int last_block = 0;
1306
1307 if (longFMT){
1308 // Ensure no more than 84 bits supplied
1309 if (hi2>0xFFFFF) {
1310 DbpString("Tags can only have 84 bits.");
1311 return;
1312 }
1313 // Build the 6 data blocks for supplied 84bit ID
1314 last_block = 6;
1315 data1 = 0x1D96A900; // load preamble (1D) & long format identifier (9E manchester encoded)
1316 for (int i=0;i<4;i++) {
1317 if (hi2 & (1<<(19-i)))
1318 data1 |= (1<<(((3-i)*2)+1)); // 1 -> 10
1319 else
1320 data1 |= (1<<((3-i)*2)); // 0 -> 01
1321 }
1322
1323 data2 = 0;
1324 for (int i=0;i<16;i++) {
1325 if (hi2 & (1<<(15-i)))
1326 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1327 else
1328 data2 |= (1<<((15-i)*2)); // 0 -> 01
1329 }
1330
1331 data3 = 0;
1332 for (int i=0;i<16;i++) {
1333 if (hi & (1<<(31-i)))
1334 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1335 else
1336 data3 |= (1<<((15-i)*2)); // 0 -> 01
1337 }
1338
1339 data4 = 0;
1340 for (int i=0;i<16;i++) {
1341 if (hi & (1<<(15-i)))
1342 data4 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1343 else
1344 data4 |= (1<<((15-i)*2)); // 0 -> 01
1345 }
1346
1347 data5 = 0;
1348 for (int i=0;i<16;i++) {
1349 if (lo & (1<<(31-i)))
1350 data5 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1351 else
1352 data5 |= (1<<((15-i)*2)); // 0 -> 01
1353 }
1354
1355 data6 = 0;
1356 for (int i=0;i<16;i++) {
1357 if (lo & (1<<(15-i)))
1358 data6 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1359 else
1360 data6 |= (1<<((15-i)*2)); // 0 -> 01
1361 }
1362 }
1363 else {
1364 // Ensure no more than 44 bits supplied
1365 if (hi>0xFFF) {
1366 DbpString("Tags can only have 44 bits.");
1367 return;
1368 }
1369
1370 // Build the 3 data blocks for supplied 44bit ID
1371 last_block = 3;
1372
1373 data1 = 0x1D000000; // load preamble
1374
1375 for (int i=0;i<12;i++) {
1376 if (hi & (1<<(11-i)))
1377 data1 |= (1<<(((11-i)*2)+1)); // 1 -> 10
1378 else
1379 data1 |= (1<<((11-i)*2)); // 0 -> 01
1380 }
1381
1382 data2 = 0;
1383 for (int i=0;i<16;i++) {
1384 if (lo & (1<<(31-i)))
1385 data2 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1386 else
1387 data2 |= (1<<((15-i)*2)); // 0 -> 01
1388 }
1389
1390 data3 = 0;
1391 for (int i=0;i<16;i++) {
1392 if (lo & (1<<(15-i)))
1393 data3 |= (1<<(((15-i)*2)+1)); // 1 -> 10
1394 else
1395 data3 |= (1<<((15-i)*2)); // 0 -> 01
1396 }
1397 }
1398
1399 LED_D_ON();
1400 // Program the data blocks for supplied ID
1401 // and the block 0 for HID format
1402 T55xxWriteBlock(data1,1,0,0);
1403 T55xxWriteBlock(data2,2,0,0);
1404 T55xxWriteBlock(data3,3,0,0);
1405
1406 if (longFMT) { // if long format there are 6 blocks
1407 T55xxWriteBlock(data4,4,0,0);
1408 T55xxWriteBlock(data5,5,0,0);
1409 T55xxWriteBlock(data6,6,0,0);
1410 }
1411
1412 // Config for HID (RF/50, FSK2a, Maxblock=3 for short/6 for long)
1413 T55xxWriteBlock(T55x7_BITRATE_RF_50 |
1414 T55x7_MODULATION_FSK2a |
1415 last_block << T55x7_MAXBLOCK_SHIFT,
1416 0,0,0);
1417
1418 LED_D_OFF();
1419
1420 DbpString("DONE!");
e09f21fa 1421}
1422
1423void CopyIOtoT55x7(uint32_t hi, uint32_t lo, uint8_t longFMT)
1424{
e0165dcf 1425 int data1=0, data2=0; //up to six blocks for long format
e09f21fa 1426
e0165dcf 1427 data1 = hi; // load preamble
1428 data2 = lo;
e09f21fa 1429
e0165dcf 1430 LED_D_ON();
1431 // Program the data blocks for supplied ID
1432 // and the block 0 for HID format
1433 T55xxWriteBlock(data1,1,0,0);
1434 T55xxWriteBlock(data2,2,0,0);
e09f21fa 1435
e0165dcf 1436 //Config Block
1437 T55xxWriteBlock(0x00147040,0,0,0);
1438 LED_D_OFF();
e09f21fa 1439
e0165dcf 1440 DbpString("DONE!");
e09f21fa 1441}
1442
1443// Define 9bit header for EM410x tags
1444#define EM410X_HEADER 0x1FF
1445#define EM410X_ID_LENGTH 40
1446
1447void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo)
1448{
e0165dcf 1449 int i, id_bit;
1450 uint64_t id = EM410X_HEADER;
1451 uint64_t rev_id = 0; // reversed ID
1452 int c_parity[4]; // column parity
1453 int r_parity = 0; // row parity
1454 uint32_t clock = 0;
1455
1456 // Reverse ID bits given as parameter (for simpler operations)
1457 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1458 if (i < 32) {
1459 rev_id = (rev_id << 1) | (id_lo & 1);
1460 id_lo >>= 1;
1461 } else {
1462 rev_id = (rev_id << 1) | (id_hi & 1);
1463 id_hi >>= 1;
1464 }
1465 }
1466
1467 for (i = 0; i < EM410X_ID_LENGTH; ++i) {
1468 id_bit = rev_id & 1;
1469
1470 if (i % 4 == 0) {
1471 // Don't write row parity bit at start of parsing
1472 if (i)
1473 id = (id << 1) | r_parity;
1474 // Start counting parity for new row
1475 r_parity = id_bit;
1476 } else {
1477 // Count row parity
1478 r_parity ^= id_bit;
1479 }
1480
1481 // First elements in column?
1482 if (i < 4)
1483 // Fill out first elements
1484 c_parity[i] = id_bit;
1485 else
1486 // Count column parity
1487 c_parity[i % 4] ^= id_bit;
1488
1489 // Insert ID bit
1490 id = (id << 1) | id_bit;
1491 rev_id >>= 1;
1492 }
1493
1494 // Insert parity bit of last row
1495 id = (id << 1) | r_parity;
1496
1497 // Fill out column parity at the end of tag
1498 for (i = 0; i < 4; ++i)
1499 id = (id << 1) | c_parity[i];
1500
1501 // Add stop bit
1502 id <<= 1;
1503
1504 Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555");
1505 LED_D_ON();
1506
1507 // Write EM410x ID
1508 T55xxWriteBlock((uint32_t)(id >> 32), 1, 0, 0);
1509 T55xxWriteBlock((uint32_t)id, 2, 0, 0);
1510
1511 // Config for EM410x (RF/64, Manchester, Maxblock=2)
1512 if (card) {
1513 // Clock rate is stored in bits 8-15 of the card value
1514 clock = (card & 0xFF00) >> 8;
1515 Dbprintf("Clock rate: %d", clock);
a739812e 1516 switch (clock) {
1517 case 50:
1518 clock = T55x7_BITRATE_RF_50;
1519 case 40:
1520 clock = T55x7_BITRATE_RF_40;
e0165dcf 1521 case 32:
1522 clock = T55x7_BITRATE_RF_32;
1523 break;
1524 case 16:
1525 clock = T55x7_BITRATE_RF_16;
1526 break;
1527 case 0:
1528 // A value of 0 is assumed to be 64 for backwards-compatibility
1529 // Fall through...
1530 case 64:
1531 clock = T55x7_BITRATE_RF_64;
1532 break;
1533 default:
1534 Dbprintf("Invalid clock rate: %d", clock);
1535 return;
1536 }
1537
1538 // Writing configuration for T55x7 tag
1539 T55xxWriteBlock(clock |
1540 T55x7_MODULATION_MANCHESTER |
1541 2 << T55x7_MAXBLOCK_SHIFT,
1542 0, 0, 0);
1543 }
1544 else
1545 // Writing configuration for T5555(Q5) tag
1546 T55xxWriteBlock(0x1F << T5555_BITRATE_SHIFT |
1547 T5555_MODULATION_MANCHESTER |
1548 2 << T5555_MAXBLOCK_SHIFT,
1549 0, 0, 0);
1550
1551 LED_D_OFF();
1552 Dbprintf("Tag %s written with 0x%08x%08x\n", card ? "T55x7":"T5555",
1553 (uint32_t)(id >> 32), (uint32_t)id);
e09f21fa 1554}
1555
1556// Clone Indala 64-bit tag by UID to T55x7
1557void CopyIndala64toT55x7(int hi, int lo)
1558{
e0165dcf 1559 //Program the 2 data blocks for supplied 64bit UID
1560 // and the block 0 for Indala64 format
1561 T55xxWriteBlock(hi,1,0,0);
1562 T55xxWriteBlock(lo,2,0,0);
1563 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=2)
1564 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1565 T55x7_MODULATION_PSK1 |
1566 2 << T55x7_MAXBLOCK_SHIFT,
1567 0, 0, 0);
1568 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data)
1569 // T5567WriteBlock(0x603E1042,0);
e09f21fa 1570
e0165dcf 1571 DbpString("DONE!");
e09f21fa 1572}
1573
1574void CopyIndala224toT55x7(int uid1, int uid2, int uid3, int uid4, int uid5, int uid6, int uid7)
1575{
e0165dcf 1576 //Program the 7 data blocks for supplied 224bit UID
1577 // and the block 0 for Indala224 format
1578 T55xxWriteBlock(uid1,1,0,0);
1579 T55xxWriteBlock(uid2,2,0,0);
1580 T55xxWriteBlock(uid3,3,0,0);
1581 T55xxWriteBlock(uid4,4,0,0);
1582 T55xxWriteBlock(uid5,5,0,0);
1583 T55xxWriteBlock(uid6,6,0,0);
1584 T55xxWriteBlock(uid7,7,0,0);
1585 //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7)
1586 T55xxWriteBlock(T55x7_BITRATE_RF_32 |
1587 T55x7_MODULATION_PSK1 |
1588 7 << T55x7_MAXBLOCK_SHIFT,
1589 0,0,0);
1590 //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data)
1591 // T5567WriteBlock(0x603E10E2,0);
1592
1593 DbpString("DONE!");
e09f21fa 1594}
1595
e09f21fa 1596//-----------------------------------
1597// EM4469 / EM4305 routines
1598//-----------------------------------
1599#define FWD_CMD_LOGIN 0xC //including the even parity, binary mirrored
1600#define FWD_CMD_WRITE 0xA
1601#define FWD_CMD_READ 0x9
1602#define FWD_CMD_DISABLE 0x5
1603
e09f21fa 1604uint8_t forwardLink_data[64]; //array of forwarded bits
1605uint8_t * forward_ptr; //ptr for forward message preparation
1606uint8_t fwd_bit_sz; //forwardlink bit counter
1607uint8_t * fwd_write_ptr; //forwardlink bit pointer
1608
1609//====================================================================
1610// prepares command bits
1611// see EM4469 spec
1612//====================================================================
e09f21fa 1613uint8_t Prepare_Cmd( uint8_t cmd ) {
e09f21fa 1614
e0165dcf 1615 *forward_ptr++ = 0; //start bit
1616 *forward_ptr++ = 0; //second pause for 4050 code
e09f21fa 1617
e0165dcf 1618 *forward_ptr++ = cmd;
1619 cmd >>= 1;
1620 *forward_ptr++ = cmd;
1621 cmd >>= 1;
1622 *forward_ptr++ = cmd;
1623 cmd >>= 1;
1624 *forward_ptr++ = cmd;
e09f21fa 1625
e0165dcf 1626 return 6; //return number of emited bits
e09f21fa 1627}
1628
1629//====================================================================
1630// prepares address bits
1631// see EM4469 spec
1632//====================================================================
e09f21fa 1633uint8_t Prepare_Addr( uint8_t addr ) {
e09f21fa 1634
e0165dcf 1635 register uint8_t line_parity;
e09f21fa 1636
e0165dcf 1637 uint8_t i;
1638 line_parity = 0;
1639 for(i=0;i<6;i++) {
1640 *forward_ptr++ = addr;
1641 line_parity ^= addr;
1642 addr >>= 1;
1643 }
e09f21fa 1644
e0165dcf 1645 *forward_ptr++ = (line_parity & 1);
e09f21fa 1646
e0165dcf 1647 return 7; //return number of emited bits
e09f21fa 1648}
1649
1650//====================================================================
1651// prepares data bits intreleaved with parity bits
1652// see EM4469 spec
1653//====================================================================
e09f21fa 1654uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) {
e0165dcf 1655
1656 register uint8_t line_parity;
1657 register uint8_t column_parity;
1658 register uint8_t i, j;
1659 register uint16_t data;
1660
1661 data = data_low;
1662 column_parity = 0;
1663
1664 for(i=0; i<4; i++) {
1665 line_parity = 0;
1666 for(j=0; j<8; j++) {
1667 line_parity ^= data;
1668 column_parity ^= (data & 1) << j;
1669 *forward_ptr++ = data;
1670 data >>= 1;
1671 }
1672 *forward_ptr++ = line_parity;
1673 if(i == 1)
1674 data = data_hi;
1675 }
1676
1677 for(j=0; j<8; j++) {
1678 *forward_ptr++ = column_parity;
1679 column_parity >>= 1;
1680 }
1681 *forward_ptr = 0;
1682
1683 return 45; //return number of emited bits
e09f21fa 1684}
1685
1686//====================================================================
1687// Forward Link send function
1688// Requires: forwarLink_data filled with valid bits (1 bit per byte)
1689// fwd_bit_count set with number of bits to be sent
1690//====================================================================
1691void SendForward(uint8_t fwd_bit_count) {
1692
e0165dcf 1693 fwd_write_ptr = forwardLink_data;
1694 fwd_bit_sz = fwd_bit_count;
1695
1696 LED_D_ON();
1697
6a09bea4 1698 // Set up FPGA, 125kHz
1699 LFSetupFPGAForADC(95, true);
1700
e0165dcf 1701 // force 1st mod pulse (start gap must be longer for 4305)
1702 fwd_bit_sz--; //prepare next bit modulation
1703 fwd_write_ptr++;
1704 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1705 SpinDelayUs(55*8); //55 cycles off (8us each)for 4305
e0165dcf 1706 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1707 SpinDelayUs(16*8); //16 cycles on (8us each)
1708
1709 // now start writting
1710 while(fwd_bit_sz-- > 0) { //prepare next bit modulation
1711 if(((*fwd_write_ptr++) & 1) == 1)
1712 SpinDelayUs(32*8); //32 cycles at 125Khz (8us each)
1713 else {
1714 //These timings work for 4469/4269/4305 (with the 55*8 above)
1715 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1716 SpinDelayUs(23*8); //16-4 cycles off (8us each)
e0165dcf 1717 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);//field on
1718 SpinDelayUs(9*8); //16 cycles on (8us each)
1719 }
1720 }
e09f21fa 1721}
1722
1723void EM4xLogin(uint32_t Password) {
1724
e0165dcf 1725 uint8_t fwd_bit_count;
e09f21fa 1726
e0165dcf 1727 forward_ptr = forwardLink_data;
1728 fwd_bit_count = Prepare_Cmd( FWD_CMD_LOGIN );
1729 fwd_bit_count += Prepare_Data( Password&0xFFFF, Password>>16 );
e09f21fa 1730
e0165dcf 1731 SendForward(fwd_bit_count);
e09f21fa 1732
e0165dcf 1733 //Wait for command to complete
1734 SpinDelay(20);
e09f21fa 1735}
1736
1737void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1738
a739812e 1739 uint8_t fwd_bit_count;
e0165dcf 1740 uint8_t *dest = BigBuf_get_addr();
a739812e 1741 uint16_t bufsize = BigBuf_max_traceLen();
b8f705e7 1742 uint32_t i = 0;
1743
a739812e 1744 //clear buffer now so it does not interfere with timing later
1745 BigBuf_Clear_ext(false);
b8f705e7 1746
e0165dcf 1747 //If password mode do login
1748 if (PwdMode == 1) EM4xLogin(Pwd);
1749
1750 forward_ptr = forwardLink_data;
1751 fwd_bit_count = Prepare_Cmd( FWD_CMD_READ );
1752 fwd_bit_count += Prepare_Addr( Address );
1753
e0165dcf 1754 // Connect the A/D to the peak-detected low-frequency path.
1755 SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
1756 // Now set up the SSC to get the ADC samples that are now streaming at us.
1757 FpgaSetupSsc();
1758
1759 SendForward(fwd_bit_count);
1760
1761 // Now do the acquisition
1762 i = 0;
1763 for(;;) {
1764 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
1765 AT91C_BASE_SSC->SSC_THR = 0x43;
1766 }
1767 if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
1768 dest[i] = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
b8f705e7 1769 ++i;
a739812e 1770 if (i >= bufsize) break;
e0165dcf 1771 }
1772 }
6a09bea4 1773
1774 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
b8f705e7 1775 cmd_send(CMD_ACK,0,0,0,0,0);
e0165dcf 1776 LED_D_OFF();
e09f21fa 1777}
1778
1779void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode) {
1780
e0165dcf 1781 uint8_t fwd_bit_count;
e09f21fa 1782
e0165dcf 1783 //If password mode do login
1784 if (PwdMode == 1) EM4xLogin(Pwd);
e09f21fa 1785
e0165dcf 1786 forward_ptr = forwardLink_data;
1787 fwd_bit_count = Prepare_Cmd( FWD_CMD_WRITE );
1788 fwd_bit_count += Prepare_Addr( Address );
1789 fwd_bit_count += Prepare_Data( Data&0xFFFF, Data>>16 );
e09f21fa 1790
e0165dcf 1791 SendForward(fwd_bit_count);
e09f21fa 1792
e0165dcf 1793 //Wait for write to complete
1794 SpinDelay(20);
1795 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
1796 LED_D_OFF();
e09f21fa 1797}
36804420 1798
6a09bea4 1799void CopyViKingtoT55x7(uint32_t block1, uint32_t block2) {
0de8e387 1800 LED_D_ON();
1801 T55xxWriteBlock(block1,1,0,0);
1802 T55xxWriteBlock(block2,2,0,0);
a739812e 1803 T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T55x7_MAXBLOCK_SHIFT,0,0,0);
1804 // T55xxWriteBlock(T55x7_MODULATION_MANCHESTER | T55x7_BITRATE_RF_32 | 2 << T5555_MAXBLOCK_SHIFT,0,0,1);
6a09bea4 1805 // ICEMAN NOTES:
1806 // Shouldn't this one be: T55x7_MAXBLOCK_SHIFT and 0 in password mode
0de8e387 1807 LED_D_OFF();
0de8e387 1808}
1809
Impressum, Datenschutz