]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011, 2012 | |
3 | // Gerhard de Koning Gans - May 2008 | |
4 | // Hagen Fritsch - June 2010 | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // Routines to support ISO 14443 type A. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "proxmark3.h" | |
14 | #include "apps.h" | |
15 | #include "util.h" | |
16 | #include "string.h" | |
17 | #include "cmd.h" | |
18 | #include "iso14443crc.h" | |
19 | #include "iso14443a.h" | |
20 | #include "crapto1.h" | |
21 | #include "mifareutil.h" | |
22 | #include "BigBuf.h" | |
23 | static uint32_t iso14a_timeout; | |
24 | int rsamples = 0; | |
25 | uint8_t trigger = 0; | |
26 | // the block number for the ISO14443-4 PCB | |
27 | static uint8_t iso14_pcb_blocknum = 0; | |
28 | ||
29 | // | |
30 | // ISO14443 timing: | |
31 | // | |
32 | // minimum time between the start bits of consecutive transfers from reader to tag: 7000 carrier (13.56Mhz) cycles | |
33 | #define REQUEST_GUARD_TIME (7000/16 + 1) | |
34 | // minimum time between last modulation of tag and next start bit from reader to tag: 1172 carrier cycles | |
35 | #define FRAME_DELAY_TIME_PICC_TO_PCD (1172/16 + 1) | |
36 | // bool LastCommandWasRequest = FALSE; | |
37 | ||
38 | // | |
39 | // Total delays including SSC-Transfers between ARM and FPGA. These are in carrier clock cycles (1/13,56MHz) | |
40 | // | |
41 | // When the PM acts as reader and is receiving tag data, it takes | |
42 | // 3 ticks delay in the AD converter | |
43 | // 16 ticks until the modulation detector completes and sets curbit | |
44 | // 8 ticks until bit_to_arm is assigned from curbit | |
45 | // 8*16 ticks for the transfer from FPGA to ARM | |
46 | // 4*16 ticks until we measure the time | |
47 | // - 8*16 ticks because we measure the time of the previous transfer | |
48 | #define DELAY_AIR2ARM_AS_READER (3 + 16 + 8 + 8*16 + 4*16 - 8*16) | |
49 | ||
50 | // When the PM acts as a reader and is sending, it takes | |
51 | // 4*16 ticks until we can write data to the sending hold register | |
52 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register | |
53 | // 8 ticks until the first transfer starts | |
54 | // 8 ticks later the FPGA samples the data | |
55 | // 1 tick to assign mod_sig_coil | |
56 | #define DELAY_ARM2AIR_AS_READER (4*16 + 8*16 + 8 + 8 + 1) | |
57 | ||
58 | // When the PM acts as tag and is receiving it takes | |
59 | // 2 ticks delay in the RF part (for the first falling edge), | |
60 | // 3 ticks for the A/D conversion, | |
61 | // 8 ticks on average until the start of the SSC transfer, | |
62 | // 8 ticks until the SSC samples the first data | |
63 | // 7*16 ticks to complete the transfer from FPGA to ARM | |
64 | // 8 ticks until the next ssp_clk rising edge | |
65 | // 4*16 ticks until we measure the time | |
66 | // - 8*16 ticks because we measure the time of the previous transfer | |
67 | #define DELAY_AIR2ARM_AS_TAG (2 + 3 + 8 + 8 + 7*16 + 8 + 4*16 - 8*16) | |
68 | ||
69 | // The FPGA will report its internal sending delay in | |
70 | uint16_t FpgaSendQueueDelay; | |
71 | // the 5 first bits are the number of bits buffered in mod_sig_buf | |
72 | // the last three bits are the remaining ticks/2 after the mod_sig_buf shift | |
73 | #define DELAY_FPGA_QUEUE (FpgaSendQueueDelay<<1) | |
74 | ||
75 | // When the PM acts as tag and is sending, it takes | |
76 | // 4*16 ticks until we can write data to the sending hold register | |
77 | // 8*16 ticks until the SHR is transferred to the Sending Shift Register | |
78 | // 8 ticks until the first transfer starts | |
79 | // 8 ticks later the FPGA samples the data | |
80 | // + a varying number of ticks in the FPGA Delay Queue (mod_sig_buf) | |
81 | // + 1 tick to assign mod_sig_coil | |
82 | #define DELAY_ARM2AIR_AS_TAG (4*16 + 8*16 + 8 + 8 + DELAY_FPGA_QUEUE + 1) | |
83 | ||
84 | // When the PM acts as sniffer and is receiving tag data, it takes | |
85 | // 3 ticks A/D conversion | |
86 | // 14 ticks to complete the modulation detection | |
87 | // 8 ticks (on average) until the result is stored in to_arm | |
88 | // + the delays in transferring data - which is the same for | |
89 | // sniffing reader and tag data and therefore not relevant | |
90 | #define DELAY_TAG_AIR2ARM_AS_SNIFFER (3 + 14 + 8) | |
91 | ||
92 | // When the PM acts as sniffer and is receiving reader data, it takes | |
93 | // 2 ticks delay in analogue RF receiver (for the falling edge of the | |
94 | // start bit, which marks the start of the communication) | |
95 | // 3 ticks A/D conversion | |
96 | // 8 ticks on average until the data is stored in to_arm. | |
97 | // + the delays in transferring data - which is the same for | |
98 | // sniffing reader and tag data and therefore not relevant | |
99 | #define DELAY_READER_AIR2ARM_AS_SNIFFER (2 + 3 + 8) | |
100 | ||
101 | //variables used for timing purposes: | |
102 | //these are in ssp_clk cycles: | |
103 | static uint32_t NextTransferTime; | |
104 | static uint32_t LastTimeProxToAirStart; | |
105 | static uint32_t LastProxToAirDuration; | |
106 | ||
107 | ||
108 | ||
109 | // CARD TO READER - manchester | |
110 | // Sequence D: 11110000 modulation with subcarrier during first half | |
111 | // Sequence E: 00001111 modulation with subcarrier during second half | |
112 | // Sequence F: 00000000 no modulation with subcarrier | |
113 | // READER TO CARD - miller | |
114 | // Sequence X: 00001100 drop after half a period | |
115 | // Sequence Y: 00000000 no drop | |
116 | // Sequence Z: 11000000 drop at start | |
117 | #define SEC_D 0xf0 | |
118 | #define SEC_E 0x0f | |
119 | #define SEC_F 0x00 | |
120 | #define SEC_X 0x0c | |
121 | #define SEC_Y 0x00 | |
122 | #define SEC_Z 0xc0 | |
123 | ||
124 | const uint8_t OddByteParity[256] = { | |
125 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
126 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
127 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
128 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
129 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
130 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
131 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
132 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
133 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
134 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
135 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
136 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
137 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
138 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
139 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
140 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
141 | }; | |
142 | ||
143 | ||
144 | void iso14a_set_trigger(bool enable) { | |
145 | trigger = enable; | |
146 | } | |
147 | ||
148 | ||
149 | void iso14a_set_timeout(uint32_t timeout) { | |
150 | iso14a_timeout = timeout; | |
151 | if(MF_DBGLEVEL >= 3) Dbprintf("ISO14443A Timeout set to %ld (%dms)", iso14a_timeout, iso14a_timeout / 106); | |
152 | } | |
153 | ||
154 | ||
155 | void iso14a_set_ATS_timeout(uint8_t *ats) { | |
156 | ||
157 | uint8_t tb1; | |
158 | uint8_t fwi; | |
159 | uint32_t fwt; | |
160 | ||
161 | if (ats[0] > 1) { // there is a format byte T0 | |
162 | if ((ats[1] & 0x20) == 0x20) { // there is an interface byte TB(1) | |
163 | if ((ats[1] & 0x10) == 0x10) { // there is an interface byte TA(1) preceding TB(1) | |
164 | tb1 = ats[3]; | |
165 | } else { | |
166 | tb1 = ats[2]; | |
167 | } | |
168 | fwi = (tb1 & 0xf0) >> 4; // frame waiting indicator (FWI) | |
169 | fwt = 256 * 16 * (1 << fwi); // frame waiting time (FWT) in 1/fc | |
170 | ||
171 | iso14a_set_timeout(fwt/(8*16)); | |
172 | } | |
173 | } | |
174 | } | |
175 | ||
176 | ||
177 | //----------------------------------------------------------------------------- | |
178 | // Generate the parity value for a byte sequence | |
179 | // | |
180 | //----------------------------------------------------------------------------- | |
181 | byte_t oddparity (const byte_t bt) | |
182 | { | |
183 | return OddByteParity[bt]; | |
184 | } | |
185 | ||
186 | void GetParity(const uint8_t *pbtCmd, uint16_t iLen, uint8_t *par) | |
187 | { | |
188 | uint16_t paritybit_cnt = 0; | |
189 | uint16_t paritybyte_cnt = 0; | |
190 | uint8_t parityBits = 0; | |
191 | ||
192 | for (uint16_t i = 0; i < iLen; i++) { | |
193 | // Generate the parity bits | |
194 | parityBits |= ((OddByteParity[pbtCmd[i]]) << (7-paritybit_cnt)); | |
195 | if (paritybit_cnt == 7) { | |
196 | par[paritybyte_cnt] = parityBits; // save 8 Bits parity | |
197 | parityBits = 0; // and advance to next Parity Byte | |
198 | paritybyte_cnt++; | |
199 | paritybit_cnt = 0; | |
200 | } else { | |
201 | paritybit_cnt++; | |
202 | } | |
203 | } | |
204 | ||
205 | // save remaining parity bits | |
206 | par[paritybyte_cnt] = parityBits; | |
207 | ||
208 | } | |
209 | ||
210 | void AppendCrc14443a(uint8_t* data, int len) | |
211 | { | |
212 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); | |
213 | } | |
214 | ||
215 | void AppendCrc14443b(uint8_t* data, int len) | |
216 | { | |
217 | ComputeCrc14443(CRC_14443_B,data,len,data+len,data+len+1); | |
218 | } | |
219 | ||
220 | ||
221 | //============================================================================= | |
222 | // ISO 14443 Type A - Miller decoder | |
223 | //============================================================================= | |
224 | // Basics: | |
225 | // This decoder is used when the PM3 acts as a tag. | |
226 | // The reader will generate "pauses" by temporarily switching of the field. | |
227 | // At the PM3 antenna we will therefore measure a modulated antenna voltage. | |
228 | // The FPGA does a comparison with a threshold and would deliver e.g.: | |
229 | // ........ 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 ....... | |
230 | // The Miller decoder needs to identify the following sequences: | |
231 | // 2 (or 3) ticks pause followed by 6 (or 5) ticks unmodulated: pause at beginning - Sequence Z ("start of communication" or a "0") | |
232 | // 8 ticks without a modulation: no pause - Sequence Y (a "0" or "end of communication" or "no information") | |
233 | // 4 ticks unmodulated followed by 2 (or 3) ticks pause: pause in second half - Sequence X (a "1") | |
234 | // Note 1: the bitstream may start at any time. We therefore need to sync. | |
235 | // Note 2: the interpretation of Sequence Y and Z depends on the preceding sequence. | |
236 | //----------------------------------------------------------------------------- | |
237 | static tUart Uart; | |
238 | ||
239 | // Lookup-Table to decide if 4 raw bits are a modulation. | |
240 | // We accept the following: | |
241 | // 0001 - a 3 tick wide pause | |
242 | // 0011 - a 2 tick wide pause, or a three tick wide pause shifted left | |
243 | // 0111 - a 2 tick wide pause shifted left | |
244 | // 1001 - a 2 tick wide pause shifted right | |
245 | const bool Mod_Miller_LUT[] = { | |
246 | FALSE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, | |
247 | FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE | |
248 | }; | |
249 | #define IsMillerModulationNibble1(b) (Mod_Miller_LUT[(b & 0x000000F0) >> 4]) | |
250 | #define IsMillerModulationNibble2(b) (Mod_Miller_LUT[(b & 0x0000000F)]) | |
251 | ||
252 | void UartReset() | |
253 | { | |
254 | Uart.state = STATE_UNSYNCD; | |
255 | Uart.bitCount = 0; | |
256 | Uart.len = 0; // number of decoded data bytes | |
257 | Uart.parityLen = 0; // number of decoded parity bytes | |
258 | Uart.shiftReg = 0; // shiftreg to hold decoded data bits | |
259 | Uart.parityBits = 0; // holds 8 parity bits | |
260 | Uart.startTime = 0; | |
261 | Uart.endTime = 0; | |
262 | ||
263 | Uart.byteCntMax = 0; | |
264 | Uart.posCnt = 0; | |
265 | Uart.syncBit = 9999; | |
266 | } | |
267 | ||
268 | void UartInit(uint8_t *data, uint8_t *parity) | |
269 | { | |
270 | Uart.output = data; | |
271 | Uart.parity = parity; | |
272 | Uart.fourBits = 0x00000000; // clear the buffer for 4 Bits | |
273 | UartReset(); | |
274 | } | |
275 | ||
276 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time | |
277 | static RAMFUNC bool MillerDecoding(uint8_t bit, uint32_t non_real_time) | |
278 | { | |
279 | ||
280 | Uart.fourBits = (Uart.fourBits << 8) | bit; | |
281 | ||
282 | if (Uart.state == STATE_UNSYNCD) { // not yet synced | |
283 | ||
284 | Uart.syncBit = 9999; // not set | |
285 | ||
286 | // 00x11111 2|3 ticks pause followed by 6|5 ticks unmodulated Sequence Z (a "0" or "start of communication") | |
287 | // 11111111 8 ticks unmodulation Sequence Y (a "0" or "end of communication" or "no information") | |
288 | // 111100x1 4 ticks unmodulated followed by 2|3 ticks pause Sequence X (a "1") | |
289 | ||
290 | // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from | |
291 | // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) | |
292 | // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern | |
293 | // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) | |
294 | // | |
295 | #define ISO14443A_STARTBIT_MASK 0x07FFEF80 // mask is 00001111 11111111 1110 1111 10000000 | |
296 | #define ISO14443A_STARTBIT_PATTERN 0x07FF8F80 // pattern is 00001111 11111111 1000 1111 10000000 | |
297 | ||
298 | if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 0)) == ISO14443A_STARTBIT_PATTERN >> 0) Uart.syncBit = 7; | |
299 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 1)) == ISO14443A_STARTBIT_PATTERN >> 1) Uart.syncBit = 6; | |
300 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 2)) == ISO14443A_STARTBIT_PATTERN >> 2) Uart.syncBit = 5; | |
301 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 3)) == ISO14443A_STARTBIT_PATTERN >> 3) Uart.syncBit = 4; | |
302 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 4)) == ISO14443A_STARTBIT_PATTERN >> 4) Uart.syncBit = 3; | |
303 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 5)) == ISO14443A_STARTBIT_PATTERN >> 5) Uart.syncBit = 2; | |
304 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 6)) == ISO14443A_STARTBIT_PATTERN >> 6) Uart.syncBit = 1; | |
305 | else if ((Uart.fourBits & (ISO14443A_STARTBIT_MASK >> 7)) == ISO14443A_STARTBIT_PATTERN >> 7) Uart.syncBit = 0; | |
306 | ||
307 | if (Uart.syncBit != 9999) { // found a sync bit | |
308 | Uart.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); | |
309 | Uart.startTime -= Uart.syncBit; | |
310 | Uart.endTime = Uart.startTime; | |
311 | Uart.state = STATE_START_OF_COMMUNICATION; | |
312 | } | |
313 | ||
314 | } else { | |
315 | ||
316 | if (IsMillerModulationNibble1(Uart.fourBits >> Uart.syncBit)) { | |
317 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation in both halves - error | |
318 | UartReset(); | |
319 | } else { // Modulation in first half = Sequence Z = logic "0" | |
320 | if (Uart.state == STATE_MILLER_X) { // error - must not follow after X | |
321 | UartReset(); | |
322 | } else { | |
323 | Uart.bitCount++; | |
324 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
325 | Uart.state = STATE_MILLER_Z; | |
326 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 6; | |
327 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
328 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
329 | Uart.parityBits <<= 1; // make room for the parity bit | |
330 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
331 | Uart.bitCount = 0; | |
332 | Uart.shiftReg = 0; | |
333 | if((Uart.len&0x0007) == 0) { // every 8 data bytes | |
334 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
335 | Uart.parityBits = 0; | |
336 | } | |
337 | } | |
338 | } | |
339 | } | |
340 | } else { | |
341 | if (IsMillerModulationNibble2(Uart.fourBits >> Uart.syncBit)) { // Modulation second half = Sequence X = logic "1" | |
342 | Uart.bitCount++; | |
343 | Uart.shiftReg = (Uart.shiftReg >> 1) | 0x100; // add a 1 to the shiftreg | |
344 | Uart.state = STATE_MILLER_X; | |
345 | Uart.endTime = Uart.startTime + 8*(9*Uart.len + Uart.bitCount + 1) - 2; | |
346 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
347 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
348 | Uart.parityBits <<= 1; // make room for the new parity bit | |
349 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
350 | Uart.bitCount = 0; | |
351 | Uart.shiftReg = 0; | |
352 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes | |
353 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
354 | Uart.parityBits = 0; | |
355 | } | |
356 | } | |
357 | } else { // no modulation in both halves - Sequence Y | |
358 | if (Uart.state == STATE_MILLER_Z || Uart.state == STATE_MILLER_Y) { // Y after logic "0" - End of Communication | |
359 | Uart.state = STATE_UNSYNCD; | |
360 | Uart.bitCount--; // last "0" was part of EOC sequence | |
361 | Uart.shiftReg <<= 1; // drop it | |
362 | if(Uart.bitCount > 0) { // if we decoded some bits | |
363 | Uart.shiftReg >>= (9 - Uart.bitCount); // right align them | |
364 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); // add last byte to the output | |
365 | Uart.parityBits <<= 1; // add a (void) parity bit | |
366 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align parity bits | |
367 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store it | |
368 | return TRUE; | |
369 | } else if (Uart.len & 0x0007) { // there are some parity bits to store | |
370 | Uart.parityBits <<= (8 - (Uart.len&0x0007)); // left align remaining parity bits | |
371 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // and store them | |
372 | } | |
373 | if (Uart.len) { | |
374 | return TRUE; // we are finished with decoding the raw data sequence | |
375 | } else { | |
376 | UartReset(); // Nothing received - start over | |
377 | } | |
378 | } | |
379 | if (Uart.state == STATE_START_OF_COMMUNICATION) { // error - must not follow directly after SOC | |
380 | UartReset(); | |
381 | } else { // a logic "0" | |
382 | Uart.bitCount++; | |
383 | Uart.shiftReg = (Uart.shiftReg >> 1); // add a 0 to the shiftreg | |
384 | Uart.state = STATE_MILLER_Y; | |
385 | if(Uart.bitCount >= 9) { // if we decoded a full byte (including parity) | |
386 | Uart.output[Uart.len++] = (Uart.shiftReg & 0xff); | |
387 | Uart.parityBits <<= 1; // make room for the parity bit | |
388 | Uart.parityBits |= ((Uart.shiftReg >> 8) & 0x01); // store parity bit | |
389 | Uart.bitCount = 0; | |
390 | Uart.shiftReg = 0; | |
391 | if ((Uart.len&0x0007) == 0) { // every 8 data bytes | |
392 | Uart.parity[Uart.parityLen++] = Uart.parityBits; // store 8 parity bits | |
393 | Uart.parityBits = 0; | |
394 | } | |
395 | } | |
396 | } | |
397 | } | |
398 | } | |
399 | ||
400 | } | |
401 | ||
402 | return FALSE; // not finished yet, need more data | |
403 | } | |
404 | ||
405 | ||
406 | ||
407 | //============================================================================= | |
408 | // ISO 14443 Type A - Manchester decoder | |
409 | //============================================================================= | |
410 | // Basics: | |
411 | // This decoder is used when the PM3 acts as a reader. | |
412 | // The tag will modulate the reader field by asserting different loads to it. As a consequence, the voltage | |
413 | // at the reader antenna will be modulated as well. The FPGA detects the modulation for us and would deliver e.g. the following: | |
414 | // ........ 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... | |
415 | // The Manchester decoder needs to identify the following sequences: | |
416 | // 4 ticks modulated followed by 4 ticks unmodulated: Sequence D = 1 (also used as "start of communication") | |
417 | // 4 ticks unmodulated followed by 4 ticks modulated: Sequence E = 0 | |
418 | // 8 ticks unmodulated: Sequence F = end of communication | |
419 | // 8 ticks modulated: A collision. Save the collision position and treat as Sequence D | |
420 | // Note 1: the bitstream may start at any time. We therefore need to sync. | |
421 | // Note 2: parameter offset is used to determine the position of the parity bits (required for the anticollision command only) | |
422 | static tDemod Demod; | |
423 | ||
424 | // Lookup-Table to decide if 4 raw bits are a modulation. | |
425 | // We accept three or four "1" in any position | |
426 | const bool Mod_Manchester_LUT[] = { | |
427 | FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, | |
428 | FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE | |
429 | }; | |
430 | ||
431 | #define IsManchesterModulationNibble1(b) (Mod_Manchester_LUT[(b & 0x00F0) >> 4]) | |
432 | #define IsManchesterModulationNibble2(b) (Mod_Manchester_LUT[(b & 0x000F)]) | |
433 | ||
434 | ||
435 | void DemodReset() | |
436 | { | |
437 | Demod.state = DEMOD_UNSYNCD; | |
438 | Demod.len = 0; // number of decoded data bytes | |
439 | Demod.parityLen = 0; | |
440 | Demod.shiftReg = 0; // shiftreg to hold decoded data bits | |
441 | Demod.parityBits = 0; // | |
442 | Demod.collisionPos = 0; // Position of collision bit | |
443 | Demod.twoBits = 0xffff; // buffer for 2 Bits | |
444 | Demod.highCnt = 0; | |
445 | Demod.startTime = 0; | |
446 | Demod.endTime = 0; | |
447 | ||
448 | // | |
449 | Demod.bitCount = 0; | |
450 | Demod.syncBit = 0xFFFF; | |
451 | Demod.samples = 0; | |
452 | } | |
453 | ||
454 | void DemodInit(uint8_t *data, uint8_t *parity) | |
455 | { | |
456 | Demod.output = data; | |
457 | Demod.parity = parity; | |
458 | DemodReset(); | |
459 | } | |
460 | ||
461 | // use parameter non_real_time to provide a timestamp. Set to 0 if the decoder should measure real time | |
462 | static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non_real_time) | |
463 | { | |
464 | ||
465 | Demod.twoBits = (Demod.twoBits << 8) | bit; | |
466 | ||
467 | if (Demod.state == DEMOD_UNSYNCD) { | |
468 | ||
469 | if (Demod.highCnt < 2) { // wait for a stable unmodulated signal | |
470 | if (Demod.twoBits == 0x0000) { | |
471 | Demod.highCnt++; | |
472 | } else { | |
473 | Demod.highCnt = 0; | |
474 | } | |
475 | } else { | |
476 | Demod.syncBit = 0xFFFF; // not set | |
477 | if ((Demod.twoBits & 0x7700) == 0x7000) Demod.syncBit = 7; | |
478 | else if ((Demod.twoBits & 0x3B80) == 0x3800) Demod.syncBit = 6; | |
479 | else if ((Demod.twoBits & 0x1DC0) == 0x1C00) Demod.syncBit = 5; | |
480 | else if ((Demod.twoBits & 0x0EE0) == 0x0E00) Demod.syncBit = 4; | |
481 | else if ((Demod.twoBits & 0x0770) == 0x0700) Demod.syncBit = 3; | |
482 | else if ((Demod.twoBits & 0x03B8) == 0x0380) Demod.syncBit = 2; | |
483 | else if ((Demod.twoBits & 0x01DC) == 0x01C0) Demod.syncBit = 1; | |
484 | else if ((Demod.twoBits & 0x00EE) == 0x00E0) Demod.syncBit = 0; | |
485 | if (Demod.syncBit != 0xFFFF) { | |
486 | Demod.startTime = non_real_time?non_real_time:(GetCountSspClk() & 0xfffffff8); | |
487 | Demod.startTime -= Demod.syncBit; | |
488 | Demod.bitCount = offset; // number of decoded data bits | |
489 | Demod.state = DEMOD_MANCHESTER_DATA; | |
490 | } | |
491 | } | |
492 | ||
493 | } else { | |
494 | ||
495 | if (IsManchesterModulationNibble1(Demod.twoBits >> Demod.syncBit)) { // modulation in first half | |
496 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // ... and in second half = collision | |
497 | if (!Demod.collisionPos) { | |
498 | Demod.collisionPos = (Demod.len << 3) + Demod.bitCount; | |
499 | } | |
500 | } // modulation in first half only - Sequence D = 1 | |
501 | Demod.bitCount++; | |
502 | Demod.shiftReg = (Demod.shiftReg >> 1) | 0x100; // in both cases, add a 1 to the shiftreg | |
503 | if(Demod.bitCount == 9) { // if we decoded a full byte (including parity) | |
504 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); | |
505 | Demod.parityBits <<= 1; // make room for the parity bit | |
506 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit | |
507 | Demod.bitCount = 0; | |
508 | Demod.shiftReg = 0; | |
509 | if((Demod.len&0x0007) == 0) { // every 8 data bytes | |
510 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits | |
511 | Demod.parityBits = 0; | |
512 | } | |
513 | } | |
514 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1) - 4; | |
515 | } else { // no modulation in first half | |
516 | if (IsManchesterModulationNibble2(Demod.twoBits >> Demod.syncBit)) { // and modulation in second half = Sequence E = 0 | |
517 | Demod.bitCount++; | |
518 | Demod.shiftReg = (Demod.shiftReg >> 1); // add a 0 to the shiftreg | |
519 | if(Demod.bitCount >= 9) { // if we decoded a full byte (including parity) | |
520 | Demod.output[Demod.len++] = (Demod.shiftReg & 0xff); | |
521 | Demod.parityBits <<= 1; // make room for the new parity bit | |
522 | Demod.parityBits |= ((Demod.shiftReg >> 8) & 0x01); // store parity bit | |
523 | Demod.bitCount = 0; | |
524 | Demod.shiftReg = 0; | |
525 | if ((Demod.len&0x0007) == 0) { // every 8 data bytes | |
526 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // store 8 parity bits1 | |
527 | Demod.parityBits = 0; | |
528 | } | |
529 | } | |
530 | Demod.endTime = Demod.startTime + 8*(9*Demod.len + Demod.bitCount + 1); | |
531 | } else { // no modulation in both halves - End of communication | |
532 | if(Demod.bitCount > 0) { // there are some remaining data bits | |
533 | Demod.shiftReg >>= (9 - Demod.bitCount); // right align the decoded bits | |
534 | Demod.output[Demod.len++] = Demod.shiftReg & 0xff; // and add them to the output | |
535 | Demod.parityBits <<= 1; // add a (void) parity bit | |
536 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
537 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
538 | return TRUE; | |
539 | } else if (Demod.len & 0x0007) { // there are some parity bits to store | |
540 | Demod.parityBits <<= (8 - (Demod.len&0x0007)); // left align remaining parity bits | |
541 | Demod.parity[Demod.parityLen++] = Demod.parityBits; // and store them | |
542 | } | |
543 | if (Demod.len) { | |
544 | return TRUE; // we are finished with decoding the raw data sequence | |
545 | } else { // nothing received. Start over | |
546 | DemodReset(); | |
547 | } | |
548 | } | |
549 | } | |
550 | } | |
551 | return FALSE; // not finished yet, need more data | |
552 | } | |
553 | ||
554 | //============================================================================= | |
555 | // Finally, a `sniffer' for ISO 14443 Type A | |
556 | // Both sides of communication! | |
557 | //============================================================================= | |
558 | ||
559 | //----------------------------------------------------------------------------- | |
560 | // Record the sequence of commands sent by the reader to the tag, with | |
561 | // triggering so that we start recording at the point that the tag is moved | |
562 | // near the reader. | |
563 | //----------------------------------------------------------------------------- | |
564 | void RAMFUNC SniffIso14443a(uint8_t param) { | |
565 | // param: | |
566 | // bit 0 - trigger from first card answer | |
567 | // bit 1 - trigger from first reader 7-bit request | |
568 | ||
569 | LEDsoff(); | |
570 | ||
571 | // We won't start recording the frames that we acquire until we trigger; | |
572 | // a good trigger condition to get started is probably when we see a | |
573 | // response from the tag. | |
574 | // triggered == FALSE -- to wait first for card | |
575 | bool triggered = !(param & 0x03); | |
576 | ||
577 | // Allocate memory from BigBuf for some buffers | |
578 | // free all previous allocations first | |
579 | BigBuf_free(); | |
580 | ||
581 | // The command (reader -> tag) that we're receiving. | |
582 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
583 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
584 | ||
585 | // The response (tag -> reader) that we're receiving. | |
586 | uint8_t *receivedResponse = BigBuf_malloc(MAX_FRAME_SIZE); | |
587 | uint8_t *receivedResponsePar = BigBuf_malloc(MAX_PARITY_SIZE); | |
588 | ||
589 | // The DMA buffer, used to stream samples from the FPGA | |
590 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
591 | ||
592 | // init trace buffer | |
593 | clear_trace(); | |
594 | set_tracing(TRUE); | |
595 | ||
596 | uint8_t *data = dmaBuf; | |
597 | uint8_t previous_data = 0; | |
598 | int maxDataLen = 0; | |
599 | int dataLen = 0; | |
600 | bool TagIsActive = FALSE; | |
601 | bool ReaderIsActive = FALSE; | |
602 | ||
603 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); | |
604 | ||
605 | // Set up the demodulator for tag -> reader responses. | |
606 | DemodInit(receivedResponse, receivedResponsePar); | |
607 | ||
608 | // Set up the demodulator for the reader -> tag commands | |
609 | UartInit(receivedCmd, receivedCmdPar); | |
610 | ||
611 | // Setup and start DMA. | |
612 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
613 | ||
614 | // And now we loop, receiving samples. | |
615 | for(uint32_t rsamples = 0; TRUE; ) { | |
616 | ||
617 | if(BUTTON_PRESS()) { | |
618 | DbpString("cancelled by button"); | |
619 | break; | |
620 | } | |
621 | ||
622 | LED_A_ON(); | |
623 | WDT_HIT(); | |
624 | ||
625 | int register readBufDataP = data - dmaBuf; | |
626 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
627 | if (readBufDataP <= dmaBufDataP){ | |
628 | dataLen = dmaBufDataP - readBufDataP; | |
629 | } else { | |
630 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; | |
631 | } | |
632 | // test for length of buffer | |
633 | if(dataLen > maxDataLen) { | |
634 | maxDataLen = dataLen; | |
635 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { | |
636 | Dbprintf("blew circular buffer! dataLen=%d", dataLen); | |
637 | break; | |
638 | } | |
639 | } | |
640 | if(dataLen < 1) continue; | |
641 | ||
642 | // primary buffer was stopped( <-- we lost data! | |
643 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
644 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
645 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
646 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary | |
647 | } | |
648 | // secondary buffer sets as primary, secondary buffer was stopped | |
649 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
650 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
651 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
652 | } | |
653 | ||
654 | LED_A_OFF(); | |
655 | ||
656 | if (rsamples & 0x01) { // Need two samples to feed Miller and Manchester-Decoder | |
657 | ||
658 | if(!TagIsActive) { // no need to try decoding reader data if the tag is sending | |
659 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
660 | if (MillerDecoding(readerdata, (rsamples-1)*4)) { | |
661 | LED_C_ON(); | |
662 | ||
663 | // check - if there is a short 7bit request from reader | |
664 | if ((!triggered) && (param & 0x02) && (Uart.len == 1) && (Uart.bitCount == 7)) triggered = TRUE; | |
665 | ||
666 | if(triggered) { | |
667 | if (!LogTrace(receivedCmd, | |
668 | Uart.len, | |
669 | Uart.startTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
670 | Uart.endTime*16 - DELAY_READER_AIR2ARM_AS_SNIFFER, | |
671 | Uart.parity, | |
672 | TRUE)) break; | |
673 | } | |
674 | /* And ready to receive another command. */ | |
675 | UartReset(); | |
676 | /* And also reset the demod code, which might have been */ | |
677 | /* false-triggered by the commands from the reader. */ | |
678 | DemodReset(); | |
679 | LED_B_OFF(); | |
680 | } | |
681 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
682 | } | |
683 | ||
684 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending - and we cannot afford the time | |
685 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
686 | if(ManchesterDecoding(tagdata, 0, (rsamples-1)*4)) { | |
687 | LED_B_ON(); | |
688 | ||
689 | if (!LogTrace(receivedResponse, | |
690 | Demod.len, | |
691 | Demod.startTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
692 | Demod.endTime*16 - DELAY_TAG_AIR2ARM_AS_SNIFFER, | |
693 | Demod.parity, | |
694 | FALSE)) break; | |
695 | ||
696 | if ((!triggered) && (param & 0x01)) triggered = TRUE; | |
697 | ||
698 | // And ready to receive another response. | |
699 | DemodReset(); | |
700 | // And reset the Miller decoder including itS (now outdated) input buffer | |
701 | UartInit(receivedCmd, receivedCmdPar); | |
702 | ||
703 | LED_C_OFF(); | |
704 | } | |
705 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
706 | } | |
707 | } | |
708 | ||
709 | previous_data = *data; | |
710 | rsamples++; | |
711 | data++; | |
712 | if(data == dmaBuf + DMA_BUFFER_SIZE) { | |
713 | data = dmaBuf; | |
714 | } | |
715 | } // main cycle | |
716 | ||
717 | DbpString("COMMAND FINISHED"); | |
718 | ||
719 | FpgaDisableSscDma(); | |
720 | Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); | |
721 | Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); | |
722 | LEDsoff(); | |
723 | } | |
724 | ||
725 | //----------------------------------------------------------------------------- | |
726 | // Prepare tag messages | |
727 | //----------------------------------------------------------------------------- | |
728 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *parity) | |
729 | { | |
730 | ToSendReset(); | |
731 | ||
732 | // Correction bit, might be removed when not needed | |
733 | ToSendStuffBit(0); | |
734 | ToSendStuffBit(0); | |
735 | ToSendStuffBit(0); | |
736 | ToSendStuffBit(0); | |
737 | ToSendStuffBit(1); // 1 | |
738 | ToSendStuffBit(0); | |
739 | ToSendStuffBit(0); | |
740 | ToSendStuffBit(0); | |
741 | ||
742 | // Send startbit | |
743 | ToSend[++ToSendMax] = SEC_D; | |
744 | LastProxToAirDuration = 8 * ToSendMax - 4; | |
745 | ||
746 | for(uint16_t i = 0; i < len; i++) { | |
747 | uint8_t b = cmd[i]; | |
748 | ||
749 | // Data bits | |
750 | for(uint16_t j = 0; j < 8; j++) { | |
751 | if(b & 1) { | |
752 | ToSend[++ToSendMax] = SEC_D; | |
753 | } else { | |
754 | ToSend[++ToSendMax] = SEC_E; | |
755 | } | |
756 | b >>= 1; | |
757 | } | |
758 | ||
759 | // Get the parity bit | |
760 | if (parity[i>>3] & (0x80>>(i&0x0007))) { | |
761 | ToSend[++ToSendMax] = SEC_D; | |
762 | LastProxToAirDuration = 8 * ToSendMax - 4; | |
763 | } else { | |
764 | ToSend[++ToSendMax] = SEC_E; | |
765 | LastProxToAirDuration = 8 * ToSendMax; | |
766 | } | |
767 | } | |
768 | ||
769 | // Send stopbit | |
770 | ToSend[++ToSendMax] = SEC_F; | |
771 | ||
772 | // Convert from last byte pos to length | |
773 | ToSendMax++; | |
774 | } | |
775 | ||
776 | static void CodeIso14443aAsTag(const uint8_t *cmd, uint16_t len) | |
777 | { | |
778 | uint8_t par[MAX_PARITY_SIZE]; | |
779 | ||
780 | GetParity(cmd, len, par); | |
781 | CodeIso14443aAsTagPar(cmd, len, par); | |
782 | } | |
783 | ||
784 | ||
785 | static void Code4bitAnswerAsTag(uint8_t cmd) | |
786 | { | |
787 | int i; | |
788 | ||
789 | ToSendReset(); | |
790 | ||
791 | // Correction bit, might be removed when not needed | |
792 | ToSendStuffBit(0); | |
793 | ToSendStuffBit(0); | |
794 | ToSendStuffBit(0); | |
795 | ToSendStuffBit(0); | |
796 | ToSendStuffBit(1); // 1 | |
797 | ToSendStuffBit(0); | |
798 | ToSendStuffBit(0); | |
799 | ToSendStuffBit(0); | |
800 | ||
801 | // Send startbit | |
802 | ToSend[++ToSendMax] = SEC_D; | |
803 | ||
804 | uint8_t b = cmd; | |
805 | for(i = 0; i < 4; i++) { | |
806 | if(b & 1) { | |
807 | ToSend[++ToSendMax] = SEC_D; | |
808 | LastProxToAirDuration = 8 * ToSendMax - 4; | |
809 | } else { | |
810 | ToSend[++ToSendMax] = SEC_E; | |
811 | LastProxToAirDuration = 8 * ToSendMax; | |
812 | } | |
813 | b >>= 1; | |
814 | } | |
815 | ||
816 | // Send stopbit | |
817 | ToSend[++ToSendMax] = SEC_F; | |
818 | ||
819 | // Convert from last byte pos to length | |
820 | ToSendMax++; | |
821 | } | |
822 | ||
823 | //----------------------------------------------------------------------------- | |
824 | // Wait for commands from reader | |
825 | // Stop when button is pressed | |
826 | // Or return TRUE when command is captured | |
827 | //----------------------------------------------------------------------------- | |
828 | static int GetIso14443aCommandFromReader(uint8_t *received, uint8_t *parity, int *len) | |
829 | { | |
830 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
831 | // only, since we are receiving, not transmitting). | |
832 | // Signal field is off with the appropriate LED | |
833 | LED_D_OFF(); | |
834 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
835 | ||
836 | // Now run a `software UART' on the stream of incoming samples. | |
837 | UartInit(received, parity); | |
838 | ||
839 | // clear RXRDY: | |
840 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
841 | ||
842 | for(;;) { | |
843 | WDT_HIT(); | |
844 | ||
845 | if(BUTTON_PRESS()) return FALSE; | |
846 | ||
847 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
848 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
849 | if(MillerDecoding(b, 0)) { | |
850 | *len = Uart.len; | |
851 | return TRUE; | |
852 | } | |
853 | } | |
854 | } | |
855 | } | |
856 | ||
857 | static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded); | |
858 | int EmSend4bitEx(uint8_t resp, bool correctionNeeded); | |
859 | int EmSend4bit(uint8_t resp); | |
860 | int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par); | |
861 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded); | |
862 | int EmSendCmd(uint8_t *resp, uint16_t respLen); | |
863 | int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par); | |
864 | bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, | |
865 | uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity); | |
866 | ||
867 | static uint8_t* free_buffer_pointer; | |
868 | ||
869 | typedef struct { | |
870 | uint8_t* response; | |
871 | size_t response_n; | |
872 | uint8_t* modulation; | |
873 | size_t modulation_n; | |
874 | uint32_t ProxToAirDuration; | |
875 | } tag_response_info_t; | |
876 | ||
877 | bool prepare_tag_modulation(tag_response_info_t* response_info, size_t max_buffer_size) { | |
878 | // Example response, answer to MIFARE Classic read block will be 16 bytes + 2 CRC = 18 bytes | |
879 | // This will need the following byte array for a modulation sequence | |
880 | // 144 data bits (18 * 8) | |
881 | // 18 parity bits | |
882 | // 2 Start and stop | |
883 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
884 | // 1 just for the case | |
885 | // ----------- + | |
886 | // 166 bytes, since every bit that needs to be send costs us a byte | |
887 | // | |
888 | ||
889 | ||
890 | // Prepare the tag modulation bits from the message | |
891 | CodeIso14443aAsTag(response_info->response,response_info->response_n); | |
892 | ||
893 | // Make sure we do not exceed the free buffer space | |
894 | if (ToSendMax > max_buffer_size) { | |
895 | Dbprintf("Out of memory, when modulating bits for tag answer:"); | |
896 | Dbhexdump(response_info->response_n,response_info->response,false); | |
897 | return false; | |
898 | } | |
899 | ||
900 | // Copy the byte array, used for this modulation to the buffer position | |
901 | memcpy(response_info->modulation,ToSend,ToSendMax); | |
902 | ||
903 | // Store the number of bytes that were used for encoding/modulation and the time needed to transfer them | |
904 | response_info->modulation_n = ToSendMax; | |
905 | response_info->ProxToAirDuration = LastProxToAirDuration; | |
906 | ||
907 | return true; | |
908 | } | |
909 | ||
910 | ||
911 | // "precompile" responses. There are 7 predefined responses with a total of 28 bytes data to transmit. | |
912 | // Coded responses need one byte per bit to transfer (data, parity, start, stop, correction) | |
913 | // 28 * 8 data bits, 28 * 1 parity bits, 7 start bits, 7 stop bits, 7 correction bits | |
914 | // -> need 273 bytes buffer | |
915 | #define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 273 | |
916 | ||
917 | bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) { | |
918 | // Retrieve and store the current buffer index | |
919 | response_info->modulation = free_buffer_pointer; | |
920 | ||
921 | // Determine the maximum size we can use from our buffer | |
922 | size_t max_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE; | |
923 | ||
924 | // Forward the prepare tag modulation function to the inner function | |
925 | if (prepare_tag_modulation(response_info, max_buffer_size)) { | |
926 | // Update the free buffer offset | |
927 | free_buffer_pointer += ToSendMax; | |
928 | return true; | |
929 | } else { | |
930 | return false; | |
931 | } | |
932 | } | |
933 | ||
934 | //----------------------------------------------------------------------------- | |
935 | // Main loop of simulated tag: receive commands from reader, decide what | |
936 | // response to send, and send it. | |
937 | //----------------------------------------------------------------------------- | |
938 | void SimulateIso14443aTag(int tagType, int flags, int uid_2nd, byte_t* data) | |
939 | { | |
940 | ||
941 | //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 | |
942 | // This can be used in a reader-only attack. | |
943 | // (it can also be retrieved via 'hf 14a list', but hey... | |
944 | uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0}; | |
945 | uint8_t ar_nr_collected = 0; | |
946 | ||
947 | uint8_t sak; | |
948 | ||
949 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
950 | uint8_t response1[2]; | |
951 | ||
952 | switch (tagType) { | |
953 | case 1: { // MIFARE Classic | |
954 | // Says: I am Mifare 1k - original line | |
955 | response1[0] = 0x04; | |
956 | response1[1] = 0x00; | |
957 | sak = 0x08; | |
958 | } break; | |
959 | case 2: { // MIFARE Ultralight | |
960 | // Says: I am a stupid memory tag, no crypto | |
961 | response1[0] = 0x04; | |
962 | response1[1] = 0x00; | |
963 | sak = 0x00; | |
964 | } break; | |
965 | case 3: { // MIFARE DESFire | |
966 | // Says: I am a DESFire tag, ph33r me | |
967 | response1[0] = 0x04; | |
968 | response1[1] = 0x03; | |
969 | sak = 0x20; | |
970 | } break; | |
971 | case 4: { // ISO/IEC 14443-4 | |
972 | // Says: I am a javacard (JCOP) | |
973 | response1[0] = 0x04; | |
974 | response1[1] = 0x00; | |
975 | sak = 0x28; | |
976 | } break; | |
977 | case 5: { // MIFARE TNP3XXX | |
978 | // Says: I am a toy | |
979 | response1[0] = 0x01; | |
980 | response1[1] = 0x0f; | |
981 | sak = 0x01; | |
982 | } break; | |
983 | case 6: { // MIFARE Mini | |
984 | // Says: I am a Mifare Mini, 320b | |
985 | response1[0] = 0x44; | |
986 | response1[1] = 0x00; | |
987 | sak = 0x09; | |
988 | } break; | |
989 | default: { | |
990 | Dbprintf("Error: unkown tagtype (%d)",tagType); | |
991 | return; | |
992 | } break; | |
993 | } | |
994 | ||
995 | // The second response contains the (mandatory) first 24 bits of the UID | |
996 | uint8_t response2[5] = {0x00}; | |
997 | ||
998 | // Check if the uid uses the (optional) part | |
999 | uint8_t response2a[5] = {0x00}; | |
1000 | ||
1001 | if (flags & FLAG_7B_UID_IN_DATA) { | |
1002 | response2[0] = 0x88; | |
1003 | response2[1] = data[0]; | |
1004 | response2[2] = data[1]; | |
1005 | response2[3] = data[2]; | |
1006 | ||
1007 | response2a[0] = data[3]; | |
1008 | response2a[1] = data[4]; | |
1009 | response2a[2] = data[5]; | |
1010 | response2a[3] = data[7]; | |
1011 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; | |
1012 | ||
1013 | // Configure the ATQA and SAK accordingly | |
1014 | response1[0] |= 0x40; | |
1015 | sak |= 0x04; | |
1016 | } else { | |
1017 | memcpy(response2, data, 4); | |
1018 | //num_to_bytes(uid_1st,4,response2); | |
1019 | // Configure the ATQA and SAK accordingly | |
1020 | response1[0] &= 0xBF; | |
1021 | sak &= 0xFB; | |
1022 | } | |
1023 | ||
1024 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
1025 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; | |
1026 | ||
1027 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
1028 | uint8_t response3[3] = {0x00}; | |
1029 | response3[0] = sak; | |
1030 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
1031 | ||
1032 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
1033 | uint8_t response3a[3] = {0x00}; | |
1034 | response3a[0] = sak & 0xFB; | |
1035 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
1036 | ||
1037 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce | |
1038 | uint8_t response6[] = { 0x04, 0x58, 0x80, 0x02, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS: | |
1039 | // Format byte = 0x58: FSCI=0x08 (FSC=256), TA(1) and TC(1) present, | |
1040 | // TA(1) = 0x80: different divisors not supported, DR = 1, DS = 1 | |
1041 | // TB(1) = not present. Defaults: FWI = 4 (FWT = 256 * 16 * 2^4 * 1/fc = 4833us), SFGI = 0 (SFG = 256 * 16 * 2^0 * 1/fc = 302us) | |
1042 | // TC(1) = 0x02: CID supported, NAD not supported | |
1043 | ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); | |
1044 | ||
1045 | #define TAG_RESPONSE_COUNT 7 | |
1046 | tag_response_info_t responses[TAG_RESPONSE_COUNT] = { | |
1047 | { .response = response1, .response_n = sizeof(response1) }, // Answer to request - respond with card type | |
1048 | { .response = response2, .response_n = sizeof(response2) }, // Anticollision cascade1 - respond with uid | |
1049 | { .response = response2a, .response_n = sizeof(response2a) }, // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1050 | { .response = response3, .response_n = sizeof(response3) }, // Acknowledge select - cascade 1 | |
1051 | { .response = response3a, .response_n = sizeof(response3a) }, // Acknowledge select - cascade 2 | |
1052 | { .response = response5, .response_n = sizeof(response5) }, // Authentication answer (random nonce) | |
1053 | { .response = response6, .response_n = sizeof(response6) }, // dummy ATS (pseudo-ATR), answer to RATS | |
1054 | }; | |
1055 | ||
1056 | // Allocate 512 bytes for the dynamic modulation, created when the reader queries for it | |
1057 | // Such a response is less time critical, so we can prepare them on the fly | |
1058 | #define DYNAMIC_RESPONSE_BUFFER_SIZE 64 | |
1059 | #define DYNAMIC_MODULATION_BUFFER_SIZE 512 | |
1060 | uint8_t dynamic_response_buffer[DYNAMIC_RESPONSE_BUFFER_SIZE]; | |
1061 | uint8_t dynamic_modulation_buffer[DYNAMIC_MODULATION_BUFFER_SIZE]; | |
1062 | tag_response_info_t dynamic_response_info = { | |
1063 | .response = dynamic_response_buffer, | |
1064 | .response_n = 0, | |
1065 | .modulation = dynamic_modulation_buffer, | |
1066 | .modulation_n = 0 | |
1067 | }; | |
1068 | ||
1069 | BigBuf_free_keep_EM(); | |
1070 | ||
1071 | // allocate buffers: | |
1072 | uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); | |
1073 | uint8_t *receivedCmdPar = BigBuf_malloc(MAX_PARITY_SIZE); | |
1074 | free_buffer_pointer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE); | |
1075 | ||
1076 | // clear trace | |
1077 | clear_trace(); | |
1078 | set_tracing(TRUE); | |
1079 | ||
1080 | // Prepare the responses of the anticollision phase | |
1081 | // there will be not enough time to do this at the moment the reader sends it REQA | |
1082 | for (size_t i=0; i<TAG_RESPONSE_COUNT; i++) { | |
1083 | prepare_allocated_tag_modulation(&responses[i]); | |
1084 | } | |
1085 | ||
1086 | int len = 0; | |
1087 | ||
1088 | // To control where we are in the protocol | |
1089 | int order = 0; | |
1090 | int lastorder; | |
1091 | ||
1092 | // Just to allow some checks | |
1093 | int happened = 0; | |
1094 | int happened2 = 0; | |
1095 | int cmdsRecvd = 0; | |
1096 | ||
1097 | // We need to listen to the high-frequency, peak-detected path. | |
1098 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1099 | ||
1100 | cmdsRecvd = 0; | |
1101 | tag_response_info_t* p_response; | |
1102 | ||
1103 | LED_A_ON(); | |
1104 | for(;;) { | |
1105 | // Clean receive command buffer | |
1106 | ||
1107 | if(!GetIso14443aCommandFromReader(receivedCmd, receivedCmdPar, &len)) { | |
1108 | DbpString("Button press"); | |
1109 | break; | |
1110 | } | |
1111 | ||
1112 | p_response = NULL; | |
1113 | ||
1114 | // Okay, look at the command now. | |
1115 | lastorder = order; | |
1116 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
1117 | p_response = &responses[0]; order = 1; | |
1118 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP | |
1119 | p_response = &responses[0]; order = 6; | |
1120 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) | |
1121 | p_response = &responses[1]; order = 2; | |
1122 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) | |
1123 | p_response = &responses[2]; order = 20; | |
1124 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) | |
1125 | p_response = &responses[3]; order = 3; | |
1126 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) | |
1127 | p_response = &responses[4]; order = 30; | |
1128 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ | |
1129 | EmSendCmdEx(data+(4*receivedCmd[1]),16,false); | |
1130 | // Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); | |
1131 | // We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below | |
1132 | p_response = NULL; | |
1133 | } else if(receivedCmd[0] == 0x50) { // Received a HALT | |
1134 | ||
1135 | if (tracing) { | |
1136 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
1137 | } | |
1138 | p_response = NULL; | |
1139 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request | |
1140 | p_response = &responses[5]; order = 7; | |
1141 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request | |
1142 | if (tagType == 1 || tagType == 2) { // RATS not supported | |
1143 | EmSend4bit(CARD_NACK_NA); | |
1144 | p_response = NULL; | |
1145 | } else { | |
1146 | p_response = &responses[6]; order = 70; | |
1147 | } | |
1148 | } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) | |
1149 | if (tracing) { | |
1150 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
1151 | } | |
1152 | uint32_t nonce = bytes_to_num(response5,4); | |
1153 | uint32_t nr = bytes_to_num(receivedCmd,4); | |
1154 | uint32_t ar = bytes_to_num(receivedCmd+4,4); | |
1155 | //Dbprintf("Auth attempt {nonce}{nr}{ar}: %08x %08x %08x", nonce, nr, ar); | |
1156 | ||
1157 | if(flags & FLAG_NR_AR_ATTACK ) | |
1158 | { | |
1159 | if(ar_nr_collected < 2){ | |
1160 | // Avoid duplicates... probably not necessary, nr should vary. | |
1161 | //if(ar_nr_responses[3] != nr){ | |
1162 | ar_nr_responses[ar_nr_collected*5] = 0; | |
1163 | ar_nr_responses[ar_nr_collected*5+1] = 0; | |
1164 | ar_nr_responses[ar_nr_collected*5+2] = nonce; | |
1165 | ar_nr_responses[ar_nr_collected*5+3] = nr; | |
1166 | ar_nr_responses[ar_nr_collected*5+4] = ar; | |
1167 | ar_nr_collected++; | |
1168 | //} | |
1169 | } | |
1170 | ||
1171 | if(ar_nr_collected > 1 ) { | |
1172 | ||
1173 | if (MF_DBGLEVEL >= 2) { | |
1174 | Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); | |
1175 | Dbprintf("../tools/mfkey/mfkey32 %07x%08x %08x %08x %08x %08x %08x", | |
1176 | ar_nr_responses[0], // UID1 | |
1177 | ar_nr_responses[1], // UID2 | |
1178 | ar_nr_responses[2], // NT | |
1179 | ar_nr_responses[3], // AR1 | |
1180 | ar_nr_responses[4], // NR1 | |
1181 | ar_nr_responses[8], // AR2 | |
1182 | ar_nr_responses[9] // NR2 | |
1183 | ); | |
1184 | } | |
1185 | uint8_t len = ar_nr_collected*5*4; | |
1186 | cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,len,0,&ar_nr_responses,len); | |
1187 | ar_nr_collected = 0; | |
1188 | memset(ar_nr_responses, 0x00, len); | |
1189 | Dbprintf("ICE"); | |
1190 | } | |
1191 | } | |
1192 | } else { | |
1193 | // Check for ISO 14443A-4 compliant commands, look at left nibble | |
1194 | switch (receivedCmd[0]) { | |
1195 | ||
1196 | case 0x0B: | |
1197 | case 0x0A: { // IBlock (command) | |
1198 | dynamic_response_info.response[0] = receivedCmd[0]; | |
1199 | dynamic_response_info.response[1] = 0x00; | |
1200 | dynamic_response_info.response[2] = 0x90; | |
1201 | dynamic_response_info.response[3] = 0x00; | |
1202 | dynamic_response_info.response_n = 4; | |
1203 | } break; | |
1204 | ||
1205 | case 0x1A: | |
1206 | case 0x1B: { // Chaining command | |
1207 | dynamic_response_info.response[0] = 0xaa | ((receivedCmd[0]) & 1); | |
1208 | dynamic_response_info.response_n = 2; | |
1209 | } break; | |
1210 | ||
1211 | case 0xaa: | |
1212 | case 0xbb: { | |
1213 | dynamic_response_info.response[0] = receivedCmd[0] ^ 0x11; | |
1214 | dynamic_response_info.response_n = 2; | |
1215 | } break; | |
1216 | ||
1217 | case 0xBA: { // | |
1218 | memcpy(dynamic_response_info.response,"\xAB\x00",2); | |
1219 | dynamic_response_info.response_n = 2; | |
1220 | } break; | |
1221 | ||
1222 | case 0xCA: | |
1223 | case 0xC2: { // Readers sends deselect command | |
1224 | memcpy(dynamic_response_info.response,"\xCA\x00",2); | |
1225 | dynamic_response_info.response_n = 2; | |
1226 | } break; | |
1227 | ||
1228 | default: { | |
1229 | // Never seen this command before | |
1230 | if (tracing) { | |
1231 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
1232 | } | |
1233 | Dbprintf("Received unknown command (len=%d):",len); | |
1234 | Dbhexdump(len,receivedCmd,false); | |
1235 | // Do not respond | |
1236 | dynamic_response_info.response_n = 0; | |
1237 | } break; | |
1238 | } | |
1239 | ||
1240 | if (dynamic_response_info.response_n > 0) { | |
1241 | // Copy the CID from the reader query | |
1242 | dynamic_response_info.response[1] = receivedCmd[1]; | |
1243 | ||
1244 | // Add CRC bytes, always used in ISO 14443A-4 compliant cards | |
1245 | AppendCrc14443a(dynamic_response_info.response,dynamic_response_info.response_n); | |
1246 | dynamic_response_info.response_n += 2; | |
1247 | ||
1248 | if (prepare_tag_modulation(&dynamic_response_info,DYNAMIC_MODULATION_BUFFER_SIZE) == false) { | |
1249 | Dbprintf("Error preparing tag response"); | |
1250 | if (tracing) { | |
1251 | LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
1252 | } | |
1253 | break; | |
1254 | } | |
1255 | p_response = &dynamic_response_info; | |
1256 | } | |
1257 | } | |
1258 | ||
1259 | // Count number of wakeups received after a halt | |
1260 | if(order == 6 && lastorder == 5) { happened++; } | |
1261 | ||
1262 | // Count number of other messages after a halt | |
1263 | if(order != 6 && lastorder == 5) { happened2++; } | |
1264 | ||
1265 | if(cmdsRecvd > 999) { | |
1266 | DbpString("1000 commands later..."); | |
1267 | break; | |
1268 | } | |
1269 | cmdsRecvd++; | |
1270 | ||
1271 | if (p_response != NULL) { | |
1272 | EmSendCmd14443aRaw(p_response->modulation, p_response->modulation_n, receivedCmd[0] == 0x52); | |
1273 | // do the tracing for the previous reader request and this tag answer: | |
1274 | uint8_t par[MAX_PARITY_SIZE]; | |
1275 | GetParity(p_response->response, p_response->response_n, par); | |
1276 | ||
1277 | EmLogTrace(Uart.output, | |
1278 | Uart.len, | |
1279 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1280 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1281 | Uart.parity, | |
1282 | p_response->response, | |
1283 | p_response->response_n, | |
1284 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1285 | (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
1286 | par); | |
1287 | } | |
1288 | ||
1289 | if (!tracing) { | |
1290 | Dbprintf("Trace Full. Simulation stopped."); | |
1291 | break; | |
1292 | } | |
1293 | } | |
1294 | ||
1295 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1296 | ||
1297 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1298 | LED_A_OFF(); | |
1299 | BigBuf_free_keep_EM(); | |
1300 | } | |
1301 | ||
1302 | ||
1303 | // prepare a delayed transfer. This simply shifts ToSend[] by a number | |
1304 | // of bits specified in the delay parameter. | |
1305 | void PrepareDelayedTransfer(uint16_t delay) | |
1306 | { | |
1307 | uint8_t bitmask = 0; | |
1308 | uint8_t bits_to_shift = 0; | |
1309 | uint8_t bits_shifted = 0; | |
1310 | ||
1311 | delay &= 0x07; | |
1312 | if (delay) { | |
1313 | for (uint16_t i = 0; i < delay; i++) { | |
1314 | bitmask |= (0x01 << i); | |
1315 | } | |
1316 | ToSend[ToSendMax++] = 0x00; | |
1317 | for (uint16_t i = 0; i < ToSendMax; i++) { | |
1318 | bits_to_shift = ToSend[i] & bitmask; | |
1319 | ToSend[i] = ToSend[i] >> delay; | |
1320 | ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay)); | |
1321 | bits_shifted = bits_to_shift; | |
1322 | } | |
1323 | } | |
1324 | } | |
1325 | ||
1326 | ||
1327 | //------------------------------------------------------------------------------------- | |
1328 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1329 | // Parameter timing: | |
1330 | // if NULL: transfer at next possible time, taking into account | |
1331 | // request guard time and frame delay time | |
1332 | // if == 0: transfer immediately and return time of transfer | |
1333 | // if != 0: delay transfer until time specified | |
1334 | //------------------------------------------------------------------------------------- | |
1335 | static void TransmitFor14443a(const uint8_t *cmd, uint16_t len, uint32_t *timing) | |
1336 | { | |
1337 | ||
1338 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1339 | ||
1340 | uint32_t ThisTransferTime = 0; | |
1341 | ||
1342 | if (timing) { | |
1343 | if(*timing == 0) { // Measure time | |
1344 | *timing = (GetCountSspClk() + 8) & 0xfffffff8; | |
1345 | } else { | |
1346 | PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks) | |
1347 | } | |
1348 | if(MF_DBGLEVEL >= 4 && GetCountSspClk() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing"); | |
1349 | while(GetCountSspClk() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks) | |
1350 | LastTimeProxToAirStart = *timing; | |
1351 | } else { | |
1352 | ThisTransferTime = ((MAX(NextTransferTime, GetCountSspClk()) & 0xfffffff8) + 8); | |
1353 | while(GetCountSspClk() < ThisTransferTime); | |
1354 | LastTimeProxToAirStart = ThisTransferTime; | |
1355 | } | |
1356 | ||
1357 | // clear TXRDY | |
1358 | AT91C_BASE_SSC->SSC_THR = SEC_Y; | |
1359 | ||
1360 | uint16_t c = 0; | |
1361 | for(;;) { | |
1362 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1363 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1364 | c++; | |
1365 | if(c >= len) { | |
1366 | break; | |
1367 | } | |
1368 | } | |
1369 | } | |
1370 | ||
1371 | NextTransferTime = MAX(NextTransferTime, LastTimeProxToAirStart + REQUEST_GUARD_TIME); | |
1372 | } | |
1373 | ||
1374 | ||
1375 | //----------------------------------------------------------------------------- | |
1376 | // Prepare reader command (in bits, support short frames) to send to FPGA | |
1377 | //----------------------------------------------------------------------------- | |
1378 | void CodeIso14443aBitsAsReaderPar(const uint8_t *cmd, uint16_t bits, const uint8_t *parity) | |
1379 | { | |
1380 | int i, j; | |
1381 | int last; | |
1382 | uint8_t b; | |
1383 | ||
1384 | ToSendReset(); | |
1385 | ||
1386 | // Start of Communication (Seq. Z) | |
1387 | ToSend[++ToSendMax] = SEC_Z; | |
1388 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1389 | last = 0; | |
1390 | ||
1391 | size_t bytecount = nbytes(bits); | |
1392 | // Generate send structure for the data bits | |
1393 | for (i = 0; i < bytecount; i++) { | |
1394 | // Get the current byte to send | |
1395 | b = cmd[i]; | |
1396 | size_t bitsleft = MIN((bits-(i*8)),8); | |
1397 | ||
1398 | for (j = 0; j < bitsleft; j++) { | |
1399 | if (b & 1) { | |
1400 | // Sequence X | |
1401 | ToSend[++ToSendMax] = SEC_X; | |
1402 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1403 | last = 1; | |
1404 | } else { | |
1405 | if (last == 0) { | |
1406 | // Sequence Z | |
1407 | ToSend[++ToSendMax] = SEC_Z; | |
1408 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1409 | } else { | |
1410 | // Sequence Y | |
1411 | ToSend[++ToSendMax] = SEC_Y; | |
1412 | last = 0; | |
1413 | } | |
1414 | } | |
1415 | b >>= 1; | |
1416 | } | |
1417 | ||
1418 | // Only transmit parity bit if we transmitted a complete byte | |
1419 | if (j == 8 && parity != NULL) { | |
1420 | // Get the parity bit | |
1421 | if (parity[i>>3] & (0x80 >> (i&0x0007))) { | |
1422 | // Sequence X | |
1423 | ToSend[++ToSendMax] = SEC_X; | |
1424 | LastProxToAirDuration = 8 * (ToSendMax+1) - 2; | |
1425 | last = 1; | |
1426 | } else { | |
1427 | if (last == 0) { | |
1428 | // Sequence Z | |
1429 | ToSend[++ToSendMax] = SEC_Z; | |
1430 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1431 | } else { | |
1432 | // Sequence Y | |
1433 | ToSend[++ToSendMax] = SEC_Y; | |
1434 | last = 0; | |
1435 | } | |
1436 | } | |
1437 | } | |
1438 | } | |
1439 | ||
1440 | // End of Communication: Logic 0 followed by Sequence Y | |
1441 | if (last == 0) { | |
1442 | // Sequence Z | |
1443 | ToSend[++ToSendMax] = SEC_Z; | |
1444 | LastProxToAirDuration = 8 * (ToSendMax+1) - 6; | |
1445 | } else { | |
1446 | // Sequence Y | |
1447 | ToSend[++ToSendMax] = SEC_Y; | |
1448 | last = 0; | |
1449 | } | |
1450 | ToSend[++ToSendMax] = SEC_Y; | |
1451 | ||
1452 | // Convert to length of command: | |
1453 | ToSendMax++; | |
1454 | } | |
1455 | ||
1456 | //----------------------------------------------------------------------------- | |
1457 | // Prepare reader command to send to FPGA | |
1458 | //----------------------------------------------------------------------------- | |
1459 | void CodeIso14443aAsReaderPar(const uint8_t *cmd, uint16_t len, const uint8_t *parity) | |
1460 | { | |
1461 | CodeIso14443aBitsAsReaderPar(cmd, len*8, parity); | |
1462 | } | |
1463 | ||
1464 | ||
1465 | //----------------------------------------------------------------------------- | |
1466 | // Wait for commands from reader | |
1467 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1468 | // Or return 0 when command is captured | |
1469 | //----------------------------------------------------------------------------- | |
1470 | static int EmGetCmd(uint8_t *received, uint16_t *len, uint8_t *parity) | |
1471 | { | |
1472 | *len = 0; | |
1473 | ||
1474 | uint32_t timer = 0, vtime = 0; | |
1475 | int analogCnt = 0; | |
1476 | int analogAVG = 0; | |
1477 | ||
1478 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1479 | // only, since we are receiving, not transmitting). | |
1480 | // Signal field is off with the appropriate LED | |
1481 | LED_D_OFF(); | |
1482 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1483 | ||
1484 | // Set ADC to read field strength | |
1485 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1486 | AT91C_BASE_ADC->ADC_MR = | |
1487 | ADC_MODE_PRESCALE(63) | | |
1488 | ADC_MODE_STARTUP_TIME(1) | | |
1489 | ADC_MODE_SAMPLE_HOLD_TIME(15); | |
1490 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); | |
1491 | // start ADC | |
1492 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1493 | ||
1494 | // Now run a 'software UART' on the stream of incoming samples. | |
1495 | UartInit(received, parity); | |
1496 | ||
1497 | // Clear RXRDY: | |
1498 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1499 | ||
1500 | for(;;) { | |
1501 | WDT_HIT(); | |
1502 | ||
1503 | if (BUTTON_PRESS()) return 1; | |
1504 | ||
1505 | // test if the field exists | |
1506 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1507 | analogCnt++; | |
1508 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1509 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1510 | if (analogCnt >= 32) { | |
1511 | if ((MAX_ADC_HF_VOLTAGE * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { | |
1512 | vtime = GetTickCount(); | |
1513 | if (!timer) timer = vtime; | |
1514 | // 50ms no field --> card to idle state | |
1515 | if (vtime - timer > 50) return 2; | |
1516 | } else | |
1517 | if (timer) timer = 0; | |
1518 | analogCnt = 0; | |
1519 | analogAVG = 0; | |
1520 | } | |
1521 | } | |
1522 | ||
1523 | // receive and test the miller decoding | |
1524 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1525 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1526 | if(MillerDecoding(b, 0)) { | |
1527 | *len = Uart.len; | |
1528 | return 0; | |
1529 | } | |
1530 | } | |
1531 | ||
1532 | } | |
1533 | } | |
1534 | ||
1535 | ||
1536 | static int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen, bool correctionNeeded) | |
1537 | { | |
1538 | uint8_t b; | |
1539 | uint16_t i = 0; | |
1540 | uint32_t ThisTransferTime; | |
1541 | ||
1542 | // Modulate Manchester | |
1543 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
1544 | ||
1545 | // include correction bit if necessary | |
1546 | if (Uart.parityBits & 0x01) { | |
1547 | correctionNeeded = TRUE; | |
1548 | } | |
1549 | if(correctionNeeded) { | |
1550 | // 1236, so correction bit needed | |
1551 | i = 0; | |
1552 | } else { | |
1553 | i = 1; | |
1554 | } | |
1555 | ||
1556 | // clear receiving shift register and holding register | |
1557 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1558 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1559 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1560 | b = AT91C_BASE_SSC->SSC_RHR; (void) b; | |
1561 | ||
1562 | // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line) | |
1563 | for (uint16_t j = 0; j < 5; j++) { // allow timeout - better late than never | |
1564 | while(!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)); | |
1565 | if (AT91C_BASE_SSC->SSC_RHR) break; | |
1566 | } | |
1567 | ||
1568 | while ((ThisTransferTime = GetCountSspClk()) & 0x00000007); | |
1569 | ||
1570 | // Clear TXRDY: | |
1571 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1572 | ||
1573 | // send cycle | |
1574 | for(; i < respLen; ) { | |
1575 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1576 | AT91C_BASE_SSC->SSC_THR = resp[i++]; | |
1577 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1578 | } | |
1579 | ||
1580 | if(BUTTON_PRESS()) { | |
1581 | break; | |
1582 | } | |
1583 | } | |
1584 | ||
1585 | // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again: | |
1586 | uint8_t fpga_queued_bits = FpgaSendQueueDelay >> 3; | |
1587 | for (i = 0; i <= fpga_queued_bits/8 + 1; ) { | |
1588 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1589 | AT91C_BASE_SSC->SSC_THR = SEC_F; | |
1590 | FpgaSendQueueDelay = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1591 | i++; | |
1592 | } | |
1593 | } | |
1594 | ||
1595 | LastTimeProxToAirStart = ThisTransferTime + (correctionNeeded?8:0); | |
1596 | ||
1597 | return 0; | |
1598 | } | |
1599 | ||
1600 | int EmSend4bitEx(uint8_t resp, bool correctionNeeded){ | |
1601 | Code4bitAnswerAsTag(resp); | |
1602 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1603 | // do the tracing for the previous reader request and this tag answer: | |
1604 | uint8_t par[1]; | |
1605 | GetParity(&resp, 1, par); | |
1606 | EmLogTrace(Uart.output, | |
1607 | Uart.len, | |
1608 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1609 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1610 | Uart.parity, | |
1611 | &resp, | |
1612 | 1, | |
1613 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1614 | (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
1615 | par); | |
1616 | return res; | |
1617 | } | |
1618 | ||
1619 | int EmSend4bit(uint8_t resp){ | |
1620 | return EmSend4bitEx(resp, false); | |
1621 | } | |
1622 | ||
1623 | int EmSendCmdExPar(uint8_t *resp, uint16_t respLen, bool correctionNeeded, uint8_t *par){ | |
1624 | CodeIso14443aAsTagPar(resp, respLen, par); | |
1625 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1626 | // do the tracing for the previous reader request and this tag answer: | |
1627 | EmLogTrace(Uart.output, | |
1628 | Uart.len, | |
1629 | Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1630 | Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, | |
1631 | Uart.parity, | |
1632 | resp, | |
1633 | respLen, | |
1634 | LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_TAG, | |
1635 | (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, | |
1636 | par); | |
1637 | return res; | |
1638 | } | |
1639 | ||
1640 | int EmSendCmdEx(uint8_t *resp, uint16_t respLen, bool correctionNeeded){ | |
1641 | uint8_t par[MAX_PARITY_SIZE]; | |
1642 | GetParity(resp, respLen, par); | |
1643 | return EmSendCmdExPar(resp, respLen, correctionNeeded, par); | |
1644 | } | |
1645 | ||
1646 | int EmSendCmd(uint8_t *resp, uint16_t respLen){ | |
1647 | uint8_t par[MAX_PARITY_SIZE]; | |
1648 | GetParity(resp, respLen, par); | |
1649 | return EmSendCmdExPar(resp, respLen, false, par); | |
1650 | } | |
1651 | ||
1652 | int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par){ | |
1653 | return EmSendCmdExPar(resp, respLen, false, par); | |
1654 | } | |
1655 | ||
1656 | bool EmLogTrace(uint8_t *reader_data, uint16_t reader_len, uint32_t reader_StartTime, uint32_t reader_EndTime, uint8_t *reader_Parity, | |
1657 | uint8_t *tag_data, uint16_t tag_len, uint32_t tag_StartTime, uint32_t tag_EndTime, uint8_t *tag_Parity) | |
1658 | { | |
1659 | if (tracing) { | |
1660 | // we cannot exactly measure the end and start of a received command from reader. However we know that the delay from | |
1661 | // end of the received command to start of the tag's (simulated by us) answer is n*128+20 or n*128+84 resp. | |
1662 | // with n >= 9. The start of the tags answer can be measured and therefore the end of the received command be calculated: | |
1663 | uint16_t reader_modlen = reader_EndTime - reader_StartTime; | |
1664 | uint16_t approx_fdt = tag_StartTime - reader_EndTime; | |
1665 | uint16_t exact_fdt = (approx_fdt - 20 + 32)/64 * 64 + 20; | |
1666 | reader_EndTime = tag_StartTime - exact_fdt; | |
1667 | reader_StartTime = reader_EndTime - reader_modlen; | |
1668 | if (!LogTrace(reader_data, reader_len, reader_StartTime, reader_EndTime, reader_Parity, TRUE)) { | |
1669 | return FALSE; | |
1670 | } else return(!LogTrace(tag_data, tag_len, tag_StartTime, tag_EndTime, tag_Parity, FALSE)); | |
1671 | } else { | |
1672 | return TRUE; | |
1673 | } | |
1674 | } | |
1675 | ||
1676 | //----------------------------------------------------------------------------- | |
1677 | // Wait a certain time for tag response | |
1678 | // If a response is captured return TRUE | |
1679 | // If it takes too long return FALSE | |
1680 | //----------------------------------------------------------------------------- | |
1681 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, uint8_t *receivedResponsePar, uint16_t offset) | |
1682 | { | |
1683 | uint32_t c = 0x00; | |
1684 | ||
1685 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1686 | // only, since we are receiving, not transmitting). | |
1687 | // Signal field is on with the appropriate LED | |
1688 | LED_D_ON(); | |
1689 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1690 | ||
1691 | // Now get the answer from the card | |
1692 | DemodInit(receivedResponse, receivedResponsePar); | |
1693 | ||
1694 | // clear RXRDY: | |
1695 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1696 | ||
1697 | for(;;) { | |
1698 | WDT_HIT(); | |
1699 | ||
1700 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1701 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1702 | if(ManchesterDecoding(b, offset, 0)) { | |
1703 | NextTransferTime = MAX(NextTransferTime, Demod.endTime - (DELAY_AIR2ARM_AS_READER + DELAY_ARM2AIR_AS_READER)/16 + FRAME_DELAY_TIME_PICC_TO_PCD); | |
1704 | return TRUE; | |
1705 | } else if (c++ > iso14a_timeout && Demod.state == DEMOD_UNSYNCD) { | |
1706 | return FALSE; | |
1707 | } | |
1708 | } | |
1709 | } | |
1710 | } | |
1711 | ||
1712 | ||
1713 | void ReaderTransmitBitsPar(uint8_t* frame, uint16_t bits, uint8_t *par, uint32_t *timing) | |
1714 | { | |
1715 | CodeIso14443aBitsAsReaderPar(frame, bits, par); | |
1716 | ||
1717 | // Send command to tag | |
1718 | TransmitFor14443a(ToSend, ToSendMax, timing); | |
1719 | if(trigger) | |
1720 | LED_A_ON(); | |
1721 | ||
1722 | // Log reader command in trace buffer | |
1723 | if (tracing) { | |
1724 | LogTrace(frame, nbytes(bits), LastTimeProxToAirStart*16 + DELAY_ARM2AIR_AS_READER, (LastTimeProxToAirStart + LastProxToAirDuration)*16 + DELAY_ARM2AIR_AS_READER, par, TRUE); | |
1725 | } | |
1726 | } | |
1727 | ||
1728 | ||
1729 | void ReaderTransmitPar(uint8_t* frame, uint16_t len, uint8_t *par, uint32_t *timing) | |
1730 | { | |
1731 | ReaderTransmitBitsPar(frame, len*8, par, timing); | |
1732 | } | |
1733 | ||
1734 | ||
1735 | void ReaderTransmitBits(uint8_t* frame, uint16_t len, uint32_t *timing) | |
1736 | { | |
1737 | // Generate parity and redirect | |
1738 | uint8_t par[MAX_PARITY_SIZE]; | |
1739 | GetParity(frame, len/8, par); | |
1740 | ReaderTransmitBitsPar(frame, len, par, timing); | |
1741 | } | |
1742 | ||
1743 | ||
1744 | void ReaderTransmit(uint8_t* frame, uint16_t len, uint32_t *timing) | |
1745 | { | |
1746 | // Generate parity and redirect | |
1747 | uint8_t par[MAX_PARITY_SIZE]; | |
1748 | GetParity(frame, len, par); | |
1749 | ReaderTransmitBitsPar(frame, len*8, par, timing); | |
1750 | } | |
1751 | ||
1752 | int ReaderReceiveOffset(uint8_t* receivedAnswer, uint16_t offset, uint8_t *parity) | |
1753 | { | |
1754 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, offset)) return FALSE; | |
1755 | if (tracing) { | |
1756 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); | |
1757 | } | |
1758 | return Demod.len; | |
1759 | } | |
1760 | ||
1761 | int ReaderReceive(uint8_t *receivedAnswer, uint8_t *parity) | |
1762 | { | |
1763 | if (!GetIso14443aAnswerFromTag(receivedAnswer, parity, 0)) return FALSE; | |
1764 | if (tracing) { | |
1765 | LogTrace(receivedAnswer, Demod.len, Demod.startTime*16 - DELAY_AIR2ARM_AS_READER, Demod.endTime*16 - DELAY_AIR2ARM_AS_READER, parity, FALSE); | |
1766 | } | |
1767 | return Demod.len; | |
1768 | } | |
1769 | ||
1770 | /* performs iso14443a anticollision procedure | |
1771 | * fills the uid pointer unless NULL | |
1772 | * fills resp_data unless NULL */ | |
1773 | int iso14443a_select_card(byte_t *uid_ptr, iso14a_card_select_t *p_hi14a_card, uint32_t *cuid_ptr) { | |
1774 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP | |
1775 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1776 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; | |
1777 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 | |
1778 | uint8_t resp[MAX_FRAME_SIZE]; // theoretically. A usual RATS will be much smaller | |
1779 | uint8_t resp_par[MAX_PARITY_SIZE]; | |
1780 | byte_t uid_resp[4]; | |
1781 | size_t uid_resp_len; | |
1782 | ||
1783 | uint8_t sak = 0x04; // cascade uid | |
1784 | int cascade_level = 0; | |
1785 | int len; | |
1786 | ||
1787 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1788 | ReaderTransmitBitsPar(wupa,7,0, NULL); | |
1789 | ||
1790 | // Receive the ATQA | |
1791 | if(!ReaderReceive(resp, resp_par)) return 0; | |
1792 | ||
1793 | if(p_hi14a_card) { | |
1794 | memcpy(p_hi14a_card->atqa, resp, 2); | |
1795 | p_hi14a_card->uidlen = 0; | |
1796 | memset(p_hi14a_card->uid,0,10); | |
1797 | } | |
1798 | ||
1799 | // clear uid | |
1800 | if (uid_ptr) { | |
1801 | memset(uid_ptr,0,10); | |
1802 | } | |
1803 | ||
1804 | // check for proprietary anticollision: | |
1805 | if ((resp[0] & 0x1F) == 0) { | |
1806 | return 3; | |
1807 | } | |
1808 | ||
1809 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in | |
1810 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1811 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1812 | for(; sak & 0x04; cascade_level++) { | |
1813 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1814 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1815 | ||
1816 | // SELECT_ALL | |
1817 | ReaderTransmit(sel_all, sizeof(sel_all), NULL); | |
1818 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1819 | ||
1820 | if (Demod.collisionPos) { // we had a collision and need to construct the UID bit by bit | |
1821 | memset(uid_resp, 0, 4); | |
1822 | uint16_t uid_resp_bits = 0; | |
1823 | uint16_t collision_answer_offset = 0; | |
1824 | // anti-collision-loop: | |
1825 | while (Demod.collisionPos) { | |
1826 | Dbprintf("Multiple tags detected. Collision after Bit %d", Demod.collisionPos); | |
1827 | for (uint16_t i = collision_answer_offset; i < Demod.collisionPos; i++, uid_resp_bits++) { // add valid UID bits before collision point | |
1828 | uint16_t UIDbit = (resp[i/8] >> (i % 8)) & 0x01; | |
1829 | uid_resp[uid_resp_bits / 8] |= UIDbit << (uid_resp_bits % 8); | |
1830 | } | |
1831 | uid_resp[uid_resp_bits/8] |= 1 << (uid_resp_bits % 8); // next time select the card(s) with a 1 in the collision position | |
1832 | uid_resp_bits++; | |
1833 | // construct anticollosion command: | |
1834 | sel_uid[1] = ((2 + uid_resp_bits/8) << 4) | (uid_resp_bits & 0x07); // length of data in bytes and bits | |
1835 | for (uint16_t i = 0; i <= uid_resp_bits/8; i++) { | |
1836 | sel_uid[2+i] = uid_resp[i]; | |
1837 | } | |
1838 | collision_answer_offset = uid_resp_bits%8; | |
1839 | ReaderTransmitBits(sel_uid, 16 + uid_resp_bits, NULL); | |
1840 | if (!ReaderReceiveOffset(resp, collision_answer_offset, resp_par)) return 0; | |
1841 | } | |
1842 | // finally, add the last bits and BCC of the UID | |
1843 | for (uint16_t i = collision_answer_offset; i < (Demod.len-1)*8; i++, uid_resp_bits++) { | |
1844 | uint16_t UIDbit = (resp[i/8] >> (i%8)) & 0x01; | |
1845 | uid_resp[uid_resp_bits/8] |= UIDbit << (uid_resp_bits % 8); | |
1846 | } | |
1847 | ||
1848 | } else { // no collision, use the response to SELECT_ALL as current uid | |
1849 | memcpy(uid_resp, resp, 4); | |
1850 | } | |
1851 | uid_resp_len = 4; | |
1852 | ||
1853 | // calculate crypto UID. Always use last 4 Bytes. | |
1854 | if(cuid_ptr) { | |
1855 | *cuid_ptr = bytes_to_num(uid_resp, 4); | |
1856 | } | |
1857 | ||
1858 | // Construct SELECT UID command | |
1859 | sel_uid[1] = 0x70; // transmitting a full UID (1 Byte cmd, 1 Byte NVB, 4 Byte UID, 1 Byte BCC, 2 Bytes CRC) | |
1860 | memcpy(sel_uid+2, uid_resp, 4); // the UID | |
1861 | sel_uid[6] = sel_uid[2] ^ sel_uid[3] ^ sel_uid[4] ^ sel_uid[5]; // calculate and add BCC | |
1862 | AppendCrc14443a(sel_uid, 7); // calculate and add CRC | |
1863 | ReaderTransmit(sel_uid, sizeof(sel_uid), NULL); | |
1864 | ||
1865 | // Receive the SAK | |
1866 | if (!ReaderReceive(resp, resp_par)) return 0; | |
1867 | sak = resp[0]; | |
1868 | ||
1869 | // Test if more parts of the uid are coming | |
1870 | if ((sak & 0x04) /* && uid_resp[0] == 0x88 */) { | |
1871 | // Remove first byte, 0x88 is not an UID byte, it CT, see page 3 of: | |
1872 | // http://www.nxp.com/documents/application_note/AN10927.pdf | |
1873 | uid_resp[0] = uid_resp[1]; | |
1874 | uid_resp[1] = uid_resp[2]; | |
1875 | uid_resp[2] = uid_resp[3]; | |
1876 | ||
1877 | uid_resp_len = 3; | |
1878 | } | |
1879 | ||
1880 | if(uid_ptr) { | |
1881 | memcpy(uid_ptr + (cascade_level*3), uid_resp, uid_resp_len); | |
1882 | } | |
1883 | ||
1884 | if(p_hi14a_card) { | |
1885 | memcpy(p_hi14a_card->uid + (cascade_level*3), uid_resp, uid_resp_len); | |
1886 | p_hi14a_card->uidlen += uid_resp_len; | |
1887 | } | |
1888 | } | |
1889 | ||
1890 | if(p_hi14a_card) { | |
1891 | p_hi14a_card->sak = sak; | |
1892 | p_hi14a_card->ats_len = 0; | |
1893 | } | |
1894 | ||
1895 | // non iso14443a compliant tag | |
1896 | if( (sak & 0x20) == 0) return 2; | |
1897 | ||
1898 | // Request for answer to select | |
1899 | AppendCrc14443a(rats, 2); | |
1900 | ReaderTransmit(rats, sizeof(rats), NULL); | |
1901 | ||
1902 | if (!(len = ReaderReceive(resp, resp_par))) return 0; | |
1903 | ||
1904 | ||
1905 | if(p_hi14a_card) { | |
1906 | memcpy(p_hi14a_card->ats, resp, sizeof(p_hi14a_card->ats)); | |
1907 | p_hi14a_card->ats_len = len; | |
1908 | } | |
1909 | ||
1910 | // reset the PCB block number | |
1911 | iso14_pcb_blocknum = 0; | |
1912 | ||
1913 | // set default timeout based on ATS | |
1914 | iso14a_set_ATS_timeout(resp); | |
1915 | ||
1916 | return 1; | |
1917 | } | |
1918 | ||
1919 | void iso14443a_setup(uint8_t fpga_minor_mode) { | |
1920 | FpgaDownloadAndGo(FPGA_BITSTREAM_HF); | |
1921 | // Set up the synchronous serial port | |
1922 | FpgaSetupSsc(); | |
1923 | // connect Demodulated Signal to ADC: | |
1924 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1925 | ||
1926 | // Signal field is on with the appropriate LED | |
1927 | if (fpga_minor_mode == FPGA_HF_ISO14443A_READER_MOD | |
1928 | || fpga_minor_mode == FPGA_HF_ISO14443A_READER_LISTEN) { | |
1929 | LED_D_ON(); | |
1930 | } else { | |
1931 | LED_D_OFF(); | |
1932 | } | |
1933 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | fpga_minor_mode); | |
1934 | ||
1935 | // Start the timer | |
1936 | StartCountSspClk(); | |
1937 | ||
1938 | DemodReset(); | |
1939 | UartReset(); | |
1940 | NextTransferTime = 2*DELAY_ARM2AIR_AS_READER; | |
1941 | iso14a_set_timeout(10*106); // 10ms default | |
1942 | } | |
1943 | ||
1944 | int iso14_apdu(uint8_t *cmd, uint16_t cmd_len, void *data) { | |
1945 | uint8_t parity[MAX_PARITY_SIZE]; | |
1946 | uint8_t real_cmd[cmd_len+4]; | |
1947 | real_cmd[0] = 0x0a; //I-Block | |
1948 | // put block number into the PCB | |
1949 | real_cmd[0] |= iso14_pcb_blocknum; | |
1950 | real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards | |
1951 | memcpy(real_cmd+2, cmd, cmd_len); | |
1952 | AppendCrc14443a(real_cmd,cmd_len+2); | |
1953 | ||
1954 | ReaderTransmit(real_cmd, cmd_len+4, NULL); | |
1955 | size_t len = ReaderReceive(data, parity); | |
1956 | uint8_t *data_bytes = (uint8_t *) data; | |
1957 | if (!len) | |
1958 | return 0; //DATA LINK ERROR | |
1959 | // if we received an I- or R(ACK)-Block with a block number equal to the | |
1960 | // current block number, toggle the current block number | |
1961 | else if (len >= 4 // PCB+CID+CRC = 4 bytes | |
1962 | && ((data_bytes[0] & 0xC0) == 0 // I-Block | |
1963 | || (data_bytes[0] & 0xD0) == 0x80) // R-Block with ACK bit set to 0 | |
1964 | && (data_bytes[0] & 0x01) == iso14_pcb_blocknum) // equal block numbers | |
1965 | { | |
1966 | iso14_pcb_blocknum ^= 1; | |
1967 | } | |
1968 | ||
1969 | return len; | |
1970 | } | |
1971 | ||
1972 | //----------------------------------------------------------------------------- | |
1973 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1974 | // | |
1975 | //----------------------------------------------------------------------------- | |
1976 | void ReaderIso14443a(UsbCommand *c) | |
1977 | { | |
1978 | iso14a_command_t param = c->arg[0]; | |
1979 | uint8_t *cmd = c->d.asBytes; | |
1980 | size_t len = c->arg[1] & 0xffff; | |
1981 | size_t lenbits = c->arg[1] >> 16; | |
1982 | uint32_t timeout = c->arg[2]; | |
1983 | uint32_t arg0 = 0; | |
1984 | byte_t buf[USB_CMD_DATA_SIZE]; | |
1985 | uint8_t par[MAX_PARITY_SIZE]; | |
1986 | ||
1987 | if(param & ISO14A_CONNECT) { | |
1988 | clear_trace(); | |
1989 | } | |
1990 | ||
1991 | set_tracing(TRUE); | |
1992 | ||
1993 | if(param & ISO14A_REQUEST_TRIGGER) { | |
1994 | iso14a_set_trigger(TRUE); | |
1995 | } | |
1996 | ||
1997 | if(param & ISO14A_CONNECT) { | |
1998 | iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); | |
1999 | if(!(param & ISO14A_NO_SELECT)) { | |
2000 | iso14a_card_select_t *card = (iso14a_card_select_t*)buf; | |
2001 | arg0 = iso14443a_select_card(NULL,card,NULL); | |
2002 | cmd_send(CMD_ACK,arg0,card->uidlen,0,buf,sizeof(iso14a_card_select_t)); | |
2003 | } | |
2004 | } | |
2005 | ||
2006 | if(param & ISO14A_SET_TIMEOUT) { | |
2007 | iso14a_set_timeout(timeout); | |
2008 | } | |
2009 | ||
2010 | if(param & ISO14A_APDU) { | |
2011 | arg0 = iso14_apdu(cmd, len, buf); | |
2012 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); | |
2013 | } | |
2014 | ||
2015 | if(param & ISO14A_RAW) { | |
2016 | if(param & ISO14A_APPEND_CRC) { | |
2017 | if(param & ISO14A_TOPAZMODE) { | |
2018 | AppendCrc14443b(cmd,len); | |
2019 | } else { | |
2020 | AppendCrc14443a(cmd,len); | |
2021 | } | |
2022 | len += 2; | |
2023 | if (lenbits) lenbits += 16; | |
2024 | } | |
2025 | if(lenbits>0) { // want to send a specific number of bits (e.g. short commands) | |
2026 | if(param & ISO14A_TOPAZMODE) { | |
2027 | int bits_to_send = lenbits; | |
2028 | uint16_t i = 0; | |
2029 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 7), NULL, NULL); // first byte is always short (7bits) and no parity | |
2030 | bits_to_send -= 7; | |
2031 | while (bits_to_send > 0) { | |
2032 | ReaderTransmitBitsPar(&cmd[i++], MIN(bits_to_send, 8), NULL, NULL); // following bytes are 8 bit and no parity | |
2033 | bits_to_send -= 8; | |
2034 | } | |
2035 | } else { | |
2036 | GetParity(cmd, lenbits/8, par); | |
2037 | ReaderTransmitBitsPar(cmd, lenbits, par, NULL); // bytes are 8 bit with odd parity | |
2038 | } | |
2039 | } else { // want to send complete bytes only | |
2040 | if(param & ISO14A_TOPAZMODE) { | |
2041 | uint16_t i = 0; | |
2042 | ReaderTransmitBitsPar(&cmd[i++], 7, NULL, NULL); // first byte: 7 bits, no paritiy | |
2043 | while (i < len) { | |
2044 | ReaderTransmitBitsPar(&cmd[i++], 8, NULL, NULL); // following bytes: 8 bits, no paritiy | |
2045 | } | |
2046 | } else { | |
2047 | ReaderTransmit(cmd,len, NULL); // 8 bits, odd parity | |
2048 | } | |
2049 | } | |
2050 | arg0 = ReaderReceive(buf, par); | |
2051 | cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf)); | |
2052 | } | |
2053 | ||
2054 | if(param & ISO14A_REQUEST_TRIGGER) { | |
2055 | iso14a_set_trigger(FALSE); | |
2056 | } | |
2057 | ||
2058 | if(param & ISO14A_NO_DISCONNECT) { | |
2059 | return; | |
2060 | } | |
2061 | ||
2062 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2063 | LEDsoff(); | |
2064 | } | |
2065 | ||
2066 | ||
2067 | // Determine the distance between two nonces. | |
2068 | // Assume that the difference is small, but we don't know which is first. | |
2069 | // Therefore try in alternating directions. | |
2070 | int32_t dist_nt(uint32_t nt1, uint32_t nt2) { | |
2071 | ||
2072 | if (nt1 == nt2) return 0; | |
2073 | ||
2074 | uint16_t i; | |
2075 | uint32_t nttmp1 = nt1; | |
2076 | uint32_t nttmp2 = nt2; | |
2077 | ||
2078 | for (i = 1; i < 32768; i++) { | |
2079 | nttmp1 = prng_successor(nttmp1, 1); | |
2080 | if (nttmp1 == nt2) return i; | |
2081 | nttmp2 = prng_successor(nttmp2, 1); | |
2082 | if (nttmp2 == nt1) return -i; | |
2083 | } | |
2084 | ||
2085 | return(-99999); // either nt1 or nt2 are invalid nonces | |
2086 | } | |
2087 | ||
2088 | ||
2089 | //----------------------------------------------------------------------------- | |
2090 | // Recover several bits of the cypher stream. This implements (first stages of) | |
2091 | // the algorithm described in "The Dark Side of Security by Obscurity and | |
2092 | // Cloning MiFare Classic Rail and Building Passes, Anywhere, Anytime" | |
2093 | // (article by Nicolas T. Courtois, 2009) | |
2094 | //----------------------------------------------------------------------------- | |
2095 | void ReaderMifare(bool first_try) { | |
2096 | // free eventually allocated BigBuf memory. We want all for tracing. | |
2097 | BigBuf_free(); | |
2098 | ||
2099 | clear_trace(); | |
2100 | set_tracing(TRUE); | |
2101 | ||
2102 | // Mifare AUTH | |
2103 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
2104 | uint8_t mf_nr_ar[8] = { 0x00 }; //{ 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 }; | |
2105 | static uint8_t mf_nr_ar3 = 0; | |
2106 | ||
2107 | uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = { 0x00 }; | |
2108 | uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = { 0x00 }; | |
2109 | ||
2110 | byte_t nt_diff = 0; | |
2111 | uint8_t par[1] = {0}; // maximum 8 Bytes to be sent here, 1 byte parity is therefore enough | |
2112 | static byte_t par_low = 0; | |
2113 | bool led_on = TRUE; | |
2114 | uint8_t uid[10] = {0x00}; | |
2115 | //uint32_t cuid = 0x00; | |
2116 | ||
2117 | uint32_t nt = 0; | |
2118 | uint32_t previous_nt = 0; | |
2119 | static uint32_t nt_attacked = 0; | |
2120 | byte_t par_list[8] = {0x00}; | |
2121 | byte_t ks_list[8] = {0x00}; | |
2122 | ||
2123 | static uint32_t sync_time = 0; | |
2124 | static uint32_t sync_cycles = 0; | |
2125 | int catch_up_cycles = 0; | |
2126 | int last_catch_up = 0; | |
2127 | uint16_t consecutive_resyncs = 0; | |
2128 | int isOK = 0; | |
2129 | ||
2130 | int numWrongDistance = 0; | |
2131 | ||
2132 | if (first_try) { | |
2133 | mf_nr_ar3 = 0; | |
2134 | iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); | |
2135 | sync_time = GetCountSspClk() & 0xfffffff8; | |
2136 | sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces). | |
2137 | nt_attacked = 0; | |
2138 | nt = 0; | |
2139 | par[0] = 0; | |
2140 | } | |
2141 | else { | |
2142 | // we were unsuccessful on a previous call. Try another READER nonce (first 3 parity bits remain the same) | |
2143 | mf_nr_ar3++; | |
2144 | mf_nr_ar[3] = mf_nr_ar3; | |
2145 | par[0] = par_low; | |
2146 | } | |
2147 | ||
2148 | LED_A_ON(); | |
2149 | LED_B_OFF(); | |
2150 | LED_C_OFF(); | |
2151 | LED_C_ON(); | |
2152 | ||
2153 | for(uint16_t i = 0; TRUE; i++) { | |
2154 | ||
2155 | WDT_HIT(); | |
2156 | ||
2157 | // Test if the action was cancelled | |
2158 | if(BUTTON_PRESS()) break; | |
2159 | ||
2160 | if (numWrongDistance > 1000) { | |
2161 | isOK = 0; | |
2162 | break; | |
2163 | } | |
2164 | ||
2165 | //if(!iso14443a_select_card(uid, NULL, &cuid)) { | |
2166 | if(!iso14443a_select_card(uid, NULL, NULL)) { | |
2167 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card"); | |
2168 | continue; | |
2169 | } | |
2170 | ||
2171 | sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles; | |
2172 | catch_up_cycles = 0; | |
2173 | ||
2174 | // if we missed the sync time already, advance to the next nonce repeat | |
2175 | while(GetCountSspClk() > sync_time) { | |
2176 | sync_time = (sync_time & 0xfffffff8) + sync_cycles; | |
2177 | } | |
2178 | ||
2179 | // Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked) | |
2180 | ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time); | |
2181 | ||
2182 | // Receive the (4 Byte) "random" nonce | |
2183 | if (!ReaderReceive(receivedAnswer, receivedAnswerPar)) { | |
2184 | if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce"); | |
2185 | continue; | |
2186 | } | |
2187 | ||
2188 | previous_nt = nt; | |
2189 | nt = bytes_to_num(receivedAnswer, 4); | |
2190 | ||
2191 | // Transmit reader nonce with fake par | |
2192 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL); | |
2193 | ||
2194 | if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet | |
2195 | int nt_distance = dist_nt(previous_nt, nt); | |
2196 | if (nt_distance == 0) { | |
2197 | nt_attacked = nt; | |
2198 | } | |
2199 | else { | |
2200 | ||
2201 | // invalid nonce received, try again | |
2202 | if (nt_distance == -99999) { | |
2203 | numWrongDistance++; | |
2204 | if (MF_DBGLEVEL >= 3) Dbprintf("The two nonces has invalid distance, tag could have good PRNG\n"); | |
2205 | continue; | |
2206 | } | |
2207 | ||
2208 | sync_cycles = (sync_cycles - nt_distance); | |
2209 | if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles); | |
2210 | continue; | |
2211 | } | |
2212 | } | |
2213 | ||
2214 | if ((nt != nt_attacked) && nt_attacked) { // we somehow lost sync. Try to catch up again... | |
2215 | catch_up_cycles = -dist_nt(nt_attacked, nt); | |
2216 | if (catch_up_cycles >= 99999) { // invalid nonce received. Don't resync on that one. | |
2217 | catch_up_cycles = 0; | |
2218 | continue; | |
2219 | } | |
2220 | if (catch_up_cycles == last_catch_up) { | |
2221 | consecutive_resyncs++; | |
2222 | } | |
2223 | else { | |
2224 | last_catch_up = catch_up_cycles; | |
2225 | consecutive_resyncs = 0; | |
2226 | } | |
2227 | if (consecutive_resyncs < 3) { | |
2228 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs); | |
2229 | } | |
2230 | else { | |
2231 | sync_cycles = sync_cycles + catch_up_cycles; | |
2232 | if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles); | |
2233 | } | |
2234 | continue; | |
2235 | } | |
2236 | ||
2237 | consecutive_resyncs = 0; | |
2238 | ||
2239 | // Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding | |
2240 | if (ReaderReceive(receivedAnswer, receivedAnswerPar)) | |
2241 | { | |
2242 | catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer | |
2243 | ||
2244 | if (nt_diff == 0) | |
2245 | { | |
2246 | par_low = par[0] & 0xE0; // there is no need to check all parities for other nt_diff. Parity Bits for mf_nr_ar[0..2] won't change | |
2247 | } | |
2248 | ||
2249 | led_on = !led_on; | |
2250 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
2251 | ||
2252 | par_list[nt_diff] = SwapBits(par[0], 8); | |
2253 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; | |
2254 | ||
2255 | // Test if the information is complete | |
2256 | if (nt_diff == 0x07) { | |
2257 | isOK = 1; | |
2258 | break; | |
2259 | } | |
2260 | ||
2261 | nt_diff = (nt_diff + 1) & 0x07; | |
2262 | mf_nr_ar[3] = (mf_nr_ar[3] & 0x1F) | (nt_diff << 5); | |
2263 | par[0] = par_low; | |
2264 | } else { | |
2265 | if (nt_diff == 0 && first_try) | |
2266 | { | |
2267 | par[0]++; | |
2268 | } else { | |
2269 | par[0] = ((par[0] & 0x1F) + 1) | par_low; | |
2270 | } | |
2271 | } | |
2272 | } | |
2273 | ||
2274 | mf_nr_ar[3] &= 0x1F; | |
2275 | ||
2276 | byte_t buf[28] = {0x00}; | |
2277 | ||
2278 | memcpy(buf + 0, uid, 4); | |
2279 | num_to_bytes(nt, 4, buf + 4); | |
2280 | memcpy(buf + 8, par_list, 8); | |
2281 | memcpy(buf + 16, ks_list, 8); | |
2282 | memcpy(buf + 24, mf_nr_ar, 4); | |
2283 | ||
2284 | cmd_send(CMD_ACK,isOK,0,0,buf,28); | |
2285 | ||
2286 | set_tracing(FALSE); | |
2287 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2288 | LEDsoff(); | |
2289 | } | |
2290 | ||
2291 | ||
2292 | /* | |
2293 | *MIFARE 1K simulate. | |
2294 | * | |
2295 | *@param flags : | |
2296 | * FLAG_INTERACTIVE - In interactive mode, we are expected to finish the operation with an ACK | |
2297 | * 4B_FLAG_UID_IN_DATA - means that there is a 4-byte UID in the data-section, we're expected to use that | |
2298 | * 7B_FLAG_UID_IN_DATA - means that there is a 7-byte UID in the data-section, we're expected to use that | |
2299 | * FLAG_NR_AR_ATTACK - means we should collect NR_AR responses for bruteforcing later | |
2300 | *@param exitAfterNReads, exit simulation after n blocks have been read, 0 is inifite | |
2301 | */ | |
2302 | void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *datain) | |
2303 | { | |
2304 | int cardSTATE = MFEMUL_NOFIELD; | |
2305 | int _7BUID = 0; | |
2306 | int vHf = 0; // in mV | |
2307 | int res; | |
2308 | uint32_t selTimer = 0; | |
2309 | uint32_t authTimer = 0; | |
2310 | uint16_t len = 0; | |
2311 | uint8_t cardWRBL = 0; | |
2312 | uint8_t cardAUTHSC = 0; | |
2313 | uint8_t cardAUTHKEY = 0xff; // no authentication | |
2314 | uint32_t cardRr = 0; | |
2315 | uint32_t cuid = 0; | |
2316 | //uint32_t rn_enc = 0; | |
2317 | uint32_t ans = 0; | |
2318 | uint32_t cardINTREG = 0; | |
2319 | uint8_t cardINTBLOCK = 0; | |
2320 | struct Crypto1State mpcs = {0, 0}; | |
2321 | struct Crypto1State *pcs; | |
2322 | pcs = &mpcs; | |
2323 | uint32_t numReads = 0;//Counts numer of times reader read a block | |
2324 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; | |
2325 | uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE]; | |
2326 | uint8_t response[MAX_MIFARE_FRAME_SIZE]; | |
2327 | uint8_t response_par[MAX_MIFARE_PARITY_SIZE]; | |
2328 | ||
2329 | uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID | |
2330 | uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; | |
2331 | uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! | |
2332 | uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; | |
2333 | uint8_t rSAK1[] = {0x04, 0xda, 0x17}; | |
2334 | ||
2335 | uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; | |
2336 | uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; | |
2337 | ||
2338 | //Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2 | |
2339 | // This can be used in a reader-only attack. | |
2340 | // (it can also be retrieved via 'hf 14a list', but hey... | |
2341 | uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0}; | |
2342 | uint8_t ar_nr_collected = 0; | |
2343 | ||
2344 | // free eventually allocated BigBuf memory but keep Emulator Memory | |
2345 | BigBuf_free_keep_EM(); | |
2346 | ||
2347 | // clear trace | |
2348 | clear_trace(); | |
2349 | set_tracing(TRUE); | |
2350 | ||
2351 | // Authenticate response - nonce | |
2352 | uint32_t nonce = bytes_to_num(rAUTH_NT, 4); | |
2353 | ||
2354 | //-- Determine the UID | |
2355 | // Can be set from emulator memory, incoming data | |
2356 | // and can be 7 or 4 bytes long | |
2357 | if (flags & FLAG_4B_UID_IN_DATA) | |
2358 | { | |
2359 | // 4B uid comes from data-portion of packet | |
2360 | memcpy(rUIDBCC1,datain,4); | |
2361 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
2362 | ||
2363 | } else if (flags & FLAG_7B_UID_IN_DATA) { | |
2364 | // 7B uid comes from data-portion of packet | |
2365 | memcpy(&rUIDBCC1[1],datain,3); | |
2366 | memcpy(rUIDBCC2, datain+3, 4); | |
2367 | _7BUID = true; | |
2368 | } else { | |
2369 | // get UID from emul memory | |
2370 | emlGetMemBt(receivedCmd, 7, 1); | |
2371 | _7BUID = !(receivedCmd[0] == 0x00); | |
2372 | if (!_7BUID) { // ---------- 4BUID | |
2373 | emlGetMemBt(rUIDBCC1, 0, 4); | |
2374 | } else { // ---------- 7BUID | |
2375 | emlGetMemBt(&rUIDBCC1[1], 0, 3); | |
2376 | emlGetMemBt(rUIDBCC2, 3, 4); | |
2377 | } | |
2378 | } | |
2379 | ||
2380 | /* | |
2381 | * Regardless of what method was used to set the UID, set fifth byte and modify | |
2382 | * the ATQA for 4 or 7-byte UID | |
2383 | */ | |
2384 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
2385 | if (_7BUID) { | |
2386 | rATQA[0] = 0x44; | |
2387 | rUIDBCC1[0] = 0x88; | |
2388 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
2389 | rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; | |
2390 | } | |
2391 | ||
2392 | // We need to listen to the high-frequency, peak-detected path. | |
2393 | iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
2394 | ||
2395 | ||
2396 | if (MF_DBGLEVEL >= 1) { | |
2397 | if (!_7BUID) { | |
2398 | Dbprintf("4B UID: %02x%02x%02x%02x", | |
2399 | rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]); | |
2400 | } else { | |
2401 | Dbprintf("7B UID: (%02x)%02x%02x%02x%02x%02x%02x%02x", | |
2402 | rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], | |
2403 | rUIDBCC2[0], rUIDBCC2[1] ,rUIDBCC2[2], rUIDBCC2[3]); | |
2404 | } | |
2405 | } | |
2406 | ||
2407 | bool finished = FALSE; | |
2408 | while (!BUTTON_PRESS() && !finished) { | |
2409 | WDT_HIT(); | |
2410 | ||
2411 | // find reader field | |
2412 | if (cardSTATE == MFEMUL_NOFIELD) { | |
2413 | vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10; | |
2414 | if (vHf > MF_MINFIELDV) { | |
2415 | cardSTATE_TO_IDLE(); | |
2416 | LED_A_ON(); | |
2417 | } | |
2418 | } | |
2419 | if(cardSTATE == MFEMUL_NOFIELD) continue; | |
2420 | ||
2421 | //Now, get data | |
2422 | ||
2423 | res = EmGetCmd(receivedCmd, &len, receivedCmd_par); | |
2424 | if (res == 2) { //Field is off! | |
2425 | cardSTATE = MFEMUL_NOFIELD; | |
2426 | LEDsoff(); | |
2427 | continue; | |
2428 | } else if (res == 1) { | |
2429 | break; //return value 1 means button press | |
2430 | } | |
2431 | ||
2432 | // REQ or WUP request in ANY state and WUP in HALTED state | |
2433 | if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { | |
2434 | selTimer = GetTickCount(); | |
2435 | EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); | |
2436 | cardSTATE = MFEMUL_SELECT1; | |
2437 | ||
2438 | // init crypto block | |
2439 | LED_B_OFF(); | |
2440 | LED_C_OFF(); | |
2441 | crypto1_destroy(pcs); | |
2442 | cardAUTHKEY = 0xff; | |
2443 | continue; | |
2444 | } | |
2445 | ||
2446 | switch (cardSTATE) { | |
2447 | case MFEMUL_NOFIELD: | |
2448 | case MFEMUL_HALTED: | |
2449 | case MFEMUL_IDLE:{ | |
2450 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2451 | break; | |
2452 | } | |
2453 | case MFEMUL_SELECT1:{ | |
2454 | // select all | |
2455 | if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { | |
2456 | if (MF_DBGLEVEL >= 4) Dbprintf("SELECT ALL received"); | |
2457 | EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); | |
2458 | break; | |
2459 | } | |
2460 | ||
2461 | if (MF_DBGLEVEL >= 4 && len == 9 && receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 ) | |
2462 | { | |
2463 | Dbprintf("SELECT %02x%02x%02x%02x received",receivedCmd[2],receivedCmd[3],receivedCmd[4],receivedCmd[5]); | |
2464 | } | |
2465 | // select card | |
2466 | if (len == 9 && | |
2467 | (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { | |
2468 | EmSendCmd(_7BUID?rSAK1:rSAK, _7BUID?sizeof(rSAK1):sizeof(rSAK)); | |
2469 | cuid = bytes_to_num(rUIDBCC1, 4); | |
2470 | if (!_7BUID) { | |
2471 | cardSTATE = MFEMUL_WORK; | |
2472 | LED_B_ON(); | |
2473 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); | |
2474 | break; | |
2475 | } else { | |
2476 | cardSTATE = MFEMUL_SELECT2; | |
2477 | } | |
2478 | } | |
2479 | break; | |
2480 | } | |
2481 | case MFEMUL_AUTH1:{ | |
2482 | if( len != 8) | |
2483 | { | |
2484 | cardSTATE_TO_IDLE(); | |
2485 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2486 | break; | |
2487 | } | |
2488 | ||
2489 | uint32_t ar = bytes_to_num(receivedCmd, 4); | |
2490 | uint32_t nr = bytes_to_num(&receivedCmd[4], 4); | |
2491 | ||
2492 | //Collect AR/NR | |
2493 | if(ar_nr_collected < 2 && cardAUTHSC == 2){ | |
2494 | if(ar_nr_responses[2] != ar) | |
2495 | {// Avoid duplicates... probably not necessary, ar should vary. | |
2496 | ar_nr_responses[ar_nr_collected*4] = cuid; | |
2497 | ar_nr_responses[ar_nr_collected*4+1] = nonce; | |
2498 | ar_nr_responses[ar_nr_collected*4+2] = ar; | |
2499 | ar_nr_responses[ar_nr_collected*4+3] = nr; | |
2500 | ar_nr_collected++; | |
2501 | } | |
2502 | // Interactive mode flag, means we need to send ACK | |
2503 | if(flags & FLAG_INTERACTIVE && ar_nr_collected == 2) | |
2504 | { | |
2505 | finished = true; | |
2506 | } | |
2507 | } | |
2508 | ||
2509 | // --- crypto | |
2510 | crypto1_word(pcs, ar , 1); | |
2511 | cardRr = nr ^ crypto1_word(pcs, 0, 0); | |
2512 | ||
2513 | // test if auth OK | |
2514 | if (cardRr != prng_successor(nonce, 64)){ | |
2515 | if (MF_DBGLEVEL >= 2) Dbprintf("AUTH FAILED for sector %d with key %c. cardRr=%08x, succ=%08x", | |
2516 | cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', | |
2517 | cardRr, prng_successor(nonce, 64)); | |
2518 | // Shouldn't we respond anything here? | |
2519 | // Right now, we don't nack or anything, which causes the | |
2520 | // reader to do a WUPA after a while. /Martin | |
2521 | // -- which is the correct response. /piwi | |
2522 | cardSTATE_TO_IDLE(); | |
2523 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2524 | break; | |
2525 | } | |
2526 | ||
2527 | ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); | |
2528 | ||
2529 | num_to_bytes(ans, 4, rAUTH_AT); | |
2530 | // --- crypto | |
2531 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2532 | LED_C_ON(); | |
2533 | cardSTATE = MFEMUL_WORK; | |
2534 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED for sector %d with key %c. time=%d", | |
2535 | cardAUTHSC, cardAUTHKEY == 0 ? 'A' : 'B', | |
2536 | GetTickCount() - authTimer); | |
2537 | break; | |
2538 | } | |
2539 | case MFEMUL_SELECT2:{ | |
2540 | if (!len) { | |
2541 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2542 | break; | |
2543 | } | |
2544 | if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { | |
2545 | EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); | |
2546 | break; | |
2547 | } | |
2548 | ||
2549 | // select 2 card | |
2550 | if (len == 9 && | |
2551 | (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { | |
2552 | EmSendCmd(rSAK, sizeof(rSAK)); | |
2553 | cuid = bytes_to_num(rUIDBCC2, 4); | |
2554 | cardSTATE = MFEMUL_WORK; | |
2555 | LED_B_ON(); | |
2556 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); | |
2557 | break; | |
2558 | } | |
2559 | ||
2560 | // i guess there is a command). go into the work state. | |
2561 | if (len != 4) { | |
2562 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2563 | break; | |
2564 | } | |
2565 | cardSTATE = MFEMUL_WORK; | |
2566 | //goto lbWORK; | |
2567 | //intentional fall-through to the next case-stmt | |
2568 | } | |
2569 | ||
2570 | case MFEMUL_WORK:{ | |
2571 | if (len == 0) { | |
2572 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2573 | break; | |
2574 | } | |
2575 | ||
2576 | bool encrypted_data = (cardAUTHKEY != 0xFF) ; | |
2577 | ||
2578 | if(encrypted_data) { | |
2579 | // decrypt seqence | |
2580 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2581 | } | |
2582 | ||
2583 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { | |
2584 | authTimer = GetTickCount(); | |
2585 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2586 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2587 | crypto1_destroy(pcs);//Added by martin | |
2588 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
2589 | ||
2590 | if (!encrypted_data) { // first authentication | |
2591 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader authenticating for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); | |
2592 | ||
2593 | crypto1_word(pcs, cuid ^ nonce, 0);//Update crypto state | |
2594 | num_to_bytes(nonce, 4, rAUTH_AT); // Send nonce | |
2595 | } else { // nested authentication | |
2596 | if (MF_DBGLEVEL >= 4) Dbprintf("Reader doing nested authentication for block %d (0x%02x) with key %d",receivedCmd[1] ,receivedCmd[1],cardAUTHKEY ); | |
2597 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
2598 | num_to_bytes(ans, 4, rAUTH_AT); | |
2599 | } | |
2600 | ||
2601 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2602 | //Dbprintf("Sending rAUTH %02x%02x%02x%02x", rAUTH_AT[0],rAUTH_AT[1],rAUTH_AT[2],rAUTH_AT[3]); | |
2603 | cardSTATE = MFEMUL_AUTH1; | |
2604 | break; | |
2605 | } | |
2606 | ||
2607 | // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued | |
2608 | // BUT... ACK --> NACK | |
2609 | if (len == 1 && receivedCmd[0] == CARD_ACK) { | |
2610 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2611 | break; | |
2612 | } | |
2613 | ||
2614 | // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) | |
2615 | if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { | |
2616 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2617 | break; | |
2618 | } | |
2619 | ||
2620 | if(len != 4) { | |
2621 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2622 | break; | |
2623 | } | |
2624 | ||
2625 | if(receivedCmd[0] == 0x30 // read block | |
2626 | || receivedCmd[0] == 0xA0 // write block | |
2627 | || receivedCmd[0] == 0xC0 // inc | |
2628 | || receivedCmd[0] == 0xC1 // dec | |
2629 | || receivedCmd[0] == 0xC2 // restore | |
2630 | || receivedCmd[0] == 0xB0) { // transfer | |
2631 | if (receivedCmd[1] >= 16 * 4) { | |
2632 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2633 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on out of range block: %d (0x%02x), nacking",receivedCmd[0],receivedCmd[1],receivedCmd[1]); | |
2634 | break; | |
2635 | } | |
2636 | ||
2637 | if (receivedCmd[1] / 4 != cardAUTHSC) { | |
2638 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2639 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate (0x%02) on block (0x%02x) not authenticated for (0x%02x), nacking",receivedCmd[0],receivedCmd[1],cardAUTHSC); | |
2640 | break; | |
2641 | } | |
2642 | } | |
2643 | // read block | |
2644 | if (receivedCmd[0] == 0x30) { | |
2645 | if (MF_DBGLEVEL >= 4) { | |
2646 | Dbprintf("Reader reading block %d (0x%02x)",receivedCmd[1],receivedCmd[1]); | |
2647 | } | |
2648 | emlGetMem(response, receivedCmd[1], 1); | |
2649 | AppendCrc14443a(response, 16); | |
2650 | mf_crypto1_encrypt(pcs, response, 18, response_par); | |
2651 | EmSendCmdPar(response, 18, response_par); | |
2652 | numReads++; | |
2653 | if(exitAfterNReads > 0 && numReads >= exitAfterNReads) { | |
2654 | Dbprintf("%d reads done, exiting", numReads); | |
2655 | finished = true; | |
2656 | } | |
2657 | break; | |
2658 | } | |
2659 | // write block | |
2660 | if (receivedCmd[0] == 0xA0) { | |
2661 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0xA0 write block %d (%02x)",receivedCmd[1],receivedCmd[1]); | |
2662 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2663 | cardSTATE = MFEMUL_WRITEBL2; | |
2664 | cardWRBL = receivedCmd[1]; | |
2665 | break; | |
2666 | } | |
2667 | // increment, decrement, restore | |
2668 | if (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2) { | |
2669 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x inc(0xC1)/dec(0xC0)/restore(0xC2) block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); | |
2670 | if (emlCheckValBl(receivedCmd[1])) { | |
2671 | if (MF_DBGLEVEL >= 2) Dbprintf("Reader tried to operate on block, but emlCheckValBl failed, nacking"); | |
2672 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2673 | break; | |
2674 | } | |
2675 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2676 | if (receivedCmd[0] == 0xC1) | |
2677 | cardSTATE = MFEMUL_INTREG_INC; | |
2678 | if (receivedCmd[0] == 0xC0) | |
2679 | cardSTATE = MFEMUL_INTREG_DEC; | |
2680 | if (receivedCmd[0] == 0xC2) | |
2681 | cardSTATE = MFEMUL_INTREG_REST; | |
2682 | cardWRBL = receivedCmd[1]; | |
2683 | break; | |
2684 | } | |
2685 | // transfer | |
2686 | if (receivedCmd[0] == 0xB0) { | |
2687 | if (MF_DBGLEVEL >= 4) Dbprintf("RECV 0x%02x transfer block %d (%02x)",receivedCmd[0],receivedCmd[1],receivedCmd[1]); | |
2688 | if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) | |
2689 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2690 | else | |
2691 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2692 | break; | |
2693 | } | |
2694 | // halt | |
2695 | if (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00) { | |
2696 | LED_B_OFF(); | |
2697 | LED_C_OFF(); | |
2698 | cardSTATE = MFEMUL_HALTED; | |
2699 | if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); | |
2700 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2701 | break; | |
2702 | } | |
2703 | // RATS | |
2704 | if (receivedCmd[0] == 0xe0) {//RATS | |
2705 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2706 | break; | |
2707 | } | |
2708 | // command not allowed | |
2709 | if (MF_DBGLEVEL >= 4) Dbprintf("Received command not allowed, nacking"); | |
2710 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2711 | break; | |
2712 | } | |
2713 | case MFEMUL_WRITEBL2:{ | |
2714 | if (len == 18){ | |
2715 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2716 | emlSetMem(receivedCmd, cardWRBL, 1); | |
2717 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2718 | cardSTATE = MFEMUL_WORK; | |
2719 | } else { | |
2720 | cardSTATE_TO_IDLE(); | |
2721 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2722 | } | |
2723 | break; | |
2724 | } | |
2725 | ||
2726 | case MFEMUL_INTREG_INC:{ | |
2727 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2728 | memcpy(&ans, receivedCmd, 4); | |
2729 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2730 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2731 | cardSTATE_TO_IDLE(); | |
2732 | break; | |
2733 | } | |
2734 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2735 | cardINTREG = cardINTREG + ans; | |
2736 | cardSTATE = MFEMUL_WORK; | |
2737 | break; | |
2738 | } | |
2739 | case MFEMUL_INTREG_DEC:{ | |
2740 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2741 | memcpy(&ans, receivedCmd, 4); | |
2742 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2743 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2744 | cardSTATE_TO_IDLE(); | |
2745 | break; | |
2746 | } | |
2747 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2748 | cardINTREG = cardINTREG - ans; | |
2749 | cardSTATE = MFEMUL_WORK; | |
2750 | break; | |
2751 | } | |
2752 | case MFEMUL_INTREG_REST:{ | |
2753 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2754 | memcpy(&ans, receivedCmd, 4); | |
2755 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2756 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2757 | cardSTATE_TO_IDLE(); | |
2758 | break; | |
2759 | } | |
2760 | LogTrace(Uart.output, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); | |
2761 | cardSTATE = MFEMUL_WORK; | |
2762 | break; | |
2763 | } | |
2764 | } | |
2765 | } | |
2766 | ||
2767 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2768 | LEDsoff(); | |
2769 | ||
2770 | if(flags & FLAG_INTERACTIVE)// Interactive mode flag, means we need to send ACK | |
2771 | { | |
2772 | //May just aswell send the collected ar_nr in the response aswell | |
2773 | cmd_send(CMD_ACK,CMD_SIMULATE_MIFARE_CARD,1,0,&ar_nr_responses,ar_nr_collected*4*4); | |
2774 | } | |
2775 | ||
2776 | if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) | |
2777 | { | |
2778 | if(ar_nr_collected > 1 ) { | |
2779 | Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); | |
2780 | Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", | |
2781 | ar_nr_responses[0], // UID | |
2782 | ar_nr_responses[1], // NT | |
2783 | ar_nr_responses[2], // AR1 | |
2784 | ar_nr_responses[3], // NR1 | |
2785 | ar_nr_responses[6], // AR2 | |
2786 | ar_nr_responses[7] // NR2 | |
2787 | ); | |
2788 | } else { | |
2789 | Dbprintf("Failed to obtain two AR/NR pairs!"); | |
2790 | if(ar_nr_collected > 0 ) { | |
2791 | Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x", | |
2792 | ar_nr_responses[0], // UID | |
2793 | ar_nr_responses[1], // NT | |
2794 | ar_nr_responses[2], // AR1 | |
2795 | ar_nr_responses[3] // NR1 | |
2796 | ); | |
2797 | } | |
2798 | } | |
2799 | } | |
2800 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, BigBuf_get_traceLen()); | |
2801 | ||
2802 | } | |
2803 | ||
2804 | ||
2805 | //----------------------------------------------------------------------------- | |
2806 | // MIFARE sniffer. | |
2807 | // | |
2808 | //----------------------------------------------------------------------------- | |
2809 | void RAMFUNC SniffMifare(uint8_t param) { | |
2810 | // param: | |
2811 | // bit 0 - trigger from first card answer | |
2812 | // bit 1 - trigger from first reader 7-bit request | |
2813 | ||
2814 | // free eventually allocated BigBuf memory | |
2815 | BigBuf_free(); | |
2816 | ||
2817 | // C(red) A(yellow) B(green) | |
2818 | LEDsoff(); | |
2819 | // init trace buffer | |
2820 | clear_trace(); | |
2821 | set_tracing(TRUE); | |
2822 | ||
2823 | // The command (reader -> tag) that we're receiving. | |
2824 | // The length of a received command will in most cases be no more than 18 bytes. | |
2825 | // So 32 should be enough! | |
2826 | uint8_t receivedCmd[MAX_MIFARE_FRAME_SIZE]; | |
2827 | uint8_t receivedCmdPar[MAX_MIFARE_PARITY_SIZE]; | |
2828 | // The response (tag -> reader) that we're receiving. | |
2829 | uint8_t receivedResponse[MAX_MIFARE_FRAME_SIZE]; | |
2830 | uint8_t receivedResponsePar[MAX_MIFARE_PARITY_SIZE]; | |
2831 | ||
2832 | // allocate the DMA buffer, used to stream samples from the FPGA | |
2833 | uint8_t *dmaBuf = BigBuf_malloc(DMA_BUFFER_SIZE); | |
2834 | uint8_t *data = dmaBuf; | |
2835 | uint8_t previous_data = 0; | |
2836 | int maxDataLen = 0; | |
2837 | int dataLen = 0; | |
2838 | bool ReaderIsActive = FALSE; | |
2839 | bool TagIsActive = FALSE; | |
2840 | ||
2841 | iso14443a_setup(FPGA_HF_ISO14443A_SNIFFER); | |
2842 | ||
2843 | // Set up the demodulator for tag -> reader responses. | |
2844 | DemodInit(receivedResponse, receivedResponsePar); | |
2845 | ||
2846 | // Set up the demodulator for the reader -> tag commands | |
2847 | UartInit(receivedCmd, receivedCmdPar); | |
2848 | ||
2849 | // Setup for the DMA. | |
2850 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. | |
2851 | ||
2852 | LED_D_OFF(); | |
2853 | ||
2854 | // init sniffer | |
2855 | MfSniffInit(); | |
2856 | ||
2857 | // And now we loop, receiving samples. | |
2858 | for(uint32_t sniffCounter = 0; TRUE; ) { | |
2859 | ||
2860 | if(BUTTON_PRESS()) { | |
2861 | DbpString("cancelled by button"); | |
2862 | break; | |
2863 | } | |
2864 | ||
2865 | LED_A_ON(); | |
2866 | WDT_HIT(); | |
2867 | ||
2868 | if ((sniffCounter & 0x0000FFFF) == 0) { // from time to time | |
2869 | // check if a transaction is completed (timeout after 2000ms). | |
2870 | // if yes, stop the DMA transfer and send what we have so far to the client | |
2871 | if (MfSniffSend(2000)) { | |
2872 | // Reset everything - we missed some sniffed data anyway while the DMA was stopped | |
2873 | sniffCounter = 0; | |
2874 | data = dmaBuf; | |
2875 | maxDataLen = 0; | |
2876 | ReaderIsActive = FALSE; | |
2877 | TagIsActive = FALSE; | |
2878 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); // set transfer address and number of bytes. Start transfer. | |
2879 | } | |
2880 | } | |
2881 | ||
2882 | int register readBufDataP = data - dmaBuf; // number of bytes we have processed so far | |
2883 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; // number of bytes already transferred | |
2884 | if (readBufDataP <= dmaBufDataP){ // we are processing the same block of data which is currently being transferred | |
2885 | dataLen = dmaBufDataP - readBufDataP; // number of bytes still to be processed | |
2886 | } else { | |
2887 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; // number of bytes still to be processed | |
2888 | } | |
2889 | // test for length of buffer | |
2890 | if(dataLen > maxDataLen) { // we are more behind than ever... | |
2891 | maxDataLen = dataLen; | |
2892 | if(dataLen > (9 * DMA_BUFFER_SIZE / 10)) { | |
2893 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); | |
2894 | break; | |
2895 | } | |
2896 | } | |
2897 | if(dataLen < 1) continue; | |
2898 | ||
2899 | // primary buffer was stopped ( <-- we lost data! | |
2900 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
2901 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
2902 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
2903 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary | |
2904 | } | |
2905 | // secondary buffer sets as primary, secondary buffer was stopped | |
2906 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
2907 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
2908 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
2909 | } | |
2910 | ||
2911 | LED_A_OFF(); | |
2912 | ||
2913 | if (sniffCounter & 0x01) { | |
2914 | ||
2915 | if(!TagIsActive) { // no need to try decoding tag data if the reader is sending | |
2916 | uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); | |
2917 | if(MillerDecoding(readerdata, (sniffCounter-1)*4)) { | |
2918 | LED_C_INV(); | |
2919 | if (MfSniffLogic(receivedCmd, Uart.len, Uart.parity, Uart.bitCount, TRUE)) break; | |
2920 | ||
2921 | /* And ready to receive another command. */ | |
2922 | UartInit(receivedCmd, receivedCmdPar); | |
2923 | ||
2924 | /* And also reset the demod code */ | |
2925 | DemodReset(); | |
2926 | } | |
2927 | ReaderIsActive = (Uart.state != STATE_UNSYNCD); | |
2928 | } | |
2929 | ||
2930 | if(!ReaderIsActive) { // no need to try decoding tag data if the reader is sending | |
2931 | uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); | |
2932 | if(ManchesterDecoding(tagdata, 0, (sniffCounter-1)*4)) { | |
2933 | LED_C_INV(); | |
2934 | ||
2935 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parity, Demod.bitCount, FALSE)) break; | |
2936 | ||
2937 | // And ready to receive another response. | |
2938 | DemodReset(); | |
2939 | ||
2940 | // And reset the Miller decoder including its (now outdated) input buffer | |
2941 | UartInit(receivedCmd, receivedCmdPar); | |
2942 | } | |
2943 | TagIsActive = (Demod.state != DEMOD_UNSYNCD); | |
2944 | } | |
2945 | } | |
2946 | ||
2947 | previous_data = *data; | |
2948 | sniffCounter++; | |
2949 | data++; | |
2950 | if(data == dmaBuf + DMA_BUFFER_SIZE) { | |
2951 | data = dmaBuf; | |
2952 | } | |
2953 | ||
2954 | } // main cycle | |
2955 | ||
2956 | DbpString("COMMAND FINISHED"); | |
2957 | ||
2958 | FpgaDisableSscDma(); | |
2959 | MfSniffEnd(); | |
2960 | ||
2961 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len); | |
2962 | LEDsoff(); | |
2963 | } |