]> git.zerfleddert.de Git - proxmark3-svn/blame - tools/nonce2key/crapto1.c
FIX: the "make clean" for mfkey/Makefile now deletes the executables.
[proxmark3-svn] / tools / nonce2key / crapto1.c
CommitLineData
93f57590 1/* crapto1.c\r
2\r
3 This program is free software; you can redistribute it and/or\r
4 modify it under the terms of the GNU General Public License\r
5 as published by the Free Software Foundation; either version 2\r
6 of the License, or (at your option) any later version.\r
7\r
8 This program is distributed in the hope that it will be useful,\r
9 but WITHOUT ANY WARRANTY; without even the implied warranty of\r
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
11 GNU General Public License for more details.\r
12\r
13 You should have received a copy of the GNU General Public License\r
14 along with this program; if not, write to the Free Software\r
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,\r
16 Boston, MA 02110-1301, US$\r
17\r
93b0bbd2 18 Copyright (C) 2008-2014 bla <blapost@gmail.com>\r
93f57590 19*/\r
20#include "crapto1.h"\r
21#include <stdlib.h>\r
22\r
23#if !defined LOWMEM && defined __GNUC__\r
24static uint8_t filterlut[1 << 20];\r
25static void __attribute__((constructor)) fill_lut()\r
26{\r
27 uint32_t i;\r
28 for(i = 0; i < 1 << 20; ++i)\r
29 filterlut[i] = filter(i);\r
30}\r
31#define filter(x) (filterlut[(x) & 0xfffff])\r
32#endif\r
33\r
34static void quicksort(uint32_t* const start, uint32_t* const stop)\r
35{\r
72109f82 36 uint32_t *it = start + 1, *rit = stop, t;\r
93f57590 37\r
38 if(it > rit)\r
39 return;\r
40\r
41 while(it < rit)\r
42 if(*it <= *start)\r
43 ++it;\r
44 else if(*rit > *start)\r
45 --rit;\r
46 else\r
72109f82 47 t = *it, *it = *rit, *rit = t;\r
93f57590 48\r
49 if(*rit >= *start)\r
50 --rit;\r
51 if(rit != start)\r
72109f82 52 t = *rit, *rit = *start, *start = t;\r
93f57590 53\r
54 quicksort(start, rit - 1);\r
55 quicksort(rit + 1, stop);\r
56}\r
57/** binsearch\r
58 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r
59 */\r
72109f82 60static inline uint32_t* binsearch(uint32_t *start, uint32_t *stop)\r
93f57590 61{\r
62 uint32_t mid, val = *stop & 0xff000000;\r
63 while(start != stop)\r
64 if(start[mid = (stop - start) >> 1] > val)\r
65 stop = &start[mid];\r
66 else\r
67 start += mid + 1;\r
68\r
69 return start;\r
70}\r
71\r
72/** update_contribution\r
73 * helper, calculates the partial linear feedback contributions and puts in MSB\r
74 */\r
75static inline void\r
76update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r
77{\r
78 uint32_t p = *item >> 25;\r
79\r
80 p = p << 1 | parity(*item & mask1);\r
81 p = p << 1 | parity(*item & mask2);\r
82 *item = p << 24 | (*item & 0xffffff);\r
83}\r
84\r
85/** extend_table\r
86 * using a bit of the keystream extend the table of possible lfsr states\r
87 */\r
88static inline void\r
89extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
90{\r
91 in <<= 24;\r
92 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
93 if(filter(*tbl) ^ filter(*tbl | 1)) {\r
94 *tbl |= filter(*tbl) ^ bit;\r
95 update_contribution(tbl, m1, m2);\r
96 *tbl ^= in;\r
97 } else if(filter(*tbl) == bit) {\r
98 *++*end = tbl[1];\r
99 tbl[1] = tbl[0] | 1;\r
100 update_contribution(tbl, m1, m2);\r
101 *tbl++ ^= in;\r
102 update_contribution(tbl, m1, m2);\r
103 *tbl ^= in;\r
104 } else\r
105 *tbl-- = *(*end)--;\r
106}\r
107/** extend_table_simple\r
108 * using a bit of the keystream extend the table of possible lfsr states\r
109 */\r
93b0bbd2 110static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r
93f57590 111{\r
112 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)\r
113 if(filter(*tbl) ^ filter(*tbl | 1)) {\r
114 *tbl |= filter(*tbl) ^ bit;\r
115 } else if(filter(*tbl) == bit) {\r
116 *++*end = *++tbl;\r
117 *tbl = tbl[-1] | 1;\r
118 } else\r
119 *tbl-- = *(*end)--;\r
120}\r
121/** recover\r
122 * recursively narrow down the search space, 4 bits of keystream at a time\r
123 */\r
124static struct Crypto1State*\r
125recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r
126 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r
127 struct Crypto1State *sl, uint32_t in)\r
128{\r
129 uint32_t *o, *e, i;\r
130\r
131 if(rem == -1) {\r
132 for(e = e_head; e <= e_tail; ++e) {\r
133 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r
134 for(o = o_head; o <= o_tail; ++o, ++sl) {\r
135 sl->even = *o;\r
136 sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r
137 sl[1].odd = sl[1].even = 0;\r
138 }\r
139 }\r
140 return sl;\r
141 }\r
142\r
143 for(i = 0; i < 4 && rem--; i++) {\r
72109f82 144 oks >>= 1;\r
145 eks >>= 1;\r
146 in >>= 2;\r
147 extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1,\r
148 LF_POLY_ODD << 1, 0);\r
93f57590 149 if(o_head > o_tail)\r
150 return sl;\r
151\r
72109f82 152 extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD,\r
153 LF_POLY_EVEN << 1 | 1, in & 3);\r
93f57590 154 if(e_head > e_tail)\r
155 return sl;\r
156 }\r
157\r
158 quicksort(o_head, o_tail);\r
159 quicksort(e_head, e_tail);\r
160\r
161 while(o_tail >= o_head && e_tail >= e_head)\r
162 if(((*o_tail ^ *e_tail) >> 24) == 0) {\r
163 o_tail = binsearch(o_head, o = o_tail);\r
164 e_tail = binsearch(e_head, e = e_tail);\r
165 sl = recover(o_tail--, o, oks,\r
166 e_tail--, e, eks, rem, sl, in);\r
167 }\r
168 else if(*o_tail > *e_tail)\r
169 o_tail = binsearch(o_head, o_tail) - 1;\r
170 else\r
171 e_tail = binsearch(e_head, e_tail) - 1;\r
172\r
173 return sl;\r
174}\r
175/** lfsr_recovery\r
176 * recover the state of the lfsr given 32 bits of the keystream\r
177 * additionally you can use the in parameter to specify the value\r
178 * that was fed into the lfsr at the time the keystream was generated\r
179 */\r
180struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r
181{\r
182 struct Crypto1State *statelist;\r
183 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r
184 uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r
185 int i;\r
186\r
187 for(i = 31; i >= 0; i -= 2)\r
188 oks = oks << 1 | BEBIT(ks2, i);\r
189 for(i = 30; i >= 0; i -= 2)\r
190 eks = eks << 1 | BEBIT(ks2, i);\r
191\r
192 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r
193 even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r
194 statelist = malloc(sizeof(struct Crypto1State) << 18);\r
72109f82 195 if(!odd_tail-- || !even_tail-- || !statelist) {\r
196 free(statelist);\r
197 statelist = 0;\r
93f57590 198 goto out;\r
72109f82 199 }\r
93f57590 200\r
201 statelist->odd = statelist->even = 0;\r
202\r
203 for(i = 1 << 20; i >= 0; --i) {\r
204 if(filter(i) == (oks & 1))\r
205 *++odd_tail = i;\r
206 if(filter(i) == (eks & 1))\r
207 *++even_tail = i;\r
208 }\r
209\r
210 for(i = 0; i < 4; i++) {\r
211 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r
212 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r
213 }\r
214\r
215 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);\r
216 recover(odd_head, odd_tail, oks,\r
217 even_head, even_tail, eks, 11, statelist, in << 1);\r
218\r
219out:\r
220 free(odd_head);\r
221 free(even_head);\r
222 return statelist;\r
223}\r
224\r
225static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r
226 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r
227 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r
228static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r
229 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r
230 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r
231 0x7EC7EE90, 0x7F63F748, 0x79117020};\r
232static const uint32_t T1[] = {\r
233 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r
234 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r
235 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r
236 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r
237static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r
238 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r
239 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r
240 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r
241 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r
242 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r
243static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r
244static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r
245/** Reverse 64 bits of keystream into possible cipher states\r
246 * Variation mentioned in the paper. Somewhat optimized version\r
247 */\r
248struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r
249{\r
250 struct Crypto1State *statelist, *sl;\r
251 uint8_t oks[32], eks[32], hi[32];\r
252 uint32_t low = 0, win = 0;\r
253 uint32_t *tail, table[1 << 16];\r
254 int i, j;\r
255\r
256 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r
257 if(!sl)\r
258 return 0;\r
259 sl->odd = sl->even = 0;\r
260\r
261 for(i = 30; i >= 0; i -= 2) {\r
72109f82 262 oks[i >> 1] = BEBIT(ks2, i);\r
263 oks[16 + (i >> 1)] = BEBIT(ks3, i);\r
93f57590 264 }\r
265 for(i = 31; i >= 0; i -= 2) {\r
72109f82 266 eks[i >> 1] = BEBIT(ks2, i);\r
267 eks[16 + (i >> 1)] = BEBIT(ks3, i);\r
93f57590 268 }\r
269\r
270 for(i = 0xfffff; i >= 0; --i) {\r
271 if (filter(i) != oks[0])\r
272 continue;\r
273\r
274 *(tail = table) = i;\r
275 for(j = 1; tail >= table && j < 29; ++j)\r
276 extend_table_simple(table, &tail, oks[j]);\r
277\r
278 if(tail < table)\r
279 continue;\r
280\r
281 for(j = 0; j < 19; ++j)\r
282 low = low << 1 | parity(i & S1[j]);\r
283 for(j = 0; j < 32; ++j)\r
284 hi[j] = parity(i & T1[j]);\r
285\r
286 for(; tail >= table; --tail) {\r
287 for(j = 0; j < 3; ++j) {\r
288 *tail = *tail << 1;\r
289 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r
290 if(filter(*tail) != oks[29 + j])\r
291 goto continue2;\r
292 }\r
293\r
294 for(j = 0; j < 19; ++j)\r
295 win = win << 1 | parity(*tail & S2[j]);\r
296\r
297 win ^= low;\r
298 for(j = 0; j < 32; ++j) {\r
299 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r
300 if(filter(win) != eks[j])\r
301 goto continue2;\r
302 }\r
303\r
304 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r
305 sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r
306 sl->even = win;\r
307 ++sl;\r
308 sl->odd = sl->even = 0;\r
309 continue2:;\r
310 }\r
311 }\r
312 return statelist;\r
313}\r
314\r
315/** lfsr_rollback_bit\r
316 * Rollback the shift register in order to get previous states\r
317 */\r
72109f82 318uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r
93f57590 319{\r
320 int out;\r
72109f82 321 uint8_t ret;\r
322 uint32_t t;\r
93f57590 323\r
324 s->odd &= 0xffffff;\r
72109f82 325 t = s->odd, s->odd = s->even, s->even = t;\r
93f57590 326\r
327 out = s->even & 1;\r
328 out ^= LF_POLY_EVEN & (s->even >>= 1);\r
329 out ^= LF_POLY_ODD & s->odd;\r
330 out ^= !!in;\r
72109f82 331 out ^= (ret = filter(s->odd)) & !!fb;\r
93f57590 332\r
333 s->even |= parity(out) << 23;\r
72109f82 334 return ret;\r
93f57590 335}\r
336/** lfsr_rollback_byte\r
337 * Rollback the shift register in order to get previous states\r
338 */\r
72109f82 339uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r
93f57590 340{\r
72109f82 341 int i, ret = 0;\r
93f57590 342 for (i = 7; i >= 0; --i)\r
72109f82 343 ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;\r
344 return ret;\r
93f57590 345}\r
346/** lfsr_rollback_word\r
347 * Rollback the shift register in order to get previous states\r
348 */\r
72109f82 349uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r
93f57590 350{\r
351 int i;\r
72109f82 352 uint32_t ret = 0;\r
93f57590 353 for (i = 31; i >= 0; --i)\r
72109f82 354 ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);\r
355 return ret;\r
93f57590 356}\r
357\r
358/** nonce_distance\r
359 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r
360 */\r
361static uint16_t *dist = 0;\r
362int nonce_distance(uint32_t from, uint32_t to)\r
363{\r
364 uint16_t x, i;\r
365 if(!dist) {\r
366 dist = malloc(2 << 16);\r
367 if(!dist)\r
368 return -1;\r
369 for (x = i = 1; i; ++i) {\r
370 dist[(x & 0xff) << 8 | x >> 8] = i;\r
371 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r
372 }\r
373 }\r
374 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r
375}\r
376\r
377\r
378static uint32_t fastfwd[2][8] = {\r
379 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r
380 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r
381\r
382\r
383/** lfsr_prefix_ks\r
384 *\r
385 * Is an exported helper function from the common prefix attack\r
386 * Described in the "dark side" paper. It returns an -1 terminated array\r
387 * of possible partial(21 bit) secret state.\r
388 * The required keystream(ks) needs to contain the keystream that was used to\r
72109f82 389 * encrypt the NACK which is observed when varying only the 3 last bits of Nr\r
93f57590 390 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r
391 */\r
392uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r
393{\r
72109f82 394 uint32_t c, entry, *candidates = malloc(4 << 10);\r
395 int i, size = 0, good;\r
93f57590 396\r
397 if(!candidates)\r
398 return 0;\r
399\r
72109f82 400 for(i = 0; i < 1 << 21; ++i) {\r
401 for(c = 0, good = 1; good && c < 8; ++c) {\r
402 entry = i ^ fastfwd[isodd][c];\r
403 good &= (BIT(ks[c], isodd) == filter(entry >> 1));\r
404 good &= (BIT(ks[c], isodd + 2) == filter(entry));\r
93f57590 405 }\r
72109f82 406 if(good)\r
407 candidates[size++] = i;\r
408 }\r
93f57590 409\r
72109f82 410 candidates[size] = -1;\r
93f57590 411\r
412 return candidates;\r
413}\r
414\r
72109f82 415/** check_pfx_parity\r
93f57590 416 * helper function which eliminates possible secret states using parity bits\r
417 */\r
9d1eaa28 418static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)\r
93f57590 419{\r
72109f82 420 uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;\r
421\r
422 for(c = 0; good && c < 8; ++c) {\r
423 sl->odd = odd ^ fastfwd[1][c];\r
424 sl->even = even ^ fastfwd[0][c];\r
425\r
426 lfsr_rollback_bit(sl, 0, 0);\r
427 lfsr_rollback_bit(sl, 0, 0);\r
428\r
429 ks3 = lfsr_rollback_bit(sl, 0, 0);\r
430 ks2 = lfsr_rollback_word(sl, 0, 0);\r
431 ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);\r
432\r
93f57590 433 nr = ks1 ^ (prefix | c << 5);\r
434 rr = ks2 ^ rresp;\r
435\r
93f57590 436 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r
437 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r
438 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r
439 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r
72109f82 440 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;\r
93f57590 441 }\r
442\r
72109f82 443 return sl + good;\r
93f57590 444} \r
445\r
446\r
447/** lfsr_common_prefix\r
448 * Implentation of the common prefix attack.\r
449 * Requires the 28 bit constant prefix used as reader nonce (pfx)\r
450 * The reader response used (rr)\r
451 * The keystream used to encrypt the observed NACK's (ks)\r
452 * The parity bits (par)\r
453 * It returns a zero terminated list of possible cipher states after the\r
454 * tag nonce was fed in\r
455 */\r
9d1eaa28 456struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])\r
93f57590 457{\r
458 struct Crypto1State *statelist, *s;\r
459 uint32_t *odd, *even, *o, *e, top;\r
460\r
461 odd = lfsr_prefix_ks(ks, 1);\r
462 even = lfsr_prefix_ks(ks, 0);\r
463\r
72109f82 464 s = statelist = malloc((sizeof *statelist) << 20);\r
465 if(!s || !odd || !even) {\r
466 free(statelist);\r
9d1eaa28 467 free(odd);\r
468 free(even);\r
469 return 0;\r
72109f82 470 }\r
93f57590 471\r
72109f82 472 for(o = odd; *o + 1; ++o)\r
473 for(e = even; *e + 1; ++e)\r
93f57590 474 for(top = 0; top < 64; ++top) {\r
72109f82 475 *o += 1 << 21;\r
476 *e += (!(top & 7) + 1) << 21;\r
477 s = check_pfx_parity(pfx, rr, par, *o, *e, s);\r
93f57590 478 }\r
479\r
480 s->odd = s->even = 0;\r
9d1eaa28 481\r
93f57590 482 return statelist;\r
483}\r
Impressum, Datenschutz