]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Routines to support ISO 14443 type A. | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "string.h" | |
15 | ||
16 | #include "iso14443crc.h" | |
17 | ||
18 | static uint8_t *trace = (uint8_t *) BigBuf; | |
19 | static int traceLen = 0; | |
20 | static int rsamples = 0; | |
21 | static int tracing = TRUE; | |
22 | ||
23 | // CARD TO READER | |
24 | // Sequence D: 11110000 modulation with subcarrier during first half | |
25 | // Sequence E: 00001111 modulation with subcarrier during second half | |
26 | // Sequence F: 00000000 no modulation with subcarrier | |
27 | // READER TO CARD | |
28 | // Sequence X: 00001100 drop after half a period | |
29 | // Sequence Y: 00000000 no drop | |
30 | // Sequence Z: 11000000 drop at start | |
31 | #define SEC_D 0xf0 | |
32 | #define SEC_E 0x0f | |
33 | #define SEC_F 0x00 | |
34 | #define SEC_X 0x0c | |
35 | #define SEC_Y 0x00 | |
36 | #define SEC_Z 0xc0 | |
37 | ||
38 | static const uint8_t OddByteParity[256] = { | |
39 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
40 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
41 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
42 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
43 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
44 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
45 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
46 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
47 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
48 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
49 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
50 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
51 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
52 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
53 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
54 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
55 | }; | |
56 | ||
57 | // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT | |
58 | #define RECV_CMD_OFFSET 3032 | |
59 | #define RECV_RES_OFFSET 3096 | |
60 | #define DMA_BUFFER_OFFSET 3160 | |
61 | #define DMA_BUFFER_SIZE 4096 | |
62 | #define TRACE_LENGTH 3000 | |
63 | ||
64 | //----------------------------------------------------------------------------- | |
65 | // Generate the parity value for a byte sequence | |
66 | // | |
67 | //----------------------------------------------------------------------------- | |
68 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) | |
69 | { | |
70 | int i; | |
71 | uint32_t dwPar = 0; | |
72 | ||
73 | // Generate the encrypted data | |
74 | for (i = 0; i < iLen; i++) { | |
75 | // Save the encrypted parity bit | |
76 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i); | |
77 | } | |
78 | return dwPar; | |
79 | } | |
80 | ||
81 | static void AppendCrc14443a(uint8_t* data, int len) | |
82 | { | |
83 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); | |
84 | } | |
85 | ||
86 | int LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) | |
87 | { | |
88 | // Return when trace is full | |
89 | if (traceLen >= TRACE_LENGTH) return FALSE; | |
90 | ||
91 | // Trace the random, i'm curious | |
92 | rsamples += iSamples; | |
93 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
94 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
95 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
96 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
97 | if (!bReader) { | |
98 | trace[traceLen - 1] |= 0x80; | |
99 | } | |
100 | trace[traceLen++] = ((dwParity >> 0) & 0xff); | |
101 | trace[traceLen++] = ((dwParity >> 8) & 0xff); | |
102 | trace[traceLen++] = ((dwParity >> 16) & 0xff); | |
103 | trace[traceLen++] = ((dwParity >> 24) & 0xff); | |
104 | trace[traceLen++] = iLen; | |
105 | memcpy(trace + traceLen, btBytes, iLen); | |
106 | traceLen += iLen; | |
107 | return TRUE; | |
108 | } | |
109 | ||
110 | //----------------------------------------------------------------------------- | |
111 | // The software UART that receives commands from the reader, and its state | |
112 | // variables. | |
113 | //----------------------------------------------------------------------------- | |
114 | static struct { | |
115 | enum { | |
116 | STATE_UNSYNCD, | |
117 | STATE_START_OF_COMMUNICATION, | |
118 | STATE_MILLER_X, | |
119 | STATE_MILLER_Y, | |
120 | STATE_MILLER_Z, | |
121 | STATE_ERROR_WAIT | |
122 | } state; | |
123 | uint16_t shiftReg; | |
124 | int bitCnt; | |
125 | int byteCnt; | |
126 | int byteCntMax; | |
127 | int posCnt; | |
128 | int syncBit; | |
129 | int parityBits; | |
130 | int samples; | |
131 | int highCnt; | |
132 | int bitBuffer; | |
133 | enum { | |
134 | DROP_NONE, | |
135 | DROP_FIRST_HALF, | |
136 | DROP_SECOND_HALF | |
137 | } drop; | |
138 | uint8_t *output; | |
139 | } Uart; | |
140 | ||
141 | static int MillerDecoding(int bit) | |
142 | { | |
143 | int error = 0; | |
144 | int bitright; | |
145 | ||
146 | if(!Uart.bitBuffer) { | |
147 | Uart.bitBuffer = bit ^ 0xFF0; | |
148 | return FALSE; | |
149 | } | |
150 | else { | |
151 | Uart.bitBuffer <<= 4; | |
152 | Uart.bitBuffer ^= bit; | |
153 | } | |
154 | ||
155 | int EOC = FALSE; | |
156 | ||
157 | if(Uart.state != STATE_UNSYNCD) { | |
158 | Uart.posCnt++; | |
159 | ||
160 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
161 | bit = 0x00; | |
162 | } | |
163 | else { | |
164 | bit = 0x01; | |
165 | } | |
166 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
167 | bitright = 0x00; | |
168 | } | |
169 | else { | |
170 | bitright = 0x01; | |
171 | } | |
172 | if(bit != bitright) { bit = bitright; } | |
173 | ||
174 | if(Uart.posCnt == 1) { | |
175 | // measurement first half bitperiod | |
176 | if(!bit) { | |
177 | Uart.drop = DROP_FIRST_HALF; | |
178 | } | |
179 | } | |
180 | else { | |
181 | // measurement second half bitperiod | |
182 | if(!bit & (Uart.drop == DROP_NONE)) { | |
183 | Uart.drop = DROP_SECOND_HALF; | |
184 | } | |
185 | else if(!bit) { | |
186 | // measured a drop in first and second half | |
187 | // which should not be possible | |
188 | Uart.state = STATE_ERROR_WAIT; | |
189 | error = 0x01; | |
190 | } | |
191 | ||
192 | Uart.posCnt = 0; | |
193 | ||
194 | switch(Uart.state) { | |
195 | case STATE_START_OF_COMMUNICATION: | |
196 | Uart.shiftReg = 0; | |
197 | if(Uart.drop == DROP_SECOND_HALF) { | |
198 | // error, should not happen in SOC | |
199 | Uart.state = STATE_ERROR_WAIT; | |
200 | error = 0x02; | |
201 | } | |
202 | else { | |
203 | // correct SOC | |
204 | Uart.state = STATE_MILLER_Z; | |
205 | } | |
206 | break; | |
207 | ||
208 | case STATE_MILLER_Z: | |
209 | Uart.bitCnt++; | |
210 | Uart.shiftReg >>= 1; | |
211 | if(Uart.drop == DROP_NONE) { | |
212 | // logic '0' followed by sequence Y | |
213 | // end of communication | |
214 | Uart.state = STATE_UNSYNCD; | |
215 | EOC = TRUE; | |
216 | } | |
217 | // if(Uart.drop == DROP_FIRST_HALF) { | |
218 | // Uart.state = STATE_MILLER_Z; stay the same | |
219 | // we see a logic '0' } | |
220 | if(Uart.drop == DROP_SECOND_HALF) { | |
221 | // we see a logic '1' | |
222 | Uart.shiftReg |= 0x100; | |
223 | Uart.state = STATE_MILLER_X; | |
224 | } | |
225 | break; | |
226 | ||
227 | case STATE_MILLER_X: | |
228 | Uart.shiftReg >>= 1; | |
229 | if(Uart.drop == DROP_NONE) { | |
230 | // sequence Y, we see a '0' | |
231 | Uart.state = STATE_MILLER_Y; | |
232 | Uart.bitCnt++; | |
233 | } | |
234 | if(Uart.drop == DROP_FIRST_HALF) { | |
235 | // Would be STATE_MILLER_Z | |
236 | // but Z does not follow X, so error | |
237 | Uart.state = STATE_ERROR_WAIT; | |
238 | error = 0x03; | |
239 | } | |
240 | if(Uart.drop == DROP_SECOND_HALF) { | |
241 | // We see a '1' and stay in state X | |
242 | Uart.shiftReg |= 0x100; | |
243 | Uart.bitCnt++; | |
244 | } | |
245 | break; | |
246 | ||
247 | case STATE_MILLER_Y: | |
248 | Uart.bitCnt++; | |
249 | Uart.shiftReg >>= 1; | |
250 | if(Uart.drop == DROP_NONE) { | |
251 | // logic '0' followed by sequence Y | |
252 | // end of communication | |
253 | Uart.state = STATE_UNSYNCD; | |
254 | EOC = TRUE; | |
255 | } | |
256 | if(Uart.drop == DROP_FIRST_HALF) { | |
257 | // we see a '0' | |
258 | Uart.state = STATE_MILLER_Z; | |
259 | } | |
260 | if(Uart.drop == DROP_SECOND_HALF) { | |
261 | // We see a '1' and go to state X | |
262 | Uart.shiftReg |= 0x100; | |
263 | Uart.state = STATE_MILLER_X; | |
264 | } | |
265 | break; | |
266 | ||
267 | case STATE_ERROR_WAIT: | |
268 | // That went wrong. Now wait for at least two bit periods | |
269 | // and try to sync again | |
270 | if(Uart.drop == DROP_NONE) { | |
271 | Uart.highCnt = 6; | |
272 | Uart.state = STATE_UNSYNCD; | |
273 | } | |
274 | break; | |
275 | ||
276 | default: | |
277 | Uart.state = STATE_UNSYNCD; | |
278 | Uart.highCnt = 0; | |
279 | break; | |
280 | } | |
281 | ||
282 | Uart.drop = DROP_NONE; | |
283 | ||
284 | // should have received at least one whole byte... | |
285 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { | |
286 | return TRUE; | |
287 | } | |
288 | ||
289 | if(Uart.bitCnt == 9) { | |
290 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
291 | Uart.byteCnt++; | |
292 | ||
293 | Uart.parityBits <<= 1; | |
294 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); | |
295 | ||
296 | if(EOC) { | |
297 | // when End of Communication received and | |
298 | // all data bits processed.. | |
299 | return TRUE; | |
300 | } | |
301 | Uart.bitCnt = 0; | |
302 | } | |
303 | ||
304 | /*if(error) { | |
305 | Uart.output[Uart.byteCnt] = 0xAA; | |
306 | Uart.byteCnt++; | |
307 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
308 | Uart.byteCnt++; | |
309 | Uart.output[Uart.byteCnt] = 0xAA; | |
310 | Uart.byteCnt++; | |
311 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
312 | Uart.byteCnt++; | |
313 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
314 | Uart.byteCnt++; | |
315 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
316 | Uart.byteCnt++; | |
317 | Uart.output[Uart.byteCnt] = 0xAA; | |
318 | Uart.byteCnt++; | |
319 | return TRUE; | |
320 | }*/ | |
321 | } | |
322 | ||
323 | } | |
324 | else { | |
325 | bit = Uart.bitBuffer & 0xf0; | |
326 | bit >>= 4; | |
327 | bit ^= 0x0F; | |
328 | if(bit) { | |
329 | // should have been high or at least (4 * 128) / fc | |
330 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
331 | if(Uart.highCnt == 8) { | |
332 | // we went low, so this could be start of communication | |
333 | // it turns out to be safer to choose a less significant | |
334 | // syncbit... so we check whether the neighbour also represents the drop | |
335 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
336 | Uart.syncBit = bit & 8; | |
337 | Uart.samples = 3; | |
338 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
339 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
340 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
341 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
342 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
343 | if(Uart.syncBit & (Uart.bitBuffer & 8)) { | |
344 | Uart.syncBit = 8; | |
345 | ||
346 | // the first half bit period is expected in next sample | |
347 | Uart.posCnt = 0; | |
348 | Uart.samples = 3; | |
349 | } | |
350 | } | |
351 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
352 | ||
353 | Uart.syncBit <<= 4; | |
354 | Uart.state = STATE_START_OF_COMMUNICATION; | |
355 | Uart.drop = DROP_FIRST_HALF; | |
356 | Uart.bitCnt = 0; | |
357 | Uart.byteCnt = 0; | |
358 | Uart.parityBits = 0; | |
359 | error = 0; | |
360 | } | |
361 | else { | |
362 | Uart.highCnt = 0; | |
363 | } | |
364 | } | |
365 | else { | |
366 | if(Uart.highCnt < 8) { | |
367 | Uart.highCnt++; | |
368 | } | |
369 | } | |
370 | } | |
371 | ||
372 | return FALSE; | |
373 | } | |
374 | ||
375 | //============================================================================= | |
376 | // ISO 14443 Type A - Manchester | |
377 | //============================================================================= | |
378 | ||
379 | static struct { | |
380 | enum { | |
381 | DEMOD_UNSYNCD, | |
382 | DEMOD_START_OF_COMMUNICATION, | |
383 | DEMOD_MANCHESTER_D, | |
384 | DEMOD_MANCHESTER_E, | |
385 | DEMOD_MANCHESTER_F, | |
386 | DEMOD_ERROR_WAIT | |
387 | } state; | |
388 | int bitCount; | |
389 | int posCount; | |
390 | int syncBit; | |
391 | int parityBits; | |
392 | uint16_t shiftReg; | |
393 | int buffer; | |
394 | int buff; | |
395 | int samples; | |
396 | int len; | |
397 | enum { | |
398 | SUB_NONE, | |
399 | SUB_FIRST_HALF, | |
400 | SUB_SECOND_HALF | |
401 | } sub; | |
402 | uint8_t *output; | |
403 | } Demod; | |
404 | ||
405 | static int ManchesterDecoding(int v) | |
406 | { | |
407 | int bit; | |
408 | int modulation; | |
409 | int error = 0; | |
410 | ||
411 | if(!Demod.buff) { | |
412 | Demod.buff = 1; | |
413 | Demod.buffer = v; | |
414 | return FALSE; | |
415 | } | |
416 | else { | |
417 | bit = Demod.buffer; | |
418 | Demod.buffer = v; | |
419 | } | |
420 | ||
421 | if(Demod.state==DEMOD_UNSYNCD) { | |
422 | Demod.output[Demod.len] = 0xfa; | |
423 | Demod.syncBit = 0; | |
424 | //Demod.samples = 0; | |
425 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
426 | if(bit & 0x08) { Demod.syncBit = 0x08; } | |
427 | if(!Demod.syncBit) { | |
428 | if(bit & 0x04) { Demod.syncBit = 0x04; } | |
429 | } | |
430 | else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } | |
431 | if(!Demod.syncBit) { | |
432 | if(bit & 0x02) { Demod.syncBit = 0x02; } | |
433 | } | |
434 | else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } | |
435 | if(!Demod.syncBit) { | |
436 | if(bit & 0x01) { Demod.syncBit = 0x01; } | |
437 | ||
438 | if(Demod.syncBit & (Demod.buffer & 0x08)) { | |
439 | Demod.syncBit = 0x08; | |
440 | ||
441 | // The first half bitperiod is expected in next sample | |
442 | Demod.posCount = 0; | |
443 | Demod.output[Demod.len] = 0xfb; | |
444 | } | |
445 | } | |
446 | else if(bit & 0x01) { Demod.syncBit = 0x01; } | |
447 | ||
448 | if(Demod.syncBit) { | |
449 | Demod.len = 0; | |
450 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
451 | Demod.sub = SUB_FIRST_HALF; | |
452 | Demod.bitCount = 0; | |
453 | Demod.shiftReg = 0; | |
454 | Demod.parityBits = 0; | |
455 | Demod.samples = 0; | |
456 | if(Demod.posCount) { | |
457 | switch(Demod.syncBit) { | |
458 | case 0x08: Demod.samples = 3; break; | |
459 | case 0x04: Demod.samples = 2; break; | |
460 | case 0x02: Demod.samples = 1; break; | |
461 | case 0x01: Demod.samples = 0; break; | |
462 | } | |
463 | } | |
464 | error = 0; | |
465 | } | |
466 | } | |
467 | else { | |
468 | //modulation = bit & Demod.syncBit; | |
469 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
470 | ||
471 | Demod.samples += 4; | |
472 | ||
473 | if(Demod.posCount==0) { | |
474 | Demod.posCount = 1; | |
475 | if(modulation) { | |
476 | Demod.sub = SUB_FIRST_HALF; | |
477 | } | |
478 | else { | |
479 | Demod.sub = SUB_NONE; | |
480 | } | |
481 | } | |
482 | else { | |
483 | Demod.posCount = 0; | |
484 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
485 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
486 | Demod.state = DEMOD_ERROR_WAIT; | |
487 | Demod.output[Demod.len] = 0xaa; | |
488 | error = 0x01; | |
489 | } | |
490 | } | |
491 | else if(modulation) { | |
492 | Demod.sub = SUB_SECOND_HALF; | |
493 | } | |
494 | ||
495 | switch(Demod.state) { | |
496 | case DEMOD_START_OF_COMMUNICATION: | |
497 | if(Demod.sub == SUB_FIRST_HALF) { | |
498 | Demod.state = DEMOD_MANCHESTER_D; | |
499 | } | |
500 | else { | |
501 | Demod.output[Demod.len] = 0xab; | |
502 | Demod.state = DEMOD_ERROR_WAIT; | |
503 | error = 0x02; | |
504 | } | |
505 | break; | |
506 | ||
507 | case DEMOD_MANCHESTER_D: | |
508 | case DEMOD_MANCHESTER_E: | |
509 | if(Demod.sub == SUB_FIRST_HALF) { | |
510 | Demod.bitCount++; | |
511 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
512 | Demod.state = DEMOD_MANCHESTER_D; | |
513 | } | |
514 | else if(Demod.sub == SUB_SECOND_HALF) { | |
515 | Demod.bitCount++; | |
516 | Demod.shiftReg >>= 1; | |
517 | Demod.state = DEMOD_MANCHESTER_E; | |
518 | } | |
519 | else { | |
520 | Demod.state = DEMOD_MANCHESTER_F; | |
521 | } | |
522 | break; | |
523 | ||
524 | case DEMOD_MANCHESTER_F: | |
525 | // Tag response does not need to be a complete byte! | |
526 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
527 | if(Demod.bitCount > 0) { | |
528 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
529 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
530 | Demod.len++; | |
531 | // No parity bit, so just shift a 0 | |
532 | Demod.parityBits <<= 1; | |
533 | } | |
534 | ||
535 | Demod.state = DEMOD_UNSYNCD; | |
536 | return TRUE; | |
537 | } | |
538 | else { | |
539 | Demod.output[Demod.len] = 0xad; | |
540 | Demod.state = DEMOD_ERROR_WAIT; | |
541 | error = 0x03; | |
542 | } | |
543 | break; | |
544 | ||
545 | case DEMOD_ERROR_WAIT: | |
546 | Demod.state = DEMOD_UNSYNCD; | |
547 | break; | |
548 | ||
549 | default: | |
550 | Demod.output[Demod.len] = 0xdd; | |
551 | Demod.state = DEMOD_UNSYNCD; | |
552 | break; | |
553 | } | |
554 | ||
555 | if(Demod.bitCount>=9) { | |
556 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
557 | Demod.len++; | |
558 | ||
559 | Demod.parityBits <<= 1; | |
560 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
561 | ||
562 | Demod.bitCount = 0; | |
563 | Demod.shiftReg = 0; | |
564 | } | |
565 | ||
566 | /*if(error) { | |
567 | Demod.output[Demod.len] = 0xBB; | |
568 | Demod.len++; | |
569 | Demod.output[Demod.len] = error & 0xFF; | |
570 | Demod.len++; | |
571 | Demod.output[Demod.len] = 0xBB; | |
572 | Demod.len++; | |
573 | Demod.output[Demod.len] = bit & 0xFF; | |
574 | Demod.len++; | |
575 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
576 | Demod.len++; | |
577 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
578 | Demod.len++; | |
579 | Demod.output[Demod.len] = 0xBB; | |
580 | Demod.len++; | |
581 | return TRUE; | |
582 | }*/ | |
583 | ||
584 | } | |
585 | ||
586 | } // end (state != UNSYNCED) | |
587 | ||
588 | return FALSE; | |
589 | } | |
590 | ||
591 | //============================================================================= | |
592 | // Finally, a `sniffer' for ISO 14443 Type A | |
593 | // Both sides of communication! | |
594 | //============================================================================= | |
595 | ||
596 | //----------------------------------------------------------------------------- | |
597 | // Record the sequence of commands sent by the reader to the tag, with | |
598 | // triggering so that we start recording at the point that the tag is moved | |
599 | // near the reader. | |
600 | //----------------------------------------------------------------------------- | |
601 | void SnoopIso14443a(void) | |
602 | { | |
603 | // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values | |
604 | // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values | |
605 | // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values | |
606 | // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values | |
607 | // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values | |
608 | ||
609 | // We won't start recording the frames that we acquire until we trigger; | |
610 | // a good trigger condition to get started is probably when we see a | |
611 | // response from the tag. | |
612 | int triggered = TRUE; // FALSE to wait first for card | |
613 | ||
614 | // The command (reader -> tag) that we're receiving. | |
615 | // The length of a received command will in most cases be no more than 18 bytes. | |
616 | // So 32 should be enough! | |
617 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
618 | // The response (tag -> reader) that we're receiving. | |
619 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
620 | ||
621 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
622 | // into trace, along with its length and other annotations. | |
623 | //uint8_t *trace = (uint8_t *)BigBuf; | |
624 | //int traceLen = 0; | |
625 | ||
626 | // The DMA buffer, used to stream samples from the FPGA | |
627 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
628 | int lastRxCounter; | |
629 | int8_t *upTo; | |
630 | int smpl; | |
631 | int maxBehindBy = 0; | |
632 | ||
633 | // Count of samples received so far, so that we can include timing | |
634 | // information in the trace buffer. | |
635 | int samples = 0; | |
636 | int rsamples = 0; | |
637 | ||
638 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
639 | ||
640 | // Set up the demodulator for tag -> reader responses. | |
641 | Demod.output = receivedResponse; | |
642 | Demod.len = 0; | |
643 | Demod.state = DEMOD_UNSYNCD; | |
644 | ||
645 | // And the reader -> tag commands | |
646 | memset(&Uart, 0, sizeof(Uart)); | |
647 | Uart.output = receivedCmd; | |
648 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
649 | Uart.state = STATE_UNSYNCD; | |
650 | ||
651 | // And put the FPGA in the appropriate mode | |
652 | // Signal field is off with the appropriate LED | |
653 | LED_D_OFF(); | |
654 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
655 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
656 | ||
657 | // Setup for the DMA. | |
658 | FpgaSetupSsc(); | |
659 | upTo = dmaBuf; | |
660 | lastRxCounter = DMA_BUFFER_SIZE; | |
661 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
662 | ||
663 | LED_A_ON(); | |
664 | ||
665 | // And now we loop, receiving samples. | |
666 | for(;;) { | |
667 | WDT_HIT(); | |
668 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
669 | (DMA_BUFFER_SIZE-1); | |
670 | if(behindBy > maxBehindBy) { | |
671 | maxBehindBy = behindBy; | |
672 | if(behindBy > 400) { | |
673 | DbpString("blew circular buffer!"); | |
674 | goto done; | |
675 | } | |
676 | } | |
677 | if(behindBy < 1) continue; | |
678 | ||
679 | smpl = upTo[0]; | |
680 | upTo++; | |
681 | lastRxCounter -= 1; | |
682 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
683 | upTo -= DMA_BUFFER_SIZE; | |
684 | lastRxCounter += DMA_BUFFER_SIZE; | |
685 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
686 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
687 | } | |
688 | ||
689 | samples += 4; | |
690 | if(MillerDecoding((smpl & 0xF0) >> 4)) { | |
691 | rsamples = samples - Uart.samples; | |
692 | LED_C_ON(); | |
693 | if(triggered) { | |
694 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
695 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
696 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
697 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
698 | trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); | |
699 | trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); | |
700 | trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); | |
701 | trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); | |
702 | trace[traceLen++] = Uart.byteCnt; | |
703 | memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); | |
704 | traceLen += Uart.byteCnt; | |
705 | if(traceLen > TRACE_LENGTH) break; | |
706 | } | |
707 | /* And ready to receive another command. */ | |
708 | Uart.state = STATE_UNSYNCD; | |
709 | /* And also reset the demod code, which might have been */ | |
710 | /* false-triggered by the commands from the reader. */ | |
711 | Demod.state = DEMOD_UNSYNCD; | |
712 | LED_B_OFF(); | |
713 | } | |
714 | if(ManchesterDecoding(smpl & 0x0F)) { | |
715 | rsamples = samples - Demod.samples; | |
716 | LED_B_ON(); | |
717 | ||
718 | // timestamp, as a count of samples | |
719 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
720 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
721 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
722 | trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); | |
723 | trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); | |
724 | trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); | |
725 | trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); | |
726 | trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); | |
727 | // length | |
728 | trace[traceLen++] = Demod.len; | |
729 | memcpy(trace+traceLen, receivedResponse, Demod.len); | |
730 | traceLen += Demod.len; | |
731 | if(traceLen > TRACE_LENGTH) break; | |
732 | ||
733 | triggered = TRUE; | |
734 | ||
735 | // And ready to receive another response. | |
736 | memset(&Demod, 0, sizeof(Demod)); | |
737 | Demod.output = receivedResponse; | |
738 | Demod.state = DEMOD_UNSYNCD; | |
739 | LED_C_OFF(); | |
740 | } | |
741 | ||
742 | if(BUTTON_PRESS()) { | |
743 | DbpString("cancelled_a"); | |
744 | goto done; | |
745 | } | |
746 | } | |
747 | ||
748 | DbpString("COMMAND FINISHED"); | |
749 | ||
750 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
751 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
752 | ||
753 | done: | |
754 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
755 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
756 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
757 | LED_A_OFF(); | |
758 | LED_B_OFF(); | |
759 | LED_C_OFF(); | |
760 | LED_D_OFF(); | |
761 | } | |
762 | ||
763 | //----------------------------------------------------------------------------- | |
764 | // Prepare tag messages | |
765 | //----------------------------------------------------------------------------- | |
766 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len) | |
767 | { | |
768 | int i; | |
769 | int oddparity; | |
770 | ||
771 | ToSendReset(); | |
772 | ||
773 | // Correction bit, might be removed when not needed | |
774 | ToSendStuffBit(0); | |
775 | ToSendStuffBit(0); | |
776 | ToSendStuffBit(0); | |
777 | ToSendStuffBit(0); | |
778 | ToSendStuffBit(1); // 1 | |
779 | ToSendStuffBit(0); | |
780 | ToSendStuffBit(0); | |
781 | ToSendStuffBit(0); | |
782 | ||
783 | // Send startbit | |
784 | ToSend[++ToSendMax] = SEC_D; | |
785 | ||
786 | for(i = 0; i < len; i++) { | |
787 | int j; | |
788 | uint8_t b = cmd[i]; | |
789 | ||
790 | // Data bits | |
791 | oddparity = 0x01; | |
792 | for(j = 0; j < 8; j++) { | |
793 | oddparity ^= (b & 1); | |
794 | if(b & 1) { | |
795 | ToSend[++ToSendMax] = SEC_D; | |
796 | } else { | |
797 | ToSend[++ToSendMax] = SEC_E; | |
798 | } | |
799 | b >>= 1; | |
800 | } | |
801 | ||
802 | // Parity bit | |
803 | if(oddparity) { | |
804 | ToSend[++ToSendMax] = SEC_D; | |
805 | } else { | |
806 | ToSend[++ToSendMax] = SEC_E; | |
807 | } | |
808 | } | |
809 | ||
810 | // Send stopbit | |
811 | ToSend[++ToSendMax] = SEC_F; | |
812 | ||
813 | // Flush the buffer in FPGA!! | |
814 | for(i = 0; i < 5; i++) { | |
815 | ToSend[++ToSendMax] = SEC_F; | |
816 | } | |
817 | ||
818 | // Convert from last byte pos to length | |
819 | ToSendMax++; | |
820 | ||
821 | // Add a few more for slop | |
822 | ToSend[ToSendMax++] = 0x00; | |
823 | ToSend[ToSendMax++] = 0x00; | |
824 | //ToSendMax += 2; | |
825 | } | |
826 | ||
827 | //----------------------------------------------------------------------------- | |
828 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 | |
829 | //----------------------------------------------------------------------------- | |
830 | static void CodeStrangeAnswer() | |
831 | { | |
832 | int i; | |
833 | ||
834 | ToSendReset(); | |
835 | ||
836 | // Correction bit, might be removed when not needed | |
837 | ToSendStuffBit(0); | |
838 | ToSendStuffBit(0); | |
839 | ToSendStuffBit(0); | |
840 | ToSendStuffBit(0); | |
841 | ToSendStuffBit(1); // 1 | |
842 | ToSendStuffBit(0); | |
843 | ToSendStuffBit(0); | |
844 | ToSendStuffBit(0); | |
845 | ||
846 | // Send startbit | |
847 | ToSend[++ToSendMax] = SEC_D; | |
848 | ||
849 | // 0 | |
850 | ToSend[++ToSendMax] = SEC_E; | |
851 | ||
852 | // 0 | |
853 | ToSend[++ToSendMax] = SEC_E; | |
854 | ||
855 | // 1 | |
856 | ToSend[++ToSendMax] = SEC_D; | |
857 | ||
858 | // Send stopbit | |
859 | ToSend[++ToSendMax] = SEC_F; | |
860 | ||
861 | // Flush the buffer in FPGA!! | |
862 | for(i = 0; i < 5; i++) { | |
863 | ToSend[++ToSendMax] = SEC_F; | |
864 | } | |
865 | ||
866 | // Convert from last byte pos to length | |
867 | ToSendMax++; | |
868 | ||
869 | // Add a few more for slop | |
870 | ToSend[ToSendMax++] = 0x00; | |
871 | ToSend[ToSendMax++] = 0x00; | |
872 | //ToSendMax += 2; | |
873 | } | |
874 | ||
875 | //----------------------------------------------------------------------------- | |
876 | // Wait for commands from reader | |
877 | // Stop when button is pressed | |
878 | // Or return TRUE when command is captured | |
879 | //----------------------------------------------------------------------------- | |
880 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) | |
881 | { | |
882 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
883 | // only, since we are receiving, not transmitting). | |
884 | // Signal field is off with the appropriate LED | |
885 | LED_D_OFF(); | |
886 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
887 | ||
888 | // Now run a `software UART' on the stream of incoming samples. | |
889 | Uart.output = received; | |
890 | Uart.byteCntMax = maxLen; | |
891 | Uart.state = STATE_UNSYNCD; | |
892 | ||
893 | for(;;) { | |
894 | WDT_HIT(); | |
895 | ||
896 | if(BUTTON_PRESS()) return FALSE; | |
897 | ||
898 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
899 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
900 | } | |
901 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
902 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
903 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
904 | *len = Uart.byteCnt; | |
905 | return TRUE; | |
906 | } | |
907 | if(MillerDecoding(b & 0x0f)) { | |
908 | *len = Uart.byteCnt; | |
909 | return TRUE; | |
910 | } | |
911 | } | |
912 | } | |
913 | } | |
914 | ||
915 | //----------------------------------------------------------------------------- | |
916 | // Main loop of simulated tag: receive commands from reader, decide what | |
917 | // response to send, and send it. | |
918 | //----------------------------------------------------------------------------- | |
919 | void SimulateIso14443aTag(int tagType, int TagUid) | |
920 | { | |
921 | // This function contains the tag emulation | |
922 | ||
923 | // Prepare protocol messages | |
924 | // static const uint8_t cmd1[] = { 0x26 }; | |
925 | // static const uint8_t response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg | |
926 | // | |
927 | static const uint8_t response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me | |
928 | // static const uint8_t response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me | |
929 | ||
930 | // UID response | |
931 | // static const uint8_t cmd2[] = { 0x93, 0x20 }; | |
932 | //static const uint8_t response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg | |
933 | ||
934 | // my desfire | |
935 | static const uint8_t response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips | |
936 | ||
937 | ||
938 | // When reader selects us during cascade1 it will send cmd3 | |
939 | //uint8_t response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) | |
940 | uint8_t response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) | |
941 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
942 | ||
943 | // send cascade2 2nd half of UID | |
944 | static const uint8_t response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck | |
945 | // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID | |
946 | ||
947 | // When reader selects us during cascade2 it will send cmd3a | |
948 | //uint8_t response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) | |
949 | uint8_t response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) | |
950 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
951 | ||
952 | static const uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce | |
953 | ||
954 | uint8_t *resp; | |
955 | int respLen; | |
956 | ||
957 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes | |
958 | // This will need | |
959 | // 144 data bits (18 * 8) | |
960 | // 18 parity bits | |
961 | // 2 Start and stop | |
962 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
963 | // 1 just for the case | |
964 | // ----------- + | |
965 | // 166 | |
966 | // | |
967 | // 166 bytes, since every bit that needs to be send costs us a byte | |
968 | // | |
969 | ||
970 | // Respond with card type | |
971 | uint8_t *resp1 = (((uint8_t *)BigBuf) + 800); | |
972 | int resp1Len; | |
973 | ||
974 | // Anticollision cascade1 - respond with uid | |
975 | uint8_t *resp2 = (((uint8_t *)BigBuf) + 970); | |
976 | int resp2Len; | |
977 | ||
978 | // Anticollision cascade2 - respond with 2nd half of uid if asked | |
979 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 | |
980 | uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); | |
981 | int resp2aLen; | |
982 | ||
983 | // Acknowledge select - cascade 1 | |
984 | uint8_t *resp3 = (((uint8_t *)BigBuf) + 1310); | |
985 | int resp3Len; | |
986 | ||
987 | // Acknowledge select - cascade 2 | |
988 | uint8_t *resp3a = (((uint8_t *)BigBuf) + 1480); | |
989 | int resp3aLen; | |
990 | ||
991 | // Response to a read request - not implemented atm | |
992 | uint8_t *resp4 = (((uint8_t *)BigBuf) + 1550); | |
993 | int resp4Len; | |
994 | ||
995 | // Authenticate response - nonce | |
996 | uint8_t *resp5 = (((uint8_t *)BigBuf) + 1720); | |
997 | int resp5Len; | |
998 | ||
999 | uint8_t *receivedCmd = (uint8_t *)BigBuf; | |
1000 | int len; | |
1001 | ||
1002 | int i; | |
1003 | int u; | |
1004 | uint8_t b; | |
1005 | ||
1006 | // To control where we are in the protocol | |
1007 | int order = 0; | |
1008 | int lastorder; | |
1009 | ||
1010 | // Just to allow some checks | |
1011 | int happened = 0; | |
1012 | int happened2 = 0; | |
1013 | ||
1014 | int cmdsRecvd = 0; | |
1015 | ||
1016 | int fdt_indicator; | |
1017 | ||
1018 | memset(receivedCmd, 0x44, 400); | |
1019 | ||
1020 | // Prepare the responses of the anticollision phase | |
1021 | // there will be not enough time to do this at the moment the reader sends it REQA | |
1022 | ||
1023 | // Answer to request | |
1024 | CodeIso14443aAsTag(response1, sizeof(response1)); | |
1025 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1026 | ||
1027 | // Send our UID (cascade 1) | |
1028 | CodeIso14443aAsTag(response2, sizeof(response2)); | |
1029 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1030 | ||
1031 | // Answer to select (cascade1) | |
1032 | CodeIso14443aAsTag(response3, sizeof(response3)); | |
1033 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; | |
1034 | ||
1035 | // Send the cascade 2 2nd part of the uid | |
1036 | CodeIso14443aAsTag(response2a, sizeof(response2a)); | |
1037 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; | |
1038 | ||
1039 | // Answer to select (cascade 2) | |
1040 | CodeIso14443aAsTag(response3a, sizeof(response3a)); | |
1041 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; | |
1042 | ||
1043 | // Strange answer is an example of rare message size (3 bits) | |
1044 | CodeStrangeAnswer(); | |
1045 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1046 | ||
1047 | // Authentication answer (random nonce) | |
1048 | CodeIso14443aAsTag(response5, sizeof(response5)); | |
1049 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; | |
1050 | ||
1051 | // We need to listen to the high-frequency, peak-detected path. | |
1052 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1053 | FpgaSetupSsc(); | |
1054 | ||
1055 | cmdsRecvd = 0; | |
1056 | ||
1057 | LED_A_ON(); | |
1058 | for(;;) { | |
1059 | ||
1060 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { | |
1061 | DbpString("button press"); | |
1062 | break; | |
1063 | } | |
1064 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated | |
1065 | // Okay, look at the command now. | |
1066 | lastorder = order; | |
1067 | i = 1; // first byte transmitted | |
1068 | if(receivedCmd[0] == 0x26) { | |
1069 | // Received a REQUEST | |
1070 | resp = resp1; respLen = resp1Len; order = 1; | |
1071 | //DbpString("Hello request from reader:"); | |
1072 | } else if(receivedCmd[0] == 0x52) { | |
1073 | // Received a WAKEUP | |
1074 | resp = resp1; respLen = resp1Len; order = 6; | |
1075 | // //DbpString("Wakeup request from reader:"); | |
1076 | ||
1077 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision | |
1078 | // Received request for UID (cascade 1) | |
1079 | resp = resp2; respLen = resp2Len; order = 2; | |
1080 | // DbpString("UID (cascade 1) request from reader:"); | |
1081 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1082 | ||
1083 | ||
1084 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision | |
1085 | // Received request for UID (cascade 2) | |
1086 | resp = resp2a; respLen = resp2aLen; order = 20; | |
1087 | // DbpString("UID (cascade 2) request from reader:"); | |
1088 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1089 | ||
1090 | ||
1091 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select | |
1092 | // Received a SELECT | |
1093 | resp = resp3; respLen = resp3Len; order = 3; | |
1094 | // DbpString("Select (cascade 1) request from reader:"); | |
1095 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1096 | ||
1097 | ||
1098 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select | |
1099 | // Received a SELECT | |
1100 | resp = resp3a; respLen = resp3aLen; order = 30; | |
1101 | // DbpString("Select (cascade 2) request from reader:"); | |
1102 | // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1103 | ||
1104 | ||
1105 | } else if(receivedCmd[0] == 0x30) { | |
1106 | // Received a READ | |
1107 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing | |
1108 | Dbprintf("Read request from reader: %x %x %x", | |
1109 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1110 | ||
1111 | ||
1112 | } else if(receivedCmd[0] == 0x50) { | |
1113 | // Received a HALT | |
1114 | resp = resp1; respLen = 0; order = 5; // Do nothing | |
1115 | DbpString("Reader requested we HALT!:"); | |
1116 | ||
1117 | } else if(receivedCmd[0] == 0x60) { | |
1118 | // Received an authentication request | |
1119 | resp = resp5; respLen = resp5Len; order = 7; | |
1120 | Dbprintf("Authenticate request from reader: %x %x %x", | |
1121 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1122 | ||
1123 | } else if(receivedCmd[0] == 0xE0) { | |
1124 | // Received a RATS request | |
1125 | resp = resp1; respLen = 0;order = 70; | |
1126 | Dbprintf("RATS request from reader: %x %x %x", | |
1127 | receivedCmd[0], receivedCmd[1], receivedCmd[2]); | |
1128 | } else { | |
1129 | // Never seen this command before | |
1130 | Dbprintf("Unknown command received from reader: %x %x %x %x %x %x %x %x %x", | |
1131 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1132 | receivedCmd[3], receivedCmd[3], receivedCmd[4], | |
1133 | receivedCmd[5], receivedCmd[6], receivedCmd[7]); | |
1134 | // Do not respond | |
1135 | resp = resp1; respLen = 0; order = 0; | |
1136 | } | |
1137 | ||
1138 | // Count number of wakeups received after a halt | |
1139 | if(order == 6 && lastorder == 5) { happened++; } | |
1140 | ||
1141 | // Count number of other messages after a halt | |
1142 | if(order != 6 && lastorder == 5) { happened2++; } | |
1143 | ||
1144 | // Look at last parity bit to determine timing of answer | |
1145 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { | |
1146 | // 1236, so correction bit needed | |
1147 | i = 0; | |
1148 | } | |
1149 | ||
1150 | memset(receivedCmd, 0x44, 32); | |
1151 | ||
1152 | if(cmdsRecvd > 999) { | |
1153 | DbpString("1000 commands later..."); | |
1154 | break; | |
1155 | } | |
1156 | else { | |
1157 | cmdsRecvd++; | |
1158 | } | |
1159 | ||
1160 | if(respLen <= 0) continue; | |
1161 | ||
1162 | // Modulate Manchester | |
1163 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
1164 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1165 | FpgaSetupSsc(); | |
1166 | ||
1167 | // ### Transmit the response ### | |
1168 | u = 0; | |
1169 | b = 0x00; | |
1170 | fdt_indicator = FALSE; | |
1171 | for(;;) { | |
1172 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1173 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1174 | (void)b; | |
1175 | } | |
1176 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1177 | if(i > respLen) { | |
1178 | b = 0x00; | |
1179 | u++; | |
1180 | } else { | |
1181 | b = resp[i]; | |
1182 | i++; | |
1183 | } | |
1184 | AT91C_BASE_SSC->SSC_THR = b; | |
1185 | ||
1186 | if(u > 4) { | |
1187 | break; | |
1188 | } | |
1189 | } | |
1190 | if(BUTTON_PRESS()) { | |
1191 | break; | |
1192 | } | |
1193 | } | |
1194 | ||
1195 | } | |
1196 | ||
1197 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1198 | LED_A_OFF(); | |
1199 | } | |
1200 | ||
1201 | //----------------------------------------------------------------------------- | |
1202 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1203 | //----------------------------------------------------------------------------- | |
1204 | static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) | |
1205 | { | |
1206 | int c; | |
1207 | ||
1208 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1209 | ||
1210 | if (wait) | |
1211 | if(*wait < 10) | |
1212 | *wait = 10; | |
1213 | ||
1214 | for(c = 0; c < *wait;) { | |
1215 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1216 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1217 | c++; | |
1218 | } | |
1219 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1220 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1221 | (void)r; | |
1222 | } | |
1223 | WDT_HIT(); | |
1224 | } | |
1225 | ||
1226 | c = 0; | |
1227 | for(;;) { | |
1228 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1229 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1230 | c++; | |
1231 | if(c >= len) { | |
1232 | break; | |
1233 | } | |
1234 | } | |
1235 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1236 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1237 | (void)r; | |
1238 | } | |
1239 | WDT_HIT(); | |
1240 | } | |
1241 | if (samples) *samples = (c + *wait) << 3; | |
1242 | } | |
1243 | ||
1244 | //----------------------------------------------------------------------------- | |
1245 | // Code a 7-bit command without parity bit | |
1246 | // This is especially for 0x26 and 0x52 (REQA and WUPA) | |
1247 | //----------------------------------------------------------------------------- | |
1248 | void ShortFrameFromReader(const uint8_t bt) | |
1249 | { | |
1250 | int j; | |
1251 | int last; | |
1252 | uint8_t b; | |
1253 | ||
1254 | ToSendReset(); | |
1255 | ||
1256 | // Start of Communication (Seq. Z) | |
1257 | ToSend[++ToSendMax] = SEC_Z; | |
1258 | last = 0; | |
1259 | ||
1260 | b = bt; | |
1261 | for(j = 0; j < 7; j++) { | |
1262 | if(b & 1) { | |
1263 | // Sequence X | |
1264 | ToSend[++ToSendMax] = SEC_X; | |
1265 | last = 1; | |
1266 | } else { | |
1267 | if(last == 0) { | |
1268 | // Sequence Z | |
1269 | ToSend[++ToSendMax] = SEC_Z; | |
1270 | } | |
1271 | else { | |
1272 | // Sequence Y | |
1273 | ToSend[++ToSendMax] = SEC_Y; | |
1274 | last = 0; | |
1275 | } | |
1276 | } | |
1277 | b >>= 1; | |
1278 | } | |
1279 | ||
1280 | // End of Communication | |
1281 | if(last == 0) { | |
1282 | // Sequence Z | |
1283 | ToSend[++ToSendMax] = SEC_Z; | |
1284 | } | |
1285 | else { | |
1286 | // Sequence Y | |
1287 | ToSend[++ToSendMax] = SEC_Y; | |
1288 | last = 0; | |
1289 | } | |
1290 | // Sequence Y | |
1291 | ToSend[++ToSendMax] = SEC_Y; | |
1292 | ||
1293 | // Just to be sure! | |
1294 | ToSend[++ToSendMax] = SEC_Y; | |
1295 | ToSend[++ToSendMax] = SEC_Y; | |
1296 | ToSend[++ToSendMax] = SEC_Y; | |
1297 | ||
1298 | // Convert from last character reference to length | |
1299 | ToSendMax++; | |
1300 | } | |
1301 | ||
1302 | //----------------------------------------------------------------------------- | |
1303 | // Prepare reader command to send to FPGA | |
1304 | // | |
1305 | //----------------------------------------------------------------------------- | |
1306 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) | |
1307 | { | |
1308 | int i, j; | |
1309 | int last; | |
1310 | uint8_t b; | |
1311 | ||
1312 | ToSendReset(); | |
1313 | ||
1314 | // Start of Communication (Seq. Z) | |
1315 | ToSend[++ToSendMax] = SEC_Z; | |
1316 | last = 0; | |
1317 | ||
1318 | // Generate send structure for the data bits | |
1319 | for (i = 0; i < len; i++) { | |
1320 | // Get the current byte to send | |
1321 | b = cmd[i]; | |
1322 | ||
1323 | for (j = 0; j < 8; j++) { | |
1324 | if (b & 1) { | |
1325 | // Sequence X | |
1326 | ToSend[++ToSendMax] = SEC_X; | |
1327 | last = 1; | |
1328 | } else { | |
1329 | if (last == 0) { | |
1330 | // Sequence Z | |
1331 | ToSend[++ToSendMax] = SEC_Z; | |
1332 | } else { | |
1333 | // Sequence Y | |
1334 | ToSend[++ToSendMax] = SEC_Y; | |
1335 | last = 0; | |
1336 | } | |
1337 | } | |
1338 | b >>= 1; | |
1339 | } | |
1340 | ||
1341 | // Get the parity bit | |
1342 | if ((dwParity >> i) & 0x01) { | |
1343 | // Sequence X | |
1344 | ToSend[++ToSendMax] = SEC_X; | |
1345 | last = 1; | |
1346 | } else { | |
1347 | if (last == 0) { | |
1348 | // Sequence Z | |
1349 | ToSend[++ToSendMax] = SEC_Z; | |
1350 | } else { | |
1351 | // Sequence Y | |
1352 | ToSend[++ToSendMax] = SEC_Y; | |
1353 | last = 0; | |
1354 | } | |
1355 | } | |
1356 | } | |
1357 | ||
1358 | // End of Communication | |
1359 | if (last == 0) { | |
1360 | // Sequence Z | |
1361 | ToSend[++ToSendMax] = SEC_Z; | |
1362 | } else { | |
1363 | // Sequence Y | |
1364 | ToSend[++ToSendMax] = SEC_Y; | |
1365 | last = 0; | |
1366 | } | |
1367 | // Sequence Y | |
1368 | ToSend[++ToSendMax] = SEC_Y; | |
1369 | ||
1370 | // Just to be sure! | |
1371 | ToSend[++ToSendMax] = SEC_Y; | |
1372 | ToSend[++ToSendMax] = SEC_Y; | |
1373 | ToSend[++ToSendMax] = SEC_Y; | |
1374 | ||
1375 | // Convert from last character reference to length | |
1376 | ToSendMax++; | |
1377 | } | |
1378 | ||
1379 | //----------------------------------------------------------------------------- | |
1380 | // Wait a certain time for tag response | |
1381 | // If a response is captured return TRUE | |
1382 | // If it takes to long return FALSE | |
1383 | //----------------------------------------------------------------------------- | |
1384 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1385 | { | |
1386 | // buffer needs to be 512 bytes | |
1387 | int c; | |
1388 | ||
1389 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1390 | // only, since we are receiving, not transmitting). | |
1391 | // Signal field is on with the appropriate LED | |
1392 | LED_D_ON(); | |
1393 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1394 | ||
1395 | // Now get the answer from the card | |
1396 | Demod.output = receivedResponse; | |
1397 | Demod.len = 0; | |
1398 | Demod.state = DEMOD_UNSYNCD; | |
1399 | ||
1400 | uint8_t b; | |
1401 | if (elapsed) *elapsed = 0; | |
1402 | ||
1403 | c = 0; | |
1404 | for(;;) { | |
1405 | WDT_HIT(); | |
1406 | ||
1407 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1408 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1409 | if (elapsed) (*elapsed)++; | |
1410 | } | |
1411 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1412 | if(c < 512) { c++; } else { return FALSE; } | |
1413 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1414 | if(ManchesterDecoding((b>>4) & 0xf)) { | |
1415 | *samples = ((c - 1) << 3) + 4; | |
1416 | return TRUE; | |
1417 | } | |
1418 | if(ManchesterDecoding(b & 0x0f)) { | |
1419 | *samples = c << 3; | |
1420 | return TRUE; | |
1421 | } | |
1422 | } | |
1423 | } | |
1424 | } | |
1425 | ||
1426 | void ReaderTransmitShort(const uint8_t* bt) | |
1427 | { | |
1428 | int wait = 0; | |
1429 | int samples = 0; | |
1430 | ||
1431 | ShortFrameFromReader(*bt); | |
1432 | ||
1433 | // Select the card | |
1434 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1435 | ||
1436 | // Store reader command in buffer | |
1437 | if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); | |
1438 | } | |
1439 | ||
1440 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) | |
1441 | { | |
1442 | int wait = 0; | |
1443 | int samples = 0; | |
1444 | ||
1445 | // This is tied to other size changes | |
1446 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; | |
1447 | CodeIso14443aAsReaderPar(frame,len,par); | |
1448 | ||
1449 | // Select the card | |
1450 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1451 | ||
1452 | // Store reader command in buffer | |
1453 | if (tracing) LogTrace(frame,len,0,par,TRUE); | |
1454 | } | |
1455 | ||
1456 | ||
1457 | void ReaderTransmit(uint8_t* frame, int len) | |
1458 | { | |
1459 | // Generate parity and redirect | |
1460 | ReaderTransmitPar(frame,len,GetParity(frame,len)); | |
1461 | } | |
1462 | ||
1463 | int ReaderReceive(uint8_t* receivedAnswer) | |
1464 | { | |
1465 | int samples = 0; | |
1466 | if (!GetIso14443aAnswerFromTag(receivedAnswer,100,&samples,0)) return FALSE; | |
1467 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1468 | return TRUE; | |
1469 | } | |
1470 | ||
1471 | //----------------------------------------------------------------------------- | |
1472 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1473 | // | |
1474 | //----------------------------------------------------------------------------- | |
1475 | void ReaderIso14443a(uint32_t parameter) | |
1476 | { | |
1477 | // Anticollision | |
1478 | uint8_t wupa[] = { 0x52 }; | |
1479 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1480 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1481 | uint8_t sel_all_c2[] = { 0x95,0x20 }; | |
1482 | uint8_t sel_uid_c2[] = { 0x95,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1483 | ||
1484 | // Mifare AUTH | |
1485 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1486 | // uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00 }; | |
1487 | ||
1488 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1489 | traceLen = 0; | |
1490 | ||
1491 | // Setup SSC | |
1492 | FpgaSetupSsc(); | |
1493 | ||
1494 | // Start from off (no field generated) | |
1495 | // Signal field is off with the appropriate LED | |
1496 | LED_D_OFF(); | |
1497 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1498 | SpinDelay(200); | |
1499 | ||
1500 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1501 | ||
1502 | // Now give it time to spin up. | |
1503 | // Signal field is on with the appropriate LED | |
1504 | LED_D_ON(); | |
1505 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1506 | SpinDelay(200); | |
1507 | ||
1508 | LED_A_ON(); | |
1509 | LED_B_OFF(); | |
1510 | LED_C_OFF(); | |
1511 | ||
1512 | while(traceLen < TRACE_LENGTH) | |
1513 | { | |
1514 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1515 | ReaderTransmitShort(wupa); | |
1516 | ||
1517 | // Test if the action was cancelled | |
1518 | if(BUTTON_PRESS()) { | |
1519 | break; | |
1520 | } | |
1521 | ||
1522 | // Receive the ATQA | |
1523 | if (!ReaderReceive(receivedAnswer)) continue; | |
1524 | ||
1525 | // Transmit SELECT_ALL | |
1526 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1527 | ||
1528 | // Receive the UID | |
1529 | if (!ReaderReceive(receivedAnswer)) continue; | |
1530 | ||
1531 | // Construct SELECT UID command | |
1532 | // First copy the 5 bytes (Mifare Classic) after the 93 70 | |
1533 | memcpy(sel_uid+2,receivedAnswer,5); | |
1534 | // Secondly compute the two CRC bytes at the end | |
1535 | AppendCrc14443a(sel_uid,7); | |
1536 | ||
1537 | // Transmit SELECT_UID | |
1538 | ReaderTransmit(sel_uid,sizeof(sel_uid)); | |
1539 | ||
1540 | // Receive the SAK | |
1541 | if (!ReaderReceive(receivedAnswer)) continue; | |
1542 | ||
1543 | // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in | |
1544 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1545 | // When the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1546 | if (receivedAnswer[0] &= 0x04) | |
1547 | { | |
1548 | // Transmit SELECT_ALL | |
1549 | ReaderTransmit(sel_all_c2,sizeof(sel_all_c2)); | |
1550 | ||
1551 | // Receive the UID | |
1552 | if (!ReaderReceive(receivedAnswer)) continue; | |
1553 | ||
1554 | // Construct SELECT UID command | |
1555 | memcpy(sel_uid_c2+2,receivedAnswer,5); | |
1556 | // Secondly compute the two CRC bytes at the end | |
1557 | AppendCrc14443a(sel_uid_c2,7); | |
1558 | ||
1559 | // Transmit SELECT_UID | |
1560 | ReaderTransmit(sel_uid_c2,sizeof(sel_uid_c2)); | |
1561 | ||
1562 | // Receive the SAK | |
1563 | if (!ReaderReceive(receivedAnswer)) continue; | |
1564 | } | |
1565 | ||
1566 | // Transmit MIFARE_CLASSIC_AUTH | |
1567 | ReaderTransmit(mf_auth,sizeof(mf_auth)); | |
1568 | ||
1569 | // Receive the (16 bit) "random" nonce | |
1570 | if (!ReaderReceive(receivedAnswer)) continue; | |
1571 | } | |
1572 | ||
1573 | // Thats it... | |
1574 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1575 | LEDsoff(); | |
1576 | Dbprintf("%x %x %x", rsamples, 0xCC, 0xCC); | |
1577 | DbpString("ready.."); | |
1578 | } | |
1579 | ||
1580 | //----------------------------------------------------------------------------- | |
1581 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1582 | // | |
1583 | //----------------------------------------------------------------------------- | |
1584 | void ReaderMifare(uint32_t parameter) | |
1585 | { | |
1586 | ||
1587 | // Anticollision | |
1588 | uint8_t wupa[] = { 0x52 }; | |
1589 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1590 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1591 | ||
1592 | // Mifare AUTH | |
1593 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1594 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1595 | ||
1596 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1597 | traceLen = 0; | |
1598 | tracing = false; | |
1599 | ||
1600 | // Setup SSC | |
1601 | FpgaSetupSsc(); | |
1602 | ||
1603 | // Start from off (no field generated) | |
1604 | // Signal field is off with the appropriate LED | |
1605 | LED_D_OFF(); | |
1606 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1607 | SpinDelay(200); | |
1608 | ||
1609 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1610 | ||
1611 | // Now give it time to spin up. | |
1612 | // Signal field is on with the appropriate LED | |
1613 | LED_D_ON(); | |
1614 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1615 | SpinDelay(200); | |
1616 | ||
1617 | LED_A_ON(); | |
1618 | LED_B_OFF(); | |
1619 | LED_C_OFF(); | |
1620 | ||
1621 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1622 | ReaderTransmitShort(wupa); | |
1623 | // Receive the ATQA | |
1624 | ReaderReceive(receivedAnswer); | |
1625 | // Transmit SELECT_ALL | |
1626 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1627 | // Receive the UID | |
1628 | ReaderReceive(receivedAnswer); | |
1629 | // Construct SELECT UID command | |
1630 | // First copy the 5 bytes (Mifare Classic) after the 93 70 | |
1631 | memcpy(sel_uid+2,receivedAnswer,5); | |
1632 | // Secondly compute the two CRC bytes at the end | |
1633 | AppendCrc14443a(sel_uid,7); | |
1634 | ||
1635 | byte_t nt_diff = 0; | |
1636 | LED_A_OFF(); | |
1637 | byte_t par = 0; | |
1638 | byte_t par_mask = 0xff; | |
1639 | byte_t par_low = 0; | |
1640 | int led_on = TRUE; | |
1641 | ||
1642 | tracing = FALSE; | |
1643 | byte_t nt[4]; | |
1644 | byte_t nt_attacked[4]; | |
1645 | byte_t par_list[8]; | |
1646 | byte_t ks_list[8]; | |
1647 | num_to_bytes(parameter,4,nt_attacked); | |
1648 | ||
1649 | while(TRUE) | |
1650 | { | |
1651 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1652 | SpinDelay(200); | |
1653 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1654 | ||
1655 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1656 | ReaderTransmitShort(wupa); | |
1657 | ||
1658 | // Test if the action was cancelled | |
1659 | if(BUTTON_PRESS()) { | |
1660 | break; | |
1661 | } | |
1662 | ||
1663 | // Receive the ATQA | |
1664 | if (!ReaderReceive(receivedAnswer)) continue; | |
1665 | ||
1666 | // Transmit SELECT_ALL | |
1667 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1668 | ||
1669 | // Receive the UID | |
1670 | if (!ReaderReceive(receivedAnswer)) continue; | |
1671 | ||
1672 | // Transmit SELECT_UID | |
1673 | ReaderTransmit(sel_uid,sizeof(sel_uid)); | |
1674 | ||
1675 | // Receive the SAK | |
1676 | if (!ReaderReceive(receivedAnswer)) continue; | |
1677 | ||
1678 | // Transmit MIFARE_CLASSIC_AUTH | |
1679 | ReaderTransmit(mf_auth,sizeof(mf_auth)); | |
1680 | ||
1681 | // Receive the (16 bit) "random" nonce | |
1682 | if (!ReaderReceive(receivedAnswer)) continue; | |
1683 | memcpy(nt,receivedAnswer,4); | |
1684 | ||
1685 | // Transmit reader nonce and reader answer | |
1686 | ReaderTransmitPar(mf_nr_ar,sizeof(mf_nr_ar),par); | |
1687 | ||
1688 | // Receive 4 bit answer | |
1689 | if (ReaderReceive(receivedAnswer)) | |
1690 | { | |
1691 | if (nt_diff == 0) | |
1692 | { | |
1693 | LED_A_ON(); | |
1694 | memcpy(nt_attacked,nt,4); | |
1695 | par_mask = 0xf8; | |
1696 | par_low = par & 0x07; | |
1697 | } | |
1698 | ||
1699 | if (memcmp(nt,nt_attacked,4) != 0) continue; | |
1700 | ||
1701 | led_on = !led_on; | |
1702 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
1703 | par_list[nt_diff] = par; | |
1704 | ks_list[nt_diff] = receivedAnswer[0]^0x05; | |
1705 | ||
1706 | // Test if the information is complete | |
1707 | if (nt_diff == 0x07) break; | |
1708 | ||
1709 | nt_diff = (nt_diff+1) & 0x07; | |
1710 | mf_nr_ar[3] = nt_diff << 5; | |
1711 | par = par_low; | |
1712 | } else { | |
1713 | if (nt_diff == 0) | |
1714 | { | |
1715 | par++; | |
1716 | } else { | |
1717 | par = (((par>>3)+1) << 3) | par_low; | |
1718 | } | |
1719 | } | |
1720 | } | |
1721 | ||
1722 | LogTrace(sel_uid+2,4,0,GetParity(sel_uid+2,4),TRUE); | |
1723 | LogTrace(nt,4,0,GetParity(nt,4),TRUE); | |
1724 | LogTrace(par_list,8,0,GetParity(par_list,8),TRUE); | |
1725 | LogTrace(ks_list,8,0,GetParity(ks_list,8),TRUE); | |
1726 | ||
1727 | // Thats it... | |
1728 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1729 | LEDsoff(); | |
1730 | tracing = TRUE; | |
1731 | } |