3130ba4b |
1 | // Bit-sliced Crypto-1 implementation |
2 | // The cipher states are stored with the least significant bit first, hence all bit indexes are reversed here |
3 | /* |
4 | Copyright (c) 2015-2016 Aram Verstegen |
5 | |
6 | Permission is hereby granted, free of charge, to any person obtaining a copy |
7 | of this software and associated documentation files (the "Software"), to deal |
8 | in the Software without restriction, including without limitation the rights |
9 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
10 | copies of the Software, and to permit persons to whom the Software is |
11 | furnished to do so, subject to the following conditions: |
12 | |
13 | The above copyright notice and this permission notice shall be included in |
14 | all copies or substantial portions of the Software. |
15 | |
16 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
17 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
18 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
19 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
20 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
21 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
22 | THE SOFTWARE. |
23 | */ |
24 | |
25 | #include "crypto1_bs.h" |
26 | #include <inttypes.h> |
27 | #define __STDC_FORMAT_MACROS |
28 | #define llx PRIx64 |
29 | #define lli PRIi64 |
30 | #define lu PRIu32 |
31 | |
32 | // The following functions use this global or thread-local state |
33 | // It is sized to fit exactly KEYSTREAM_SIZE more states next to the initial state |
34 | __thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE]; |
35 | __thread bitslice_t * restrict state_p; |
36 | |
37 | void crypto1_bs_init(){ |
38 | // initialize constant one and zero bit vectors |
39 | memset(bs_ones.bytes, 0xff, VECTOR_SIZE); |
40 | memset(bs_zeroes.bytes, 0x00, VECTOR_SIZE); |
41 | } |
42 | |
43 | // The following functions have side effects on 48 bitslices at the state_p pointer |
44 | // use the crypto1_bs_rewind_* macros to (re-)initialize them as needed |
45 | |
46 | inline const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted){ |
47 | bitslice_value_t feedback = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^ |
48 | state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ |
49 | state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^ |
50 | state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^ |
51 | state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^ |
52 | state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value); |
53 | const bitslice_value_t ks_bits = crypto1_bs_f20(state_p); |
54 | if(is_encrypted){ |
55 | feedback ^= ks_bits; |
56 | } |
57 | state_p--; |
58 | state_p[0].value = feedback ^ input; |
59 | return ks_bits; |
60 | } |
61 | |
62 | inline const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted){ |
63 | bitslice_value_t feedout = state_p[0].value; |
64 | state_p++; |
65 | const bitslice_value_t ks_bits = crypto1_bs_f20(state_p); |
66 | if(is_encrypted){ |
67 | feedout ^= ks_bits; |
68 | } |
69 | const bitslice_value_t feedback = (feedout ^ state_p[47- 5].value ^ state_p[47- 9].value ^ |
70 | state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ |
71 | state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^ |
72 | state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^ |
73 | state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^ |
74 | state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value); |
75 | state_p[47].value = feedback ^ input; |
76 | return ks_bits; |
77 | } |
78 | |
79 | // side-effect free from here on |
80 | // note that bytes are sliced and unsliced with reversed endianness |
81 | inline void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]){ |
82 | size_t bit_idx = 0, slice_idx = 0; |
2de9622f |
83 | state_t values[MAX_BITSLICES]; |
84 | memset(values, 0x0, sizeof(values)); |
85 | |
3130ba4b |
86 | for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){ |
87 | for(bit_idx = 0; bit_idx < STATE_SIZE; bit_idx++){ |
88 | bool bit = get_vector_bit(slice_idx, bitsliced_states[bit_idx]); |
89 | values[slice_idx].value <<= 1; |
90 | values[slice_idx].value |= bit; |
91 | } |
92 | // swap endianness |
93 | values[slice_idx].value = rev_state_t(values[slice_idx].value); |
94 | // roll off unused bits |
2de9622f |
95 | //values[slice_idx].value >>= ((sizeof(state_t)*8)-STATE_SIZE); // - 48 |
96 | values[slice_idx].value >>= 16; |
3130ba4b |
97 | } |
98 | memcpy(regular_states, values, sizeof(values)); |
99 | } |
100 | |
101 | // bitslice a value |
102 | void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len){ |
103 | // load nonce bytes with unswapped endianness |
104 | size_t bit_idx; |
105 | for(bit_idx = 0; bit_idx < bit_len; bit_idx++){ |
106 | bool bit = get_bit(bit_len-1-bit_idx, rev32(value)); |
107 | if(bit){ |
108 | bitsliced_value[bit_idx].value = bs_ones.value; |
109 | } else { |
110 | bitsliced_value[bit_idx].value = bs_zeroes.value; |
111 | } |
112 | } |
113 | } |
114 | |
115 | void crypto1_bs_print_states(bitslice_t bitsliced_states[]){ |
116 | size_t slice_idx = 0; |
cd777a05 |
117 | state_t values[MAX_BITSLICES] = {{0x00}}; |
3130ba4b |
118 | crypto1_bs_convert_states(bitsliced_states, values); |
119 | for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){ |
120 | printf("State %03zu: %012"llx"\n", slice_idx, values[slice_idx].value); |
121 | } |
122 | } |
123 | |