]> git.zerfleddert.de Git - proxmark3-svn/blame - armsrc/appmain.c
CHG: Refactored the HF MFU udump/ucdump commands into one method.
[proxmark3-svn] / armsrc / appmain.c
CommitLineData
15c4dc5a 1//-----------------------------------------------------------------------------
15c4dc5a 2// Jonathan Westhues, Mar 2006
3// Edits by Gerhard de Koning Gans, Sep 2007 (##)
bd20f8f4 4//
5// This code is licensed to you under the terms of the GNU GPL, version 2 or,
6// at your option, any later version. See the LICENSE.txt file for the text of
7// the license.
8//-----------------------------------------------------------------------------
9// The main application code. This is the first thing called after start.c
10// executes.
15c4dc5a 11//-----------------------------------------------------------------------------
12
f38a1528 13#include "../common/usb_cdc.h"
14#include "../common/cmd.h"
902cb3c0 15
f38a1528 16#include "../include/proxmark3.h"
15c4dc5a 17#include "apps.h"
f7e3ed82 18#include "util.h"
9ab7a6c7 19#include "printf.h"
20#include "string.h"
9ab7a6c7 21#include <stdarg.h>
f7e3ed82 22
15c4dc5a 23#include "legicrf.h"
f38a1528 24#include "../include/hitag2.h"
f7e3ed82 25
72e930ef 26
15c4dc5a 27#ifdef WITH_LCD
902cb3c0 28 #include "LCD.h"
15c4dc5a 29#endif
30
15c4dc5a 31#define abs(x) ( ((x)<0) ? -(x) : (x) )
32
33//=============================================================================
34// A buffer where we can queue things up to be sent through the FPGA, for
35// any purpose (fake tag, as reader, whatever). We go MSB first, since that
36// is the order in which they go out on the wire.
37//=============================================================================
38
a501c82b 39#define TOSEND_BUFFER_SIZE (9*MAX_FRAME_SIZE + 1 + 1 + 2) // 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
40uint8_t ToSend[TOSEND_BUFFER_SIZE];
15c4dc5a 41int ToSendMax;
42static int ToSendBit;
43struct common_area common_area __attribute__((section(".commonarea")));
44
45void BufferClear(void)
46{
47 memset(BigBuf,0,sizeof(BigBuf));
48 Dbprintf("Buffer cleared (%i bytes)",sizeof(BigBuf));
49}
50
51void ToSendReset(void)
52{
53 ToSendMax = -1;
54 ToSendBit = 8;
55}
56
57void ToSendStuffBit(int b)
58{
59 if(ToSendBit >= 8) {
60 ToSendMax++;
61 ToSend[ToSendMax] = 0;
62 ToSendBit = 0;
63 }
64
65 if(b) {
66 ToSend[ToSendMax] |= (1 << (7 - ToSendBit));
67 }
68
69 ToSendBit++;
70
a501c82b 71 if(ToSendMax >= sizeof(ToSend)) {
15c4dc5a 72 ToSendBit = 0;
73 DbpString("ToSendStuffBit overflowed!");
74 }
75}
76
77//=============================================================================
78// Debug print functions, to go out over USB, to the usual PC-side client.
79//=============================================================================
80
81void DbpString(char *str)
82{
9440213d 83 byte_t len = strlen(str);
84 cmd_send(CMD_DEBUG_PRINT_STRING,len,0,0,(byte_t*)str,len);
15c4dc5a 85}
86
87#if 0
88void DbpIntegers(int x1, int x2, int x3)
89{
902cb3c0 90 cmd_send(CMD_DEBUG_PRINT_INTEGERS,x1,x2,x3,0,0);
15c4dc5a 91}
92#endif
93
94void Dbprintf(const char *fmt, ...) {
95// should probably limit size here; oh well, let's just use a big buffer
96 char output_string[128];
97 va_list ap;
98
99 va_start(ap, fmt);
100 kvsprintf(fmt, output_string, 10, ap);
101 va_end(ap);
e30c654b 102
15c4dc5a 103 DbpString(output_string);
104}
105
9455b51c 106// prints HEX & ASCII
d19929cb 107void Dbhexdump(int len, uint8_t *d, bool bAsci) {
9455b51c 108 int l=0,i;
109 char ascii[9];
d19929cb 110
9455b51c 111 while (len>0) {
112 if (len>8) l=8;
113 else l=len;
114
115 memcpy(ascii,d,l);
d19929cb 116 ascii[l]=0;
9455b51c 117
118 // filter safe ascii
d19929cb 119 for (i=0;i<l;i++)
9455b51c 120 if (ascii[i]<32 || ascii[i]>126) ascii[i]='.';
d19929cb 121
122 if (bAsci) {
123 Dbprintf("%-8s %*D",ascii,l,d," ");
124 } else {
125 Dbprintf("%*D",l,d," ");
126 }
127
9455b51c 128 len-=8;
129 d+=8;
130 }
131}
132
15c4dc5a 133//-----------------------------------------------------------------------------
134// Read an ADC channel and block till it completes, then return the result
135// in ADC units (0 to 1023). Also a routine to average 32 samples and
136// return that.
137//-----------------------------------------------------------------------------
138static int ReadAdc(int ch)
139{
f7e3ed82 140 uint32_t d;
15c4dc5a 141
142 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST;
143 AT91C_BASE_ADC->ADC_MR =
144 ADC_MODE_PRESCALE(32) |
145 ADC_MODE_STARTUP_TIME(16) |
146 ADC_MODE_SAMPLE_HOLD_TIME(8);
147 AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ch);
148
149 AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START;
150 while(!(AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ch)))
151 ;
152 d = AT91C_BASE_ADC->ADC_CDR[ch];
153
154 return d;
155}
156
9ca155ba 157int AvgAdc(int ch) // was static - merlok
15c4dc5a 158{
159 int i;
160 int a = 0;
161
162 for(i = 0; i < 32; i++) {
163 a += ReadAdc(ch);
164 }
165
166 return (a + 15) >> 5;
167}
168
169void MeasureAntennaTuning(void)
170{
d3499d36 171 uint8_t LF_Results[256];
9f693930 172 int i, adcval = 0, peak = 0, peakv = 0, peakf = 0; //ptr = 0
15c4dc5a 173 int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV
174
d19929cb 175 LED_B_ON();
15c4dc5a 176
177/*
178 * Sweeps the useful LF range of the proxmark from
179 * 46.8kHz (divisor=255) to 600kHz (divisor=19) and
180 * read the voltage in the antenna, the result left
181 * in the buffer is a graph which should clearly show
182 * the resonating frequency of your LF antenna
183 * ( hopefully around 95 if it is tuned to 125kHz!)
184 */
d19929cb 185
7cc204bf 186 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
b014c96d 187 FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
d3499d36 188 for (i=255; i>=19; i--) {
d19929cb 189 WDT_HIT();
15c4dc5a 190 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
191 SpinDelay(20);
192 // Vref = 3.3V, and a 10000:240 voltage divider on the input
193 // can measure voltages up to 137500 mV
194 adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10);
195 if (i==95) vLf125 = adcval; // voltage at 125Khz
196 if (i==89) vLf134 = adcval; // voltage at 134Khz
197
d3499d36 198 LF_Results[i] = adcval>>8; // scale int to fit in byte for graphing purposes
199 if(LF_Results[i] > peak) {
15c4dc5a 200 peakv = adcval;
d3499d36 201 peak = LF_Results[i];
15c4dc5a 202 peakf = i;
9f693930 203 //ptr = i;
15c4dc5a 204 }
205 }
206
d3499d36 207 for (i=18; i >= 0; i--) LF_Results[i] = 0;
208
d19929cb 209 LED_A_ON();
15c4dc5a 210 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 211 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 212 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
213 SpinDelay(20);
214 // Vref = 3300mV, and an 10:1 voltage divider on the input
215 // can measure voltages up to 33000 mV
216 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
217
d3499d36 218 cmd_send(CMD_MEASURED_ANTENNA_TUNING,vLf125|(vLf134<<16),vHf,peakf|(peakv<<16),LF_Results,256);
d19929cb 219 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
220 LED_A_OFF();
221 LED_B_OFF();
222 return;
15c4dc5a 223}
224
225void MeasureAntennaTuningHf(void)
226{
227 int vHf = 0; // in mV
228
229 DbpString("Measuring HF antenna, press button to exit");
230
231 for (;;) {
232 // Let the FPGA drive the high-frequency antenna around 13.56 MHz.
7cc204bf 233 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 234 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
235 SpinDelay(20);
236 // Vref = 3300mV, and an 10:1 voltage divider on the input
237 // can measure voltages up to 33000 mV
238 vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10;
e30c654b 239
15c4dc5a 240 Dbprintf("%d mV",vHf);
241 if (BUTTON_PRESS()) break;
242 }
243 DbpString("cancelled");
244}
245
246
247void SimulateTagHfListen(void)
248{
d19929cb 249 uint8_t *dest = (uint8_t *)BigBuf+FREE_BUFFER_OFFSET;
f7e3ed82 250 uint8_t v = 0;
15c4dc5a 251 int i;
252 int p = 0;
253
254 // We're using this mode just so that I can test it out; the simulated
255 // tag mode would work just as well and be simpler.
7cc204bf 256 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 257 FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
258
259 // We need to listen to the high-frequency, peak-detected path.
260 SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
261
262 FpgaSetupSsc();
263
264 i = 0;
265 for(;;) {
266 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
267 AT91C_BASE_SSC->SSC_THR = 0xff;
268 }
269 if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
f7e3ed82 270 uint8_t r = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
15c4dc5a 271
272 v <<= 1;
273 if(r & 1) {
274 v |= 1;
275 }
276 p++;
277
278 if(p >= 8) {
279 dest[i] = v;
280 v = 0;
281 p = 0;
282 i++;
283
d19929cb 284 if(i >= FREE_BUFFER_SIZE) {
15c4dc5a 285 break;
286 }
287 }
288 }
289 }
290 DbpString("simulate tag (now type bitsamples)");
291}
292
293void ReadMem(int addr)
294{
f7e3ed82 295 const uint8_t *data = ((uint8_t *)addr);
15c4dc5a 296
297 Dbprintf("%x: %02x %02x %02x %02x %02x %02x %02x %02x",
298 addr, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
299}
300
301/* osimage version information is linked in */
302extern struct version_information version_information;
303/* bootrom version information is pointed to from _bootphase1_version_pointer */
304extern char *_bootphase1_version_pointer, _flash_start, _flash_end;
305void SendVersion(void)
306{
95e63594 307 char temp[512]; /* Limited data payload in USB packets */
15c4dc5a 308 DbpString("Prox/RFID mark3 RFID instrument");
e30c654b 309
310 /* Try to find the bootrom version information. Expect to find a pointer at
15c4dc5a 311 * symbol _bootphase1_version_pointer, perform slight sanity checks on the
312 * pointer, then use it.
313 */
314 char *bootrom_version = *(char**)&_bootphase1_version_pointer;
315 if( bootrom_version < &_flash_start || bootrom_version >= &_flash_end ) {
316 DbpString("bootrom version information appears invalid");
317 } else {
318 FormatVersionInformation(temp, sizeof(temp), "bootrom: ", bootrom_version);
319 DbpString(temp);
320 }
e30c654b 321
15c4dc5a 322 FormatVersionInformation(temp, sizeof(temp), "os: ", &version_information);
323 DbpString(temp);
e30c654b 324
15c4dc5a 325 FpgaGatherVersion(temp, sizeof(temp));
326 DbpString(temp);
4f269f63 327 // Send Chip ID
328 cmd_send(CMD_ACK,*(AT91C_DBGU_CIDR),0,0,NULL,0);
15c4dc5a 329}
330
331#ifdef WITH_LF
332// samy's sniff and repeat routine
333void SamyRun()
334{
335 DbpString("Stand-alone mode! No PC necessary.");
7cc204bf 336 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 337
338 // 3 possible options? no just 2 for now
339#define OPTS 2
340
341 int high[OPTS], low[OPTS];
342
343 // Oooh pretty -- notify user we're in elite samy mode now
344 LED(LED_RED, 200);
345 LED(LED_ORANGE, 200);
346 LED(LED_GREEN, 200);
347 LED(LED_ORANGE, 200);
348 LED(LED_RED, 200);
349 LED(LED_ORANGE, 200);
350 LED(LED_GREEN, 200);
351 LED(LED_ORANGE, 200);
352 LED(LED_RED, 200);
353
354 int selected = 0;
355 int playing = 0;
72e930ef 356 int cardRead = 0;
15c4dc5a 357
358 // Turn on selected LED
359 LED(selected + 1, 0);
360
361 for (;;)
362 {
6e82300d 363 usb_poll();
95e63594 364 WDT_HIT();
15c4dc5a 365
366 // Was our button held down or pressed?
367 int button_pressed = BUTTON_HELD(1000);
368 SpinDelay(300);
369
370 // Button was held for a second, begin recording
72e930ef 371 if (button_pressed > 0 && cardRead == 0)
15c4dc5a 372 {
373 LEDsoff();
374 LED(selected + 1, 0);
375 LED(LED_RED2, 0);
376
377 // record
378 DbpString("Starting recording");
379
380 // wait for button to be released
381 while(BUTTON_PRESS())
382 WDT_HIT();
383
384 /* need this delay to prevent catching some weird data */
385 SpinDelay(500);
386
387 CmdHIDdemodFSK(1, &high[selected], &low[selected], 0);
388 Dbprintf("Recorded %x %x %x", selected, high[selected], low[selected]);
389
390 LEDsoff();
391 LED(selected + 1, 0);
392 // Finished recording
393
394 // If we were previously playing, set playing off
395 // so next button push begins playing what we recorded
396 playing = 0;
72e930ef 397
398 cardRead = 1;
399
400 }
401
402 else if (button_pressed > 0 && cardRead == 1)
403 {
404 LEDsoff();
405 LED(selected + 1, 0);
406 LED(LED_ORANGE, 0);
407
408 // record
409 Dbprintf("Cloning %x %x %x", selected, high[selected], low[selected]);
410
411 // wait for button to be released
412 while(BUTTON_PRESS())
413 WDT_HIT();
414
415 /* need this delay to prevent catching some weird data */
416 SpinDelay(500);
417
418 CopyHIDtoT55x7(high[selected], low[selected], 0, 0);
419 Dbprintf("Cloned %x %x %x", selected, high[selected], low[selected]);
420
421 LEDsoff();
422 LED(selected + 1, 0);
423 // Finished recording
424
425 // If we were previously playing, set playing off
426 // so next button push begins playing what we recorded
427 playing = 0;
428
429 cardRead = 0;
430
15c4dc5a 431 }
432
433 // Change where to record (or begin playing)
434 else if (button_pressed)
435 {
436 // Next option if we were previously playing
437 if (playing)
438 selected = (selected + 1) % OPTS;
439 playing = !playing;
440
441 LEDsoff();
442 LED(selected + 1, 0);
443
444 // Begin transmitting
445 if (playing)
446 {
447 LED(LED_GREEN, 0);
448 DbpString("Playing");
449 // wait for button to be released
450 while(BUTTON_PRESS())
451 WDT_HIT();
452 Dbprintf("%x %x %x", selected, high[selected], low[selected]);
453 CmdHIDsimTAG(high[selected], low[selected], 0);
454 DbpString("Done playing");
455 if (BUTTON_HELD(1000) > 0)
456 {
457 DbpString("Exiting");
458 LEDsoff();
459 return;
460 }
461
462 /* We pressed a button so ignore it here with a delay */
463 SpinDelay(300);
464
465 // when done, we're done playing, move to next option
466 selected = (selected + 1) % OPTS;
467 playing = !playing;
468 LEDsoff();
469 LED(selected + 1, 0);
470 }
471 else
472 while(BUTTON_PRESS())
473 WDT_HIT();
474 }
475 }
476}
477#endif
478
479/*
480OBJECTIVE
481Listen and detect an external reader. Determine the best location
482for the antenna.
483
484INSTRUCTIONS:
485Inside the ListenReaderField() function, there is two mode.
486By default, when you call the function, you will enter mode 1.
487If you press the PM3 button one time, you will enter mode 2.
488If you press the PM3 button a second time, you will exit the function.
489
490DESCRIPTION OF MODE 1:
491This mode just listens for an external reader field and lights up green
492for HF and/or red for LF. This is the original mode of the detectreader
493function.
494
495DESCRIPTION OF MODE 2:
496This mode will visually represent, using the LEDs, the actual strength of the
497current compared to the maximum current detected. Basically, once you know
498what kind of external reader is present, it will help you spot the best location to place
499your antenna. You will probably not get some good results if there is a LF and a HF reader
500at the same place! :-)
501
502LIGHT SCHEME USED:
503*/
504static const char LIGHT_SCHEME[] = {
505 0x0, /* ---- | No field detected */
506 0x1, /* X--- | 14% of maximum current detected */
507 0x2, /* -X-- | 29% of maximum current detected */
508 0x4, /* --X- | 43% of maximum current detected */
509 0x8, /* ---X | 57% of maximum current detected */
510 0xC, /* --XX | 71% of maximum current detected */
511 0xE, /* -XXX | 86% of maximum current detected */
512 0xF, /* XXXX | 100% of maximum current detected */
513};
514static const int LIGHT_LEN = sizeof(LIGHT_SCHEME)/sizeof(LIGHT_SCHEME[0]);
515
516void ListenReaderField(int limit)
517{
518 int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0, lf_max;
519 int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0, hf_max;
520 int mode=1, display_val, display_max, i;
521
522#define LF_ONLY 1
523#define HF_ONLY 2
524
525 LEDsoff();
526
527 lf_av=lf_max=ReadAdc(ADC_CHAN_LF);
528
529 if(limit != HF_ONLY) {
530 Dbprintf("LF 125/134 Baseline: %d", lf_av);
531 lf_baseline = lf_av;
532 }
533
534 hf_av=hf_max=ReadAdc(ADC_CHAN_HF);
535
536 if (limit != LF_ONLY) {
537 Dbprintf("HF 13.56 Baseline: %d", hf_av);
538 hf_baseline = hf_av;
539 }
540
541 for(;;) {
542 if (BUTTON_PRESS()) {
543 SpinDelay(500);
544 switch (mode) {
545 case 1:
546 mode=2;
547 DbpString("Signal Strength Mode");
548 break;
549 case 2:
550 default:
551 DbpString("Stopped");
552 LEDsoff();
553 return;
554 break;
555 }
556 }
557 WDT_HIT();
558
559 if (limit != HF_ONLY) {
560 if(mode==1) {
561 if (abs(lf_av - lf_baseline) > 10) LED_D_ON();
562 else LED_D_OFF();
563 }
e30c654b 564
15c4dc5a 565 ++lf_count;
566 lf_av_new= ReadAdc(ADC_CHAN_LF);
567 // see if there's a significant change
568 if(abs(lf_av - lf_av_new) > 10) {
569 Dbprintf("LF 125/134 Field Change: %x %x %x", lf_av, lf_av_new, lf_count);
570 lf_av = lf_av_new;
571 if (lf_av > lf_max)
572 lf_max = lf_av;
573 lf_count= 0;
574 }
575 }
576
577 if (limit != LF_ONLY) {
578 if (mode == 1){
579 if (abs(hf_av - hf_baseline) > 10) LED_B_ON();
580 else LED_B_OFF();
581 }
e30c654b 582
15c4dc5a 583 ++hf_count;
584 hf_av_new= ReadAdc(ADC_CHAN_HF);
585 // see if there's a significant change
586 if(abs(hf_av - hf_av_new) > 10) {
587 Dbprintf("HF 13.56 Field Change: %x %x %x", hf_av, hf_av_new, hf_count);
588 hf_av = hf_av_new;
589 if (hf_av > hf_max)
590 hf_max = hf_av;
591 hf_count= 0;
592 }
593 }
e30c654b 594
15c4dc5a 595 if(mode == 2) {
596 if (limit == LF_ONLY) {
597 display_val = lf_av;
598 display_max = lf_max;
599 } else if (limit == HF_ONLY) {
600 display_val = hf_av;
601 display_max = hf_max;
602 } else { /* Pick one at random */
603 if( (hf_max - hf_baseline) > (lf_max - lf_baseline) ) {
604 display_val = hf_av;
605 display_max = hf_max;
606 } else {
607 display_val = lf_av;
608 display_max = lf_max;
609 }
610 }
611 for (i=0; i<LIGHT_LEN; i++) {
612 if (display_val >= ((display_max/LIGHT_LEN)*i) && display_val <= ((display_max/LIGHT_LEN)*(i+1))) {
613 if (LIGHT_SCHEME[i] & 0x1) LED_C_ON(); else LED_C_OFF();
614 if (LIGHT_SCHEME[i] & 0x2) LED_A_ON(); else LED_A_OFF();
615 if (LIGHT_SCHEME[i] & 0x4) LED_B_ON(); else LED_B_OFF();
616 if (LIGHT_SCHEME[i] & 0x8) LED_D_ON(); else LED_D_OFF();
617 break;
618 }
619 }
620 }
621 }
622}
623
f7e3ed82 624void UsbPacketReceived(uint8_t *packet, int len)
15c4dc5a 625{
626 UsbCommand *c = (UsbCommand *)packet;
15c4dc5a 627
313ee67e 628 //Dbprintf("received %d bytes, with command: 0x%04x and args: %d %d %d",len,c->cmd,c->arg[0],c->arg[1],c->arg[2]);
902cb3c0 629
15c4dc5a 630 switch(c->cmd) {
631#ifdef WITH_LF
632 case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K:
633 AcquireRawAdcSamples125k(c->arg[0]);
1c611bbd 634 cmd_send(CMD_ACK,0,0,0,0,0);
15c4dc5a 635 break;
15c4dc5a 636 case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K:
637 ModThenAcquireRawAdcSamples125k(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
638 break;
b014c96d 639 case CMD_LF_SNOOP_RAW_ADC_SAMPLES:
640 SnoopLFRawAdcSamples(c->arg[0], c->arg[1]);
641 cmd_send(CMD_ACK,0,0,0,0,0);
642 break;
7e67e42f 643 case CMD_HID_DEMOD_FSK:
a501c82b 644 CmdHIDdemodFSK(c->arg[0], 0, 0, 1);
7e67e42f 645 break;
646 case CMD_HID_SIM_TAG:
a501c82b 647 CmdHIDsimTAG(c->arg[0], c->arg[1], 1);
7e67e42f 648 break;
a501c82b 649 case CMD_HID_CLONE_TAG:
1c611bbd 650 CopyHIDtoT55x7(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
7e67e42f 651 break;
a1f3bb12 652 case CMD_IO_DEMOD_FSK:
a501c82b 653 CmdIOdemodFSK(c->arg[0], 0, 0, 1);
a1f3bb12 654 break;
a501c82b 655 case CMD_IO_CLONE_TAG:
a1f3bb12 656 CopyIOtoT55x7(c->arg[0], c->arg[1], c->d.asBytes[0]);
657 break;
6ff6ade2 658 case CMD_EM410X_DEMOD:
659 CmdEM410xdemod(c->arg[0], 0, 0, 1);
660 break;
2d4eae76 661 case CMD_EM410X_WRITE_TAG:
662 WriteEM410x(c->arg[0], c->arg[1], c->arg[2]);
663 break;
7e67e42f 664 case CMD_READ_TI_TYPE:
665 ReadTItag();
666 break;
667 case CMD_WRITE_TI_TYPE:
668 WriteTItag(c->arg[0],c->arg[1],c->arg[2]);
669 break;
670 case CMD_SIMULATE_TAG_125K:
a61b4976 671 SimulateTagLowFrequency(c->arg[0], c->arg[1], 0);
a501c82b 672 //SimulateTagLowFrequencyA(c->arg[0], c->arg[1]);
7e67e42f 673 break;
674 case CMD_LF_SIMULATE_BIDIR:
675 SimulateTagLowFrequencyBidir(c->arg[0], c->arg[1]);
676 break;
a501c82b 677 case CMD_INDALA_CLONE_TAG:
2414f978 678 CopyIndala64toT55x7(c->arg[0], c->arg[1]);
679 break;
a501c82b 680 case CMD_INDALA_CLONE_TAG_L:
2414f978 681 CopyIndala224toT55x7(c->d.asDwords[0], c->d.asDwords[1], c->d.asDwords[2], c->d.asDwords[3], c->d.asDwords[4], c->d.asDwords[5], c->d.asDwords[6]);
682 break;
1c611bbd 683 case CMD_T55XX_READ_BLOCK:
684 T55xxReadBlock(c->arg[1], c->arg[2],c->d.asBytes[0]);
685 break;
686 case CMD_T55XX_WRITE_BLOCK:
687 T55xxWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
688 break;
a501c82b 689 case CMD_T55XX_READ_TRACE:
1c611bbd 690 T55xxReadTrace();
691 break;
a501c82b 692 case CMD_PCF7931_READ:
1c611bbd 693 ReadPCF7931();
694 cmd_send(CMD_ACK,0,0,0,0,0);
1c611bbd 695 break;
696 case CMD_EM4X_READ_WORD:
697 EM4xReadWord(c->arg[1], c->arg[2],c->d.asBytes[0]);
698 break;
699 case CMD_EM4X_WRITE_WORD:
700 EM4xWriteWord(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes[0]);
701 break;
15c4dc5a 702#endif
703
d19929cb 704#ifdef WITH_HITAG
705 case CMD_SNOOP_HITAG: // Eavesdrop Hitag tag, args = type
706 SnoopHitag(c->arg[0]);
707 break;
708 case CMD_SIMULATE_HITAG: // Simulate Hitag tag, args = memory content
709 SimulateHitagTag((bool)c->arg[0],(byte_t*)c->d.asBytes);
710 break;
711 case CMD_READER_HITAG: // Reader for Hitag tags, args = type and function
712 ReaderHitag((hitag_function)c->arg[0],(hitag_data*)c->d.asBytes);
713 break;
714#endif
715
15c4dc5a 716#ifdef WITH_ISO15693
717 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693:
718 AcquireRawAdcSamplesIso15693();
719 break;
9455b51c 720 case CMD_RECORD_RAW_ADC_SAMPLES_ISO_15693:
721 RecordRawAdcSamplesIso15693();
722 break;
723
724 case CMD_ISO_15693_COMMAND:
725 DirectTag15693Command(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
726 break;
727
728 case CMD_ISO_15693_FIND_AFI:
729 BruteforceIso15693Afi(c->arg[0]);
730 break;
731
732 case CMD_ISO_15693_DEBUG:
733 SetDebugIso15693(c->arg[0]);
734 break;
15c4dc5a 735
15c4dc5a 736 case CMD_READER_ISO_15693:
737 ReaderIso15693(c->arg[0]);
738 break;
7e67e42f 739 case CMD_SIMTAG_ISO_15693:
3649b640 740 SimTagIso15693(c->arg[0], c->d.asBytes);
7e67e42f 741 break;
15c4dc5a 742#endif
743
7e67e42f 744#ifdef WITH_LEGICRF
745 case CMD_SIMULATE_TAG_LEGIC_RF:
746 LegicRfSimulate(c->arg[0], c->arg[1], c->arg[2]);
747 break;
3612a8a8 748
7e67e42f 749 case CMD_WRITER_LEGIC_RF:
750 LegicRfWriter(c->arg[1], c->arg[0]);
751 break;
3612a8a8 752
15c4dc5a 753 case CMD_READER_LEGIC_RF:
754 LegicRfReader(c->arg[0], c->arg[1]);
755 break;
15c4dc5a 756#endif
757
758#ifdef WITH_ISO14443b
759 case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443:
760 AcquireRawAdcSamplesIso14443(c->arg[0]);
761 break;
15c4dc5a 762 case CMD_READ_SRI512_TAG:
7cf3ef20 763 ReadSTMemoryIso14443(0x0F);
15c4dc5a 764 break;
7e67e42f 765 case CMD_READ_SRIX4K_TAG:
7cf3ef20 766 ReadSTMemoryIso14443(0x7F);
7e67e42f 767 break;
768 case CMD_SNOOP_ISO_14443:
769 SnoopIso14443();
770 break;
771 case CMD_SIMULATE_TAG_ISO_14443:
772 SimulateIso14443Tag();
773 break;
7cf3ef20 774 case CMD_ISO_14443B_COMMAND:
775 SendRawCommand14443B(c->arg[0],c->arg[1],c->arg[2],c->d.asBytes);
776 break;
15c4dc5a 777#endif
778
779#ifdef WITH_ISO14443a
7e67e42f 780 case CMD_SNOOP_ISO_14443a:
5cd9ec01 781 SnoopIso14443a(c->arg[0]);
7e67e42f 782 break;
15c4dc5a 783 case CMD_READER_ISO_14443a:
902cb3c0 784 ReaderIso14443a(c);
15c4dc5a 785 break;
7e67e42f 786 case CMD_SIMULATE_TAG_ISO_14443a:
28afbd2b 787 SimulateIso14443aTag(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes); // ## Simulate iso14443a tag - pass tag type & UID
7e67e42f 788 break;
95e63594 789
5acd09bd 790 case CMD_EPA_PACE_COLLECT_NONCE:
902cb3c0 791 EPA_PACE_Collect_Nonce(c);
5acd09bd 792 break;
7e67e42f 793
95e63594 794 // case CMD_EPA_:
795 // EpaFoo(c);
796 // break;
797
15c4dc5a 798 case CMD_READER_MIFARE:
1c611bbd 799 ReaderMifare(c->arg[0]);
15c4dc5a 800 break;
20f9a2a1
M
801 case CMD_MIFARE_READBL:
802 MifareReadBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
803 break;
981bd429 804 case CMD_MIFAREU_READBL:
805 MifareUReadBlock(c->arg[0],c->d.asBytes);
806 break;
f38a1528 807 case CMD_MIFAREUC_AUTH1:
808 MifareUC_Auth1(c->arg[0],c->d.asBytes);
809 break;
810 case CMD_MIFAREUC_AUTH2:
811 MifareUC_Auth2(c->arg[0],c->d.asBytes);
812 break;
981bd429 813 case CMD_MIFAREU_READCARD:
f38a1528 814 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
815 break;
816 case CMD_MIFAREUC_READCARD:
817 MifareUReadCard(c->arg[0],c->arg[1],c->d.asBytes);
981bd429 818 break;
20f9a2a1
M
819 case CMD_MIFARE_READSC:
820 MifareReadSector(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
821 break;
822 case CMD_MIFARE_WRITEBL:
823 MifareWriteBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
824 break;
981bd429 825 case CMD_MIFAREU_WRITEBL_COMPAT:
826 MifareUWriteBlock(c->arg[0], c->d.asBytes);
827 break;
828 case CMD_MIFAREU_WRITEBL:
829 MifareUWriteBlock_Special(c->arg[0], c->d.asBytes);
830 break;
20f9a2a1
M
831 case CMD_MIFARE_NESTED:
832 MifareNested(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
f397b5cc
M
833 break;
834 case CMD_MIFARE_CHKKEYS:
835 MifareChkKeys(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
20f9a2a1
M
836 break;
837 case CMD_SIMULATE_MIFARE_CARD:
838 Mifare1ksim(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
839 break;
8556b852
M
840
841 // emulator
842 case CMD_MIFARE_SET_DBGMODE:
843 MifareSetDbgLvl(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
844 break;
845 case CMD_MIFARE_EML_MEMCLR:
846 MifareEMemClr(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
847 break;
848 case CMD_MIFARE_EML_MEMSET:
849 MifareEMemSet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
850 break;
851 case CMD_MIFARE_EML_MEMGET:
852 MifareEMemGet(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
853 break;
854 case CMD_MIFARE_EML_CARDLOAD:
855 MifareECardLoad(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
0675f200
M
856 break;
857
858 // Work with "magic Chinese" card
d52e4e88 859 case CMD_MIFARE_CSETBLOCK:
0675f200 860 MifareCSetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
545a1f38 861 break;
d52e4e88 862 case CMD_MIFARE_CGETBLOCK:
545a1f38 863 MifareCGetBlock(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
8556b852 864 break;
d52e4e88 865 case CMD_MIFARE_CIDENT:
866 MifareCIdent();
867 break;
b62a5a84
M
868
869 // mifare sniffer
870 case CMD_MIFARE_SNIFFER:
5cd9ec01 871 SniffMifare(c->arg[0]);
b62a5a84 872 break;
f38a1528 873
874 // mifare desfire
875 case CMD_MIFARE_DESFIRE_READBL:
876 break;
877 case CMD_MIFARE_DESFIRE_WRITEBL:
878 break;
879 case CMD_MIFARE_DESFIRE_AUTH1:
880 MifareDES_Auth1(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
881 break;
882 case CMD_MIFARE_DESFIRE_AUTH2:
f6c18637 883 //MifareDES_Auth2(c->arg[0],c->d.asBytes);
f38a1528 884 break;
885 // case CMD_MIFARE_DES_READER:
886 // ReaderMifareDES(c->arg[0], c->arg[1], c->d.asBytes);
313ee67e 887 //break;
f38a1528 888 case CMD_MIFARE_DESFIRE_INFO:
889 MifareDesfireGetInformation();
890 break;
313ee67e 891 case CMD_MIFARE_DESFIRE:
892 MifareSendCommand(c->arg[0], c->arg[1], c->d.asBytes);
893 break;
894
20f9a2a1
M
895#endif
896
7e67e42f 897#ifdef WITH_ICLASS
cee5a30d 898 // Makes use of ISO14443a FPGA Firmware
899 case CMD_SNOOP_ICLASS:
900 SnoopIClass();
901 break;
1e262141 902 case CMD_SIMULATE_TAG_ICLASS:
ff7bb4ef 903 SimulateIClass(c->arg[0], c->arg[1], c->arg[2], c->d.asBytes);
1e262141 904 break;
905 case CMD_READER_ICLASS:
906 ReaderIClass(c->arg[0]);
907 break;
f38a1528 908 case CMD_READER_ICLASS_REPLAY:
909 ReaderIClass_Replay(c->arg[0], c->d.asBytes);
910 break;
cee5a30d 911#endif
912
15c4dc5a 913 case CMD_SIMULATE_TAG_HF_LISTEN:
914 SimulateTagHfListen();
915 break;
916
7e67e42f 917 case CMD_BUFF_CLEAR:
918 BufferClear();
15c4dc5a 919 break;
15c4dc5a 920
921 case CMD_MEASURE_ANTENNA_TUNING:
922 MeasureAntennaTuning();
923 break;
924
925 case CMD_MEASURE_ANTENNA_TUNING_HF:
926 MeasureAntennaTuningHf();
927 break;
928
929 case CMD_LISTEN_READER_FIELD:
930 ListenReaderField(c->arg[0]);
931 break;
932
15c4dc5a 933 case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control
934 FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
935 SpinDelay(200);
936 LED_D_OFF(); // LED D indicates field ON or OFF
937 break;
938
1c611bbd 939 case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K:
902cb3c0 940
1c611bbd 941 LED_B_ON();
942 for(size_t i=0; i<c->arg[1]; i += USB_CMD_DATA_SIZE) {
943 size_t len = MIN((c->arg[1] - i),USB_CMD_DATA_SIZE);
944 cmd_send(CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K,i,len,0,((byte_t*)BigBuf)+c->arg[0]+i,len);
945 }
946 // Trigger a finish downloading signal with an ACK frame
947 cmd_send(CMD_ACK,0,0,0,0,0);
d3b1f4e4 948 LED_B_OFF();
1c611bbd 949 break;
15c4dc5a 950
951 case CMD_DOWNLOADED_SIM_SAMPLES_125K: {
f7e3ed82 952 uint8_t *b = (uint8_t *)BigBuf;
7c756d68 953 memcpy(b+c->arg[0], c->d.asBytes, USB_CMD_DATA_SIZE);
1c611bbd 954 cmd_send(CMD_ACK,0,0,0,0,0);
955 break;
956 }
15c4dc5a 957 case CMD_READ_MEM:
958 ReadMem(c->arg[0]);
959 break;
960
961 case CMD_SET_LF_DIVISOR:
7cc204bf 962 FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
15c4dc5a 963 FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->arg[0]);
964 break;
965
966 case CMD_SET_ADC_MUX:
967 switch(c->arg[0]) {
968 case 0: SetAdcMuxFor(GPIO_MUXSEL_LOPKD); break;
969 case 1: SetAdcMuxFor(GPIO_MUXSEL_LORAW); break;
970 case 2: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); break;
971 case 3: SetAdcMuxFor(GPIO_MUXSEL_HIRAW); break;
972 }
973 break;
974
975 case CMD_VERSION:
976 SendVersion();
977 break;
978
15c4dc5a 979#ifdef WITH_LCD
980 case CMD_LCD_RESET:
981 LCDReset();
982 break;
983 case CMD_LCD:
984 LCDSend(c->arg[0]);
985 break;
986#endif
987 case CMD_SETUP_WRITE:
988 case CMD_FINISH_WRITE:
1c611bbd 989 case CMD_HARDWARE_RESET:
990 usb_disable();
15c4dc5a 991 SpinDelay(1000);
992 SpinDelay(1000);
993 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
994 for(;;) {
995 // We're going to reset, and the bootrom will take control.
996 }
1c611bbd 997 break;
15c4dc5a 998
1c611bbd 999 case CMD_START_FLASH:
15c4dc5a 1000 if(common_area.flags.bootrom_present) {
1001 common_area.command = COMMON_AREA_COMMAND_ENTER_FLASH_MODE;
1002 }
1c611bbd 1003 usb_disable();
15c4dc5a 1004 AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST;
1005 for(;;);
1c611bbd 1006 break;
e30c654b 1007
15c4dc5a 1008 case CMD_DEVICE_INFO: {
902cb3c0 1009 uint32_t dev_info = DEVICE_INFO_FLAG_OSIMAGE_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_OS;
1010 if(common_area.flags.bootrom_present) dev_info |= DEVICE_INFO_FLAG_BOOTROM_PRESENT;
1c611bbd 1011 cmd_send(CMD_DEVICE_INFO,dev_info,0,0,0,0);
1012 break;
1013 }
1014 default:
15c4dc5a 1015 Dbprintf("%s: 0x%04x","unknown command:",c->cmd);
1c611bbd 1016 break;
15c4dc5a 1017 }
1018}
1019
1020void __attribute__((noreturn)) AppMain(void)
1021{
1022 SpinDelay(100);
e30c654b 1023
15c4dc5a 1024 if(common_area.magic != COMMON_AREA_MAGIC || common_area.version != 1) {
1025 /* Initialize common area */
1026 memset(&common_area, 0, sizeof(common_area));
1027 common_area.magic = COMMON_AREA_MAGIC;
1028 common_area.version = 1;
1029 }
1030 common_area.flags.osimage_present = 1;
1031
1032 LED_D_OFF();
1033 LED_C_OFF();
1034 LED_B_OFF();
1035 LED_A_OFF();
1036
b44e5233 1037 // Init USB device
313ee67e 1038 usb_enable();
15c4dc5a 1039
1040 // The FPGA gets its clock from us from PCK0 output, so set that up.
1041 AT91C_BASE_PIOA->PIO_BSR = GPIO_PCK0;
1042 AT91C_BASE_PIOA->PIO_PDR = GPIO_PCK0;
1043 AT91C_BASE_PMC->PMC_SCER = AT91C_PMC_PCK0;
1044 // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz
1045 AT91C_BASE_PMC->PMC_PCKR[0] = AT91C_PMC_CSS_PLL_CLK |
1046 AT91C_PMC_PRES_CLK_4;
1047 AT91C_BASE_PIOA->PIO_OER = GPIO_PCK0;
1048
1049 // Reset SPI
1050 AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SWRST;
1051 // Reset SSC
1052 AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST;
1053
1054 // Load the FPGA image, which we have stored in our flash.
7cc204bf 1055 // (the HF version by default)
1056 FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
15c4dc5a 1057
9ca155ba 1058 StartTickCount();
902cb3c0 1059
15c4dc5a 1060#ifdef WITH_LCD
15c4dc5a 1061 LCDInit();
15c4dc5a 1062#endif
1063
902cb3c0 1064 byte_t rx[sizeof(UsbCommand)];
1065 size_t rx_len;
1066
15c4dc5a 1067 for(;;) {
313ee67e 1068 if (usb_poll()) {
1069 rx_len = usb_read(rx,sizeof(UsbCommand));
1070 if (rx_len) {
1071 UsbPacketReceived(rx,rx_len);
1072 }
1073 }
15c4dc5a 1074 WDT_HIT();
1075
1076#ifdef WITH_LF
1077 if (BUTTON_HELD(1000) > 0)
1078 SamyRun();
1079#endif
1080 }
1081}
Impressum, Datenschutz