6658905f |
1 | //-----------------------------------------------------------------------------\r |
2 | //\r |
3 | // Jonathan Westhues, April 2006\r |
4 | //-----------------------------------------------------------------------------\r |
5 | \r |
6 | module hi_read_rx_xcorr(\r |
7 | pck0, ck_1356meg, ck_1356megb,\r |
8 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,\r |
9 | adc_d, adc_clk,\r |
10 | ssp_frame, ssp_din, ssp_dout, ssp_clk,\r |
11 | cross_hi, cross_lo,\r |
12 | dbg,\r |
13 | xcorr_is_848, snoop\r |
14 | );\r |
15 | input pck0, ck_1356meg, ck_1356megb;\r |
16 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;\r |
17 | input [7:0] adc_d;\r |
18 | output adc_clk;\r |
19 | input ssp_dout;\r |
20 | output ssp_frame, ssp_din, ssp_clk;\r |
21 | input cross_hi, cross_lo;\r |
22 | output dbg;\r |
23 | input xcorr_is_848, snoop;\r |
24 | \r |
25 | // Carrier is steady on through this, unless we're snooping.\r |
26 | assign pwr_hi = ck_1356megb & (~snoop);\r |
27 | assign pwr_oe1 = 1'b0;\r |
28 | assign pwr_oe2 = 1'b0;\r |
29 | assign pwr_oe3 = 1'b0;\r |
30 | assign pwr_oe4 = 1'b0;\r |
31 | \r |
32 | reg ssp_clk;\r |
33 | reg ssp_frame;\r |
34 | \r |
35 | reg fc_div_2;\r |
36 | always @(posedge ck_1356meg)\r |
37 | fc_div_2 = ~fc_div_2;\r |
38 | \r |
39 | reg adc_clk;\r |
40 | \r |
41 | always @(xcorr_is_848 or fc_div_2 or ck_1356meg)\r |
42 | if(xcorr_is_848)\r |
43 | // The subcarrier frequency is fc/16; we will sample at fc, so that \r |
44 | // means the subcarrier is 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 ...\r |
45 | adc_clk <= ck_1356meg;\r |
46 | else\r |
47 | // The subcarrier frequency is fc/32; we will sample at fc/2, and\r |
48 | // the subcarrier will look identical.\r |
49 | adc_clk <= fc_div_2;\r |
50 | \r |
51 | // When we're a reader, we just need to do the BPSK demod; but when we're an\r |
52 | // eavesdropper, we also need to pick out the commands sent by the reader,\r |
53 | // using AM. Do this the same way that we do it for the simulated tag.\r |
54 | reg after_hysteresis, after_hysteresis_prev;\r |
55 | reg [11:0] has_been_low_for;\r |
56 | always @(negedge adc_clk)\r |
57 | begin\r |
58 | if(& adc_d[7:0]) after_hysteresis <= 1'b1;\r |
59 | else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0;\r |
60 | \r |
61 | if(after_hysteresis)\r |
62 | begin\r |
63 | has_been_low_for <= 7'b0;\r |
64 | end\r |
65 | else\r |
66 | begin\r |
67 | if(has_been_low_for == 12'd4095)\r |
68 | begin\r |
69 | has_been_low_for <= 12'd0;\r |
70 | after_hysteresis <= 1'b1;\r |
71 | end\r |
72 | else\r |
73 | has_been_low_for <= has_been_low_for + 1;\r |
74 | end\r |
75 | end\r |
76 | \r |
77 | // Let us report a correlation every 4 subcarrier cycles, or 4*16 samples,\r |
78 | // so we need a 6-bit counter.\r |
79 | reg [5:0] corr_i_cnt;\r |
80 | reg [5:0] corr_q_cnt;\r |
81 | // And a couple of registers in which to accumulate the correlations.\r |
82 | reg signed [15:0] corr_i_accum;\r |
83 | reg signed [15:0] corr_q_accum;\r |
84 | reg signed [7:0] corr_i_out;\r |
85 | reg signed [7:0] corr_q_out;\r |
86 | \r |
87 | // ADC data appears on the rising edge, so sample it on the falling edge\r |
88 | always @(negedge adc_clk)\r |
89 | begin\r |
90 | // These are the correlators: we correlate against in-phase and quadrature\r |
91 | // versions of our reference signal, and keep the (signed) result to\r |
92 | // send out later over the SSP.\r |
93 | if(corr_i_cnt == 7'd63)\r |
94 | begin\r |
95 | if(snoop)\r |
96 | begin\r |
97 | corr_i_out <= {corr_i_accum[12:6], after_hysteresis_prev};\r |
98 | corr_q_out <= {corr_q_accum[12:6], after_hysteresis};\r |
99 | end\r |
100 | else\r |
101 | begin\r |
102 | // Only correlations need to be delivered.\r |
103 | corr_i_out <= corr_i_accum[13:6];\r |
104 | corr_q_out <= corr_q_accum[13:6];\r |
105 | end\r |
106 | \r |
107 | corr_i_accum <= adc_d;\r |
108 | corr_q_accum <= adc_d;\r |
109 | corr_q_cnt <= 4;\r |
110 | corr_i_cnt <= 0;\r |
111 | end\r |
112 | else\r |
113 | begin\r |
114 | if(corr_i_cnt[3])\r |
115 | corr_i_accum <= corr_i_accum - adc_d;\r |
116 | else\r |
117 | corr_i_accum <= corr_i_accum + adc_d;\r |
118 | \r |
119 | if(corr_q_cnt[3])\r |
120 | corr_q_accum <= corr_q_accum - adc_d;\r |
121 | else\r |
122 | corr_q_accum <= corr_q_accum + adc_d;\r |
123 | \r |
124 | corr_i_cnt <= corr_i_cnt + 1;\r |
125 | corr_q_cnt <= corr_q_cnt + 1;\r |
126 | end\r |
127 | \r |
128 | // The logic in hi_simulate.v reports 4 samples per bit. We report two\r |
129 | // (I, Q) pairs per bit, so we should do 2 samples per pair.\r |
130 | if(corr_i_cnt == 6'd31)\r |
131 | after_hysteresis_prev <= after_hysteresis;\r |
132 | \r |
133 | // Then the result from last time is serialized and send out to the ARM.\r |
134 | // We get one report each cycle, and each report is 16 bits, so the\r |
135 | // ssp_clk should be the adc_clk divided by 64/16 = 4.\r |
136 | \r |
137 | if(corr_i_cnt[1:0] == 2'b10)\r |
138 | ssp_clk <= 1'b0;\r |
139 | \r |
140 | if(corr_i_cnt[1:0] == 2'b00)\r |
141 | begin\r |
142 | ssp_clk <= 1'b1;\r |
143 | // Don't shift if we just loaded new data, obviously.\r |
144 | if(corr_i_cnt != 7'd0)\r |
145 | begin\r |
146 | corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]};\r |
147 | corr_q_out[7:1] <= corr_q_out[6:0];\r |
148 | end\r |
149 | end\r |
150 | \r |
151 | if(corr_i_cnt[5:2] == 4'b000 || corr_i_cnt[5:2] == 4'b1000)\r |
152 | ssp_frame = 1'b1;\r |
153 | else\r |
154 | ssp_frame = 1'b0;\r |
155 | \r |
156 | end\r |
157 | \r |
158 | assign ssp_din = corr_i_out[7];\r |
159 | \r |
160 | assign dbg = corr_i_cnt[3];\r |
161 | \r |
162 | // Unused.\r |
163 | assign pwr_lo = 1'b0;\r |
164 | \r |
165 | endmodule\r |