]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2014 | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Low frequency commands | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include <stdlib.h> | |
12 | #include <string.h> | |
13 | #include "lfdemod.h" | |
14 | ||
15 | //by marshmellow | |
16 | //takes 1s and 0s and searches for EM410x format - output EM ID | |
17 | uint64_t Em410xDecode(uint8_t *BitStream, size_t size) | |
18 | { | |
19 | //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future | |
20 | // otherwise could be a void with no arguments | |
21 | //set defaults | |
22 | uint64_t lo=0; | |
23 | uint32_t i = 0; | |
24 | if (BitStream[10]>1){ //allow only 1s and 0s | |
25 | // PrintAndLog("no data found"); | |
26 | return 0; | |
27 | } | |
28 | uint8_t parityTest=0; | |
29 | // 111111111 bit pattern represent start of frame | |
30 | uint8_t frame_marker_mask[] = {1,1,1,1,1,1,1,1,1}; | |
31 | uint32_t idx = 0; | |
32 | uint32_t ii=0; | |
33 | uint8_t resetCnt = 0; | |
34 | while( (idx + 64) < size) { | |
35 | restart: | |
36 | // search for a start of frame marker | |
37 | if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
38 | { // frame marker found | |
39 | idx+=9; | |
40 | for (i=0; i<10;i++){ | |
41 | for(ii=0; ii<5; ++ii){ | |
42 | parityTest ^= BitStream[(i*5)+ii+idx]; | |
43 | } | |
44 | if (!parityTest){ | |
45 | parityTest=0; | |
46 | for (ii=0; ii<4;++ii){ | |
47 | lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]); | |
48 | } | |
49 | //PrintAndLog("DEBUG: EM parity passed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d,lo: %d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1],lo); | |
50 | }else {//parity failed | |
51 | //PrintAndLog("DEBUG: EM parity failed parity val: %d, i:%d, ii:%d,idx:%d, Buffer: %d%d%d%d%d",parityTest,i,ii,idx,BitStream[idx+ii+(i*5)-5],BitStream[idx+ii+(i*5)-4],BitStream[idx+ii+(i*5)-3],BitStream[idx+ii+(i*5)-2],BitStream[idx+ii+(i*5)-1]); | |
52 | parityTest=0; | |
53 | idx-=8; | |
54 | if (resetCnt>5)return 0; //try 5 times | |
55 | resetCnt++; | |
56 | goto restart;//continue; | |
57 | } | |
58 | } | |
59 | //skip last 5 bit parity test for simplicity. | |
60 | return lo; | |
61 | }else{ | |
62 | idx++; | |
63 | } | |
64 | } | |
65 | return 0; | |
66 | } | |
67 | ||
68 | //by marshmellow | |
69 | //takes 2 arguments - clock and invert both as integers | |
70 | //attempts to demodulate ask while decoding manchester | |
71 | //prints binary found and saves in graphbuffer for further commands | |
72 | int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) | |
73 | { | |
74 | int i; | |
75 | int high = 0, low = 255; | |
76 | *clk=DetectASKClock(BinStream, *size, *clk); //clock default | |
77 | ||
78 | if (*clk<8) *clk =64; | |
79 | if (*clk<32) *clk=32; | |
80 | if (*invert != 0 && *invert != 1) *invert=0; | |
81 | uint32_t initLoopMax = 200; | |
82 | if (initLoopMax > *size) initLoopMax=*size; | |
83 | // Detect high and lows | |
84 | for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values | |
85 | { | |
86 | if (BinStream[i] > high) | |
87 | high = BinStream[i]; | |
88 | else if (BinStream[i] < low) | |
89 | low = BinStream[i]; | |
90 | } | |
91 | if ((high < 129) ){ //throw away static (anything < 1 graph) | |
92 | //PrintAndLog("no data found"); | |
93 | return -2; | |
94 | } | |
95 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
96 | high=(int)(((high-128)*.75)+128); | |
97 | low= (int)(((low-128)*.75)+128); | |
98 | ||
99 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
100 | int lastBit = 0; //set first clock check | |
101 | uint32_t bitnum = 0; //output counter | |
102 | int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
103 | if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
104 | int iii = 0; | |
105 | uint32_t gLen = *size; | |
106 | if (gLen > 3000) gLen=3000; | |
107 | uint8_t errCnt =0; | |
108 | uint32_t bestStart = *size; | |
109 | uint32_t bestErrCnt = (*size/1000); | |
110 | uint32_t maxErr = (*size/1000); | |
111 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
112 | //loop to find first wave that works | |
113 | for (iii=0; iii < gLen; ++iii){ | |
114 | if ((BinStream[iii] >= high) || (BinStream[iii] <= low)){ | |
115 | lastBit=iii-*clk; | |
116 | errCnt=0; | |
117 | //loop through to see if this start location works | |
118 | for (i = iii; i < *size; ++i) { | |
119 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ | |
120 | lastBit+=*clk; | |
121 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
122 | //low found and we are expecting a bar | |
123 | lastBit+=*clk; | |
124 | } else { | |
125 | //mid value found or no bar supposed to be here | |
126 | if ((i-lastBit)>(*clk+tol)){ | |
127 | //should have hit a high or low based on clock!! | |
128 | ||
129 | //debug | |
130 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
131 | ||
132 | errCnt++; | |
133 | lastBit+=*clk;//skip over until hit too many errors | |
134 | if (errCnt>(maxErr)) break; //allow 1 error for every 1000 samples else start over | |
135 | } | |
136 | } | |
137 | if ((i-iii) >(400 * *clk)) break; //got plenty of bits | |
138 | } | |
139 | //we got more than 64 good bits and not all errors | |
140 | if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<maxErr)) { | |
141 | //possible good read | |
142 | if (errCnt==0){ | |
143 | bestStart=iii; | |
144 | bestErrCnt=errCnt; | |
145 | break; //great read - finish | |
146 | } | |
147 | if (errCnt<bestErrCnt){ //set this as new best run | |
148 | bestErrCnt=errCnt; | |
149 | bestStart = iii; | |
150 | } | |
151 | } | |
152 | } | |
153 | } | |
154 | if (bestErrCnt<maxErr){ | |
155 | //best run is good enough set to best run and set overwrite BinStream | |
156 | iii=bestStart; | |
157 | lastBit = bestStart - *clk; | |
158 | bitnum=0; | |
159 | for (i = iii; i < *size; ++i) { | |
160 | if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){ | |
161 | lastBit += *clk; | |
162 | BinStream[bitnum] = *invert; | |
163 | bitnum++; | |
164 | } else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){ | |
165 | //low found and we are expecting a bar | |
166 | lastBit+=*clk; | |
167 | BinStream[bitnum] = 1-*invert; | |
168 | bitnum++; | |
169 | } else { | |
170 | //mid value found or no bar supposed to be here | |
171 | if ((i-lastBit)>(*clk+tol)){ | |
172 | //should have hit a high or low based on clock!! | |
173 | ||
174 | //debug | |
175 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
176 | if (bitnum > 0){ | |
177 | BinStream[bitnum]=77; | |
178 | bitnum++; | |
179 | } | |
180 | ||
181 | lastBit+=*clk;//skip over error | |
182 | } | |
183 | } | |
184 | if (bitnum >=400) break; | |
185 | } | |
186 | *size=bitnum; | |
187 | } else{ | |
188 | *invert=bestStart; | |
189 | *clk=iii; | |
190 | return -1; | |
191 | } | |
192 | return bestErrCnt; | |
193 | } | |
194 | ||
195 | //by marshmellow | |
196 | //take 10 and 01 and manchester decode | |
197 | //run through 2 times and take least errCnt | |
198 | int manrawdecode(uint8_t * BitStream, size_t *size) | |
199 | { | |
200 | int bitnum=0; | |
201 | int errCnt =0; | |
202 | int i=1; | |
203 | int bestErr = 1000; | |
204 | int bestRun = 0; | |
205 | int ii=1; | |
206 | for (ii=1;ii<3;++ii){ | |
207 | i=1; | |
208 | for (i=i+ii;i<*size-2;i+=2){ | |
209 | if(BitStream[i]==1 && (BitStream[i+1]==0)){ | |
210 | } else if((BitStream[i]==0)&& BitStream[i+1]==1){ | |
211 | } else { | |
212 | errCnt++; | |
213 | } | |
214 | if(bitnum>300) break; | |
215 | } | |
216 | if (bestErr>errCnt){ | |
217 | bestErr=errCnt; | |
218 | bestRun=ii; | |
219 | } | |
220 | errCnt=0; | |
221 | } | |
222 | errCnt=bestErr; | |
223 | if (errCnt<20){ | |
224 | ii=bestRun; | |
225 | i=1; | |
226 | for (i=i+ii;i < *size-2;i+=2){ | |
227 | if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ | |
228 | BitStream[bitnum++]=0; | |
229 | } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ | |
230 | BitStream[bitnum++]=1; | |
231 | } else { | |
232 | BitStream[bitnum++]=77; | |
233 | //errCnt++; | |
234 | } | |
235 | if(bitnum>300) break; | |
236 | } | |
237 | *size=bitnum; | |
238 | } | |
239 | return errCnt; | |
240 | } | |
241 | ||
242 | ||
243 | //by marshmellow | |
244 | //take 01 or 10 = 0 and 11 or 00 = 1 | |
245 | int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset) | |
246 | { | |
247 | uint8_t bitnum=0; | |
248 | uint32_t errCnt =0; | |
249 | uint32_t i=1; | |
250 | i=offset; | |
251 | for (;i<*size-2;i+=2){ | |
252 | if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ | |
253 | BitStream[bitnum++]=1; | |
254 | } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ | |
255 | BitStream[bitnum++]=0; | |
256 | } else { | |
257 | BitStream[bitnum++]=77; | |
258 | errCnt++; | |
259 | } | |
260 | if(bitnum>250) break; | |
261 | } | |
262 | *size=bitnum; | |
263 | return errCnt; | |
264 | } | |
265 | ||
266 | //by marshmellow | |
267 | //takes 2 arguments - clock and invert both as integers | |
268 | //attempts to demodulate ask only | |
269 | //prints binary found and saves in graphbuffer for further commands | |
270 | int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert) | |
271 | { | |
272 | uint32_t i; | |
273 | // int invert=0; //invert default | |
274 | int high = 0, low = 255; | |
275 | *clk=DetectASKClock(BinStream, *size, *clk); //clock default | |
276 | uint8_t BitStream[502] = {0}; | |
277 | ||
278 | if (*clk<8) *clk =64; | |
279 | if (*clk<32) *clk=32; | |
280 | if (*invert != 0 && *invert != 1) *invert =0; | |
281 | uint32_t initLoopMax = 200; | |
282 | if (initLoopMax > *size) initLoopMax=*size; | |
283 | // Detect high and lows | |
284 | for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values | |
285 | { | |
286 | if (BinStream[i] > high) | |
287 | high = BinStream[i]; | |
288 | else if (BinStream[i] < low) | |
289 | low = BinStream[i]; | |
290 | } | |
291 | if ((high < 129)){ //throw away static high has to be more than 0 on graph. | |
292 | //noise <= -10 here | |
293 | // PrintAndLog("no data found"); | |
294 | return -2; | |
295 | } | |
296 | //25% fuzz in case highs and lows aren't clipped [marshmellow] | |
297 | high=(int)(((high-128)*.75)+128); | |
298 | low= (int)(((low-128)*.75)+128); | |
299 | ||
300 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
301 | int lastBit = 0; //set first clock check | |
302 | uint32_t bitnum = 0; //output counter | |
303 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock | |
304 | // if they fall + or - this value + clock from last valid wave | |
305 | if (*clk == 32) tol=1; //clock tolerance may not be needed anymore currently set to | |
306 | // + or - 1 but could be increased for poor waves or removed entirely | |
307 | uint32_t iii = 0; | |
308 | uint32_t gLen = *size; | |
309 | if (gLen > 500) gLen=500; | |
310 | uint8_t errCnt =0; | |
311 | uint32_t bestStart = *size; | |
312 | uint32_t bestErrCnt = (*size/1000); | |
313 | uint8_t midBit=0; | |
314 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
315 | //loop to find first wave that works | |
316 | for (iii=0; iii < gLen; ++iii){ | |
317 | if ((BinStream[iii]>=high) || (BinStream[iii]<=low)){ | |
318 | lastBit=iii-*clk; | |
319 | //loop through to see if this start location works | |
320 | for (i = iii; i < *size; ++i) { | |
321 | if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){ | |
322 | lastBit+=*clk; | |
323 | BitStream[bitnum] = *invert; | |
324 | bitnum++; | |
325 | midBit=0; | |
326 | } else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){ | |
327 | //low found and we are expecting a bar | |
328 | lastBit+=*clk; | |
329 | BitStream[bitnum] = 1- *invert; | |
330 | bitnum++; | |
331 | midBit=0; | |
332 | } else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
333 | //mid bar? | |
334 | midBit=1; | |
335 | BitStream[bitnum]= 1- *invert; | |
336 | bitnum++; | |
337 | } else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){ | |
338 | //mid bar? | |
339 | midBit=1; | |
340 | BitStream[bitnum]= *invert; | |
341 | bitnum++; | |
342 | } else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){ | |
343 | //no mid bar found | |
344 | midBit=1; | |
345 | BitStream[bitnum]= BitStream[bitnum-1]; | |
346 | bitnum++; | |
347 | } else { | |
348 | //mid value found or no bar supposed to be here | |
349 | ||
350 | if ((i-lastBit)>(*clk+tol)){ | |
351 | //should have hit a high or low based on clock!! | |
352 | //debug | |
353 | //PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit); | |
354 | if (bitnum > 0){ | |
355 | BitStream[bitnum]=77; | |
356 | bitnum++; | |
357 | } | |
358 | ||
359 | errCnt++; | |
360 | lastBit+=*clk;//skip over until hit too many errors | |
361 | if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over | |
362 | errCnt=0; | |
363 | bitnum=0;//start over | |
364 | break; | |
365 | } | |
366 | } | |
367 | } | |
368 | if (bitnum>500) break; | |
369 | } | |
370 | //we got more than 64 good bits and not all errors | |
371 | if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) { | |
372 | //possible good read | |
373 | if (errCnt==0) break; //great read - finish | |
374 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
375 | if (errCnt<bestErrCnt){ //set this as new best run | |
376 | bestErrCnt=errCnt; | |
377 | bestStart = iii; | |
378 | } | |
379 | } | |
380 | } | |
381 | if (iii>=gLen){ //exhausted test | |
382 | //if there was a ok test go back to that one and re-run the best run (then dump after that run) | |
383 | if (bestErrCnt < (*size/1000)) iii=bestStart; | |
384 | } | |
385 | } | |
386 | if (bitnum>16){ | |
387 | for (i=0; i < bitnum; ++i){ | |
388 | BinStream[i]=BitStream[i]; | |
389 | } | |
390 | *size=bitnum; | |
391 | } else return -1; | |
392 | return errCnt; | |
393 | } | |
394 | //translate wave to 11111100000 (1 for each short wave 0 for each long wave) | |
395 | size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) | |
396 | { | |
397 | uint32_t last_transition = 0; | |
398 | uint32_t idx = 1; | |
399 | //uint32_t maxVal=0; | |
400 | if (fchigh==0) fchigh=10; | |
401 | if (fclow==0) fclow=8; | |
402 | //set the threshold close to 0 (graph) or 128 std to avoid static | |
403 | uint8_t threshold_value = 123; | |
404 | ||
405 | // sync to first lo-hi transition, and threshold | |
406 | ||
407 | // Need to threshold first sample | |
408 | ||
409 | if(dest[0] < threshold_value) dest[0] = 0; | |
410 | else dest[0] = 1; | |
411 | ||
412 | size_t numBits = 0; | |
413 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
414 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
415 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
416 | for(idx = 1; idx < size; idx++) { | |
417 | // threshold current value | |
418 | ||
419 | if (dest[idx] < threshold_value) dest[idx] = 0; | |
420 | else dest[idx] = 1; | |
421 | ||
422 | // Check for 0->1 transition | |
423 | if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition | |
424 | if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise | |
425 | //do nothing with extra garbage | |
426 | } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves | |
427 | dest[numBits]=1; | |
428 | } else { //9+ = 10 waves | |
429 | dest[numBits]=0; | |
430 | } | |
431 | last_transition = idx; | |
432 | numBits++; | |
433 | } | |
434 | } | |
435 | return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 | |
436 | } | |
437 | ||
438 | uint32_t myround2(float f) | |
439 | { | |
440 | if (f >= 2000) return 2000;//something bad happened | |
441 | return (uint32_t) (f + (float)0.5); | |
442 | } | |
443 | ||
444 | //translate 11111100000 to 10 | |
445 | size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t maxConsequtiveBits, | |
446 | uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
447 | { | |
448 | uint8_t lastval=dest[0]; | |
449 | uint32_t idx=0; | |
450 | size_t numBits=0; | |
451 | uint32_t n=1; | |
452 | ||
453 | for( idx=1; idx < size; idx++) { | |
454 | ||
455 | if (dest[idx]==lastval) { | |
456 | n++; | |
457 | continue; | |
458 | } | |
459 | //if lastval was 1, we have a 1->0 crossing | |
460 | if ( dest[idx-1]==1 ) { | |
461 | n=myround2((float)(n+1)/((float)(rfLen)/(float)fclow)); | |
462 | } else {// 0->1 crossing | |
463 | n=myround2((float)(n+1)/((float)(rfLen-1)/(float)fchigh)); //-1 for fudge factor | |
464 | } | |
465 | if (n == 0) n = 1; | |
466 | ||
467 | if(n < maxConsequtiveBits) //Consecutive | |
468 | { | |
469 | if(invert==0){ //invert bits | |
470 | memset(dest+numBits, dest[idx-1] , n); | |
471 | }else{ | |
472 | memset(dest+numBits, dest[idx-1]^1 , n); | |
473 | } | |
474 | numBits += n; | |
475 | } | |
476 | n=0; | |
477 | lastval=dest[idx]; | |
478 | }//end for | |
479 | return numBits; | |
480 | } | |
481 | //by marshmellow (from holiman's base) | |
482 | // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) | |
483 | int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) | |
484 | { | |
485 | // FSK demodulator | |
486 | size = fsk_wave_demod(dest, size, fchigh, fclow); | |
487 | size = aggregate_bits(dest, size, rfLen, 192, invert, fchigh, fclow); | |
488 | return size; | |
489 | } | |
490 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
491 | int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) | |
492 | { | |
493 | ||
494 | size_t idx=0; //, found=0; //size=0, | |
495 | // FSK demodulator | |
496 | size = fskdemod(dest, size,50,0,10,8); | |
497 | ||
498 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
499 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
500 | uint8_t frame_marker_mask[] = {1,1,1,0,0,0}; | |
501 | int numshifts = 0; | |
502 | idx = 0; | |
503 | //one scan | |
504 | while( idx + sizeof(frame_marker_mask) < size) { | |
505 | // search for a start of frame marker | |
506 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
507 | { // frame marker found | |
508 | idx+=sizeof(frame_marker_mask); | |
509 | while(dest[idx] != dest[idx+1] && idx < size-2) | |
510 | { | |
511 | // Keep going until next frame marker (or error) | |
512 | // Shift in a bit. Start by shifting high registers | |
513 | *hi2 = (*hi2<<1)|(*hi>>31); | |
514 | *hi = (*hi<<1)|(*lo>>31); | |
515 | //Then, shift in a 0 or one into low | |
516 | if (dest[idx] && !dest[idx+1]) // 1 0 | |
517 | *lo=(*lo<<1)|0; | |
518 | else // 0 1 | |
519 | *lo=(*lo<<1)|1; | |
520 | numshifts++; | |
521 | idx += 2; | |
522 | } | |
523 | // Hopefully, we read a tag and hit upon the next frame marker | |
524 | if(idx + sizeof(frame_marker_mask) < size) | |
525 | { | |
526 | if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0) | |
527 | { | |
528 | //good return | |
529 | return idx; | |
530 | } | |
531 | } | |
532 | // reset | |
533 | *hi2 = *hi = *lo = 0; | |
534 | numshifts = 0; | |
535 | }else { | |
536 | idx++; | |
537 | } | |
538 | } | |
539 | return -1; | |
540 | } | |
541 | ||
542 | uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) | |
543 | { | |
544 | uint32_t num = 0; | |
545 | for(int i = 0 ; i < numbits ; i++) | |
546 | { | |
547 | num = (num << 1) | (*src); | |
548 | src++; | |
549 | } | |
550 | return num; | |
551 | } | |
552 | ||
553 | int IOdemodFSK(uint8_t *dest, size_t size) | |
554 | { | |
555 | static const uint8_t THRESHOLD = 129; | |
556 | uint32_t idx=0; | |
557 | //make sure buffer has data | |
558 | if (size < 66) return -1; | |
559 | //test samples are not just noise | |
560 | uint8_t justNoise = 1; | |
561 | for(idx=0;idx< size && justNoise ;idx++){ | |
562 | justNoise = dest[idx] < THRESHOLD; | |
563 | } | |
564 | if(justNoise) return 0; | |
565 | ||
566 | // FSK demodulator | |
567 | size = fskdemod(dest, size, 64, 1, 10, 8); // RF/64 and invert | |
568 | if (size < 65) return -1; //did we get a good demod? | |
569 | //Index map | |
570 | //0 10 20 30 40 50 60 | |
571 | //| | | | | | | | |
572 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
573 | //----------------------------------------------------------------------------- | |
574 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 | |
575 | // | |
576 | //XSF(version)facility:codeone+codetwo | |
577 | //Handle the data | |
578 | uint8_t mask[] = {0,0,0,0,0,0,0,0,0,1}; | |
579 | for( idx=0; idx < (size - 65); idx++) { | |
580 | if ( memcmp(dest + idx, mask, sizeof(mask))==0) { | |
581 | //frame marker found | |
582 | if (!dest[idx+8] && dest[idx+17]==1 && dest[idx+26]==1 && dest[idx+35]==1 && dest[idx+44]==1 && dest[idx+53]==1){ | |
583 | //confirmed proper separator bits found | |
584 | //return start position | |
585 | return (int) idx; | |
586 | } | |
587 | } | |
588 | } | |
589 | return 0; | |
590 | } | |
591 | ||
592 | // by marshmellow | |
593 | // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) | |
594 | // maybe somehow adjust peak trimming value based on samples to fix? | |
595 | int DetectASKClock(uint8_t dest[], size_t size, int clock) | |
596 | { | |
597 | int i=0; | |
598 | int peak=0; | |
599 | int low=255; | |
600 | int clk[]={16,32,40,50,64,100,128,256}; | |
601 | int loopCnt = 256; //don't need to loop through entire array... | |
602 | if (size<loopCnt) loopCnt = size; | |
603 | ||
604 | //if we already have a valid clock quit | |
605 | for (;i<8;++i) | |
606 | if (clk[i] == clock) return clock; | |
607 | ||
608 | //get high and low peak | |
609 | for (i=0; i < loopCnt; ++i){ | |
610 | if(dest[i] > peak){ | |
611 | peak = dest[i]; | |
612 | } | |
613 | if(dest[i] < low){ | |
614 | low = dest[i]; | |
615 | } | |
616 | } | |
617 | peak=(int)(((peak-128)*.75)+128); | |
618 | low= (int)(((low-128)*.75)+128); | |
619 | int ii; | |
620 | int clkCnt; | |
621 | int tol = 0; | |
622 | int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000}; | |
623 | int errCnt=0; | |
624 | //test each valid clock from smallest to greatest to see which lines up | |
625 | for(clkCnt=0; clkCnt < 6; ++clkCnt){ | |
626 | if (clk[clkCnt] == 32){ | |
627 | tol=1; | |
628 | }else{ | |
629 | tol=0; | |
630 | } | |
631 | bestErr[clkCnt]=1000; | |
632 | //try lining up the peaks by moving starting point (try first 256) | |
633 | for (ii=0; ii< loopCnt; ++ii){ | |
634 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ | |
635 | errCnt=0; | |
636 | // now that we have the first one lined up test rest of wave array | |
637 | for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){ | |
638 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
639 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
640 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
641 | }else{ //error no peak detected | |
642 | errCnt++; | |
643 | } | |
644 | } | |
645 | //if we found no errors this is correct one - return this clock | |
646 | if(errCnt==0) return clk[clkCnt]; | |
647 | //if we found errors see if it is lowest so far and save it as best run | |
648 | if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt; | |
649 | } | |
650 | } | |
651 | } | |
652 | int iii=0; | |
653 | int best=0; | |
654 | for (iii=0; iii<7;++iii){ | |
655 | if (bestErr[iii]<bestErr[best]){ | |
656 | // current best bit to error ratio vs new bit to error ratio | |
657 | if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){ | |
658 | best = iii; | |
659 | } | |
660 | } | |
661 | } | |
662 | return clk[best]; | |
663 | } | |
664 | ||
665 | //by marshmellow | |
666 | //detect psk clock by reading #peaks vs no peaks(or errors) | |
667 | int DetectpskNRZClock(uint8_t dest[], size_t size, int clock) | |
668 | { | |
669 | int i=0; | |
670 | int peak=0; | |
671 | int low=255; | |
672 | int clk[]={16,32,40,50,64,100,128,256}; | |
673 | int loopCnt = 2048; //don't need to loop through entire array... | |
674 | if (size<loopCnt) loopCnt = size; | |
675 | ||
676 | //if we already have a valid clock quit | |
677 | for (; i < 8; ++i) | |
678 | if (clk[i] == clock) return clock; | |
679 | ||
680 | //get high and low peak | |
681 | for (i=0; i < loopCnt; ++i){ | |
682 | if(dest[i] > peak){ | |
683 | peak = dest[i]; | |
684 | } | |
685 | if(dest[i] < low){ | |
686 | low = dest[i]; | |
687 | } | |
688 | } | |
689 | peak=(int)(((peak-128)*.75)+128); | |
690 | low= (int)(((low-128)*.75)+128); | |
691 | //PrintAndLog("DEBUG: peak: %d, low: %d",peak,low); | |
692 | int ii; | |
693 | uint8_t clkCnt; | |
694 | uint8_t tol = 0; | |
695 | int peakcnt=0; | |
696 | int errCnt=0; | |
697 | int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; | |
698 | int peaksdet[]={0,0,0,0,0,0,0,0,0}; | |
699 | //test each valid clock from smallest to greatest to see which lines up | |
700 | for(clkCnt=0; clkCnt < 6; ++clkCnt){ | |
701 | if (clk[clkCnt] == 32){ | |
702 | tol=1; | |
703 | }else{ | |
704 | tol=0; | |
705 | } | |
706 | //try lining up the peaks by moving starting point (try first 256) | |
707 | for (ii=0; ii< loopCnt; ++ii){ | |
708 | if ((dest[ii] >= peak) || (dest[ii] <= low)){ | |
709 | errCnt=0; | |
710 | peakcnt=0; | |
711 | // now that we have the first one lined up test rest of wave array | |
712 | for (i=0; i < ((int)(size/clk[clkCnt])-1); ++i){ | |
713 | if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ | |
714 | peakcnt++; | |
715 | }else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){ | |
716 | peakcnt++; | |
717 | }else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){ | |
718 | peakcnt++; | |
719 | }else{ //error no peak detected | |
720 | errCnt++; | |
721 | } | |
722 | } | |
723 | if(peakcnt>peaksdet[clkCnt]) { | |
724 | peaksdet[clkCnt]=peakcnt; | |
725 | bestErr[clkCnt]=errCnt; | |
726 | } | |
727 | } | |
728 | } | |
729 | } | |
730 | int iii=0; | |
731 | int best=0; | |
732 | //int ratio2; //debug | |
733 | int ratio; | |
734 | //int bits; | |
735 | for (iii=0; iii < 7; ++iii){ | |
736 | ratio=1000; | |
737 | //ratio2=1000; //debug | |
738 | //bits=size/clk[iii]; //debug | |
739 | if (peaksdet[iii] > 0){ | |
740 | ratio=bestErr[iii]/peaksdet[iii]; | |
741 | if (((bestErr[best]/peaksdet[best]) > (ratio)+1)){ | |
742 | best = iii; | |
743 | } | |
744 | //ratio2=bits/peaksdet[iii]; //debug | |
745 | } | |
746 | //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d, ratio: %d, bits: %d, peakbitr: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best],ratio, bits,ratio2); | |
747 | } | |
748 | return clk[best]; | |
749 | } | |
750 | ||
751 | //by marshmellow (attempt to get rid of high immediately after a low) | |
752 | void pskCleanWave(uint8_t *bitStream, size_t size) | |
753 | { | |
754 | int i; | |
755 | int low=255; | |
756 | int high=0; | |
757 | int gap = 4; | |
758 | // int loopMax = 2048; | |
759 | int newLow=0; | |
760 | int newHigh=0; | |
761 | for (i=0; i < size; ++i){ | |
762 | if (bitStream[i] < low) low=bitStream[i]; | |
763 | if (bitStream[i] > high) high=bitStream[i]; | |
764 | } | |
765 | high = (int)(((high-128)*.80)+128); | |
766 | low = (int)(((low-128)*.90)+128); | |
767 | //low = (uint8_t)(((int)(low)-128)*.80)+128; | |
768 | for (i=0; i < size; ++i){ | |
769 | if (newLow == 1){ | |
770 | bitStream[i]=low+8; | |
771 | gap--; | |
772 | if (gap == 0){ | |
773 | newLow=0; | |
774 | gap=4; | |
775 | } | |
776 | }else if (newHigh == 1){ | |
777 | bitStream[i]=high-8; | |
778 | gap--; | |
779 | if (gap == 0){ | |
780 | newHigh=0; | |
781 | gap=4; | |
782 | } | |
783 | } | |
784 | if (bitStream[i] <= low) newLow=1; | |
785 | if (bitStream[i] >= high) newHigh=1; | |
786 | } | |
787 | return; | |
788 | } | |
789 | ||
790 | ||
791 | //redesigned by marshmellow adjusted from existing decode functions | |
792 | //indala id decoding - only tested on 26 bit tags, but attempted to make it work for more | |
793 | int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert) | |
794 | { | |
795 | //26 bit 40134 format (don't know other formats) | |
796 | int i; | |
797 | int long_wait=29;//29 leading zeros in format | |
798 | int start; | |
799 | int first = 0; | |
800 | int first2 = 0; | |
801 | int bitCnt = 0; | |
802 | int ii; | |
803 | // Finding the start of a UID | |
804 | for (start = 0; start <= *size - 250; start++) { | |
805 | first = bitStream[start]; | |
806 | for (i = start; i < start + long_wait; i++) { | |
807 | if (bitStream[i] != first) { | |
808 | break; | |
809 | } | |
810 | } | |
811 | if (i == (start + long_wait)) { | |
812 | break; | |
813 | } | |
814 | } | |
815 | if (start == *size - 250 + 1) { | |
816 | // did not find start sequence | |
817 | return -1; | |
818 | } | |
819 | // Inverting signal if needed | |
820 | if (first == 1) { | |
821 | for (i = start; i < *size; i++) { | |
822 | bitStream[i] = !bitStream[i]; | |
823 | } | |
824 | *invert = 1; | |
825 | }else *invert=0; | |
826 | ||
827 | int iii; | |
828 | //found start once now test length by finding next one | |
829 | for (ii=start+29; ii <= *size - 250; ii++) { | |
830 | first2 = bitStream[ii]; | |
831 | for (iii = ii; iii < ii + long_wait; iii++) { | |
832 | if (bitStream[iii] != first2) { | |
833 | break; | |
834 | } | |
835 | } | |
836 | if (iii == (ii + long_wait)) { | |
837 | break; | |
838 | } | |
839 | } | |
840 | if (ii== *size - 250 + 1){ | |
841 | // did not find second start sequence | |
842 | return -2; | |
843 | } | |
844 | bitCnt=ii-start; | |
845 | ||
846 | // Dumping UID | |
847 | i = start; | |
848 | for (ii = 0; ii < bitCnt; ii++) { | |
849 | bitStream[ii] = bitStream[i++]; | |
850 | } | |
851 | *size=bitCnt; | |
852 | return 1; | |
853 | } | |
854 | ||
855 | ||
856 | //by marshmellow - demodulate PSK wave or NRZ wave (both similar enough) | |
857 | //peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak | |
858 | int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert) | |
859 | { | |
860 | pskCleanWave(dest,*size); | |
861 | int clk2 = DetectpskNRZClock(dest, *size, *clk); | |
862 | *clk=clk2; | |
863 | uint32_t i; | |
864 | uint8_t high=0, low=255; | |
865 | uint32_t gLen = *size; | |
866 | if (gLen > 1280) gLen=1280; | |
867 | // get high | |
868 | for (i=0; i < gLen; ++i){ | |
869 | if (dest[i] > high) high = dest[i]; | |
870 | if (dest[i] < low) low = dest[i]; | |
871 | } | |
872 | //fudge high/low bars by 25% | |
873 | high = (uint8_t)((((int)(high)-128)*.75)+128); | |
874 | low = (uint8_t)((((int)(low)-128)*.80)+128); | |
875 | ||
876 | //PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low); | |
877 | int lastBit = 0; //set first clock check | |
878 | uint32_t bitnum = 0; //output counter | |
879 | uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave | |
880 | if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely | |
881 | uint32_t iii = 0; | |
882 | uint8_t errCnt =0; | |
883 | uint32_t bestStart = *size; | |
884 | uint32_t maxErr = (*size/1000); | |
885 | uint32_t bestErrCnt = maxErr; | |
886 | //uint8_t midBit=0; | |
887 | uint8_t curBit=0; | |
888 | uint8_t bitHigh=0; | |
889 | uint8_t ignorewin=*clk/8; | |
890 | //PrintAndLog("DEBUG - lastbit - %d",lastBit); | |
891 | //loop to find first wave that works - align to clock | |
892 | for (iii=0; iii < gLen; ++iii){ | |
893 | if ((dest[iii]>=high) || (dest[iii]<=low)){ | |
894 | lastBit=iii-*clk; | |
895 | //loop through to see if this start location works | |
896 | for (i = iii; i < *size; ++i) { | |
897 | //if we found a high bar and we are at a clock bit | |
898 | if ((dest[i]>=high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
899 | bitHigh=1; | |
900 | lastBit+=*clk; | |
901 | ignorewin=*clk/8; | |
902 | bitnum++; | |
903 | //else if low bar found and we are at a clock point | |
904 | }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
905 | bitHigh=1; | |
906 | lastBit+=*clk; | |
907 | ignorewin=*clk/8; | |
908 | bitnum++; | |
909 | //else if no bars found | |
910 | }else if(dest[i] < high && dest[i] > low) { | |
911 | if (ignorewin==0){ | |
912 | bitHigh=0; | |
913 | }else ignorewin--; | |
914 | //if we are past a clock point | |
915 | if (i >= lastBit+*clk+tol){ //clock val | |
916 | lastBit+=*clk; | |
917 | bitnum++; | |
918 | } | |
919 | //else if bar found but we are not at a clock bit and we did not just have a clock bit | |
920 | }else if ((dest[i]>=high || dest[i]<=low) && (i<lastBit+*clk-tol || i>lastBit+*clk+tol) && (bitHigh==0)){ | |
921 | //error bar found no clock... | |
922 | errCnt++; | |
923 | } | |
924 | if (bitnum>=1000) break; | |
925 | } | |
926 | //we got more than 64 good bits and not all errors | |
927 | if ((bitnum > (64+errCnt)) && (errCnt < (maxErr))) { | |
928 | //possible good read | |
929 | if (errCnt == 0){ | |
930 | bestStart = iii; | |
931 | bestErrCnt = errCnt; | |
932 | break; //great read - finish | |
933 | } | |
934 | if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish | |
935 | if (errCnt < bestErrCnt){ //set this as new best run | |
936 | bestErrCnt = errCnt; | |
937 | bestStart = iii; | |
938 | } | |
939 | } | |
940 | } | |
941 | } | |
942 | if (bestErrCnt < maxErr){ | |
943 | //best run is good enough set to best run and set overwrite BinStream | |
944 | iii=bestStart; | |
945 | lastBit=bestStart-*clk; | |
946 | bitnum=0; | |
947 | for (i = iii; i < *size; ++i) { | |
948 | //if we found a high bar and we are at a clock bit | |
949 | if ((dest[i] >= high ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
950 | bitHigh=1; | |
951 | lastBit+=*clk; | |
952 | curBit=1-*invert; | |
953 | dest[bitnum]=curBit; | |
954 | ignorewin=*clk/8; | |
955 | bitnum++; | |
956 | //else if low bar found and we are at a clock point | |
957 | }else if ((dest[i]<=low ) && (i>=lastBit+*clk-tol && i<=lastBit+*clk+tol)){ | |
958 | bitHigh=1; | |
959 | lastBit+=*clk; | |
960 | curBit=*invert; | |
961 | dest[bitnum]=curBit; | |
962 | ignorewin=*clk/8; | |
963 | bitnum++; | |
964 | //else if no bars found | |
965 | }else if(dest[i]<high && dest[i]>low) { | |
966 | if (ignorewin==0){ | |
967 | bitHigh=0; | |
968 | }else ignorewin--; | |
969 | //if we are past a clock point | |
970 | if (i>=lastBit+*clk+tol){ //clock val | |
971 | lastBit+=*clk; | |
972 | dest[bitnum]=curBit; | |
973 | bitnum++; | |
974 | } | |
975 | //else if bar found but we are not at a clock bit and we did not just have a clock bit | |
976 | }else if ((dest[i]>=high || dest[i]<=low) && ((i<lastBit+*clk-tol) || (i>lastBit+*clk+tol)) && (bitHigh==0)){ | |
977 | //error bar found no clock... | |
978 | bitHigh=1; | |
979 | dest[bitnum]=77; | |
980 | bitnum++; | |
981 | errCnt++; | |
982 | } | |
983 | if (bitnum >=1000) break; | |
984 | } | |
985 | *size=bitnum; | |
986 | } else{ | |
987 | *size=bitnum; | |
988 | *clk=bestStart; | |
989 | return -1; | |
990 | } | |
991 | ||
992 | if (bitnum>16){ | |
993 | *size=bitnum; | |
994 | } else return -1; | |
995 | return errCnt; | |
996 | } | |
997 |