]>
Commit | Line | Data |
---|---|---|
959baa89 | 1 | //----------------------------------------------------------------------------- |
2 | // The main application code. This is the first thing called after start.c | |
3 | // executes. | |
4 | // Jonathan Westhues, Mar 2006 | |
5 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
6 | //----------------------------------------------------------------------------- | |
7 | ||
8 | ||
9 | #include <proxmark3.h> | |
7f348042 | 10 | #include <stdlib.h> |
959baa89 | 11 | #include "apps.h" |
12 | #ifdef WITH_LCD | |
13 | #include "fonts.h" | |
14 | #include "LCD.h" | |
15 | #endif | |
16 | ||
17 | // The large multi-purpose buffer, typically used to hold A/D samples, | |
18 | // maybe pre-processed in some way. | |
19 | DWORD BigBuf[16000]; | |
20 | ||
21 | //============================================================================= | |
22 | // A buffer where we can queue things up to be sent through the FPGA, for | |
23 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
24 | // is the order in which they go out on the wire. | |
25 | //============================================================================= | |
26 | ||
27 | BYTE ToSend[256]; | |
28 | int ToSendMax; | |
29 | static int ToSendBit; | |
30 | ||
f23e056d | 31 | |
32 | void BufferClear(void) | |
33 | { | |
34 | memset(BigBuf,0,sizeof(BigBuf)); | |
35 | DbpString("Buffer cleared"); | |
36 | } | |
37 | ||
959baa89 | 38 | void ToSendReset(void) |
39 | { | |
40 | ToSendMax = -1; | |
41 | ToSendBit = 8; | |
42 | } | |
43 | ||
44 | void ToSendStuffBit(int b) | |
45 | { | |
46 | if(ToSendBit >= 8) { | |
47 | ToSendMax++; | |
48 | ToSend[ToSendMax] = 0; | |
49 | ToSendBit = 0; | |
50 | } | |
51 | ||
52 | if(b) { | |
53 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
54 | } | |
55 | ||
56 | ToSendBit++; | |
57 | ||
58 | if(ToSendBit >= sizeof(ToSend)) { | |
59 | ToSendBit = 0; | |
60 | DbpString("ToSendStuffBit overflowed!"); | |
61 | } | |
62 | } | |
63 | ||
64 | //============================================================================= | |
65 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
66 | //============================================================================= | |
67 | ||
68 | void DbpString(char *str) | |
69 | { | |
70 | UsbCommand c; | |
71 | c.cmd = CMD_DEBUG_PRINT_STRING; | |
72 | c.ext1 = strlen(str); | |
73 | memcpy(c.d.asBytes, str, c.ext1); | |
74 | ||
75 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
76 | // TODO fix USB so stupid things like this aren't req'd | |
77 | SpinDelay(50); | |
78 | } | |
79 | ||
80 | void DbpIntegers(int x1, int x2, int x3) | |
81 | { | |
82 | UsbCommand c; | |
83 | c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
84 | c.ext1 = x1; | |
85 | c.ext2 = x2; | |
86 | c.ext3 = x3; | |
87 | ||
88 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
89 | // XXX | |
90 | SpinDelay(50); | |
91 | } | |
92 | ||
93 | void AcquireRawAdcSamples125k(BOOL at134khz) | |
94 | { | |
95 | if(at134khz) { | |
96 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
97 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
98 | } else { | |
99 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
100 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
101 | } | |
102 | ||
103 | // Connect the A/D to the peak-detected low-frequency path. | |
104 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
105 | ||
106 | // Give it a bit of time for the resonant antenna to settle. | |
107 | SpinDelay(50); | |
108 | ||
109 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
110 | FpgaSetupSsc(); | |
111 | ||
112 | // Now call the acquisition routine | |
113 | DoAcquisition125k(at134khz); | |
114 | } | |
115 | ||
116 | // split into two routines so we can avoid timing issues after sending commands // | |
117 | void DoAcquisition125k(BOOL at134khz) | |
118 | { | |
119 | BYTE *dest = (BYTE *)BigBuf; | |
120 | int n = sizeof(BigBuf); | |
121 | int i; | |
122 | ||
123 | memset(dest,0,n); | |
124 | i = 0; | |
125 | for(;;) { | |
126 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
127 | SSC_TRANSMIT_HOLDING = 0x43; | |
128 | LED_D_ON(); | |
129 | } | |
130 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
131 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
132 | i++; | |
133 | LED_D_OFF(); | |
134 | if(i >= n) { | |
135 | break; | |
136 | } | |
137 | } | |
138 | } | |
139 | DbpIntegers(dest[0], dest[1], at134khz); | |
140 | } | |
141 | ||
142 | void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command) | |
143 | { | |
144 | BOOL at134khz; | |
145 | ||
146 | // see if 'h' was specified | |
1dd23352 | 147 | if(command[strlen((char *) command) - 1] == 'h') |
959baa89 | 148 | at134khz= TRUE; |
149 | else | |
150 | at134khz= FALSE; | |
151 | ||
152 | if(at134khz) { | |
153 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
154 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
155 | } else { | |
156 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
157 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
158 | } | |
159 | ||
160 | // Give it a bit of time for the resonant antenna to settle. | |
161 | SpinDelay(50); | |
162 | ||
163 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
164 | FpgaSetupSsc(); | |
165 | ||
166 | // now modulate the reader field | |
167 | while(*command != '\0' && *command != ' ') | |
168 | { | |
169 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
170 | LED_D_OFF(); | |
171 | SpinDelayUs(delay_off); | |
172 | if(at134khz) { | |
173 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
174 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
175 | } else { | |
176 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
177 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
178 | } | |
179 | LED_D_ON(); | |
180 | if(*(command++) == '0') | |
181 | SpinDelayUs(period_0); | |
182 | else | |
183 | SpinDelayUs(period_1); | |
184 | } | |
185 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
186 | LED_D_OFF(); | |
187 | SpinDelayUs(delay_off); | |
188 | if(at134khz) { | |
189 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
190 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
191 | } else { | |
192 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
193 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
194 | } | |
195 | ||
196 | // now do the read | |
197 | DoAcquisition125k(at134khz); | |
198 | } | |
199 | ||
200 | //----------------------------------------------------------------------------- | |
201 | // Read an ADC channel and block till it completes, then return the result | |
202 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
203 | // return that. | |
204 | //----------------------------------------------------------------------------- | |
205 | static int ReadAdc(int ch) | |
206 | { | |
207 | DWORD d; | |
208 | ||
209 | ADC_CONTROL = ADC_CONTROL_RESET; | |
210 | ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) | | |
211 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
212 | ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch); | |
213 | ||
214 | ADC_CONTROL = ADC_CONTROL_START; | |
215 | while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch))) | |
216 | ; | |
217 | d = ADC_CHANNEL_DATA(ch); | |
218 | ||
219 | return d; | |
220 | } | |
221 | ||
222 | static int AvgAdc(int ch) | |
223 | { | |
224 | int i; | |
225 | int a = 0; | |
226 | ||
227 | for(i = 0; i < 32; i++) { | |
228 | a += ReadAdc(ch); | |
229 | } | |
230 | ||
231 | return (a + 15) >> 5; | |
232 | } | |
30f2a7d3 | 233 | |
234 | /* | |
235 | * Sweeps the useful LF range of the proxmark from | |
236 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
237 | * reads the voltage in the antenna: the result is a graph | |
238 | * which should clearly show the resonating frequency of your | |
239 | * LF antenna ( hopefully around 90 if it is tuned to 125kHz!) | |
959baa89 | 240 | */ |
241 | void SweepLFrange() | |
242 | { | |
243 | BYTE *dest = (BYTE *)BigBuf; | |
1dd23352 | 244 | char dummy[12]; |
38b65694 | 245 | int i, peak= 0, ptr= 0; |
246 | double freq; | |
959baa89 | 247 | |
248 | // clear buffer | |
249 | memset(BigBuf,0,sizeof(BigBuf)); | |
250 | ||
251 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
252 | for (i=255; i>19; i--) { | |
253 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
254 | SpinDelay(20); | |
846225d5 | 255 | dest[i] = (137500 * AvgAdc(ADC_CHAN_LF)) >> 18; |
38b65694 | 256 | if(dest[i] > peak) { |
257 | peak= dest[i]; | |
258 | ptr= i; | |
259 | } | |
959baa89 | 260 | } |
38b65694 | 261 | dummy[11]= '\0'; |
262 | dummy[10]= 'z'; | |
263 | dummy[9]= 'H'; | |
264 | dummy[8]= 'k'; | |
265 | dummy[7]= ' '; | |
266 | freq= 12000000/(ptr + 1); | |
267 | for(i= 6; i > 3 ; --i) { | |
268 | dummy[i]= '0' + ((int) freq) % 10; | |
269 | freq /= 10; | |
270 | } | |
271 | dummy[3]= '.'; | |
272 | for(i= 2; i >= 0 ; --i) { | |
273 | dummy[i]= '0' + ((int) freq) % 10; | |
274 | freq /= 10; | |
275 | } | |
276 | DbpString("Antenna resonates at:"); | |
277 | DbpString(dummy); | |
959baa89 | 278 | } |
279 | ||
280 | void MeasureAntennaTuning(void) | |
281 | { | |
282 | // Impedances are Zc = 1/(j*omega*C), in ohms | |
283 | #define LF_TUNING_CAP_Z 1273 // 1 nF @ 125 kHz | |
284 | #define HF_TUNING_CAP_Z 235 // 50 pF @ 13.56 MHz | |
285 | ||
286 | int vLf125, vLf134, vHf; // in mV | |
287 | ||
288 | UsbCommand c; | |
289 | ||
290 | // Let the FPGA drive the low-frequency antenna around 125 kHz. | |
291 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
292 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
293 | SpinDelay(20); | |
846225d5 | 294 | vLf125 = AvgAdc(ADC_CHAN_LF); |
959baa89 | 295 | // Vref = 3.3V, and a 10000:240 voltage divider on the input |
296 | // can measure voltages up to 137500 mV | |
297 | vLf125 = (137500 * vLf125) >> 10; | |
298 | ||
299 | // Let the FPGA drive the low-frequency antenna around 134 kHz. | |
300 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
301 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
302 | SpinDelay(20); | |
846225d5 | 303 | vLf134 = AvgAdc(ADC_CHAN_LF); |
959baa89 | 304 | // Vref = 3.3V, and a 10000:240 voltage divider on the input |
305 | // can measure voltages up to 137500 mV | |
306 | vLf134 = (137500 * vLf134) >> 10; | |
307 | ||
308 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
309 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
310 | SpinDelay(20); | |
846225d5 | 311 | vHf = AvgAdc(ADC_CHAN_HF); |
959baa89 | 312 | // Vref = 3300mV, and an 10:1 voltage divider on the input |
313 | // can measure voltages up to 33000 mV | |
314 | vHf = (33000 * vHf) >> 10; | |
315 | ||
316 | c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
317 | c.ext1 = (vLf125 << 0) | (vLf134 << 16); | |
318 | c.ext2 = vHf; | |
319 | c.ext3 = (LF_TUNING_CAP_Z << 0) | (HF_TUNING_CAP_Z << 16); | |
320 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
321 | } | |
322 | ||
323 | void SimulateTagLowFrequency(int period) | |
324 | { | |
325 | int i; | |
326 | BYTE *tab = (BYTE *)BigBuf; | |
327 | ||
328 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); | |
329 | ||
330 | PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); | |
331 | ||
332 | PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); | |
333 | PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); | |
334 | ||
335 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
336 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
337 | ||
338 | i = 0; | |
339 | for(;;) { | |
340 | while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) { | |
341 | if(BUTTON_PRESS()) { | |
6bd86cb2 | 342 | DbpString("Stopped"); |
959baa89 | 343 | return; |
344 | } | |
345 | WDT_HIT(); | |
346 | } | |
347 | ||
348 | LED_D_ON(); | |
349 | if(tab[i]) { | |
350 | OPEN_COIL(); | |
351 | } else { | |
352 | SHORT_COIL(); | |
353 | } | |
354 | LED_D_OFF(); | |
355 | ||
356 | while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) { | |
357 | if(BUTTON_PRESS()) { | |
6bd86cb2 | 358 | DbpString("Stopped"); |
959baa89 | 359 | return; |
360 | } | |
361 | WDT_HIT(); | |
362 | } | |
363 | ||
364 | i++; | |
365 | if(i == period) i = 0; | |
366 | } | |
367 | } | |
368 | ||
369 | // compose fc/8 fc/10 waveform | |
370 | static void fc(int c, int *n) { | |
371 | BYTE *dest = (BYTE *)BigBuf; | |
372 | int idx; | |
373 | ||
374 | // for when we want an fc8 pattern every 4 logical bits | |
375 | if(c==0) { | |
376 | dest[((*n)++)]=1; | |
377 | dest[((*n)++)]=1; | |
378 | dest[((*n)++)]=0; | |
379 | dest[((*n)++)]=0; | |
380 | dest[((*n)++)]=0; | |
381 | dest[((*n)++)]=0; | |
382 | dest[((*n)++)]=0; | |
383 | dest[((*n)++)]=0; | |
384 | } | |
385 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
386 | if(c==8) { | |
387 | for (idx=0; idx<6; idx++) { | |
388 | dest[((*n)++)]=1; | |
389 | dest[((*n)++)]=1; | |
390 | dest[((*n)++)]=0; | |
391 | dest[((*n)++)]=0; | |
392 | dest[((*n)++)]=0; | |
393 | dest[((*n)++)]=0; | |
394 | dest[((*n)++)]=0; | |
395 | dest[((*n)++)]=0; | |
396 | } | |
397 | } | |
398 | ||
399 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
400 | if(c==10) { | |
401 | for (idx=0; idx<5; idx++) { | |
402 | dest[((*n)++)]=1; | |
403 | dest[((*n)++)]=1; | |
404 | dest[((*n)++)]=1; | |
405 | dest[((*n)++)]=0; | |
406 | dest[((*n)++)]=0; | |
407 | dest[((*n)++)]=0; | |
408 | dest[((*n)++)]=0; | |
409 | dest[((*n)++)]=0; | |
410 | dest[((*n)++)]=0; | |
411 | dest[((*n)++)]=0; | |
412 | } | |
413 | } | |
414 | } | |
415 | ||
416 | // prepare a waveform pattern in the buffer based on the ID given then | |
417 | // simulate a HID tag until the button is pressed | |
418 | static void CmdHIDsimTAG(int hi, int lo) | |
419 | { | |
420 | int n=0, i=0; | |
421 | /* | |
422 | HID tag bitstream format | |
423 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
424 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
425 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
426 | A fc8 is inserted before every 4 bits | |
427 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
428 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
429 | */ | |
430 | ||
431 | if (hi>0xFFF) { | |
432 | DbpString("Tags can only have 44 bits."); | |
433 | return; | |
434 | } | |
435 | fc(0,&n); | |
436 | // special start of frame marker containing invalid bit sequences | |
437 | fc(8, &n); fc(8, &n); // invalid | |
438 | fc(8, &n); fc(10, &n); // logical 0 | |
439 | fc(10, &n); fc(10, &n); // invalid | |
440 | fc(8, &n); fc(10, &n); // logical 0 | |
441 | ||
442 | WDT_HIT(); | |
443 | // manchester encode bits 43 to 32 | |
444 | for (i=11; i>=0; i--) { | |
445 | if ((i%4)==3) fc(0,&n); | |
446 | if ((hi>>i)&1) { | |
447 | fc(10, &n); fc(8, &n); // low-high transition | |
448 | } else { | |
449 | fc(8, &n); fc(10, &n); // high-low transition | |
450 | } | |
451 | } | |
452 | ||
453 | WDT_HIT(); | |
454 | // manchester encode bits 31 to 0 | |
455 | for (i=31; i>=0; i--) { | |
456 | if ((i%4)==3) fc(0,&n); | |
457 | if ((lo>>i)&1) { | |
458 | fc(10, &n); fc(8, &n); // low-high transition | |
459 | } else { | |
460 | fc(8, &n); fc(10, &n); // high-low transition | |
461 | } | |
462 | } | |
463 | ||
464 | LED_A_ON(); | |
465 | SimulateTagLowFrequency(n); | |
466 | LED_A_OFF(); | |
467 | } | |
468 | ||
469 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it | |
470 | static void CmdHIDdemodFSK(void) | |
471 | { | |
472 | BYTE *dest = (BYTE *)BigBuf; | |
473 | int m=0, n=0, i=0, idx=0, found=0, lastval=0; | |
474 | DWORD hi=0, lo=0; | |
475 | ||
476 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
477 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
478 | ||
479 | // Connect the A/D to the peak-detected low-frequency path. | |
480 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
481 | ||
482 | // Give it a bit of time for the resonant antenna to settle. | |
483 | SpinDelay(50); | |
484 | ||
485 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
486 | FpgaSetupSsc(); | |
487 | ||
488 | for(;;) { | |
489 | WDT_HIT(); | |
490 | LED_A_ON(); | |
491 | if(BUTTON_PRESS()) { | |
6bd86cb2 | 492 | DbpString("Stopped"); |
959baa89 | 493 | LED_A_OFF(); |
494 | return; | |
495 | } | |
496 | ||
497 | i = 0; | |
498 | m = sizeof(BigBuf); | |
499 | memset(dest,128,m); | |
500 | for(;;) { | |
501 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
502 | SSC_TRANSMIT_HOLDING = 0x43; | |
503 | LED_D_ON(); | |
504 | } | |
505 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
506 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
507 | // we don't care about actual value, only if it's more or less than a | |
508 | // threshold essentially we capture zero crossings for later analysis | |
509 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
510 | i++; | |
511 | LED_D_OFF(); | |
512 | if(i >= m) { | |
513 | break; | |
514 | } | |
515 | } | |
516 | } | |
517 | ||
518 | // FSK demodulator | |
519 | ||
520 | // sync to first lo-hi transition | |
521 | for( idx=1; idx<m; idx++) { | |
522 | if (dest[idx-1]<dest[idx]) | |
523 | lastval=idx; | |
524 | break; | |
525 | } | |
526 | WDT_HIT(); | |
527 | ||
528 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
529 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
530 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
531 | for( i=0; idx<m; idx++) { | |
532 | if (dest[idx-1]<dest[idx]) { | |
533 | dest[i]=idx-lastval; | |
534 | if (dest[i] <= 8) { | |
535 | dest[i]=1; | |
536 | } else { | |
537 | dest[i]=0; | |
538 | } | |
539 | ||
540 | lastval=idx; | |
541 | i++; | |
542 | } | |
543 | } | |
544 | m=i; | |
545 | WDT_HIT(); | |
546 | ||
547 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
548 | lastval=dest[0]; | |
549 | idx=0; | |
550 | i=0; | |
551 | n=0; | |
552 | for( idx=0; idx<m; idx++) { | |
553 | if (dest[idx]==lastval) { | |
554 | n++; | |
555 | } else { | |
556 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, | |
557 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets | |
558 | // swallowed up by rounding | |
559 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding | |
560 | // special start of frame markers use invalid manchester states (no transitions) by using sequences | |
561 | // like 111000 | |
562 | if (dest[idx-1]) { | |
563 | n=(n+1)/6; // fc/8 in sets of 6 | |
564 | } else { | |
565 | n=(n+1)/5; // fc/10 in sets of 5 | |
566 | } | |
567 | switch (n) { // stuff appropriate bits in buffer | |
568 | case 0: | |
569 | case 1: // one bit | |
570 | dest[i++]=dest[idx-1]; | |
571 | break; | |
572 | case 2: // two bits | |
573 | dest[i++]=dest[idx-1]; | |
574 | dest[i++]=dest[idx-1]; | |
575 | break; | |
576 | case 3: // 3 bit start of frame markers | |
577 | dest[i++]=dest[idx-1]; | |
578 | dest[i++]=dest[idx-1]; | |
579 | dest[i++]=dest[idx-1]; | |
580 | break; | |
581 | // When a logic 0 is immediately followed by the start of the next transmisson | |
582 | // (special pattern) a pattern of 4 bit duration lengths is created. | |
583 | case 4: | |
584 | dest[i++]=dest[idx-1]; | |
585 | dest[i++]=dest[idx-1]; | |
586 | dest[i++]=dest[idx-1]; | |
587 | dest[i++]=dest[idx-1]; | |
588 | break; | |
589 | default: // this shouldn't happen, don't stuff any bits | |
590 | break; | |
591 | } | |
592 | n=0; | |
593 | lastval=dest[idx]; | |
594 | } | |
595 | } | |
596 | m=i; | |
597 | WDT_HIT(); | |
598 | ||
599 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
600 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
601 | for( idx=0; idx<m-6; idx++) { | |
602 | // search for a start of frame marker | |
603 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
604 | { | |
605 | found=1; | |
606 | idx+=6; | |
607 | if (found && (hi|lo)) { | |
608 | DbpString("TAG ID"); | |
609 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
610 | hi=0; | |
611 | lo=0; | |
612 | found=0; | |
613 | } | |
614 | } | |
615 | if (found) { | |
616 | if (dest[idx] && (!dest[idx+1]) ) { | |
617 | hi=(hi<<1)|(lo>>31); | |
618 | lo=(lo<<1)|0; | |
619 | } else if ( (!dest[idx]) && dest[idx+1]) { | |
620 | hi=(hi<<1)|(lo>>31); | |
621 | lo=(lo<<1)|1; | |
622 | } else { | |
623 | found=0; | |
624 | hi=0; | |
625 | lo=0; | |
626 | } | |
627 | idx++; | |
628 | } | |
629 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
630 | { | |
631 | found=1; | |
632 | idx+=6; | |
633 | if (found && (hi|lo)) { | |
634 | DbpString("TAG ID"); | |
635 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
636 | hi=0; | |
637 | lo=0; | |
638 | found=0; | |
639 | } | |
640 | } | |
641 | } | |
642 | WDT_HIT(); | |
643 | } | |
644 | } | |
645 | ||
646 | void SimulateTagHfListen(void) | |
647 | { | |
648 | BYTE *dest = (BYTE *)BigBuf; | |
649 | int n = sizeof(BigBuf); | |
650 | BYTE v = 0; | |
651 | int i; | |
652 | int p = 0; | |
653 | ||
654 | // We're using this mode just so that I can test it out; the simulated | |
655 | // tag mode would work just as well and be simpler. | |
656 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
657 | ||
658 | // We need to listen to the high-frequency, peak-detected path. | |
659 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
660 | ||
661 | FpgaSetupSsc(); | |
662 | ||
663 | i = 0; | |
664 | for(;;) { | |
665 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
666 | SSC_TRANSMIT_HOLDING = 0xff; | |
667 | } | |
668 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
669 | BYTE r = (BYTE)SSC_RECEIVE_HOLDING; | |
670 | ||
671 | v <<= 1; | |
672 | if(r & 1) { | |
673 | v |= 1; | |
674 | } | |
675 | p++; | |
676 | ||
677 | if(p >= 8) { | |
678 | dest[i] = v; | |
679 | v = 0; | |
680 | p = 0; | |
681 | i++; | |
682 | ||
683 | if(i >= n) { | |
684 | break; | |
685 | } | |
686 | } | |
687 | } | |
688 | } | |
689 | DbpString("simulate tag (now type bitsamples)"); | |
690 | } | |
691 | ||
692 | void UsbPacketReceived(BYTE *packet, int len) | |
693 | { | |
694 | UsbCommand *c = (UsbCommand *)packet; | |
695 | ||
696 | switch(c->cmd) { | |
697 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
698 | AcquireRawAdcSamples125k(c->ext1); | |
699 | break; | |
700 | ||
701 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
702 | ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes); | |
703 | break; | |
704 | ||
705 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
706 | AcquireRawAdcSamplesIso15693(); | |
707 | break; | |
f23e056d | 708 | |
709 | case CMD_BUFF_CLEAR: | |
710 | BufferClear(); | |
711 | break; | |
959baa89 | 712 | |
713 | case CMD_READER_ISO_15693: | |
714 | ReaderIso15693(c->ext1); | |
715 | break; | |
716 | ||
717 | case CMD_SIMTAG_ISO_15693: | |
718 | SimTagIso15693(c->ext1); | |
719 | break; | |
720 | ||
721 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
722 | AcquireRawAdcSamplesIso14443(c->ext1); | |
723 | break; | |
fb25b483 | 724 | |
725 | case CMD_READ_SRI512_TAG: | |
726 | ReadSRI512Iso14443(c->ext1); | |
727 | break; | |
959baa89 | 728 | |
729 | case CMD_READER_ISO_14443a: | |
730 | ReaderIso14443a(c->ext1); | |
731 | break; | |
732 | ||
733 | case CMD_SNOOP_ISO_14443: | |
734 | SnoopIso14443(); | |
735 | break; | |
736 | ||
737 | case CMD_SNOOP_ISO_14443a: | |
738 | SnoopIso14443a(); | |
739 | break; | |
740 | ||
741 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
742 | SimulateTagHfListen(); | |
743 | break; | |
744 | ||
745 | case CMD_SIMULATE_TAG_ISO_14443: | |
746 | SimulateIso14443Tag(); | |
747 | break; | |
748 | ||
749 | case CMD_SIMULATE_TAG_ISO_14443a: | |
750 | SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID | |
751 | break; | |
752 | ||
753 | case CMD_MEASURE_ANTENNA_TUNING: | |
754 | MeasureAntennaTuning(); | |
755 | break; | |
756 | ||
7f348042 | 757 | case CMD_LISTEN_READER_FIELD: |
758 | ListenReaderField(c->ext1); | |
759 | break; | |
760 | ||
959baa89 | 761 | case CMD_HID_DEMOD_FSK: |
762 | CmdHIDdemodFSK(); // Demodulate HID tag | |
763 | break; | |
764 | ||
765 | case CMD_HID_SIM_TAG: | |
766 | CmdHIDsimTAG(c->ext1, c->ext2); // Simulate HID tag by ID | |
767 | break; | |
768 | ||
769 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
770 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
771 | SpinDelay(200); | |
772 | LED_D_OFF(); // LED D indicates field ON or OFF | |
773 | break; | |
774 | ||
775 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
776 | case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { | |
777 | UsbCommand n; | |
778 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
779 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
780 | } else { | |
781 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
782 | } | |
783 | n.ext1 = c->ext1; | |
784 | memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); | |
785 | UsbSendPacket((BYTE *)&n, sizeof(n)); | |
786 | break; | |
787 | } | |
788 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
789 | BYTE *b = (BYTE *)BigBuf; | |
790 | memcpy(b+c->ext1, c->d.asBytes, 48); | |
791 | break; | |
792 | } | |
793 | case CMD_SIMULATE_TAG_125K: | |
794 | LED_A_ON(); | |
795 | SimulateTagLowFrequency(c->ext1); | |
796 | LED_A_OFF(); | |
797 | break; | |
798 | #ifdef WITH_LCD | |
799 | case CMD_LCD_RESET: | |
800 | LCDReset(); | |
801 | break; | |
802 | #endif | |
803 | case CMD_SWEEP_LF: | |
804 | SweepLFrange(); | |
805 | break; | |
806 | ||
807 | case CMD_SET_LF_DIVISOR: | |
808 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); | |
809 | break; | |
810 | #ifdef WITH_LCD | |
811 | case CMD_LCD: | |
812 | LCDSend(c->ext1); | |
813 | break; | |
814 | #endif | |
815 | case CMD_SETUP_WRITE: | |
816 | case CMD_FINISH_WRITE: | |
817 | case CMD_HARDWARE_RESET: | |
818 | USB_D_PLUS_PULLUP_OFF(); | |
819 | SpinDelay(1000); | |
820 | SpinDelay(1000); | |
821 | RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; | |
822 | for(;;) { | |
823 | // We're going to reset, and the bootrom will take control. | |
824 | } | |
825 | break; | |
826 | ||
827 | ||
828 | default: | |
829 | DbpString("unknown command"); | |
830 | break; | |
831 | } | |
832 | } | |
833 | ||
834 | void AppMain(void) | |
835 | { | |
836 | memset(BigBuf,0,sizeof(BigBuf)); | |
837 | SpinDelay(100); | |
838 | ||
839 | LED_D_OFF(); | |
840 | LED_C_OFF(); | |
841 | LED_B_OFF(); | |
842 | LED_A_OFF(); | |
843 | ||
844 | UsbStart(); | |
845 | ||
846 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
847 | PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); | |
848 | PIO_DISABLE = (1 << GPIO_PCK0); | |
849 | PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; | |
850 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
851 | PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | | |
852 | PMC_CLK_PRESCALE_DIV_4; | |
853 | PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); | |
854 | ||
855 | // Reset SPI | |
856 | SPI_CONTROL = SPI_CONTROL_RESET; | |
857 | // Reset SSC | |
858 | SSC_CONTROL = SSC_CONTROL_RESET; | |
859 | ||
860 | // Load the FPGA image, which we have stored in our flash. | |
861 | FpgaDownloadAndGo(); | |
862 | ||
863 | #ifdef WITH_LCD | |
864 | ||
865 | LCDInit(); | |
866 | ||
867 | // test text on different colored backgrounds | |
868 | LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); | |
869 | LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); | |
870 | LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); | |
871 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); | |
872 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); | |
873 | LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); | |
874 | LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); | |
875 | LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); | |
876 | ||
877 | // color bands | |
878 | LCDFill(0, 1+8* 8, 132, 8, BLACK); | |
879 | LCDFill(0, 1+8* 9, 132, 8, WHITE); | |
880 | LCDFill(0, 1+8*10, 132, 8, RED); | |
881 | LCDFill(0, 1+8*11, 132, 8, GREEN); | |
882 | LCDFill(0, 1+8*12, 132, 8, BLUE); | |
883 | LCDFill(0, 1+8*13, 132, 8, YELLOW); | |
884 | LCDFill(0, 1+8*14, 132, 8, CYAN); | |
885 | LCDFill(0, 1+8*15, 132, 8, MAGENTA); | |
886 | ||
887 | #endif | |
888 | ||
889 | for(;;) { | |
890 | UsbPoll(FALSE); | |
891 | WDT_HIT(); | |
892 | } | |
893 | } | |
894 | ||
895 | void SpinDelayUs(int us) | |
896 | { | |
897 | int ticks = (48*us) >> 10; | |
898 | ||
899 | // Borrow a PWM unit for my real-time clock | |
900 | PWM_ENABLE = PWM_CHANNEL(0); | |
901 | // 48 MHz / 1024 gives 46.875 kHz | |
902 | PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10); | |
903 | PWM_CH_DUTY_CYCLE(0) = 0; | |
904 | PWM_CH_PERIOD(0) = 0xffff; | |
905 | ||
906 | WORD start = (WORD)PWM_CH_COUNTER(0); | |
907 | ||
908 | for(;;) { | |
909 | WORD now = (WORD)PWM_CH_COUNTER(0); | |
910 | if(now == (WORD)(start + ticks)) { | |
911 | return; | |
912 | } | |
913 | WDT_HIT(); | |
914 | } | |
915 | } | |
916 | ||
917 | void SpinDelay(int ms) | |
918 | { | |
919 | int ticks = (48000*ms) >> 10; | |
920 | ||
921 | // Borrow a PWM unit for my real-time clock | |
922 | PWM_ENABLE = PWM_CHANNEL(0); | |
923 | // 48 MHz / 1024 gives 46.875 kHz | |
924 | PWM_CH_MODE(0) = PWM_CH_MODE_PRESCALER(10); | |
925 | PWM_CH_DUTY_CYCLE(0) = 0; | |
926 | PWM_CH_PERIOD(0) = 0xffff; | |
927 | ||
928 | WORD start = (WORD)PWM_CH_COUNTER(0); | |
929 | ||
930 | for(;;) { | |
931 | WORD now = (WORD)PWM_CH_COUNTER(0); | |
932 | if(now == (WORD)(start + ticks)) { | |
933 | return; | |
934 | } | |
935 | WDT_HIT(); | |
936 | } | |
937 | } | |
7f348042 | 938 | |
939 | // listen for external reader | |
940 | void ListenReaderField(int limit) | |
941 | { | |
1dd23352 | 942 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0; |
943 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0; | |
7f348042 | 944 | |
945 | #define LF_ONLY 1 | |
946 | #define HF_ONLY 2 | |
947 | ||
948 | LED_A_OFF(); | |
949 | LED_B_OFF(); | |
950 | LED_C_OFF(); | |
951 | LED_D_OFF(); | |
952 | ||
953 | lf_av= ReadAdc(ADC_CHAN_LF); | |
954 | ||
1dd23352 | 955 | if(limit != HF_ONLY) |
7f348042 | 956 | { |
957 | DbpString("LF 125/134 Baseline:"); | |
958 | DbpIntegers(lf_av,0,0); | |
959 | lf_baseline= lf_av; | |
960 | } | |
961 | ||
962 | hf_av= ReadAdc(ADC_CHAN_HF); | |
963 | ||
964 | ||
1dd23352 | 965 | if (limit != LF_ONLY) |
7f348042 | 966 | { |
967 | DbpString("HF 13.56 Baseline:"); | |
968 | DbpIntegers(hf_av,0,0); | |
969 | hf_baseline= hf_av; | |
970 | } | |
971 | ||
972 | for(;;) | |
973 | { | |
974 | if(BUTTON_PRESS()) | |
975 | { | |
6bd86cb2 | 976 | DbpString("Stopped"); |
7f348042 | 977 | LED_B_OFF(); |
978 | LED_D_OFF(); | |
979 | return; | |
980 | } | |
981 | WDT_HIT(); | |
982 | ||
983 | ||
984 | if (limit != HF_ONLY) | |
985 | { | |
986 | if (abs(lf_av - lf_baseline) > 10) | |
987 | LED_D_ON(); | |
988 | else | |
989 | LED_D_OFF(); | |
990 | ++lf_count; | |
991 | lf_av_new= ReadAdc(ADC_CHAN_LF); | |
992 | // see if there's a significant change | |
993 | if(abs(lf_av - lf_av_new) > 10) | |
994 | { | |
995 | DbpString("LF 125/134 Field Change:"); | |
996 | DbpIntegers(lf_av,lf_av_new,lf_count); | |
997 | lf_av= lf_av_new; | |
998 | lf_count= 0; | |
999 | } | |
1000 | } | |
1001 | ||
1002 | if (limit != LF_ONLY) | |
1003 | { | |
1004 | if (abs(hf_av - hf_baseline) > 10) | |
1005 | LED_B_ON(); | |
1006 | else | |
1007 | LED_B_OFF(); | |
1008 | ++hf_count; | |
1009 | hf_av_new= ReadAdc(ADC_CHAN_HF); | |
1010 | // see if there's a significant change | |
1011 | if(abs(hf_av - hf_av_new) > 10) | |
1012 | { | |
1013 | DbpString("HF 13.56 Field Change:"); | |
1014 | DbpIntegers(hf_av,hf_av_new,hf_count); | |
1015 | hf_av= hf_av_new; | |
1016 | hf_count= 0; | |
1017 | } | |
1018 | } | |
1019 | } | |
1020 | } |