]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Gerhard de Koning Gans - May 2008 | |
3 | // Hagen Fritsch - June 2010 | |
4 | // Gerhard de Koning Gans - May 2011 | |
5 | // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation | |
6 | // | |
7 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
8 | // at your option, any later version. See the LICENSE.txt file for the text of | |
9 | // the license. | |
10 | //----------------------------------------------------------------------------- | |
11 | // Routines to support iClass. | |
12 | //----------------------------------------------------------------------------- | |
13 | // Based on ISO14443a implementation. Still in experimental phase. | |
14 | // Contribution made during a security research at Radboud University Nijmegen | |
15 | // | |
16 | // Please feel free to contribute and extend iClass support!! | |
17 | //----------------------------------------------------------------------------- | |
18 | // | |
19 | // FIX: | |
20 | // ==== | |
21 | // We still have sometimes a demodulation error when snooping iClass communication. | |
22 | // The resulting trace of a read-block-03 command may look something like this: | |
23 | // | |
24 | // + 22279: : 0c 03 e8 01 | |
25 | // | |
26 | // ...with an incorrect answer... | |
27 | // | |
28 | // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc | |
29 | // | |
30 | // We still left the error signalling bytes in the traces like 0xbb | |
31 | // | |
32 | // A correct trace should look like this: | |
33 | // | |
34 | // + 21112: : 0c 03 e8 01 | |
35 | // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 | |
36 | // | |
37 | //----------------------------------------------------------------------------- | |
38 | ||
39 | #include "proxmark3.h" | |
40 | #include "apps.h" | |
41 | #include "util.h" | |
42 | #include "string.h" | |
43 | #include "common.h" | |
44 | #include "cmd.h" | |
45 | // Needed for CRC in emulation mode; | |
46 | // same construction as in ISO 14443; | |
47 | // different initial value (CRC_ICLASS) | |
48 | #include "iso14443crc.h" | |
49 | #include "iso15693tools.h" | |
50 | ||
51 | static int timeout = 4096; | |
52 | ||
53 | ||
54 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); | |
55 | ||
56 | //----------------------------------------------------------------------------- | |
57 | // The software UART that receives commands from the reader, and its state | |
58 | // variables. | |
59 | //----------------------------------------------------------------------------- | |
60 | static struct { | |
61 | enum { | |
62 | STATE_UNSYNCD, | |
63 | STATE_START_OF_COMMUNICATION, | |
64 | STATE_RECEIVING | |
65 | } state; | |
66 | uint16_t shiftReg; | |
67 | int bitCnt; | |
68 | int byteCnt; | |
69 | int byteCntMax; | |
70 | int posCnt; | |
71 | int nOutOfCnt; | |
72 | int OutOfCnt; | |
73 | int syncBit; | |
74 | int samples; | |
75 | int highCnt; | |
76 | int swapper; | |
77 | int counter; | |
78 | int bitBuffer; | |
79 | int dropPosition; | |
80 | uint8_t *output; | |
81 | } Uart; | |
82 | ||
83 | static RAMFUNC int OutOfNDecoding(int bit) | |
84 | { | |
85 | //int error = 0; | |
86 | int bitright; | |
87 | ||
88 | if(!Uart.bitBuffer) { | |
89 | Uart.bitBuffer = bit ^ 0xFF0; | |
90 | return FALSE; | |
91 | } | |
92 | else { | |
93 | Uart.bitBuffer <<= 4; | |
94 | Uart.bitBuffer ^= bit; | |
95 | } | |
96 | ||
97 | /*if(Uart.swapper) { | |
98 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
99 | Uart.byteCnt++; | |
100 | Uart.swapper = 0; | |
101 | if(Uart.byteCnt > 15) { return TRUE; } | |
102 | } | |
103 | else { | |
104 | Uart.swapper = 1; | |
105 | }*/ | |
106 | ||
107 | if(Uart.state != STATE_UNSYNCD) { | |
108 | Uart.posCnt++; | |
109 | ||
110 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
111 | bit = 0x00; | |
112 | } | |
113 | else { | |
114 | bit = 0x01; | |
115 | } | |
116 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
117 | bitright = 0x00; | |
118 | } | |
119 | else { | |
120 | bitright = 0x01; | |
121 | } | |
122 | if(bit != bitright) { bit = bitright; } | |
123 | ||
124 | ||
125 | // So, now we only have to deal with *bit*, lets see... | |
126 | if(Uart.posCnt == 1) { | |
127 | // measurement first half bitperiod | |
128 | if(!bit) { | |
129 | // Drop in first half means that we are either seeing | |
130 | // an SOF or an EOF. | |
131 | ||
132 | if(Uart.nOutOfCnt == 1) { | |
133 | // End of Communication | |
134 | Uart.state = STATE_UNSYNCD; | |
135 | Uart.highCnt = 0; | |
136 | if(Uart.byteCnt == 0) { | |
137 | // Its not straightforward to show single EOFs | |
138 | // So just leave it and do not return TRUE | |
139 | Uart.output[0] = 0xf0; | |
140 | Uart.byteCnt++; | |
141 | } | |
142 | else { | |
143 | return TRUE; | |
144 | } | |
145 | } | |
146 | else if(Uart.state != STATE_START_OF_COMMUNICATION) { | |
147 | // When not part of SOF or EOF, it is an error | |
148 | Uart.state = STATE_UNSYNCD; | |
149 | Uart.highCnt = 0; | |
150 | //error = 4; | |
151 | } | |
152 | } | |
153 | } | |
154 | else { | |
155 | // measurement second half bitperiod | |
156 | // Count the bitslot we are in... (ISO 15693) | |
157 | Uart.nOutOfCnt++; | |
158 | ||
159 | if(!bit) { | |
160 | if(Uart.dropPosition) { | |
161 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
162 | //error = 1; | |
163 | } | |
164 | else { | |
165 | //error = 7; | |
166 | } | |
167 | // It is an error if we already have seen a drop in current frame | |
168 | Uart.state = STATE_UNSYNCD; | |
169 | Uart.highCnt = 0; | |
170 | } | |
171 | else { | |
172 | Uart.dropPosition = Uart.nOutOfCnt; | |
173 | } | |
174 | } | |
175 | ||
176 | Uart.posCnt = 0; | |
177 | ||
178 | ||
179 | if(Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { | |
180 | Uart.nOutOfCnt = 0; | |
181 | ||
182 | if(Uart.state == STATE_START_OF_COMMUNICATION) { | |
183 | if(Uart.dropPosition == 4) { | |
184 | Uart.state = STATE_RECEIVING; | |
185 | Uart.OutOfCnt = 256; | |
186 | } | |
187 | else if(Uart.dropPosition == 3) { | |
188 | Uart.state = STATE_RECEIVING; | |
189 | Uart.OutOfCnt = 4; | |
190 | //Uart.output[Uart.byteCnt] = 0xdd; | |
191 | //Uart.byteCnt++; | |
192 | } | |
193 | else { | |
194 | Uart.state = STATE_UNSYNCD; | |
195 | Uart.highCnt = 0; | |
196 | } | |
197 | Uart.dropPosition = 0; | |
198 | } | |
199 | else { | |
200 | // RECEIVING DATA | |
201 | // 1 out of 4 | |
202 | if(!Uart.dropPosition) { | |
203 | Uart.state = STATE_UNSYNCD; | |
204 | Uart.highCnt = 0; | |
205 | //error = 9; | |
206 | } | |
207 | else { | |
208 | Uart.shiftReg >>= 2; | |
209 | ||
210 | // Swap bit order | |
211 | Uart.dropPosition--; | |
212 | //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } | |
213 | //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } | |
214 | ||
215 | Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); | |
216 | Uart.bitCnt += 2; | |
217 | Uart.dropPosition = 0; | |
218 | ||
219 | if(Uart.bitCnt == 8) { | |
220 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
221 | Uart.byteCnt++; | |
222 | Uart.bitCnt = 0; | |
223 | Uart.shiftReg = 0; | |
224 | } | |
225 | } | |
226 | } | |
227 | } | |
228 | else if(Uart.nOutOfCnt == Uart.OutOfCnt) { | |
229 | // RECEIVING DATA | |
230 | // 1 out of 256 | |
231 | if(!Uart.dropPosition) { | |
232 | Uart.state = STATE_UNSYNCD; | |
233 | Uart.highCnt = 0; | |
234 | //error = 3; | |
235 | } | |
236 | else { | |
237 | Uart.dropPosition--; | |
238 | Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); | |
239 | Uart.byteCnt++; | |
240 | Uart.bitCnt = 0; | |
241 | Uart.shiftReg = 0; | |
242 | Uart.nOutOfCnt = 0; | |
243 | Uart.dropPosition = 0; | |
244 | } | |
245 | } | |
246 | ||
247 | /*if(error) { | |
248 | Uart.output[Uart.byteCnt] = 0xAA; | |
249 | Uart.byteCnt++; | |
250 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
251 | Uart.byteCnt++; | |
252 | Uart.output[Uart.byteCnt] = 0xAA; | |
253 | Uart.byteCnt++; | |
254 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
255 | Uart.byteCnt++; | |
256 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
257 | Uart.byteCnt++; | |
258 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
259 | Uart.byteCnt++; | |
260 | Uart.output[Uart.byteCnt] = 0xAA; | |
261 | Uart.byteCnt++; | |
262 | return TRUE; | |
263 | }*/ | |
264 | } | |
265 | ||
266 | } | |
267 | else { | |
268 | bit = Uart.bitBuffer & 0xf0; | |
269 | bit >>= 4; | |
270 | bit ^= 0x0F; // drops become 1s ;-) | |
271 | if(bit) { | |
272 | // should have been high or at least (4 * 128) / fc | |
273 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
274 | if(Uart.highCnt == 8) { | |
275 | // we went low, so this could be start of communication | |
276 | // it turns out to be safer to choose a less significant | |
277 | // syncbit... so we check whether the neighbour also represents the drop | |
278 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
279 | Uart.syncBit = bit & 8; | |
280 | Uart.samples = 3; | |
281 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
282 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
283 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
284 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
285 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
286 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
287 | Uart.syncBit = 8; | |
288 | ||
289 | // the first half bit period is expected in next sample | |
290 | Uart.posCnt = 0; | |
291 | Uart.samples = 3; | |
292 | } | |
293 | } | |
294 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
295 | ||
296 | Uart.syncBit <<= 4; | |
297 | Uart.state = STATE_START_OF_COMMUNICATION; | |
298 | Uart.bitCnt = 0; | |
299 | Uart.byteCnt = 0; | |
300 | Uart.nOutOfCnt = 0; | |
301 | Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 | |
302 | Uart.dropPosition = 0; | |
303 | Uart.shiftReg = 0; | |
304 | //error = 0; | |
305 | } | |
306 | else { | |
307 | Uart.highCnt = 0; | |
308 | } | |
309 | } | |
310 | else { | |
311 | if(Uart.highCnt < 8) { | |
312 | Uart.highCnt++; | |
313 | } | |
314 | } | |
315 | } | |
316 | ||
317 | return FALSE; | |
318 | } | |
319 | ||
320 | //============================================================================= | |
321 | // Manchester | |
322 | //============================================================================= | |
323 | ||
324 | static struct { | |
325 | enum { | |
326 | DEMOD_UNSYNCD, | |
327 | DEMOD_START_OF_COMMUNICATION, | |
328 | DEMOD_START_OF_COMMUNICATION2, | |
329 | DEMOD_START_OF_COMMUNICATION3, | |
330 | DEMOD_SOF_COMPLETE, | |
331 | DEMOD_MANCHESTER_D, | |
332 | DEMOD_MANCHESTER_E, | |
333 | DEMOD_END_OF_COMMUNICATION, | |
334 | DEMOD_END_OF_COMMUNICATION2, | |
335 | DEMOD_MANCHESTER_F, | |
336 | DEMOD_ERROR_WAIT | |
337 | } state; | |
338 | int bitCount; | |
339 | int posCount; | |
340 | int syncBit; | |
341 | uint16_t shiftReg; | |
342 | int buffer; | |
343 | int buffer2; | |
344 | int buffer3; | |
345 | int buff; | |
346 | int samples; | |
347 | int len; | |
348 | enum { | |
349 | SUB_NONE, | |
350 | SUB_FIRST_HALF, | |
351 | SUB_SECOND_HALF, | |
352 | SUB_BOTH | |
353 | } sub; | |
354 | uint8_t *output; | |
355 | } Demod; | |
356 | ||
357 | static RAMFUNC int ManchesterDecoding(int v) | |
358 | { | |
359 | int bit; | |
360 | int modulation; | |
361 | int error = 0; | |
362 | ||
363 | bit = Demod.buffer; | |
364 | Demod.buffer = Demod.buffer2; | |
365 | Demod.buffer2 = Demod.buffer3; | |
366 | Demod.buffer3 = v; | |
367 | ||
368 | if(Demod.buff < 3) { | |
369 | Demod.buff++; | |
370 | return FALSE; | |
371 | } | |
372 | ||
373 | if(Demod.state==DEMOD_UNSYNCD) { | |
374 | Demod.output[Demod.len] = 0xfa; | |
375 | Demod.syncBit = 0; | |
376 | //Demod.samples = 0; | |
377 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
378 | ||
379 | if(bit & 0x08) { | |
380 | Demod.syncBit = 0x08; | |
381 | } | |
382 | ||
383 | if(bit & 0x04) { | |
384 | if(Demod.syncBit) { | |
385 | bit <<= 4; | |
386 | } | |
387 | Demod.syncBit = 0x04; | |
388 | } | |
389 | ||
390 | if(bit & 0x02) { | |
391 | if(Demod.syncBit) { | |
392 | bit <<= 2; | |
393 | } | |
394 | Demod.syncBit = 0x02; | |
395 | } | |
396 | ||
397 | if(bit & 0x01 && Demod.syncBit) { | |
398 | Demod.syncBit = 0x01; | |
399 | } | |
400 | ||
401 | if(Demod.syncBit) { | |
402 | Demod.len = 0; | |
403 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
404 | Demod.sub = SUB_FIRST_HALF; | |
405 | Demod.bitCount = 0; | |
406 | Demod.shiftReg = 0; | |
407 | Demod.samples = 0; | |
408 | if(Demod.posCount) { | |
409 | //if(trigger) LED_A_OFF(); // Not useful in this case... | |
410 | switch(Demod.syncBit) { | |
411 | case 0x08: Demod.samples = 3; break; | |
412 | case 0x04: Demod.samples = 2; break; | |
413 | case 0x02: Demod.samples = 1; break; | |
414 | case 0x01: Demod.samples = 0; break; | |
415 | } | |
416 | // SOF must be long burst... otherwise stay unsynced!!! | |
417 | if(!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) { | |
418 | Demod.state = DEMOD_UNSYNCD; | |
419 | } | |
420 | } | |
421 | else { | |
422 | // SOF must be long burst... otherwise stay unsynced!!! | |
423 | if(!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { | |
424 | Demod.state = DEMOD_UNSYNCD; | |
425 | error = 0x88; | |
426 | } | |
427 | ||
428 | } | |
429 | error = 0; | |
430 | ||
431 | } | |
432 | } | |
433 | else { | |
434 | modulation = bit & Demod.syncBit; | |
435 | modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
436 | ||
437 | Demod.samples += 4; | |
438 | ||
439 | if(Demod.posCount==0) { | |
440 | Demod.posCount = 1; | |
441 | if(modulation) { | |
442 | Demod.sub = SUB_FIRST_HALF; | |
443 | } | |
444 | else { | |
445 | Demod.sub = SUB_NONE; | |
446 | } | |
447 | } | |
448 | else { | |
449 | Demod.posCount = 0; | |
450 | /*(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
451 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
452 | Demod.state = DEMOD_ERROR_WAIT; | |
453 | Demod.output[Demod.len] = 0xaa; | |
454 | error = 0x01; | |
455 | } | |
456 | }*/ | |
457 | //else if(modulation) { | |
458 | if(modulation) { | |
459 | if(Demod.sub == SUB_FIRST_HALF) { | |
460 | Demod.sub = SUB_BOTH; | |
461 | } | |
462 | else { | |
463 | Demod.sub = SUB_SECOND_HALF; | |
464 | } | |
465 | } | |
466 | else if(Demod.sub == SUB_NONE) { | |
467 | if(Demod.state == DEMOD_SOF_COMPLETE) { | |
468 | Demod.output[Demod.len] = 0x0f; | |
469 | Demod.len++; | |
470 | Demod.state = DEMOD_UNSYNCD; | |
471 | // error = 0x0f; | |
472 | return TRUE; | |
473 | } | |
474 | else { | |
475 | Demod.state = DEMOD_ERROR_WAIT; | |
476 | error = 0x33; | |
477 | } | |
478 | /*if(Demod.state!=DEMOD_ERROR_WAIT) { | |
479 | Demod.state = DEMOD_ERROR_WAIT; | |
480 | Demod.output[Demod.len] = 0xaa; | |
481 | error = 0x01; | |
482 | }*/ | |
483 | } | |
484 | ||
485 | switch(Demod.state) { | |
486 | case DEMOD_START_OF_COMMUNICATION: | |
487 | if(Demod.sub == SUB_BOTH) { | |
488 | //Demod.state = DEMOD_MANCHESTER_D; | |
489 | Demod.state = DEMOD_START_OF_COMMUNICATION2; | |
490 | Demod.posCount = 1; | |
491 | Demod.sub = SUB_NONE; | |
492 | } | |
493 | else { | |
494 | Demod.output[Demod.len] = 0xab; | |
495 | Demod.state = DEMOD_ERROR_WAIT; | |
496 | error = 0xd2; | |
497 | } | |
498 | break; | |
499 | case DEMOD_START_OF_COMMUNICATION2: | |
500 | if(Demod.sub == SUB_SECOND_HALF) { | |
501 | Demod.state = DEMOD_START_OF_COMMUNICATION3; | |
502 | } | |
503 | else { | |
504 | Demod.output[Demod.len] = 0xab; | |
505 | Demod.state = DEMOD_ERROR_WAIT; | |
506 | error = 0xd3; | |
507 | } | |
508 | break; | |
509 | case DEMOD_START_OF_COMMUNICATION3: | |
510 | if(Demod.sub == SUB_SECOND_HALF) { | |
511 | // Demod.state = DEMOD_MANCHESTER_D; | |
512 | Demod.state = DEMOD_SOF_COMPLETE; | |
513 | //Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
514 | //Demod.len++; | |
515 | } | |
516 | else { | |
517 | Demod.output[Demod.len] = 0xab; | |
518 | Demod.state = DEMOD_ERROR_WAIT; | |
519 | error = 0xd4; | |
520 | } | |
521 | break; | |
522 | case DEMOD_SOF_COMPLETE: | |
523 | case DEMOD_MANCHESTER_D: | |
524 | case DEMOD_MANCHESTER_E: | |
525 | // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) | |
526 | // 00001111 = 1 (0 in 14443) | |
527 | if(Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF | |
528 | Demod.bitCount++; | |
529 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
530 | Demod.state = DEMOD_MANCHESTER_D; | |
531 | } | |
532 | else if(Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF | |
533 | Demod.bitCount++; | |
534 | Demod.shiftReg >>= 1; | |
535 | Demod.state = DEMOD_MANCHESTER_E; | |
536 | } | |
537 | else if(Demod.sub == SUB_BOTH) { | |
538 | Demod.state = DEMOD_MANCHESTER_F; | |
539 | } | |
540 | else { | |
541 | Demod.state = DEMOD_ERROR_WAIT; | |
542 | error = 0x55; | |
543 | } | |
544 | break; | |
545 | ||
546 | case DEMOD_MANCHESTER_F: | |
547 | // Tag response does not need to be a complete byte! | |
548 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
549 | if(Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF | |
550 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align data | |
551 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
552 | Demod.len++; | |
553 | } | |
554 | ||
555 | Demod.state = DEMOD_UNSYNCD; | |
556 | return TRUE; | |
557 | } | |
558 | else { | |
559 | Demod.output[Demod.len] = 0xad; | |
560 | Demod.state = DEMOD_ERROR_WAIT; | |
561 | error = 0x03; | |
562 | } | |
563 | break; | |
564 | ||
565 | case DEMOD_ERROR_WAIT: | |
566 | Demod.state = DEMOD_UNSYNCD; | |
567 | break; | |
568 | ||
569 | default: | |
570 | Demod.output[Demod.len] = 0xdd; | |
571 | Demod.state = DEMOD_UNSYNCD; | |
572 | break; | |
573 | } | |
574 | ||
575 | /*if(Demod.bitCount>=9) { | |
576 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
577 | Demod.len++; | |
578 | ||
579 | Demod.parityBits <<= 1; | |
580 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
581 | ||
582 | Demod.bitCount = 0; | |
583 | Demod.shiftReg = 0; | |
584 | }*/ | |
585 | if(Demod.bitCount>=8) { | |
586 | Demod.shiftReg >>= 1; | |
587 | Demod.output[Demod.len] = (Demod.shiftReg & 0xff); | |
588 | Demod.len++; | |
589 | Demod.bitCount = 0; | |
590 | Demod.shiftReg = 0; | |
591 | } | |
592 | ||
593 | if(error) { | |
594 | Demod.output[Demod.len] = 0xBB; | |
595 | Demod.len++; | |
596 | Demod.output[Demod.len] = error & 0xFF; | |
597 | Demod.len++; | |
598 | Demod.output[Demod.len] = 0xBB; | |
599 | Demod.len++; | |
600 | Demod.output[Demod.len] = bit & 0xFF; | |
601 | Demod.len++; | |
602 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
603 | Demod.len++; | |
604 | // Look harder ;-) | |
605 | Demod.output[Demod.len] = Demod.buffer2 & 0xFF; | |
606 | Demod.len++; | |
607 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
608 | Demod.len++; | |
609 | Demod.output[Demod.len] = 0xBB; | |
610 | Demod.len++; | |
611 | return TRUE; | |
612 | } | |
613 | ||
614 | } | |
615 | ||
616 | } // end (state != UNSYNCED) | |
617 | ||
618 | return FALSE; | |
619 | } | |
620 | ||
621 | //============================================================================= | |
622 | // Finally, a `sniffer' for iClass communication | |
623 | // Both sides of communication! | |
624 | //============================================================================= | |
625 | ||
626 | //----------------------------------------------------------------------------- | |
627 | // Record the sequence of commands sent by the reader to the tag, with | |
628 | // triggering so that we start recording at the point that the tag is moved | |
629 | // near the reader. | |
630 | //----------------------------------------------------------------------------- | |
631 | void RAMFUNC SnoopIClass(void) | |
632 | { | |
633 | ||
634 | ||
635 | // We won't start recording the frames that we acquire until we trigger; | |
636 | // a good trigger condition to get started is probably when we see a | |
637 | // response from the tag. | |
638 | //int triggered = FALSE; // FALSE to wait first for card | |
639 | ||
640 | // The command (reader -> tag) that we're receiving. | |
641 | // The length of a received command will in most cases be no more than 18 bytes. | |
642 | // So 32 should be enough! | |
643 | uint8_t *readerToTagCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
644 | // The response (tag -> reader) that we're receiving. | |
645 | uint8_t *tagToReaderResponse = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET); | |
646 | ||
647 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
648 | ||
649 | // reset traceLen to 0 | |
650 | iso14a_set_tracing(TRUE); | |
651 | iso14a_clear_trace(); | |
652 | iso14a_set_trigger(FALSE); | |
653 | ||
654 | // The DMA buffer, used to stream samples from the FPGA | |
655 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
656 | int lastRxCounter; | |
657 | int8_t *upTo; | |
658 | int smpl; | |
659 | int maxBehindBy = 0; | |
660 | ||
661 | // Count of samples received so far, so that we can include timing | |
662 | // information in the trace buffer. | |
663 | int samples = 0; | |
664 | rsamples = 0; | |
665 | ||
666 | // Set up the demodulator for tag -> reader responses. | |
667 | Demod.output = tagToReaderResponse; | |
668 | Demod.len = 0; | |
669 | Demod.state = DEMOD_UNSYNCD; | |
670 | ||
671 | // Setup for the DMA. | |
672 | FpgaSetupSsc(); | |
673 | upTo = dmaBuf; | |
674 | lastRxCounter = DMA_BUFFER_SIZE; | |
675 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
676 | ||
677 | // And the reader -> tag commands | |
678 | memset(&Uart, 0, sizeof(Uart)); | |
679 | Uart.output = readerToTagCmd; | |
680 | Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// | |
681 | Uart.state = STATE_UNSYNCD; | |
682 | ||
683 | // And put the FPGA in the appropriate mode | |
684 | // Signal field is off with the appropriate LED | |
685 | LED_D_OFF(); | |
686 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
687 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
688 | ||
689 | uint32_t time_0 = GetCountSspClk(); | |
690 | uint32_t time_start = 0; | |
691 | uint32_t time_stop = 0; | |
692 | ||
693 | int div = 0; | |
694 | //int div2 = 0; | |
695 | int decbyte = 0; | |
696 | int decbyter = 0; | |
697 | ||
698 | // And now we loop, receiving samples. | |
699 | for(;;) { | |
700 | LED_A_ON(); | |
701 | WDT_HIT(); | |
702 | int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & | |
703 | (DMA_BUFFER_SIZE-1); | |
704 | if(behindBy > maxBehindBy) { | |
705 | maxBehindBy = behindBy; | |
706 | if(behindBy > 400) { | |
707 | Dbprintf("blew circular buffer! behindBy=0x%x", behindBy); | |
708 | goto done; | |
709 | } | |
710 | } | |
711 | if(behindBy < 1) continue; | |
712 | ||
713 | LED_A_OFF(); | |
714 | smpl = upTo[0]; | |
715 | upTo++; | |
716 | lastRxCounter -= 1; | |
717 | if(upTo - dmaBuf > DMA_BUFFER_SIZE) { | |
718 | upTo -= DMA_BUFFER_SIZE; | |
719 | lastRxCounter += DMA_BUFFER_SIZE; | |
720 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo; | |
721 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
722 | } | |
723 | ||
724 | //samples += 4; | |
725 | samples += 1; | |
726 | ||
727 | if(smpl & 0xF) { | |
728 | decbyte ^= (1 << (3 - div)); | |
729 | } | |
730 | ||
731 | // FOR READER SIDE COMMUMICATION... | |
732 | ||
733 | decbyter <<= 2; | |
734 | decbyter ^= (smpl & 0x30); | |
735 | ||
736 | div++; | |
737 | ||
738 | if((div + 1) % 2 == 0) { | |
739 | smpl = decbyter; | |
740 | if(OutOfNDecoding((smpl & 0xF0) >> 4)) { | |
741 | rsamples = samples - Uart.samples; | |
742 | time_stop = (GetCountSspClk()-time_0) << 4; | |
743 | LED_C_ON(); | |
744 | ||
745 | //if(!LogTrace(Uart.output,Uart.byteCnt, rsamples, Uart.parityBits,TRUE)) break; | |
746 | //if(!LogTrace(NULL, 0, Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, 0, TRUE)) break; | |
747 | if(tracing) { | |
748 | uint8_t parity[MAX_PARITY_SIZE]; | |
749 | GetParity(Uart.output, Uart.byteCnt, parity); | |
750 | LogTrace(Uart.output,Uart.byteCnt, time_start, time_stop, parity, TRUE); | |
751 | } | |
752 | ||
753 | ||
754 | /* And ready to receive another command. */ | |
755 | Uart.state = STATE_UNSYNCD; | |
756 | /* And also reset the demod code, which might have been */ | |
757 | /* false-triggered by the commands from the reader. */ | |
758 | Demod.state = DEMOD_UNSYNCD; | |
759 | LED_B_OFF(); | |
760 | Uart.byteCnt = 0; | |
761 | }else{ | |
762 | time_start = (GetCountSspClk()-time_0) << 4; | |
763 | } | |
764 | decbyter = 0; | |
765 | } | |
766 | ||
767 | if(div > 3) { | |
768 | smpl = decbyte; | |
769 | if(ManchesterDecoding(smpl & 0x0F)) { | |
770 | time_stop = (GetCountSspClk()-time_0) << 4; | |
771 | ||
772 | rsamples = samples - Demod.samples; | |
773 | LED_B_ON(); | |
774 | ||
775 | if(tracing) { | |
776 | uint8_t parity[MAX_PARITY_SIZE]; | |
777 | GetParity(Demod.output, Demod.len, parity); | |
778 | LogTrace(Demod.output, Demod.len, time_start, time_stop, parity, FALSE); | |
779 | } | |
780 | ||
781 | // And ready to receive another response. | |
782 | memset(&Demod, 0, sizeof(Demod)); | |
783 | Demod.output = tagToReaderResponse; | |
784 | Demod.state = DEMOD_UNSYNCD; | |
785 | LED_C_OFF(); | |
786 | }else{ | |
787 | time_start = (GetCountSspClk()-time_0) << 4; | |
788 | } | |
789 | ||
790 | div = 0; | |
791 | decbyte = 0x00; | |
792 | } | |
793 | //} | |
794 | ||
795 | if(BUTTON_PRESS()) { | |
796 | DbpString("cancelled_a"); | |
797 | goto done; | |
798 | } | |
799 | } | |
800 | ||
801 | DbpString("COMMAND FINISHED"); | |
802 | ||
803 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
804 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
805 | ||
806 | done: | |
807 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
808 | Dbprintf("%x %x %x", maxBehindBy, Uart.state, Uart.byteCnt); | |
809 | Dbprintf("%x %x %x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
810 | LED_A_OFF(); | |
811 | LED_B_OFF(); | |
812 | LED_C_OFF(); | |
813 | LED_D_OFF(); | |
814 | } | |
815 | ||
816 | void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { | |
817 | int i; | |
818 | for(i = 0; i < 8; i++) { | |
819 | rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); | |
820 | } | |
821 | } | |
822 | ||
823 | //----------------------------------------------------------------------------- | |
824 | // Wait for commands from reader | |
825 | // Stop when button is pressed | |
826 | // Or return TRUE when command is captured | |
827 | //----------------------------------------------------------------------------- | |
828 | static int GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) | |
829 | { | |
830 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
831 | // only, since we are receiving, not transmitting). | |
832 | // Signal field is off with the appropriate LED | |
833 | LED_D_OFF(); | |
834 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
835 | ||
836 | // Now run a `software UART' on the stream of incoming samples. | |
837 | Uart.output = received; | |
838 | Uart.byteCntMax = maxLen; | |
839 | Uart.state = STATE_UNSYNCD; | |
840 | ||
841 | for(;;) { | |
842 | WDT_HIT(); | |
843 | ||
844 | if(BUTTON_PRESS()) return FALSE; | |
845 | ||
846 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
847 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
848 | } | |
849 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
850 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
851 | ||
852 | if(OutOfNDecoding(b & 0x0f)) { | |
853 | *len = Uart.byteCnt; | |
854 | return TRUE; | |
855 | } | |
856 | } | |
857 | } | |
858 | } | |
859 | ||
860 | static uint8_t encode4Bits(const uint8_t b) | |
861 | { | |
862 | uint8_t c = b & 0xF; | |
863 | // OTA, the least significant bits first | |
864 | // The columns are | |
865 | // 1 - Bit value to send | |
866 | // 2 - Reversed (big-endian) | |
867 | // 3 - Encoded | |
868 | // 4 - Hex values | |
869 | ||
870 | switch(c){ | |
871 | // 1 2 3 4 | |
872 | case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 | |
873 | case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 | |
874 | case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 | |
875 | case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 | |
876 | case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 | |
877 | case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 | |
878 | case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 | |
879 | case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 | |
880 | case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 | |
881 | case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 | |
882 | case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 | |
883 | case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 | |
884 | case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a | |
885 | case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a | |
886 | case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a | |
887 | default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa | |
888 | ||
889 | } | |
890 | } | |
891 | ||
892 | //----------------------------------------------------------------------------- | |
893 | // Prepare tag messages | |
894 | //----------------------------------------------------------------------------- | |
895 | static void CodeIClassTagAnswer(const uint8_t *cmd, int len) | |
896 | { | |
897 | ||
898 | /* | |
899 | * SOF comprises 3 parts; | |
900 | * * An unmodulated time of 56.64 us | |
901 | * * 24 pulses of 423.75 KHz (fc/32) | |
902 | * * A logic 1, which starts with an unmodulated time of 18.88us | |
903 | * followed by 8 pulses of 423.75kHz (fc/32) | |
904 | * | |
905 | * | |
906 | * EOF comprises 3 parts: | |
907 | * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated | |
908 | * time of 18.88us. | |
909 | * - 24 pulses of fc/32 | |
910 | * - An unmodulated time of 56.64 us | |
911 | * | |
912 | * | |
913 | * A logic 0 starts with 8 pulses of fc/32 | |
914 | * followed by an unmodulated time of 256/fc (~18,88us). | |
915 | * | |
916 | * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by | |
917 | * 8 pulses of fc/32 (also 18.88us) | |
918 | * | |
919 | * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, | |
920 | * works like this. | |
921 | * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). | |
922 | * - A 0-bit inptu to the FPGA becomes an unmodulated time of 18.88us | |
923 | * | |
924 | * In this mode the SOF can be written as 00011101 = 0x1D | |
925 | * The EOF can be written as 10111000 = 0xb8 | |
926 | * A logic 1 is 01 | |
927 | * A logic 0 is 10 | |
928 | * | |
929 | * */ | |
930 | ||
931 | int i; | |
932 | ||
933 | ToSendReset(); | |
934 | ||
935 | // Send SOF | |
936 | ToSend[++ToSendMax] = 0x1D; | |
937 | ||
938 | for(i = 0; i < len; i++) { | |
939 | uint8_t b = cmd[i]; | |
940 | ToSend[++ToSendMax] = encode4Bits(b & 0xF); //Least significant half | |
941 | ToSend[++ToSendMax] = encode4Bits((b >>4) & 0xF);//Most significant half | |
942 | } | |
943 | ||
944 | // Send EOF | |
945 | ToSend[++ToSendMax] = 0xB8; | |
946 | //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end | |
947 | // Convert from last byte pos to length | |
948 | ToSendMax++; | |
949 | } | |
950 | ||
951 | // Only SOF | |
952 | static void CodeIClassTagSOF() | |
953 | { | |
954 | //So far a dummy implementation, not used | |
955 | //int lastProxToAirDuration =0; | |
956 | ||
957 | ToSendReset(); | |
958 | // Send SOF | |
959 | ToSend[++ToSendMax] = 0x1D; | |
960 | // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning | |
961 | ||
962 | // Convert from last byte pos to length | |
963 | ToSendMax++; | |
964 | } | |
965 | ||
966 | int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf); | |
967 | /** | |
968 | * @brief SimulateIClass simulates an iClass card. | |
969 | * @param arg0 type of simulation | |
970 | * - 0 uses the first 8 bytes in usb data as CSN | |
971 | * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified | |
972 | * in the usb data. This mode collects MAC from the reader, in order to do an offline | |
973 | * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. | |
974 | * - Other : Uses the default CSN (031fec8af7ff12e0) | |
975 | * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) | |
976 | * @param arg2 | |
977 | * @param datain | |
978 | */ | |
979 | void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) | |
980 | { | |
981 | uint32_t simType = arg0; | |
982 | uint32_t numberOfCSNS = arg1; | |
983 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
984 | ||
985 | // Enable and clear the trace | |
986 | iso14a_set_tracing(TRUE); | |
987 | iso14a_clear_trace(); | |
988 | ||
989 | uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; | |
990 | if(simType == 0) { | |
991 | // Use the CSN from commandline | |
992 | memcpy(csn_crc, datain, 8); | |
993 | doIClassSimulation(csn_crc,0,NULL); | |
994 | }else if(simType == 1) | |
995 | { | |
996 | doIClassSimulation(csn_crc,0,NULL); | |
997 | } | |
998 | else if(simType == 2) | |
999 | { | |
1000 | ||
1001 | uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; | |
1002 | Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); | |
1003 | // In this mode, a number of csns are within datain. We'll simulate each one, one at a time | |
1004 | // in order to collect MAC's from the reader. This can later be used in an offlne-attack | |
1005 | // in order to obtain the keys, as in the "dismantling iclass"-paper. | |
1006 | int i = 0; | |
1007 | for( ; i < numberOfCSNS && i*8+8 < USB_CMD_DATA_SIZE; i++) | |
1008 | { | |
1009 | // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. | |
1010 | ||
1011 | memcpy(csn_crc, datain+(i*8), 8); | |
1012 | if(doIClassSimulation(csn_crc,1,mac_responses+i*8)) | |
1013 | { | |
1014 | cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); | |
1015 | return; // Button pressed | |
1016 | } | |
1017 | } | |
1018 | cmd_send(CMD_ACK,CMD_SIMULATE_TAG_ICLASS,i,0,mac_responses,i*8); | |
1019 | ||
1020 | } | |
1021 | else{ | |
1022 | // We may want a mode here where we hardcode the csns to use (from proxclone). | |
1023 | // That will speed things up a little, but not required just yet. | |
1024 | Dbprintf("The mode is not implemented, reserved for future use"); | |
1025 | } | |
1026 | Dbprintf("Done..."); | |
1027 | ||
1028 | } | |
1029 | /** | |
1030 | * @brief Does the actual simulation | |
1031 | * @param csn - csn to use | |
1032 | * @param breakAfterMacReceived if true, returns after reader MAC has been received. | |
1033 | */ | |
1034 | int doIClassSimulation(uint8_t csn[], int breakAfterMacReceived, uint8_t *reader_mac_buf) | |
1035 | { | |
1036 | ||
1037 | // CSN followed by two CRC bytes | |
1038 | uint8_t response1[] = { 0x0F} ; | |
1039 | uint8_t response2[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1040 | uint8_t response3[] = { 0,0,0,0,0,0,0,0,0,0}; | |
1041 | memcpy(response3,csn,sizeof(response3)); | |
1042 | Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x",csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); | |
1043 | // e-Purse | |
1044 | uint8_t response4[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1045 | ||
1046 | // Construct anticollision-CSN | |
1047 | rotateCSN(response3,response2); | |
1048 | ||
1049 | // Compute CRC on both CSNs | |
1050 | ComputeCrc14443(CRC_ICLASS, response2, 8, &response2[8], &response2[9]); | |
1051 | ComputeCrc14443(CRC_ICLASS, response3, 8, &response3[8], &response3[9]); | |
1052 | ||
1053 | int exitLoop = 0; | |
1054 | // Reader 0a | |
1055 | // Tag 0f | |
1056 | // Reader 0c | |
1057 | // Tag anticoll. CSN | |
1058 | // Reader 81 anticoll. CSN | |
1059 | // Tag CSN | |
1060 | ||
1061 | uint8_t *modulated_response; | |
1062 | int modulated_response_size; | |
1063 | uint8_t* trace_data = NULL; | |
1064 | int trace_data_size = 0; | |
1065 | //uint8_t sof = 0x0f; | |
1066 | ||
1067 | // Respond SOF -- takes 1 bytes | |
1068 | uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
1069 | int resp1Len; | |
1070 | ||
1071 | // Anticollision CSN (rotated CSN) | |
1072 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
1073 | uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 2); | |
1074 | int resp2Len; | |
1075 | ||
1076 | // CSN | |
1077 | // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) | |
1078 | uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 30); | |
1079 | int resp3Len; | |
1080 | ||
1081 | // e-Purse | |
1082 | // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/byte) | |
1083 | uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 60); | |
1084 | int resp4Len; | |
1085 | ||
1086 | // + 1720.. | |
1087 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
1088 | memset(receivedCmd, 0x44, MAX_FRAME_SIZE); | |
1089 | int len; | |
1090 | ||
1091 | // Prepare card messages | |
1092 | ToSendMax = 0; | |
1093 | ||
1094 | // First card answer: SOF | |
1095 | CodeIClassTagSOF(); | |
1096 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1097 | ||
1098 | // Anticollision CSN | |
1099 | CodeIClassTagAnswer(response2, sizeof(response2)); | |
1100 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1101 | ||
1102 | // CSN | |
1103 | CodeIClassTagAnswer(response3, sizeof(response3)); | |
1104 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; | |
1105 | ||
1106 | // e-Purse | |
1107 | CodeIClassTagAnswer(response4, sizeof(response4)); | |
1108 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1109 | ||
1110 | ||
1111 | // Start from off (no field generated) | |
1112 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1113 | //SpinDelay(200); | |
1114 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1115 | SpinDelay(100); | |
1116 | StartCountSspClk(); | |
1117 | // We need to listen to the high-frequency, peak-detected path. | |
1118 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1119 | FpgaSetupSsc(); | |
1120 | ||
1121 | // To control where we are in the protocol | |
1122 | int cmdsRecvd = 0; | |
1123 | uint32_t time_0 = GetCountSspClk(); | |
1124 | uint32_t t2r_time =0; | |
1125 | uint32_t r2t_time =0; | |
1126 | ||
1127 | LED_A_ON(); | |
1128 | bool buttonPressed = false; | |
1129 | ||
1130 | while(!exitLoop) { | |
1131 | ||
1132 | LED_B_OFF(); | |
1133 | //Signal tracer | |
1134 | // Can be used to get a trigger for an oscilloscope.. | |
1135 | LED_C_OFF(); | |
1136 | ||
1137 | if(!GetIClassCommandFromReader(receivedCmd, &len, 100)) { | |
1138 | buttonPressed = true; | |
1139 | break; | |
1140 | } | |
1141 | r2t_time = GetCountSspClk(); | |
1142 | //Signal tracer | |
1143 | LED_C_ON(); | |
1144 | ||
1145 | // Okay, look at the command now. | |
1146 | if(receivedCmd[0] == 0x0a ) { | |
1147 | // Reader in anticollission phase | |
1148 | modulated_response = resp1; modulated_response_size = resp1Len; //order = 1; | |
1149 | trace_data = response1; | |
1150 | trace_data_size = sizeof(response1); | |
1151 | } else if(receivedCmd[0] == 0x0c) { | |
1152 | // Reader asks for anticollission CSN | |
1153 | modulated_response = resp2; modulated_response_size = resp2Len; //order = 2; | |
1154 | trace_data = response2; | |
1155 | trace_data_size = sizeof(response2); | |
1156 | //DbpString("Reader requests anticollission CSN:"); | |
1157 | } else if(receivedCmd[0] == 0x81) { | |
1158 | // Reader selects anticollission CSN. | |
1159 | // Tag sends the corresponding real CSN | |
1160 | modulated_response = resp3; modulated_response_size = resp3Len; //order = 3; | |
1161 | trace_data = response3; | |
1162 | trace_data_size = sizeof(response3); | |
1163 | //DbpString("Reader selects anticollission CSN:"); | |
1164 | } else if(receivedCmd[0] == 0x88) { | |
1165 | // Read e-purse (88 02) | |
1166 | modulated_response = resp4; modulated_response_size = resp4Len; //order = 4; | |
1167 | trace_data = response4; | |
1168 | trace_data_size = sizeof(response4); | |
1169 | LED_B_ON(); | |
1170 | } else if(receivedCmd[0] == 0x05) { | |
1171 | // Reader random and reader MAC!!! | |
1172 | // Do not respond | |
1173 | // We do not know what to answer, so lets keep quiet | |
1174 | modulated_response = resp1; modulated_response_size = 0; //order = 5; | |
1175 | trace_data = NULL; | |
1176 | trace_data_size = 0; | |
1177 | if (breakAfterMacReceived){ | |
1178 | // dbprintf:ing ... | |
1179 | Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x" | |
1180 | ,csn[0],csn[1],csn[2],csn[3],csn[4],csn[5],csn[6],csn[7]); | |
1181 | Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x",len, | |
1182 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1183 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1184 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1185 | if (reader_mac_buf != NULL) | |
1186 | { | |
1187 | memcpy(reader_mac_buf,receivedCmd+1,8); | |
1188 | } | |
1189 | exitLoop = true; | |
1190 | } | |
1191 | } else if(receivedCmd[0] == 0x00 && len == 1) { | |
1192 | // Reader ends the session | |
1193 | modulated_response = resp1; modulated_response_size = 0; //order = 0; | |
1194 | trace_data = NULL; | |
1195 | trace_data_size = 0; | |
1196 | } else { | |
1197 | //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 | |
1198 | // Never seen this command before | |
1199 | Dbprintf("Unknown command received from reader (len=%d): %x %x %x %x %x %x %x %x %x", | |
1200 | len, | |
1201 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1202 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1203 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1204 | // Do not respond | |
1205 | modulated_response = resp1; modulated_response_size = 0; //order = 0; | |
1206 | trace_data = NULL; | |
1207 | trace_data_size = 0; | |
1208 | } | |
1209 | ||
1210 | if(cmdsRecvd > 100) { | |
1211 | //DbpString("100 commands later..."); | |
1212 | //break; | |
1213 | } | |
1214 | else { | |
1215 | cmdsRecvd++; | |
1216 | } | |
1217 | /** | |
1218 | A legit tag has about 380us delay between reader EOT and tag SOF. | |
1219 | **/ | |
1220 | if(modulated_response_size > 0) { | |
1221 | SendIClassAnswer(modulated_response, modulated_response_size, 1); | |
1222 | t2r_time = GetCountSspClk(); | |
1223 | } | |
1224 | ||
1225 | if (tracing) { | |
1226 | uint8_t parity[MAX_PARITY_SIZE]; | |
1227 | GetParity(receivedCmd, len, parity); | |
1228 | LogTrace(receivedCmd,len, (r2t_time-time_0)<< 4, (r2t_time-time_0) << 4, parity, TRUE); | |
1229 | ||
1230 | if (trace_data != NULL) { | |
1231 | GetParity(trace_data, trace_data_size, parity); | |
1232 | LogTrace(trace_data, trace_data_size, (t2r_time-time_0) << 4, (t2r_time-time_0) << 4, parity, FALSE); | |
1233 | } | |
1234 | if(!tracing) { | |
1235 | DbpString("Trace full"); | |
1236 | //break; | |
1237 | } | |
1238 | ||
1239 | } | |
1240 | memset(receivedCmd, 0x44, MAX_FRAME_SIZE); | |
1241 | } | |
1242 | ||
1243 | //Dbprintf("%x", cmdsRecvd); | |
1244 | LED_A_OFF(); | |
1245 | LED_B_OFF(); | |
1246 | LED_C_OFF(); | |
1247 | ||
1248 | if(buttonPressed) | |
1249 | { | |
1250 | DbpString("Button pressed"); | |
1251 | } | |
1252 | return buttonPressed; | |
1253 | } | |
1254 | ||
1255 | static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) | |
1256 | { | |
1257 | int i = 0, d=0;//, u = 0, d = 0; | |
1258 | uint8_t b = 0; | |
1259 | ||
1260 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); | |
1261 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); | |
1262 | ||
1263 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1264 | FpgaSetupSsc(); | |
1265 | while(!BUTTON_PRESS()) { | |
1266 | if((AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ | |
1267 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1268 | } | |
1269 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ | |
1270 | b = 0x00; | |
1271 | if(d < delay) { | |
1272 | d++; | |
1273 | } | |
1274 | else { | |
1275 | if( i < respLen){ | |
1276 | b = resp[i]; | |
1277 | //Hack | |
1278 | //b = 0xAC; | |
1279 | } | |
1280 | i++; | |
1281 | } | |
1282 | AT91C_BASE_SSC->SSC_THR = b; | |
1283 | } | |
1284 | ||
1285 | // if (i > respLen +4) break; | |
1286 | if (i > respLen +1) break; | |
1287 | } | |
1288 | ||
1289 | return 0; | |
1290 | } | |
1291 | ||
1292 | /// THE READER CODE | |
1293 | ||
1294 | //----------------------------------------------------------------------------- | |
1295 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1296 | //----------------------------------------------------------------------------- | |
1297 | static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) | |
1298 | { | |
1299 | int c; | |
1300 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1301 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1302 | FpgaSetupSsc(); | |
1303 | ||
1304 | if (wait) | |
1305 | { | |
1306 | if(*wait < 10) *wait = 10; | |
1307 | ||
1308 | for(c = 0; c < *wait;) { | |
1309 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1310 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1311 | c++; | |
1312 | } | |
1313 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1314 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1315 | (void)r; | |
1316 | } | |
1317 | WDT_HIT(); | |
1318 | } | |
1319 | ||
1320 | } | |
1321 | ||
1322 | ||
1323 | uint8_t sendbyte; | |
1324 | bool firstpart = TRUE; | |
1325 | c = 0; | |
1326 | for(;;) { | |
1327 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1328 | ||
1329 | // DOUBLE THE SAMPLES! | |
1330 | if(firstpart) { | |
1331 | sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); | |
1332 | } | |
1333 | else { | |
1334 | sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); | |
1335 | c++; | |
1336 | } | |
1337 | if(sendbyte == 0xff) { | |
1338 | sendbyte = 0xfe; | |
1339 | } | |
1340 | AT91C_BASE_SSC->SSC_THR = sendbyte; | |
1341 | firstpart = !firstpart; | |
1342 | ||
1343 | if(c >= len) { | |
1344 | break; | |
1345 | } | |
1346 | } | |
1347 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1348 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1349 | (void)r; | |
1350 | } | |
1351 | WDT_HIT(); | |
1352 | } | |
1353 | if (samples) *samples = (c + *wait) << 3; | |
1354 | } | |
1355 | ||
1356 | ||
1357 | //----------------------------------------------------------------------------- | |
1358 | // Prepare iClass reader command to send to FPGA | |
1359 | //----------------------------------------------------------------------------- | |
1360 | void CodeIClassCommand(const uint8_t * cmd, int len) | |
1361 | { | |
1362 | int i, j, k; | |
1363 | uint8_t b; | |
1364 | ||
1365 | ToSendReset(); | |
1366 | ||
1367 | // Start of Communication: 1 out of 4 | |
1368 | ToSend[++ToSendMax] = 0xf0; | |
1369 | ToSend[++ToSendMax] = 0x00; | |
1370 | ToSend[++ToSendMax] = 0x0f; | |
1371 | ToSend[++ToSendMax] = 0x00; | |
1372 | ||
1373 | // Modulate the bytes | |
1374 | for (i = 0; i < len; i++) { | |
1375 | b = cmd[i]; | |
1376 | for(j = 0; j < 4; j++) { | |
1377 | for(k = 0; k < 4; k++) { | |
1378 | if(k == (b & 3)) { | |
1379 | ToSend[++ToSendMax] = 0x0f; | |
1380 | } | |
1381 | else { | |
1382 | ToSend[++ToSendMax] = 0x00; | |
1383 | } | |
1384 | } | |
1385 | b >>= 2; | |
1386 | } | |
1387 | } | |
1388 | ||
1389 | // End of Communication | |
1390 | ToSend[++ToSendMax] = 0x00; | |
1391 | ToSend[++ToSendMax] = 0x00; | |
1392 | ToSend[++ToSendMax] = 0xf0; | |
1393 | ToSend[++ToSendMax] = 0x00; | |
1394 | ||
1395 | // Convert from last character reference to length | |
1396 | ToSendMax++; | |
1397 | } | |
1398 | ||
1399 | void ReaderTransmitIClass(uint8_t* frame, int len) | |
1400 | { | |
1401 | int wait = 0; | |
1402 | int samples = 0; | |
1403 | ||
1404 | // This is tied to other size changes | |
1405 | CodeIClassCommand(frame,len); | |
1406 | ||
1407 | // Select the card | |
1408 | TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); | |
1409 | if(trigger) | |
1410 | LED_A_ON(); | |
1411 | ||
1412 | // Store reader command in buffer | |
1413 | if (tracing) { | |
1414 | uint8_t par[MAX_PARITY_SIZE]; | |
1415 | GetParity(frame, len, par); | |
1416 | LogTrace(frame, len, rsamples, rsamples, par, TRUE); | |
1417 | } | |
1418 | } | |
1419 | ||
1420 | //----------------------------------------------------------------------------- | |
1421 | // Wait a certain time for tag response | |
1422 | // If a response is captured return TRUE | |
1423 | // If it takes too long return FALSE | |
1424 | //----------------------------------------------------------------------------- | |
1425 | static int GetIClassAnswer(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1426 | { | |
1427 | // buffer needs to be 512 bytes | |
1428 | int c; | |
1429 | ||
1430 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1431 | // only, since we are receiving, not transmitting). | |
1432 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1433 | ||
1434 | // Now get the answer from the card | |
1435 | Demod.output = receivedResponse; | |
1436 | Demod.len = 0; | |
1437 | Demod.state = DEMOD_UNSYNCD; | |
1438 | ||
1439 | uint8_t b; | |
1440 | if (elapsed) *elapsed = 0; | |
1441 | ||
1442 | bool skip = FALSE; | |
1443 | ||
1444 | c = 0; | |
1445 | for(;;) { | |
1446 | WDT_HIT(); | |
1447 | ||
1448 | if(BUTTON_PRESS()) return FALSE; | |
1449 | ||
1450 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1451 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1452 | if (elapsed) (*elapsed)++; | |
1453 | } | |
1454 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1455 | if(c < timeout) { c++; } else { return FALSE; } | |
1456 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1457 | skip = !skip; | |
1458 | if(skip) continue; | |
1459 | ||
1460 | if(ManchesterDecoding(b & 0x0f)) { | |
1461 | *samples = c << 3; | |
1462 | return TRUE; | |
1463 | } | |
1464 | } | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | int ReaderReceiveIClass(uint8_t* receivedAnswer) | |
1469 | { | |
1470 | int samples = 0; | |
1471 | if (!GetIClassAnswer(receivedAnswer,160,&samples,0)) return FALSE; | |
1472 | rsamples += samples; | |
1473 | if (tracing) { | |
1474 | uint8_t parity[MAX_PARITY_SIZE]; | |
1475 | GetParity(receivedAnswer, Demod.len, parity); | |
1476 | LogTrace(receivedAnswer,Demod.len,rsamples,rsamples,parity,FALSE); | |
1477 | } | |
1478 | if(samples == 0) return FALSE; | |
1479 | return Demod.len; | |
1480 | } | |
1481 | ||
1482 | void setupIclassReader() | |
1483 | { | |
1484 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1485 | // Reset trace buffer | |
1486 | iso14a_set_tracing(TRUE); | |
1487 | iso14a_clear_trace(); | |
1488 | ||
1489 | // Setup SSC | |
1490 | FpgaSetupSsc(); | |
1491 | // Start from off (no field generated) | |
1492 | // Signal field is off with the appropriate LED | |
1493 | LED_D_OFF(); | |
1494 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1495 | SpinDelay(200); | |
1496 | ||
1497 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1498 | ||
1499 | // Now give it time to spin up. | |
1500 | // Signal field is on with the appropriate LED | |
1501 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1502 | SpinDelay(200); | |
1503 | LED_A_ON(); | |
1504 | ||
1505 | } | |
1506 | ||
1507 | size_t sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) | |
1508 | { | |
1509 | while(retries-- > 0) | |
1510 | { | |
1511 | ReaderTransmitIClass(command, cmdsize); | |
1512 | if(expected_size == ReaderReceiveIClass(resp)){ | |
1513 | return 0; | |
1514 | } | |
1515 | } | |
1516 | return 1;//Error | |
1517 | } | |
1518 | ||
1519 | /** | |
1520 | * @brief Talks to an iclass tag, sends the commands to get CSN and CC. | |
1521 | * @param card_data where the CSN and CC are stored for return | |
1522 | * @return 0 = fail | |
1523 | * 1 = Got CSN | |
1524 | * 2 = Got CSN and CC | |
1525 | */ | |
1526 | uint8_t handshakeIclassTag(uint8_t *card_data) | |
1527 | { | |
1528 | static uint8_t act_all[] = { 0x0a }; | |
1529 | static uint8_t identify[] = { 0x0c }; | |
1530 | static uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1531 | static uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1532 | uint8_t *resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET); | |
1533 | ||
1534 | uint8_t read_status = 0; | |
1535 | ||
1536 | // Send act_all | |
1537 | ReaderTransmitIClass(act_all, 1); | |
1538 | // Card present? | |
1539 | if(!ReaderReceiveIClass(resp)) return read_status;//Fail | |
1540 | //Send Identify | |
1541 | ReaderTransmitIClass(identify, 1); | |
1542 | //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC | |
1543 | uint8_t len = ReaderReceiveIClass(resp); | |
1544 | if(len != 10) return read_status;//Fail | |
1545 | ||
1546 | //Copy the Anti-collision CSN to our select-packet | |
1547 | memcpy(&select[1],resp,8); | |
1548 | //Select the card | |
1549 | ReaderTransmitIClass(select, sizeof(select)); | |
1550 | //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC | |
1551 | len = ReaderReceiveIClass(resp); | |
1552 | if(len != 10) return read_status;//Fail | |
1553 | ||
1554 | //Success - level 1, we got CSN | |
1555 | //Save CSN in response data | |
1556 | memcpy(card_data,resp,8); | |
1557 | ||
1558 | //Flag that we got to at least stage 1, read CSN | |
1559 | read_status = 1; | |
1560 | ||
1561 | // Card selected, now read e-purse (cc) | |
1562 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1563 | if(ReaderReceiveIClass(resp) == 8) { | |
1564 | //Save CC (e-purse) in response data | |
1565 | memcpy(card_data+8,resp,8); | |
1566 | ||
1567 | //Got both | |
1568 | read_status = 2; | |
1569 | } | |
1570 | ||
1571 | return read_status; | |
1572 | } | |
1573 | ||
1574 | // Reader iClass Anticollission | |
1575 | void ReaderIClass(uint8_t arg0) { | |
1576 | ||
1577 | uint8_t card_data[24]={0}; | |
1578 | uint8_t last_csn[8]={0}; | |
1579 | ||
1580 | int read_status= 0; | |
1581 | bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; | |
1582 | bool get_cc = arg0 & FLAG_ICLASS_READER_GET_CC; | |
1583 | ||
1584 | setupIclassReader(); | |
1585 | ||
1586 | size_t datasize = 0; | |
1587 | while(!BUTTON_PRESS()) | |
1588 | { | |
1589 | ||
1590 | if(traceLen > TRACE_SIZE) { | |
1591 | DbpString("Trace full"); | |
1592 | break; | |
1593 | } | |
1594 | WDT_HIT(); | |
1595 | ||
1596 | read_status = handshakeIclassTag(card_data); | |
1597 | ||
1598 | if(read_status == 0) continue; | |
1599 | if(read_status == 1) datasize = 8; | |
1600 | if(read_status == 2) datasize = 16; | |
1601 | ||
1602 | LED_B_ON(); | |
1603 | //Send back to client, but don't bother if we already sent this | |
1604 | if(memcmp(last_csn, card_data, 8) != 0) | |
1605 | { | |
1606 | ||
1607 | if(!get_cc || (get_cc && read_status == 2)) | |
1608 | { | |
1609 | cmd_send(CMD_ACK,read_status,0,0,card_data,datasize); | |
1610 | if(abort_after_read) { | |
1611 | LED_A_OFF(); | |
1612 | return; | |
1613 | } | |
1614 | //Save that we already sent this.... | |
1615 | memcpy(last_csn, card_data, 8); | |
1616 | } | |
1617 | //If 'get_cc' was specified and we didn't get a CC, we'll just keep trying... | |
1618 | } | |
1619 | LED_B_OFF(); | |
1620 | } | |
1621 | cmd_send(CMD_ACK,0,0,0,card_data, 0); | |
1622 | LED_A_OFF(); | |
1623 | } | |
1624 | ||
1625 | void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { | |
1626 | ||
1627 | uint8_t card_data[USB_CMD_DATA_SIZE]={0}; | |
1628 | uint16_t block_crc_LUT[255] = {0}; | |
1629 | ||
1630 | {//Generate a lookup table for block crc | |
1631 | for(int block = 0; block < 255; block++){ | |
1632 | char bl = block; | |
1633 | block_crc_LUT[block] = iclass_crc16(&bl ,1); | |
1634 | } | |
1635 | } | |
1636 | //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); | |
1637 | ||
1638 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1639 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1640 | ||
1641 | uint16_t crc = 0; | |
1642 | uint8_t cardsize=0; | |
1643 | uint8_t mem=0; | |
1644 | ||
1645 | static struct memory_t{ | |
1646 | int k16; | |
1647 | int book; | |
1648 | int k2; | |
1649 | int lockauth; | |
1650 | int keyaccess; | |
1651 | } memory; | |
1652 | ||
1653 | uint8_t* resp = (((uint8_t *)BigBuf) + RECV_RESP_OFFSET); | |
1654 | ||
1655 | setupIclassReader(); | |
1656 | ||
1657 | ||
1658 | while(!BUTTON_PRESS()) { | |
1659 | ||
1660 | WDT_HIT(); | |
1661 | ||
1662 | if(traceLen > TRACE_SIZE) { | |
1663 | DbpString("Trace full"); | |
1664 | break; | |
1665 | } | |
1666 | ||
1667 | uint8_t read_status = handshakeIclassTag(card_data); | |
1668 | if(read_status < 2) continue; | |
1669 | ||
1670 | //for now replay captured auth (as cc not updated) | |
1671 | memcpy(check+5,MAC,4); | |
1672 | ||
1673 | if(sendCmdGetResponseWithRetries(check, sizeof(check),resp, 4, 5)) | |
1674 | { | |
1675 | Dbprintf("Error: Authentication Fail!"); | |
1676 | continue; | |
1677 | } | |
1678 | ||
1679 | //first get configuration block (block 1) | |
1680 | crc = block_crc_LUT[1]; | |
1681 | read[1]=1; | |
1682 | read[2] = crc >> 8; | |
1683 | read[3] = crc & 0xff; | |
1684 | ||
1685 | if(sendCmdGetResponseWithRetries(read, sizeof(read),resp, 10, 10)) | |
1686 | { | |
1687 | Dbprintf("Dump config (block 1) failed"); | |
1688 | continue; | |
1689 | } | |
1690 | ||
1691 | mem=resp[5]; | |
1692 | memory.k16= (mem & 0x80); | |
1693 | memory.book= (mem & 0x20); | |
1694 | memory.k2= (mem & 0x8); | |
1695 | memory.lockauth= (mem & 0x2); | |
1696 | memory.keyaccess= (mem & 0x1); | |
1697 | ||
1698 | cardsize = memory.k16 ? 255 : 32; | |
1699 | WDT_HIT(); | |
1700 | //Set card_data to all zeroes, we'll fill it with data | |
1701 | memset(card_data,0x0,USB_CMD_DATA_SIZE); | |
1702 | uint8_t failedRead =0; | |
1703 | uint8_t stored_data_length =0; | |
1704 | //then loop around remaining blocks | |
1705 | for(int block=0; block < cardsize; block++){ | |
1706 | ||
1707 | read[1]= block; | |
1708 | crc = block_crc_LUT[block]; | |
1709 | read[2] = crc >> 8; | |
1710 | read[3] = crc & 0xff; | |
1711 | ||
1712 | if(!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) | |
1713 | { | |
1714 | Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1715 | block, resp[0], resp[1], resp[2], | |
1716 | resp[3], resp[4], resp[5], | |
1717 | resp[6], resp[7]); | |
1718 | ||
1719 | //Fill up the buffer | |
1720 | memcpy(card_data+stored_data_length,resp,8); | |
1721 | stored_data_length += 8; | |
1722 | ||
1723 | if(stored_data_length +8 > USB_CMD_DATA_SIZE) | |
1724 | {//Time to send this off and start afresh | |
1725 | cmd_send(CMD_ACK, | |
1726 | stored_data_length,//data length | |
1727 | failedRead,//Failed blocks? | |
1728 | 0,//Not used ATM | |
1729 | card_data, stored_data_length); | |
1730 | //reset | |
1731 | stored_data_length = 0; | |
1732 | failedRead = 0; | |
1733 | } | |
1734 | ||
1735 | }else{ | |
1736 | failedRead = 1; | |
1737 | stored_data_length +=8;//Otherwise, data becomes misaligned | |
1738 | Dbprintf("Failed to dump block %d", block); | |
1739 | } | |
1740 | } | |
1741 | //Send off any remaining data | |
1742 | if(stored_data_length > 0) | |
1743 | { | |
1744 | cmd_send(CMD_ACK, | |
1745 | stored_data_length,//data length | |
1746 | failedRead,//Failed blocks? | |
1747 | 0,//Not used ATM | |
1748 | card_data, stored_data_length); | |
1749 | } | |
1750 | //If we got here, let's break | |
1751 | break; | |
1752 | } | |
1753 | //Signal end of transmission | |
1754 | cmd_send(CMD_ACK, | |
1755 | 0,//data length | |
1756 | 0,//Failed blocks? | |
1757 | 0,//Not used ATM | |
1758 | card_data, 0); | |
1759 | ||
1760 | LED_A_OFF(); | |
1761 | } | |
1762 | ||
1763 | //2. Create Read method (cut-down from above) based off responses from 1. | |
1764 | // Since we have the MAC could continue to use replay function. | |
1765 | //3. Create Write method | |
1766 | /* | |
1767 | void IClass_iso14443A_write(uint8_t arg0, uint8_t blockNo, uint8_t *data, uint8_t *MAC) { | |
1768 | uint8_t act_all[] = { 0x0a }; | |
1769 | uint8_t identify[] = { 0x0c }; | |
1770 | uint8_t select[] = { 0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1771 | uint8_t readcheck_cc[]= { 0x88, 0x02 }; | |
1772 | uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1773 | uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; | |
1774 | uint8_t write[] = { 0x87, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
1775 | ||
1776 | uint16_t crc = 0; | |
1777 | ||
1778 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); | |
1779 | ||
1780 | // Reset trace buffer | |
1781 | memset(trace, 0x44, RECV_CMD_OFFSET); | |
1782 | traceLen = 0; | |
1783 | ||
1784 | // Setup SSC | |
1785 | FpgaSetupSsc(); | |
1786 | // Start from off (no field generated) | |
1787 | // Signal field is off with the appropriate LED | |
1788 | LED_D_OFF(); | |
1789 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1790 | SpinDelay(200); | |
1791 | ||
1792 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1793 | ||
1794 | // Now give it time to spin up. | |
1795 | // Signal field is on with the appropriate LED | |
1796 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1797 | SpinDelay(200); | |
1798 | ||
1799 | LED_A_ON(); | |
1800 | ||
1801 | for(int i=0;i<1;i++) { | |
1802 | ||
1803 | if(traceLen > TRACE_SIZE) { | |
1804 | DbpString("Trace full"); | |
1805 | break; | |
1806 | } | |
1807 | ||
1808 | if (BUTTON_PRESS()) break; | |
1809 | ||
1810 | // Send act_all | |
1811 | ReaderTransmitIClass(act_all, 1); | |
1812 | // Card present? | |
1813 | if(ReaderReceiveIClass(resp)) { | |
1814 | ReaderTransmitIClass(identify, 1); | |
1815 | if(ReaderReceiveIClass(resp) == 10) { | |
1816 | // Select card | |
1817 | memcpy(&select[1],resp,8); | |
1818 | ReaderTransmitIClass(select, sizeof(select)); | |
1819 | ||
1820 | if(ReaderReceiveIClass(resp) == 10) { | |
1821 | Dbprintf(" Selected CSN: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1822 | resp[0], resp[1], resp[2], | |
1823 | resp[3], resp[4], resp[5], | |
1824 | resp[6], resp[7]); | |
1825 | } | |
1826 | // Card selected | |
1827 | Dbprintf("Readcheck on Sector 2"); | |
1828 | ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); | |
1829 | if(ReaderReceiveIClass(resp) == 8) { | |
1830 | Dbprintf(" CC: %02x %02x %02x %02x %02x %02x %02x %02x", | |
1831 | resp[0], resp[1], resp[2], | |
1832 | resp[3], resp[4], resp[5], | |
1833 | resp[6], resp[7]); | |
1834 | }else return; | |
1835 | Dbprintf("Authenticate"); | |
1836 | //for now replay captured auth (as cc not updated) | |
1837 | memcpy(check+5,MAC,4); | |
1838 | Dbprintf(" AA: %02x %02x %02x %02x", | |
1839 | check[5], check[6], check[7],check[8]); | |
1840 | ReaderTransmitIClass(check, sizeof(check)); | |
1841 | if(ReaderReceiveIClass(resp) == 4) { | |
1842 | Dbprintf(" AR: %02x %02x %02x %02x", | |
1843 | resp[0], resp[1], resp[2],resp[3]); | |
1844 | }else { | |
1845 | Dbprintf("Error: Authentication Fail!"); | |
1846 | return; | |
1847 | } | |
1848 | Dbprintf("Write Block"); | |
1849 | ||
1850 | //read configuration for max block number | |
1851 | read_success=false; | |
1852 | read[1]=1; | |
1853 | uint8_t *blockno=&read[1]; | |
1854 | crc = iclass_crc16((char *)blockno,1); | |
1855 | read[2] = crc >> 8; | |
1856 | read[3] = crc & 0xff; | |
1857 | while(!read_success){ | |
1858 | ReaderTransmitIClass(read, sizeof(read)); | |
1859 | if(ReaderReceiveIClass(resp) == 10) { | |
1860 | read_success=true; | |
1861 | mem=resp[5]; | |
1862 | memory.k16= (mem & 0x80); | |
1863 | memory.book= (mem & 0x20); | |
1864 | memory.k2= (mem & 0x8); | |
1865 | memory.lockauth= (mem & 0x2); | |
1866 | memory.keyaccess= (mem & 0x1); | |
1867 | ||
1868 | } | |
1869 | } | |
1870 | if (memory.k16){ | |
1871 | cardsize=255; | |
1872 | }else cardsize=32; | |
1873 | //check card_size | |
1874 | ||
1875 | memcpy(write+1,blockNo,1); | |
1876 | memcpy(write+2,data,8); | |
1877 | memcpy(write+10,mac,4); | |
1878 | while(!send_success){ | |
1879 | ReaderTransmitIClass(write, sizeof(write)); | |
1880 | if(ReaderReceiveIClass(resp) == 10) { | |
1881 | write_success=true; | |
1882 | } | |
1883 | }// | |
1884 | } | |
1885 | WDT_HIT(); | |
1886 | } | |
1887 | ||
1888 | LED_A_OFF(); | |
1889 | }*/ |