]> git.zerfleddert.de Git - proxmark3-svn/blame - client/cmdhfmfhard.c
@marshmellow42 's fix askAMP https://github.com/marshmellow42/proxmark3/commit/16ea2b...
[proxmark3-svn] / client / cmdhfmfhard.c
CommitLineData
8ce3e4b4 1//-----------------------------------------------------------------------------
2// Copyright (C) 2015 piwi
3130ba4b 3// fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp)
8ce3e4b4 4// This code is licensed to you under the terms of the GNU GPL, version 2 or,
5// at your option, any later version. See the LICENSE.txt file for the text of
6// the license.
7//-----------------------------------------------------------------------------
8// Implements a card only attack based on crypto text (encrypted nonces
9// received during a nested authentication) only. Unlike other card only
10// attacks this doesn't rely on implementation errors but only on the
11// inherent weaknesses of the crypto1 cypher. Described in
12// Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened
13// Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on
14// Computer and Communications Security, 2015
15//-----------------------------------------------------------------------------
16
8ce3e4b4 17#include <stdlib.h>
3130ba4b 18#include <stdio.h>
8ce3e4b4 19#include <string.h>
20#include <pthread.h>
0d5ee8e2 21#include <locale.h>
8ce3e4b4 22#include <math.h>
23#include "proxmark3.h"
24#include "cmdmain.h"
25#include "ui.h"
26#include "util.h"
27#include "nonce2key/crapto1.h"
3130ba4b 28#include "nonce2key/crypto1_bs.h"
f8ada309 29#include "parity.h"
3130ba4b 30#ifdef __WIN32
31 #include <windows.h>
32#endif
33#include <malloc.h>
34#include <assert.h>
8ce3e4b4 35
f8ada309 36#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
3130ba4b 37#define GOOD_BYTES_REQUIRED 28
8ce3e4b4 38
39static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K
40 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
41 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
42 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
43 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
44 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
45 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
46 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
47 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
48 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
49 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
50 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
51 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
52 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
53 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
54 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
55 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
56 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
57 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
58 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
59 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
60 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
61 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
62 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
63 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
64 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
65 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
66 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
67 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
68 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
69 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
70 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
71 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000,
72 0.0290 };
8ce3e4b4 73
74typedef struct noncelistentry {
75 uint32_t nonce_enc;
76 uint8_t par_enc;
77 void *next;
78} noncelistentry_t;
79
80typedef struct noncelist {
81 uint16_t num;
82 uint16_t Sum;
83 uint16_t Sum8_guess;
84 uint8_t BitFlip[2];
85 float Sum8_prob;
86 bool updated;
87 noncelistentry_t *first;
a531720a 88 float score1, score2;
8ce3e4b4 89} noncelist_t;
90
3130ba4b 91static size_t nonces_to_bruteforce = 0;
92static noncelistentry_t *brute_force_nonces[256];
810f5379 93static uint32_t cuid = 0;
8ce3e4b4 94static noncelist_t nonces[256];
fe8042f2 95static uint8_t best_first_bytes[256];
8ce3e4b4 96static uint16_t first_byte_Sum = 0;
97static uint16_t first_byte_num = 0;
98static uint16_t num_good_first_bytes = 0;
f8ada309 99static uint64_t maximum_states = 0;
100static uint64_t known_target_key;
0d5ee8e2 101static bool write_stats = false;
102static FILE *fstats = NULL;
8ce3e4b4 103
104
105typedef enum {
106 EVEN_STATE = 0,
107 ODD_STATE = 1
108} odd_even_t;
109
110#define STATELIST_INDEX_WIDTH 16
111#define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH)
112
113typedef struct {
114 uint32_t *states[2];
115 uint32_t len[2];
116 uint32_t *index[2][STATELIST_INDEX_SIZE];
117} partial_indexed_statelist_t;
118
119typedef struct {
120 uint32_t *states[2];
121 uint32_t len[2];
122 void* next;
123} statelist_t;
124
125
f8ada309 126static partial_indexed_statelist_t partial_statelist[17];
127static partial_indexed_statelist_t statelist_bitflip;
f8ada309 128static statelist_t *candidates = NULL;
8ce3e4b4 129
8ce3e4b4 130static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
131{
132 uint8_t first_byte = nonce_enc >> 24;
133 noncelistentry_t *p1 = nonces[first_byte].first;
134 noncelistentry_t *p2 = NULL;
135
136 if (p1 == NULL) { // first nonce with this 1st byte
137 first_byte_num++;
f8ada309 138 first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 139 // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n",
140 // nonce_enc,
141 // par_enc,
142 // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01,
f8ada309 143 // parity((nonce_enc & 0xff000000) | (par_enc & 0x08));
8ce3e4b4 144 }
145
146 while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) {
147 p2 = p1;
148 p1 = p1->next;
149 }
150
151 if (p1 == NULL) { // need to add at the end of the list
152 if (p2 == NULL) { // list is empty yet. Add first entry.
153 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
154 } else { // add new entry at end of existing list.
155 p2 = p2->next = malloc(sizeof(noncelistentry_t));
156 }
157 } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert.
158 if (p2 == NULL) { // need to insert at start of list
159 p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t));
160 } else {
161 p2 = p2->next = malloc(sizeof(noncelistentry_t));
162 }
163 } else { // we have seen this 2nd byte before. Nothing to add or insert.
164 return (0);
165 }
166
167 // add or insert new data
168 p2->next = p1;
169 p2->nonce_enc = nonce_enc;
170 p2->par_enc = par_enc;
171
3130ba4b 172 if(nonces_to_bruteforce < 256){
173 brute_force_nonces[nonces_to_bruteforce] = p2;
174 nonces_to_bruteforce++;
175 }
176
8ce3e4b4 177 nonces[first_byte].num++;
f8ada309 178 nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04));
8ce3e4b4 179 nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte
180
181 return (1); // new nonce added
182}
183
0d5ee8e2 184static void init_nonce_memory(void)
185{
186 for (uint16_t i = 0; i < 256; i++) {
187 nonces[i].num = 0;
188 nonces[i].Sum = 0;
189 nonces[i].Sum8_guess = 0;
190 nonces[i].Sum8_prob = 0.0;
191 nonces[i].updated = true;
192 nonces[i].first = NULL;
193 }
194 first_byte_num = 0;
195 first_byte_Sum = 0;
196 num_good_first_bytes = 0;
197}
198
199
200static void free_nonce_list(noncelistentry_t *p)
201{
202 if (p == NULL) {
203 return;
204 } else {
205 free_nonce_list(p->next);
206 free(p);
207 }
208}
209
0d5ee8e2 210static void free_nonces_memory(void)
211{
212 for (uint16_t i = 0; i < 256; i++) {
213 free_nonce_list(nonces[i].first);
214 }
215}
216
8ce3e4b4 217static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
218{
219 uint16_t sum = 0;
220 for (uint16_t j = 0; j < 16; j++) {
221 uint32_t st = state;
222 uint16_t part_sum = 0;
223 if (odd_even == ODD_STATE) {
224 for (uint16_t i = 0; i < 5; i++) {
225 part_sum ^= filter(st);
226 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
227 }
f8ada309 228 part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits
8ce3e4b4 229 } else {
230 for (uint16_t i = 0; i < 4; i++) {
231 st = (st << 1) | ((j >> (3-i)) & 0x01) ;
232 part_sum ^= filter(st);
233 }
234 }
235 sum += part_sum;
236 }
237 return sum;
238}
239
fe8042f2 240// static uint16_t SumProperty(struct Crypto1State *s)
241// {
242 // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE);
243 // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE);
244 // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even);
245// }
8ce3e4b4 246
8ce3e4b4 247static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k)
248{
249 // for efficient computation we are using the recursive definition
250 // (K-k+1) * (n-k+1)
251 // P(X=k) = P(X=k-1) * --------------------
252 // k * (N-K-n+k)
253 // and
254 // (N-K)*(N-K-1)*...*(N-K-n+1)
255 // P(X=0) = -----------------------------
256 // N*(N-1)*...*(N-n+1)
257
258 if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below
259 if (k == 0) {
260 // use logarithms to avoid overflow with huge factorials (double type can only hold 170!)
261 double log_result = 0.0;
262 for (int16_t i = N-K; i >= N-K-n+1; i--) {
263 log_result += log(i);
264 }
265 for (int16_t i = N; i >= N-n+1; i--) {
266 log_result -= log(i);
267 }
268 return exp(log_result);
269 } else {
270 if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception
271 double log_result = 0.0;
272 for (int16_t i = k+1; i <= n; i++) {
273 log_result += log(i);
274 }
275 for (int16_t i = K+1; i <= N; i++) {
276 log_result -= log(i);
277 }
278 return exp(log_result);
279 } else { // recursion
280 return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k)));
281 }
282 }
283}
3130ba4b 284
8ce3e4b4 285static float sum_probability(uint16_t K, uint16_t n, uint16_t k)
286{
287 const uint16_t N = 256;
8ce3e4b4 288
4b2e63be 289 if (k > K || p_K[K] == 0.0) return 0.0;
8ce3e4b4 290
4b2e63be 291 double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k);
292 double p_S_is_K = p_K[K];
293 double p_T_is_k = 0;
294 for (uint16_t i = 0; i <= 256; i++) {
295 if (p_K[i] != 0.0) {
296 p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k);
8ce3e4b4 297 }
4b2e63be 298 }
299 return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
8ce3e4b4 300}
301
a531720a 302
303static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff)
304{
305 static const uint_fast8_t common_bits_LUT[256] = {
306 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
307 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
308 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
309 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
310 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
311 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
312 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
313 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
314 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
315 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
316 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
317 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
318 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
319 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
320 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
321 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
322 };
323
324 return common_bits_LUT[bytes_diff];
325}
326
8ce3e4b4 327static void Tests()
328{
fe8042f2 329 // printf("Tests: Partial Statelist sizes\n");
330 // for (uint16_t i = 0; i <= 16; i+=2) {
331 // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]);
332 // }
333 // for (uint16_t i = 0; i <= 16; i+=2) {
334 // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]);
335 // }
8ce3e4b4 336
337 // #define NUM_STATISTICS 100000
8ce3e4b4 338 // uint32_t statistics_odd[17];
f8ada309 339 // uint64_t statistics[257];
8ce3e4b4 340 // uint32_t statistics_even[17];
341 // struct Crypto1State cs;
342 // time_t time1 = clock();
343
344 // for (uint16_t i = 0; i < 257; i++) {
345 // statistics[i] = 0;
346 // }
347 // for (uint16_t i = 0; i < 17; i++) {
348 // statistics_odd[i] = 0;
349 // statistics_even[i] = 0;
350 // }
351
352 // for (uint64_t i = 0; i < NUM_STATISTICS; i++) {
353 // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff);
354 // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff);
355 // uint16_t sum_property = SumProperty(&cs);
356 // statistics[sum_property] += 1;
357 // sum_property = PartialSumProperty(cs.even, EVEN_STATE);
358 // statistics_even[sum_property]++;
359 // sum_property = PartialSumProperty(cs.odd, ODD_STATE);
360 // statistics_odd[sum_property]++;
361 // if (i%(NUM_STATISTICS/100) == 0) printf(".");
362 // }
363
364 // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC);
365 // for (uint16_t i = 0; i < 257; i++) {
366 // if (statistics[i] != 0) {
367 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS);
368 // }
369 // }
370 // for (uint16_t i = 0; i <= 16; i++) {
371 // if (statistics_odd[i] != 0) {
372 // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS);
373 // }
374 // }
375 // for (uint16_t i = 0; i <= 16; i++) {
376 // if (statistics_odd[i] != 0) {
377 // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS);
378 // }
379 // }
380
381 // printf("Tests: Sum Probabilities based on Partial Sums\n");
382 // for (uint16_t i = 0; i < 257; i++) {
383 // statistics[i] = 0;
384 // }
385 // uint64_t num_states = 0;
386 // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) {
387 // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) {
388 // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum;
389 // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
390 // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8);
391 // }
392 // }
393 // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48));
394 // for (uint16_t i = 0; i < 257; i++) {
395 // if (statistics[i] != 0) {
396 // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states);
397 // }
398 // }
399
400 // printf("\nTests: Hypergeometric Probability for selected parameters\n");
401 // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206));
402 // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205));
403 // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1));
404 // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0));
405 // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1));
406 // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0));
407
fe8042f2 408 // struct Crypto1State *pcs;
409 // pcs = crypto1_create(0xffffffffffff);
410 // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
411 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
412 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
413 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
414 // best_first_bytes[0],
415 // SumProperty(pcs),
416 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
417 // //test_state_odd = pcs->odd & 0x00ffffff;
418 // //test_state_even = pcs->even & 0x00ffffff;
419 // crypto1_destroy(pcs);
420 // pcs = crypto1_create(0xa0a1a2a3a4a5);
421 // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
422 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
423 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
424 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
425 // best_first_bytes[0],
426 // SumProperty(pcs),
427 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
428 // //test_state_odd = pcs->odd & 0x00ffffff;
429 // //test_state_even = pcs->even & 0x00ffffff;
430 // crypto1_destroy(pcs);
431 // pcs = crypto1_create(0xa6b9aa97b955);
432 // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
433 // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
434 // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
435 // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n",
436 // best_first_bytes[0],
437 // SumProperty(pcs),
438 // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff);
f8ada309 439 //test_state_odd = pcs->odd & 0x00ffffff;
440 //test_state_even = pcs->even & 0x00ffffff;
fe8042f2 441 // crypto1_destroy(pcs);
8ce3e4b4 442
443
fe8042f2 444 // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20));
8ce3e4b4 445
cd777a05 446 // printf("\nTests: Actual BitFlipProperties odd/even:\n");
447 // for (uint16_t i = 0; i < 256; i++) {
448 // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' ');
449 // if (i % 8 == 7) {
450 // printf("\n");
451 // }
452 // }
8ce3e4b4 453
cd777a05 454 // printf("\nTests: Sorted First Bytes:\n");
455 // for (uint16_t i = 0; i < 256; i++) {
456 // uint8_t best_byte = best_first_bytes[i];
457 // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n",
458 // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n",
459 // i, best_byte,
460 // nonces[best_byte].num,
461 // nonces[best_byte].Sum,
462 // nonces[best_byte].Sum8_guess,
463 // nonces[best_byte].Sum8_prob * 100,
464 // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' '
465 // //nonces[best_byte].score1,
466 // //nonces[best_byte].score2
467 // );
468 // }
f8ada309 469
470 // printf("\nTests: parity performance\n");
471 // time_t time1p = clock();
472 // uint32_t par_sum = 0;
473 // for (uint32_t i = 0; i < 100000000; i++) {
474 // par_sum += parity(i);
475 // }
476 // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
477
478 // time1p = clock();
479 // par_sum = 0;
480 // for (uint32_t i = 0; i < 100000000; i++) {
481 // par_sum += evenparity32(i);
482 // }
483 // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC);
484
8ce3e4b4 485
f8ada309 486}
487
f8ada309 488static void sort_best_first_bytes(void)
489{
fe8042f2 490 // sort based on probability for correct guess
8ce3e4b4 491 for (uint16_t i = 0; i < 256; i++ ) {
f8ada309 492 uint16_t j = 0;
8ce3e4b4 493 float prob1 = nonces[i].Sum8_prob;
f8ada309 494 float prob2 = nonces[best_first_bytes[0]].Sum8_prob;
fe8042f2 495 while (prob1 < prob2 && j < i) {
8ce3e4b4 496 prob2 = nonces[best_first_bytes[++j]].Sum8_prob;
497 }
fe8042f2 498 if (j < i) {
499 for (uint16_t k = i; k > j; k--) {
8ce3e4b4 500 best_first_bytes[k] = best_first_bytes[k-1];
501 }
fe8042f2 502 }
8ce3e4b4 503 best_first_bytes[j] = i;
504 }
f8ada309 505
fe8042f2 506 // determine how many are above the CONFIDENCE_THRESHOLD
f8ada309 507 uint16_t num_good_nonces = 0;
fe8042f2 508 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 509 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
f8ada309 510 ++num_good_nonces;
511 }
512 }
513
514 uint16_t best_first_byte = 0;
515
516 // select the best possible first byte based on number of common bits with all {b'}
517 // uint16_t max_common_bits = 0;
518 // for (uint16_t i = 0; i < num_good_nonces; i++) {
519 // uint16_t sum_common_bits = 0;
520 // for (uint16_t j = 0; j < num_good_nonces; j++) {
521 // if (i != j) {
522 // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]);
523 // }
524 // }
525 // if (sum_common_bits > max_common_bits) {
526 // max_common_bits = sum_common_bits;
527 // best_first_byte = i;
528 // }
529 // }
530
531 // select best possible first byte {b} based on least likely sum/bitflip property
532 float min_p_K = 1.0;
533 for (uint16_t i = 0; i < num_good_nonces; i++ ) {
534 uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess;
535 float bitflip_prob = 1.0;
536 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
537 bitflip_prob = 0.09375;
538 }
a531720a 539 nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob;
f8ada309 540 if (p_K[sum8] * bitflip_prob <= min_p_K) {
541 min_p_K = p_K[sum8] * bitflip_prob;
f8ada309 542 }
543 }
544
a531720a 545
f8ada309 546 // use number of commmon bits as a tie breaker
547 uint16_t max_common_bits = 0;
548 for (uint16_t i = 0; i < num_good_nonces; i++) {
549 float bitflip_prob = 1.0;
550 if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) {
551 bitflip_prob = 0.09375;
552 }
553 if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) {
554 uint16_t sum_common_bits = 0;
555 for (uint16_t j = 0; j < num_good_nonces; j++) {
a531720a 556 sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]);
f8ada309 557 }
a531720a 558 nonces[best_first_bytes[i]].score2 = sum_common_bits;
f8ada309 559 if (sum_common_bits > max_common_bits) {
560 max_common_bits = sum_common_bits;
561 best_first_byte = i;
562 }
563 }
564 }
565
a531720a 566 // swap best possible first byte to the pole position
f8ada309 567 uint16_t temp = best_first_bytes[0];
568 best_first_bytes[0] = best_first_bytes[best_first_byte];
569 best_first_bytes[best_first_byte] = temp;
570
8ce3e4b4 571}
572
8ce3e4b4 573static uint16_t estimate_second_byte_sum(void)
574{
8ce3e4b4 575
576 for (uint16_t first_byte = 0; first_byte < 256; first_byte++) {
577 float Sum8_prob = 0.0;
578 uint16_t Sum8 = 0;
579 if (nonces[first_byte].updated) {
580 for (uint16_t sum = 0; sum <= 256; sum++) {
581 float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum);
582 if (prob > Sum8_prob) {
583 Sum8_prob = prob;
584 Sum8 = sum;
585 }
586 }
587 nonces[first_byte].Sum8_guess = Sum8;
588 nonces[first_byte].Sum8_prob = Sum8_prob;
589 nonces[first_byte].updated = false;
590 }
591 }
592
593 sort_best_first_bytes();
594
595 uint16_t num_good_nonces = 0;
fe8042f2 596 for (uint16_t i = 0; i < 256; i++) {
4b2e63be 597 if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) {
8ce3e4b4 598 ++num_good_nonces;
599 }
600 }
601
602 return num_good_nonces;
603}
604
8ce3e4b4 605static int read_nonce_file(void)
606{
607 FILE *fnonces = NULL;
ddaecc08 608 uint8_t trgBlockNo = 0;
609 uint8_t trgKeyType = 0;
8ce3e4b4 610 uint8_t read_buf[9];
ddaecc08 611 uint32_t nt_enc1 = 0, nt_enc2 = 0;
612 uint8_t par_enc = 0;
8ce3e4b4 613 int total_num_nonces = 0;
614
615 if ((fnonces = fopen("nonces.bin","rb")) == NULL) {
616 PrintAndLog("Could not open file nonces.bin");
617 return 1;
618 }
619
620 PrintAndLog("Reading nonces from file nonces.bin...");
841d7af0 621 size_t bytes_read = fread(read_buf, 1, 6, fnonces);
622 if ( bytes_read == 0) {
8ce3e4b4 623 PrintAndLog("File reading error.");
624 fclose(fnonces);
625 return 1;
626 }
627 cuid = bytes_to_num(read_buf, 4);
628 trgBlockNo = bytes_to_num(read_buf+4, 1);
629 trgKeyType = bytes_to_num(read_buf+5, 1);
630
631 while (fread(read_buf, 1, 9, fnonces) == 9) {
632 nt_enc1 = bytes_to_num(read_buf, 4);
633 nt_enc2 = bytes_to_num(read_buf+4, 4);
634 par_enc = bytes_to_num(read_buf+8, 1);
635 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
636 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
637 add_nonce(nt_enc1, par_enc >> 4);
638 add_nonce(nt_enc2, par_enc & 0x0f);
639 total_num_nonces += 2;
640 }
641 fclose(fnonces);
642 PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B');
8ce3e4b4 643 return 0;
644}
645
a531720a 646static void Check_for_FilterFlipProperties(void)
647{
648 printf("Checking for Filter Flip Properties...\n");
649
0d5ee8e2 650 uint16_t num_bitflips = 0;
651
a531720a 652 for (uint16_t i = 0; i < 256; i++) {
653 nonces[i].BitFlip[ODD_STATE] = false;
654 nonces[i].BitFlip[EVEN_STATE] = false;
655 }
656
657 for (uint16_t i = 0; i < 256; i++) {
658 uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte
659 uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped
660 uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped
661
662 if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits
663 nonces[i].BitFlip[ODD_STATE] = true;
0d5ee8e2 664 num_bitflips++;
a531720a 665 } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits
666 nonces[i].BitFlip[EVEN_STATE] = true;
0d5ee8e2 667 num_bitflips++;
a531720a 668 }
669 }
0d5ee8e2 670
671 if (write_stats) {
672 fprintf(fstats, "%d;", num_bitflips);
673 }
674}
675
0d5ee8e2 676static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc)
677{
1f1929a4 678 struct Crypto1State sim_cs = {0, 0};
0d5ee8e2 679 // init cryptostate with key:
680 for(int8_t i = 47; i > 0; i -= 2) {
681 sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7);
682 sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7);
683 }
684
685 *par_enc = 0;
686 uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
687 for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) {
688 uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff;
689 uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte
690 *nt_enc = (*nt_enc << 8) | nt_byte_enc;
691 uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit
692 uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it
693 *par_enc = (*par_enc << 1) | nt_byte_par_enc;
694 }
695
696}
697
0d5ee8e2 698static void simulate_acquire_nonces()
699{
700 clock_t time1 = clock();
701 bool filter_flip_checked = false;
702 uint32_t total_num_nonces = 0;
703 uint32_t next_fivehundred = 500;
704 uint32_t total_added_nonces = 0;
705
706 cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff);
707 known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff);
708
709 printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid);
710 fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid);
711
712 do {
713 uint32_t nt_enc = 0;
714 uint8_t par_enc = 0;
715
716 simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc);
717 //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc);
718 total_added_nonces += add_nonce(nt_enc, par_enc);
719 total_num_nonces++;
720
721 if (first_byte_num == 256 ) {
722 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
723 if (!filter_flip_checked) {
724 Check_for_FilterFlipProperties();
725 filter_flip_checked = true;
726 }
727 num_good_first_bytes = estimate_second_byte_sum();
728 if (total_num_nonces > next_fivehundred) {
729 next_fivehundred = (total_num_nonces/500+1) * 500;
730 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
731 total_num_nonces,
732 total_added_nonces,
733 CONFIDENCE_THRESHOLD * 100.0,
734 num_good_first_bytes);
735 }
736 }
737
738 } while (num_good_first_bytes < GOOD_BYTES_REQUIRED);
739
b112787d 740 time1 = clock() - time1;
741 if ( time1 > 0 ) {
0d5ee8e2 742 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
743 total_num_nonces,
b112787d 744 ((float)time1)/CLOCKS_PER_SEC,
745 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1);
746 }
0d5ee8e2 747 fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD);
748
a531720a 749}
750
f8ada309 751static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow)
8ce3e4b4 752{
753 clock_t time1 = clock();
754 bool initialize = true;
755 bool field_off = false;
756 bool finished = false;
a531720a 757 bool filter_flip_checked = false;
8ce3e4b4 758 uint32_t flags = 0;
759 uint8_t write_buf[9];
760 uint32_t total_num_nonces = 0;
761 uint32_t next_fivehundred = 500;
762 uint32_t total_added_nonces = 0;
763 FILE *fnonces = NULL;
764 UsbCommand resp;
765
766 printf("Acquiring nonces...\n");
767
768 clearCommandBuffer();
769
770 do {
771 flags = 0;
772 flags |= initialize ? 0x0001 : 0;
773 flags |= slow ? 0x0002 : 0;
774 flags |= field_off ? 0x0004 : 0;
775 UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}};
776 memcpy(c.d.asBytes, key, 6);
777
778 SendCommand(&c);
779
780 if (field_off) finished = true;
781
782 if (initialize) {
783 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1;
784 if (resp.arg[0]) return resp.arg[0]; // error during nested_hard
785
786 cuid = resp.arg[1];
787 // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid);
788 if (nonce_file_write && fnonces == NULL) {
789 if ((fnonces = fopen("nonces.bin","wb")) == NULL) {
790 PrintAndLog("Could not create file nonces.bin");
791 return 3;
792 }
793 PrintAndLog("Writing acquired nonces to binary file nonces.bin");
794 num_to_bytes(cuid, 4, write_buf);
795 fwrite(write_buf, 1, 4, fnonces);
796 fwrite(&trgBlockNo, 1, 1, fnonces);
797 fwrite(&trgKeyType, 1, 1, fnonces);
798 }
799 }
800
801 if (!initialize) {
802 uint32_t nt_enc1, nt_enc2;
803 uint8_t par_enc;
804 uint16_t num_acquired_nonces = resp.arg[2];
805 uint8_t *bufp = resp.d.asBytes;
806 for (uint16_t i = 0; i < num_acquired_nonces; i+=2) {
807 nt_enc1 = bytes_to_num(bufp, 4);
808 nt_enc2 = bytes_to_num(bufp+4, 4);
809 par_enc = bytes_to_num(bufp+8, 1);
810
811 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
812 total_added_nonces += add_nonce(nt_enc1, par_enc >> 4);
813 //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
814 total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
815
8ce3e4b4 816 if (nonce_file_write) {
817 fwrite(bufp, 1, 9, fnonces);
818 }
819
820 bufp += 9;
821 }
822
823 total_num_nonces += num_acquired_nonces;
824 }
825
826 if (first_byte_num == 256 ) {
827 // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
a531720a 828 if (!filter_flip_checked) {
829 Check_for_FilterFlipProperties();
830 filter_flip_checked = true;
831 }
8ce3e4b4 832 num_good_first_bytes = estimate_second_byte_sum();
833 if (total_num_nonces > next_fivehundred) {
834 next_fivehundred = (total_num_nonces/500+1) * 500;
835 printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n",
836 total_num_nonces,
837 total_added_nonces,
838 CONFIDENCE_THRESHOLD * 100.0,
839 num_good_first_bytes);
840 }
841 if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
842 field_off = true; // switch off field with next SendCommand and then finish
843 }
844 }
845
846 if (!initialize) {
1a4b6738 847 if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
848 fclose(fnonces);
849 return 1;
850 }
851 if (resp.arg[0]) {
852 fclose(fnonces);
853 return resp.arg[0]; // error during nested_hard
854 }
8ce3e4b4 855 }
856
857 initialize = false;
858
859 } while (!finished);
860
861
862 if (nonce_file_write) {
863 fclose(fnonces);
864 }
865
b112787d 866 time1 = clock() - time1;
867 if ( time1 > 0 ) {
f8ada309 868 PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)",
8ce3e4b4 869 total_num_nonces,
b112787d 870 ((float)time1)/CLOCKS_PER_SEC,
871 total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1
872 );
873 }
8ce3e4b4 874 return 0;
875}
876
8ce3e4b4 877static int init_partial_statelists(void)
878{
f8ada309 879 const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
8ce3e4b4 880 const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
881
882 printf("Allocating memory for partial statelists...\n");
883 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
884 for (uint16_t i = 0; i <= 16; i+=2) {
885 partial_statelist[i].len[odd_even] = 0;
886 uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i];
887 partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states);
888 if (partial_statelist[i].states[odd_even] == NULL) {
889 PrintAndLog("Cannot allocate enough memory. Aborting");
890 return 4;
891 }
892 for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) {
893 partial_statelist[i].index[odd_even][j] = NULL;
894 }
895 }
896 }
897
898 printf("Generating partial statelists...\n");
899 for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
900 uint32_t index = -1;
901 uint32_t num_of_states = 1<<20;
902 for (uint32_t state = 0; state < num_of_states; state++) {
903 uint16_t sum_property = PartialSumProperty(state, odd_even);
904 uint32_t *p = partial_statelist[sum_property].states[odd_even];
905 p += partial_statelist[sum_property].len[odd_even];
906 *p = state;
907 partial_statelist[sum_property].len[odd_even]++;
908 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
909 if ((state & index_mask) != index) {
910 index = state & index_mask;
911 }
912 if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
913 partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p;
914 }
915 }
916 // add End Of List markers
917 for (uint16_t i = 0; i <= 16; i += 2) {
918 uint32_t *p = partial_statelist[i].states[odd_even];
919 p += partial_statelist[i].len[odd_even];
920 *p = 0xffffffff;
921 }
922 }
923
924 return 0;
925}
8ce3e4b4 926
927static void init_BitFlip_statelist(void)
928{
929 printf("Generating bitflip statelist...\n");
930 uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20);
931 uint32_t index = -1;
932 uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH);
933 for (uint32_t state = 0; state < (1 << 20); state++) {
934 if (filter(state) != filter(state^1)) {
935 if ((state & index_mask) != index) {
936 index = state & index_mask;
937 }
938 if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) {
939 statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p;
940 }
941 *p++ = state;
942 }
943 }
944 // set len and add End Of List marker
945 statelist_bitflip.len[0] = p - statelist_bitflip.states[0];
946 *p = 0xffffffff;
947 statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1));
948}
8ce3e4b4 949
a531720a 950static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even)
8ce3e4b4 951{
952 uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index
953
954 if (p == NULL) return NULL;
a531720a 955 while (*p < (state & mask)) p++;
8ce3e4b4 956 if (*p == 0xffffffff) return NULL; // reached end of list, no match
957 if ((*p & mask) == (state & mask)) return p; // found a match.
958 return NULL; // no match
959}
960
a531720a 961static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
8ce3e4b4 962{
a531720a 963 uint_fast8_t j_1_bit_mask = 0x01 << (bit-1);
964 uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
965 uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function
966 uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit;
967 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
968 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
969 return !all_diff;
970}
971
a531720a 972static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit)
973{
974 uint_fast8_t j_bit_mask = 0x01 << bit;
975 uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
976 uint_fast8_t mask_y13_y16 = 0x48 >> state_bit;
977 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
978 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
979 return all_diff;
980}
981
a531720a 982static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even)
983{
984 if (odd_even) {
985 // odd bits
986 switch (num_common_bits) {
987 case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true;
988 case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false;
989 case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true;
990 case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false;
991 case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true;
992 case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false;
993 case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true;
994 case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false;
8ce3e4b4 995 }
a531720a 996 } else {
997 // even bits
998 switch (num_common_bits) {
999 case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false;
1000 case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true;
1001 case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false;
1002 case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true;
1003 case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false;
1004 case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true;
1005 case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false;
8ce3e4b4 1006 }
8ce3e4b4 1007 }
1008
1009 return true; // valid state
1010}
1011
8ce3e4b4 1012static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even)
1013{
1014 for (uint16_t i = 1; i < num_good_first_bytes; i++) {
1015 uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess;
a531720a 1016 uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i];
1017 uint_fast8_t j = common_bits(bytes_diff);
8ce3e4b4 1018 uint32_t mask = 0xfffffff0;
1019 if (odd_even == ODD_STATE) {
a531720a 1020 mask >>= j/2;
8ce3e4b4 1021 } else {
a531720a 1022 mask >>= (j+1)/2;
8ce3e4b4 1023 }
1024 mask &= 0x000fffff;
1025 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1026 bool found_match = false;
1027 for (uint16_t r = 0; r <= 16 && !found_match; r += 2) {
1028 for (uint16_t s = 0; s <= 16 && !found_match; s += 2) {
1029 if (r*(16-s) + (16-r)*s == sum_a8) {
1030 //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s);
1031 uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s;
1032 uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even);
1033 if (p != NULL) {
1034 while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
a531720a 1035 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
8ce3e4b4 1036 found_match = true;
1037 // if ((odd_even == ODD_STATE && state == test_state_odd)
1038 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1039 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1040 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1041 // }
1042 break;
1043 } else {
1044 // if ((odd_even == ODD_STATE && state == test_state_odd)
1045 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1046 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1047 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1048 // }
1049 }
1050 p++;
1051 }
1052 } else {
1053 // if ((odd_even == ODD_STATE && state == test_state_odd)
1054 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1055 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1056 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1057 // }
1058 }
1059 }
1060 }
1061 }
1062
1063 if (!found_match) {
1064 // if ((odd_even == ODD_STATE && state == test_state_odd)
1065 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1066 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1067 // }
1068 return false;
1069 }
1070 }
1071
1072 return true;
1073}
1074
f8ada309 1075static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even)
1076{
1077 for (uint16_t i = 0; i < 256; i++) {
1078 if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) {
a531720a 1079 uint_fast8_t bytes_diff = best_first_bytes[0] ^ i;
1080 uint_fast8_t j = common_bits(bytes_diff);
f8ada309 1081 uint32_t mask = 0xfffffff0;
1082 if (odd_even == ODD_STATE) {
a531720a 1083 mask >>= j/2;
f8ada309 1084 } else {
a531720a 1085 mask >>= (j+1)/2;
f8ada309 1086 }
1087 mask &= 0x000fffff;
1088 //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8);
1089 bool found_match = false;
1090 uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0);
1091 if (p != NULL) {
1092 while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) {
a531720a 1093 if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) {
f8ada309 1094 found_match = true;
1095 // if ((odd_even == ODD_STATE && state == test_state_odd)
1096 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1097 // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1098 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1099 // }
1100 break;
1101 } else {
1102 // if ((odd_even == ODD_STATE && state == test_state_odd)
1103 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1104 // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1105 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1106 // }
1107 }
1108 p++;
1109 }
1110 } else {
1111 // if ((odd_even == ODD_STATE && state == test_state_odd)
1112 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1113 // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n",
1114 // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8);
1115 // }
1116 }
1117 if (!found_match) {
1118 // if ((odd_even == ODD_STATE && state == test_state_odd)
1119 // || (odd_even == EVEN_STATE && state == test_state_even)) {
1120 // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j);
1121 // }
1122 return false;
1123 }
1124 }
1125
1126 }
1127
1128 return true;
1129}
1130
a531720a 1131static struct sl_cache_entry {
1132 uint32_t *sl;
1133 uint32_t len;
1134 } sl_cache[17][17][2];
1135
a531720a 1136static void init_statelist_cache(void)
1137{
a531720a 1138 for (uint16_t i = 0; i < 17; i+=2) {
1139 for (uint16_t j = 0; j < 17; j+=2) {
1140 for (uint16_t k = 0; k < 2; k++) {
1141 sl_cache[i][j][k].sl = NULL;
1142 sl_cache[i][j][k].len = 0;
1143 }
1144 }
1145 }
1146}
1147
8ce3e4b4 1148static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even)
1149{
1150 uint32_t worstcase_size = 1<<20;
1151
a531720a 1152 // check cache for existing results
1153 if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) {
1154 candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl;
1155 candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len;
1156 return 0;
1157 }
1158
8ce3e4b4 1159 candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
1160 if (candidates->states[odd_even] == NULL) {
1161 PrintAndLog("Out of memory error.\n");
1162 return 4;
1163 }
a531720a 1164 uint32_t *add_p = candidates->states[odd_even];
8ce3e4b4 1165 for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) {
1166 uint32_t search_mask = 0x000ffff0;
1167 uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even);
1168 if (p2 != NULL) {
1169 while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) {
a531720a 1170 if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0))
1171 || !nonces[best_first_bytes[0]].BitFlip[odd_even]) {
8ce3e4b4 1172 if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) {
f8ada309 1173 if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) {
a531720a 1174 *add_p++ = (*p1 << 4) | *p2;
1175 }
8ce3e4b4 1176 }
f8ada309 1177 }
8ce3e4b4 1178 p2++;
1179 }
1180 }
8ce3e4b4 1181 }
f8ada309 1182
a531720a 1183 // set end of list marker and len
1184 *add_p = 0xffffffff;
1185 candidates->len[odd_even] = add_p - candidates->states[odd_even];
f8ada309 1186
8ce3e4b4 1187 candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1));
1188
a531720a 1189 sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even];
1190 sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even];
1191
8ce3e4b4 1192 return 0;
1193}
1194
8ce3e4b4 1195static statelist_t *add_more_candidates(statelist_t *current_candidates)
1196{
1197 statelist_t *new_candidates = NULL;
1198 if (current_candidates == NULL) {
1199 if (candidates == NULL) {
1200 candidates = (statelist_t *)malloc(sizeof(statelist_t));
1201 }
1202 new_candidates = candidates;
1203 } else {
1204 new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t));
1205 }
1206 new_candidates->next = NULL;
1207 new_candidates->len[ODD_STATE] = 0;
1208 new_candidates->len[EVEN_STATE] = 0;
1209 new_candidates->states[ODD_STATE] = NULL;
1210 new_candidates->states[EVEN_STATE] = NULL;
1211 return new_candidates;
1212}
1213
8ce3e4b4 1214static void TestIfKeyExists(uint64_t key)
1215{
1216 struct Crypto1State *pcs;
1217 pcs = crypto1_create(key);
1218 crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true);
1219
1220 uint32_t state_odd = pcs->odd & 0x00ffffff;
1221 uint32_t state_even = pcs->even & 0x00ffffff;
f8ada309 1222 //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even);
8ce3e4b4 1223
f8ada309 1224 uint64_t count = 0;
8ce3e4b4 1225 for (statelist_t *p = candidates; p != NULL; p = p->next) {
f8ada309 1226 bool found_odd = false;
1227 bool found_even = false;
8ce3e4b4 1228 uint32_t *p_odd = p->states[ODD_STATE];
1229 uint32_t *p_even = p->states[EVEN_STATE];
1230 while (*p_odd != 0xffffffff) {
f8ada309 1231 if ((*p_odd & 0x00ffffff) == state_odd) {
1232 found_odd = true;
1233 break;
1234 }
8ce3e4b4 1235 p_odd++;
1236 }
1237 while (*p_even != 0xffffffff) {
f8ada309 1238 if ((*p_even & 0x00ffffff) == state_even) {
1239 found_even = true;
1240 }
8ce3e4b4 1241 p_even++;
1242 }
f8ada309 1243 count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]);
1244 if (found_odd && found_even) {
1245 PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.",
1246 count, log(count)/log(2),
1247 maximum_states, log(maximum_states)/log(2),
fe8042f2 1248 (count>>23)/60);
0d5ee8e2 1249 if (write_stats) {
1250 fprintf(fstats, "1\n");
1251 }
f8ada309 1252 crypto1_destroy(pcs);
1253 return;
1254 }
8ce3e4b4 1255 }
f8ada309 1256
1257 printf("Key NOT found!\n");
0d5ee8e2 1258 if (write_stats) {
1259 fprintf(fstats, "0\n");
1260 }
8ce3e4b4 1261 crypto1_destroy(pcs);
1262}
1263
8ce3e4b4 1264static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
1265{
1266 printf("Generating crypto1 state candidates... \n");
1267
1268 statelist_t *current_candidates = NULL;
1269 // estimate maximum candidate states
f8ada309 1270 maximum_states = 0;
8ce3e4b4 1271 for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) {
1272 for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) {
1273 if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) {
1274 maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8);
1275 }
1276 }
1277 }
5e32cf75 1278 printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
8ce3e4b4 1279
a531720a 1280 init_statelist_cache();
1281
8ce3e4b4 1282 for (uint16_t p = 0; p <= 16; p += 2) {
1283 for (uint16_t q = 0; q <= 16; q += 2) {
1284 if (p*(16-q) + (16-p)*q == sum_a0) {
1285 printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n",
1286 p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
1287 for (uint16_t r = 0; r <= 16; r += 2) {
1288 for (uint16_t s = 0; s <= 16; s += 2) {
1289 if (r*(16-s) + (16-r)*s == sum_a8) {
1290 current_candidates = add_more_candidates(current_candidates);
a531720a 1291 // check for the smallest partial statelist. Try this first - it might give 0 candidates
1292 // and eliminate the need to calculate the other part
1293 if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE])
1294 < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) {
8ce3e4b4 1295 add_matching_states(current_candidates, p, r, ODD_STATE);
a531720a 1296 if(current_candidates->len[ODD_STATE]) {
8ce3e4b4 1297 add_matching_states(current_candidates, q, s, EVEN_STATE);
a531720a 1298 } else {
1299 current_candidates->len[EVEN_STATE] = 0;
1300 uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t));
1301 *p = 0xffffffff;
1302 }
1303 } else {
1304 add_matching_states(current_candidates, q, s, EVEN_STATE);
1305 if(current_candidates->len[EVEN_STATE]) {
1306 add_matching_states(current_candidates, p, r, ODD_STATE);
1307 } else {
1308 current_candidates->len[ODD_STATE] = 0;
1309 uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t));
1310 *p = 0xffffffff;
1311 }
1312 }
1c38049b 1313 //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2));
1314 //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2));
8ce3e4b4 1315 }
1316 }
1317 }
1318 }
1319 }
1320 }
1321
1322
1323 maximum_states = 0;
1324 for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
1325 maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
1326 }
5e32cf75 1327 printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
0d5ee8e2 1328 if (write_stats) {
1329 if (maximum_states != 0) {
1330 fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0));
1331 } else {
1332 fprintf(fstats, "%1.1f;", 0.0);
1333 }
1334 }
1335}
1336
0d5ee8e2 1337static void free_candidates_memory(statelist_t *sl)
1338{
1339 if (sl == NULL) {
1340 return;
1341 } else {
1342 free_candidates_memory(sl->next);
1343 free(sl);
1344 }
1345}
1346
0d5ee8e2 1347static void free_statelist_cache(void)
1348{
1349 for (uint16_t i = 0; i < 17; i+=2) {
1350 for (uint16_t j = 0; j < 17; j+=2) {
1351 for (uint16_t k = 0; k < 2; k++) {
1352 free(sl_cache[i][j][k].sl);
1353 }
1354 }
1355 }
8ce3e4b4 1356}
1357
45c0c48c 1358uint64_t foundkey = 0;
3130ba4b 1359size_t keys_found = 0;
1360size_t bucket_count = 0;
1361statelist_t* buckets[128];
1362size_t total_states_tested = 0;
1363size_t thread_count = 4;
1364
1365// these bitsliced states will hold identical states in all slices
1366bitslice_t bitsliced_rollback_byte[ROLLBACK_SIZE];
1367
1368// arrays of bitsliced states with identical values in all slices
1369bitslice_t bitsliced_encrypted_nonces[NONCE_TESTS][STATE_SIZE];
1370bitslice_t bitsliced_encrypted_parity_bits[NONCE_TESTS][ROLLBACK_SIZE];
1371
1372#define EXACT_COUNT
1373
1374static const uint64_t crack_states_bitsliced(statelist_t *p){
1375 // the idea to roll back the half-states before combining them was suggested/explained to me by bla
1376 // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop
1377 uint64_t key = -1;
1378 uint8_t bSize = sizeof(bitslice_t);
1379
1380#ifdef EXACT_COUNT
1381 size_t bucket_states_tested = 0;
1382 size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES];
1383#else
1384 const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]);
1385#endif
1386
1387 bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES];
1388 size_t bitsliced_blocks = 0;
1389 uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE];
1390
1391 // bitslice all the even states
1392 for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){
1393
1394#ifdef __WIN32
1395 #ifdef __MINGW32__
1396 bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1397 #else
1398 bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize);
1399 #endif
1400#else
b01e7d20 1401 #ifdef __APPLE__
9d590832 1402 bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize);
1403 #else
3130ba4b 1404 bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize);
9d590832 1405 #endif
3130ba4b 1406#endif
1407
1408 if ( !lstate_p ) {
1409 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1410 return key;
1411 }
1412
1413 memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits
1414
1415 // bitslice even half-states
1416 const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES;
1417#ifdef EXACT_COUNT
1418 bucket_size[bitsliced_blocks] = max_slices;
1419#endif
1420 for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){
1421 uint32_t e = *(p_even+slice_idx);
1422 for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){
1423 // set even bits
1424 if(e&1){
1425 lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63);
1426 }
1427 }
1428 }
1429 // compute the rollback bits
1430 for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){
1431 // inlined crypto1_bs_lfsr_rollback
1432 const bitslice_value_t feedout = lstate_p[0].value;
1433 ++lstate_p;
1434 const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p);
1435 const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^
1436 lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^
1437 lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^
1438 lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^
1439 lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^
1440 lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value);
1441 lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value;
1442 }
1443 bitsliced_even_states[bitsliced_blocks++] = lstate_p;
1444 }
1445
1446 // bitslice every odd state to every block of even half-states with half-finished rollback
1447 for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){
1448 // early abort
1449 if(keys_found){
1450 goto out;
1451 }
1452
1453 // set the odd bits and compute rollback
1454 uint64_t o = (uint64_t) *p_odd;
1455 lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1);
1456 // pre-compute part of the odd feedback bits (minus rollback)
1457 bool odd_feedback_bit = parity(o&0x9ce5c);
1458
1459 crypto1_bs_rewind_a0();
1460 // set odd bits
1461 for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){
1462 if(o & 1){
1463 state_p[state_idx] = bs_ones;
1464 } else {
1465 state_p[state_idx] = bs_zeroes;
1466 }
1467 }
1468 const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value;
1469
1470 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1471 const bitslice_t const * restrict bitsliced_even_state = bitsliced_even_states[block_idx];
1472 size_t state_idx;
1473 // set even bits
1474 for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){
1475 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1476 }
1477 // set rollback bits
1478 uint64_t lo = o;
1479 for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){
1480 // set the odd bits and take in the odd rollback bits from the even states
1481 if(lo & 1){
1482 state_p[state_idx].value = ~bitsliced_even_state[state_idx].value;
1483 } else {
1484 state_p[state_idx] = bitsliced_even_state[state_idx];
1485 }
1486
1487 // set the even bits and take in the even rollback bits from the odd states
1488 if((lo >> 32) & 1){
1489 state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value;
1490 } else {
1491 state_p[1+state_idx] = bitsliced_even_state[1+state_idx];
1492 }
1493 }
1494
1495#ifdef EXACT_COUNT
1496 bucket_states_tested += bucket_size[block_idx];
1497#endif
1498 // pre-compute first keystream and feedback bit vectors
1499 const bitslice_value_t ksb = crypto1_bs_f20(state_p);
1500 const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits
1501 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1502 state_p[47-24].value ^ state_p[47-42].value);
1503
1504 // vector to contain test results (1 = passed, 0 = failed)
1505 bitslice_t results = bs_ones;
1506
1507 for(size_t tests = 0; tests < NONCE_TESTS; ++tests){
1508 size_t parity_bit_idx = 0;
1509 bitslice_value_t fb_bits = fbb;
1510 bitslice_value_t ks_bits = ksb;
1511 state_p = &states[KEYSTREAM_SIZE-1];
1512 bitslice_value_t parity_bit_vector = bs_zeroes.value;
1513
1514 // highest bit is transmitted/received first
1515 for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){
1516 // decrypt nonce bits
1517 const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value;
1518 const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits);
1519
1520 // compute real parity bits on the fly
1521 parity_bit_vector ^= decrypted_nonce_bit_vector;
1522
1523 // update state
1524 state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector);
1525
1526 // compute next keystream bit
1527 ks_bits = crypto1_bs_f20(state_p);
1528
1529 // for each byte:
1530 if((ks_idx&7) == 0){
1531 // get encrypted parity bits
1532 const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value;
1533
1534 // decrypt parity bits
1535 const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits);
1536
1537 // compare actual parity bits with decrypted parity bits and take count in results vector
1538 results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector);
1539
1540 // make sure we still have a match in our set
1541 // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){
1542
1543 // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ???
1544 // the short-circuiting also helps
1545 if(results.bytes64[0] == 0
1546#if MAX_BITSLICES > 64
1547 && results.bytes64[1] == 0
1548#endif
1549#if MAX_BITSLICES > 128
1550 && results.bytes64[2] == 0
1551 && results.bytes64[3] == 0
1552#endif
1553 ){
1554 goto stop_tests;
1555 }
1556 // this is about as fast but less portable (requires -std=gnu99)
1557 // asm goto ("ptest %1, %0\n\t"
1558 // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests);
1559 parity_bit_vector = bs_zeroes.value;
1560 }
1561 // compute next feedback bit vector
1562 fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
1563 state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
1564 state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
1565 state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
1566 state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
1567 state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
1568 }
1569 }
1570 // all nonce tests were successful: we've found the key in this block!
1571 state_t keys[MAX_BITSLICES];
1572 crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys);
1573 for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){
1574 if(get_vector_bit(results_idx, results)){
1575 key = keys[results_idx].value;
1576 goto out;
1577 }
1578 }
1579stop_tests:
1580 // prepare to set new states
1581 crypto1_bs_rewind_a0();
1582 continue;
1583 }
1584 }
1585
1586out:
1587 for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){
1588
1589#ifdef __WIN32
1590 #ifdef __MINGW32__
1591 __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1592 #else
1593 _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
1594 #endif
1595#else
2e350b19 1596 free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE);
3130ba4b 1597#endif
1598
1599 }
1600 __sync_fetch_and_add(&total_states_tested, bucket_states_tested);
1601 return key;
1602}
8ce3e4b4 1603
3130ba4b 1604static void* crack_states_thread(void* x){
1605 const size_t thread_id = (size_t)x;
1606 size_t current_bucket = thread_id;
1607 while(current_bucket < bucket_count){
1608 statelist_t * bucket = buckets[current_bucket];
1609 if(bucket){
1610 const uint64_t key = crack_states_bitsliced(bucket);
1611 if(key != -1){
3130ba4b 1612 __sync_fetch_and_add(&keys_found, 1);
45c0c48c 1613 __sync_fetch_and_add(&foundkey, key);
3130ba4b 1614 break;
1615 } else if(keys_found){
1616 break;
1617 } else {
1618 printf(".");
1619 fflush(stdout);
1620 }
1621 }
1622 current_bucket += thread_count;
1623 }
1624 return NULL;
1625}
cd777a05 1626
f8ada309 1627static void brute_force(void)
8ce3e4b4 1628{
f8ada309 1629 if (known_target_key != -1) {
1630 PrintAndLog("Looking for known target key in remaining key space...");
1631 TestIfKeyExists(known_target_key);
f8ada309 1632 } else {
3130ba4b 1633 PrintAndLog("Brute force phase starting.");
1634 time_t start, end;
1635 time(&start);
1636 keys_found = 0;
ddaecc08 1637 foundkey = 0;
1638
3130ba4b 1639 crypto1_bs_init();
1640
1641 PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
1642 PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
1643 // convert to 32 bit little-endian
ed69e099 1644 crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
1645
3130ba4b 1646 PrintAndLog("Bitslicing nonces...");
1647 for(size_t tests = 0; tests < NONCE_TESTS; tests++){
1648 uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
1649 uint8_t test_parity = brute_force_nonces[tests]->par_enc;
1650 // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
1651 crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
1652 // convert to 32 bit little-endian
1653 crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
ed69e099 1654 }
3130ba4b 1655 total_states_tested = 0;
1656
1657 // count number of states to go
1658 bucket_count = 0;
1659 for (statelist_t *p = candidates; p != NULL; p = p->next) {
1660 buckets[bucket_count] = p;
1661 bucket_count++;
1662 }
1663
1664#ifndef __WIN32
1665 thread_count = sysconf(_SC_NPROCESSORS_CONF);
cd777a05 1666 if ( thread_count < 1)
1667 thread_count = 1;
3130ba4b 1668#endif /* _WIN32 */
fd3be901 1669
3130ba4b 1670 pthread_t threads[thread_count];
1671
1672 // enumerate states using all hardware threads, each thread handles one bucket
1673 PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu32" states...", thread_count, bucket_count, maximum_states);
1674
1675 for(size_t i = 0; i < thread_count; i++){
1676 pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
1677 }
1678 for(size_t i = 0; i < thread_count; i++){
1679 pthread_join(threads[i], 0);
1680 }
1681
1682 time(&end);
1683 unsigned long elapsed_time = difftime(end, start);
21d359f6 1684 if(keys_found){
1685 PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %u seconds", total_states_tested, keys_found, elapsed_time);
45c0c48c 1686 PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
21d359f6 1687 } else {
1688 PrintAndLog("Fail! Tested %"PRIu32" states, in %u seconds", total_states_tested, elapsed_time);
1689 }
3130ba4b 1690 // reset this counter for the next call
1691 nonces_to_bruteforce = 0;
f8ada309 1692 }
f8ada309 1693}
1694
0d5ee8e2 1695int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
f8ada309 1696{
0d5ee8e2 1697 // initialize Random number generator
1698 time_t t;
1699 srand((unsigned) time(&t));
1700
f8ada309 1701 if (trgkey != NULL) {
1702 known_target_key = bytes_to_num(trgkey, 6);
1703 } else {
1704 known_target_key = -1;
1705 }
8ce3e4b4 1706
8ce3e4b4 1707 init_partial_statelists();
1708 init_BitFlip_statelist();
0d5ee8e2 1709 write_stats = false;
8ce3e4b4 1710
0d5ee8e2 1711 if (tests) {
1712 // set the correct locale for the stats printing
1713 setlocale(LC_ALL, "");
1714 write_stats = true;
1715 if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) {
1716 PrintAndLog("Could not create/open file hardnested_stats.txt");
1717 return 3;
1718 }
1719 for (uint32_t i = 0; i < tests; i++) {
1720 init_nonce_memory();
1721 simulate_acquire_nonces();
1722 Tests();
1723 printf("Sum(a0) = %d\n", first_byte_Sum);
1724 fprintf(fstats, "%d;", first_byte_Sum);
1725 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1726 brute_force();
1727 free_nonces_memory();
1728 free_statelist_cache();
1729 free_candidates_memory(candidates);
1730 candidates = NULL;
1731 }
1732 fclose(fstats);
1733 } else {
1734 init_nonce_memory();
b112787d 1735 if (nonce_file_read) { // use pre-acquired data from file nonces.bin
1736 if (read_nonce_file() != 0) {
1737 return 3;
1738 }
1739 Check_for_FilterFlipProperties();
1740 num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED);
1741 } else { // acquire nonces.
1742 uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow);
1743 if (is_OK != 0) {
1744 return is_OK;
1745 }
8ce3e4b4 1746 }
8ce3e4b4 1747
45c0c48c 1748 //Tests();
b112787d 1749
9d590832 1750 //PrintAndLog("");
1751 //PrintAndLog("Sum(a0) = %d", first_byte_Sum);
b112787d 1752 // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x",
1753 // best_first_bytes[0],
1754 // best_first_bytes[1],
1755 // best_first_bytes[2],
1756 // best_first_bytes[3],
1757 // best_first_bytes[4],
1758 // best_first_bytes[5],
1759 // best_first_bytes[6],
1760 // best_first_bytes[7],
1761 // best_first_bytes[8],
1762 // best_first_bytes[9] );
1763 PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
1764
1765 clock_t time1 = clock();
1766 generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
1767 time1 = clock() - time1;
1768 if ( time1 > 0 )
1769 PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
8ce3e4b4 1770
b112787d 1771 brute_force();
1772 free_nonces_memory();
1773 free_statelist_cache();
1774 free_candidates_memory(candidates);
1775 candidates = NULL;
1776 }
8ce3e4b4 1777 return 0;
1778}
1779
1780
Impressum, Datenschutz