| 1 | //----------------------------------------------------------------------------- |
| 2 | // |
| 3 | // Jonathan Westhues, April 2006 |
| 4 | //----------------------------------------------------------------------------- |
| 5 | |
| 6 | module hi_read_rx_xcorr( |
| 7 | pck0, ck_1356meg, ck_1356megb, |
| 8 | pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4, |
| 9 | adc_d, adc_clk, |
| 10 | ssp_frame, ssp_din, ssp_dout, ssp_clk, |
| 11 | cross_hi, cross_lo, |
| 12 | dbg, |
| 13 | xcorr_is_848, snoop |
| 14 | ); |
| 15 | input pck0, ck_1356meg, ck_1356megb; |
| 16 | output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4; |
| 17 | input [7:0] adc_d; |
| 18 | output adc_clk, ssp_frame, ssp_din; |
| 19 | input ssp_dout; |
| 20 | output ssp_clk; |
| 21 | input cross_hi, cross_lo; |
| 22 | output dbg; |
| 23 | input xcorr_is_848, snoop; |
| 24 | |
| 25 | // Carrier is steady on through this, unless we're snooping. |
| 26 | assign pwr_hi = ck_1356megb & (~snoop); |
| 27 | assign pwr_oe1 = 1'b0; |
| 28 | assign pwr_oe3 = 1'b0; |
| 29 | assign pwr_oe4 = 1'b0; |
| 30 | |
| 31 | wire adc_clk = ck_1356megb; |
| 32 | |
| 33 | reg fc_div_2; |
| 34 | always @(negedge ck_1356megb) |
| 35 | fc_div_2 <= fc_div_2 + 1; |
| 36 | |
| 37 | // When we're a reader, we just need to do the BPSK demod; but when we're an |
| 38 | // eavesdropper, we also need to pick out the commands sent by the reader, |
| 39 | // using AM. Do this the same way that we do it for the simulated tag. |
| 40 | reg after_hysteresis, after_hysteresis_prev, after_hysteresis_prev_prev; |
| 41 | reg [11:0] has_been_low_for; |
| 42 | always @(negedge adc_clk) |
| 43 | begin |
| 44 | if(& adc_d[7:0]) after_hysteresis <= 1'b1; |
| 45 | else if(~(| adc_d[7:0])) after_hysteresis <= 1'b0; |
| 46 | |
| 47 | if(after_hysteresis) |
| 48 | begin |
| 49 | has_been_low_for <= 7'b0; |
| 50 | end |
| 51 | else |
| 52 | begin |
| 53 | if(has_been_low_for == 12'd4095) |
| 54 | begin |
| 55 | has_been_low_for <= 12'd0; |
| 56 | after_hysteresis <= 1'b1; |
| 57 | end |
| 58 | else |
| 59 | has_been_low_for <= has_been_low_for + 1; |
| 60 | end |
| 61 | end |
| 62 | |
| 63 | // Let us report a correlation every 4 subcarrier cycles, or 4*16 samples, |
| 64 | // so we need a 6-bit counter. |
| 65 | reg [5:0] corr_i_cnt; |
| 66 | // And a couple of registers in which to accumulate the correlations. |
| 67 | // we would add at most 32 times adc_d, the result can be held in 13 bits. |
| 68 | // Need one additional bit because it can be negative as well |
| 69 | reg signed [13:0] corr_i_accum; |
| 70 | reg signed [13:0] corr_q_accum; |
| 71 | reg signed [7:0] corr_i_out; |
| 72 | reg signed [7:0] corr_q_out; |
| 73 | // clock and frame signal for communication to ARM |
| 74 | reg ssp_clk; |
| 75 | reg ssp_frame; |
| 76 | |
| 77 | |
| 78 | always @(negedge adc_clk) |
| 79 | begin |
| 80 | if (xcorr_is_848 | fc_div_2) |
| 81 | corr_i_cnt <= corr_i_cnt + 1; |
| 82 | end |
| 83 | |
| 84 | |
| 85 | // ADC data appears on the rising edge, so sample it on the falling edge |
| 86 | always @(negedge adc_clk) |
| 87 | begin |
| 88 | // These are the correlators: we correlate against in-phase and quadrature |
| 89 | // versions of our reference signal, and keep the (signed) result to |
| 90 | // send out later over the SSP. |
| 91 | if(corr_i_cnt == 6'd0) |
| 92 | begin |
| 93 | if(snoop) |
| 94 | begin |
| 95 | // Send only 7 most significant bits of tag signal (signed), LSB is reader signal: |
| 96 | corr_i_out <= {corr_i_accum[13:7], after_hysteresis_prev_prev}; |
| 97 | corr_q_out <= {corr_q_accum[13:7], after_hysteresis_prev}; |
| 98 | after_hysteresis_prev_prev <= after_hysteresis; |
| 99 | end |
| 100 | else |
| 101 | begin |
| 102 | // 8 most significant bits of tag signal |
| 103 | corr_i_out <= corr_i_accum[13:6]; |
| 104 | corr_q_out <= corr_q_accum[13:6]; |
| 105 | end |
| 106 | |
| 107 | corr_i_accum <= adc_d; |
| 108 | corr_q_accum <= adc_d; |
| 109 | end |
| 110 | else |
| 111 | begin |
| 112 | if(corr_i_cnt[3]) |
| 113 | corr_i_accum <= corr_i_accum - adc_d; |
| 114 | else |
| 115 | corr_i_accum <= corr_i_accum + adc_d; |
| 116 | |
| 117 | if(corr_i_cnt[3] == corr_i_cnt[2]) // phase shifted by pi/2 |
| 118 | corr_q_accum <= corr_q_accum + adc_d; |
| 119 | else |
| 120 | corr_q_accum <= corr_q_accum - adc_d; |
| 121 | |
| 122 | end |
| 123 | |
| 124 | // The logic in hi_simulate.v reports 4 samples per bit. We report two |
| 125 | // (I, Q) pairs per bit, so we should do 2 samples per pair. |
| 126 | if(corr_i_cnt == 6'd32) |
| 127 | after_hysteresis_prev <= after_hysteresis; |
| 128 | |
| 129 | // Then the result from last time is serialized and send out to the ARM. |
| 130 | // We get one report each cycle, and each report is 16 bits, so the |
| 131 | // ssp_clk should be the adc_clk divided by 64/16 = 4. |
| 132 | |
| 133 | if(corr_i_cnt[1:0] == 2'b10) |
| 134 | ssp_clk <= 1'b0; |
| 135 | |
| 136 | if(corr_i_cnt[1:0] == 2'b00) |
| 137 | begin |
| 138 | ssp_clk <= 1'b1; |
| 139 | // Don't shift if we just loaded new data, obviously. |
| 140 | if(corr_i_cnt != 7'd0) |
| 141 | begin |
| 142 | corr_i_out[7:0] <= {corr_i_out[6:0], corr_q_out[7]}; |
| 143 | corr_q_out[7:1] <= corr_q_out[6:0]; |
| 144 | end |
| 145 | end |
| 146 | |
| 147 | // set ssp_frame signal for corr_i_cnt = 0..3 and corr_i_cnt = 32..35 |
| 148 | // (send two frames with 8 Bits each) |
| 149 | if(corr_i_cnt[5:2] == 4'b0000 || corr_i_cnt[5:2] == 4'b1000) |
| 150 | ssp_frame = 1'b1; |
| 151 | else |
| 152 | ssp_frame = 1'b0; |
| 153 | |
| 154 | end |
| 155 | |
| 156 | assign ssp_din = corr_i_out[7]; |
| 157 | |
| 158 | assign dbg = corr_i_cnt[3]; |
| 159 | |
| 160 | // Unused. |
| 161 | assign pwr_lo = 1'b0; |
| 162 | assign pwr_oe2 = 1'b0; |
| 163 | |
| 164 | endmodule |