]> git.zerfleddert.de Git - proxmark3-svn/blame_incremental - client/nonce2key/crapto1.c
Added Unique Code to EM41x
[proxmark3-svn] / client / nonce2key / crapto1.c
... / ...
CommitLineData
1/* crapto1.c\r
2\r
3 This program is free software; you can redistribute it and/or\r
4 modify it under the terms of the GNU General Public License\r
5 as published by the Free Software Foundation; either version 2\r
6 of the License, or (at your option) any later version.\r
7\r
8 This program is distributed in the hope that it will be useful,\r
9 but WITHOUT ANY WARRANTY; without even the implied warranty of\r
10 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\r
11 GNU General Public License for more details.\r
12\r
13 You should have received a copy of the GNU General Public License\r
14 along with this program; if not, write to the Free Software\r
15 Foundation, Inc., 51 Franklin Street, Fifth Floor,\r
16 Boston, MA 02110-1301, US$\r
17\r
18 Copyright (C) 2008-2008 bla <blapost@gmail.com>\r
19*/\r
20#include "crapto1.h"\r
21#include <stdlib.h>\r
22\r
23#if !defined LOWMEM && defined __GNUC__\r
24static uint8_t filterlut[1 << 20];\r
25static void __attribute__((constructor)) fill_lut()\r
26{\r
27 uint32_t i;\r
28 for(i = 0; i < 1 << 20; ++i)\r
29 filterlut[i] = filter(i);\r
30}\r
31#define filter(x) (filterlut[(x) & 0xfffff])\r
32#endif\r
33\r
34\r
35\r
36typedef struct bucket {\r
37 uint32_t *head;\r
38 uint32_t *bp;\r
39} bucket_t;\r
40\r
41typedef bucket_t bucket_array_t[2][0x100];\r
42\r
43typedef struct bucket_info {\r
44 struct {\r
45 uint32_t *head, *tail;\r
46 } bucket_info[2][0x100];\r
47 uint32_t numbuckets;\r
48 } bucket_info_t;\r
49 \r
50\r
51static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,\r
52 uint32_t* const ostart, uint32_t* const ostop,\r
53 bucket_info_t *bucket_info, bucket_array_t bucket)\r
54{\r
55 uint32_t *p1, *p2;\r
56 uint32_t *start[2];\r
57 uint32_t *stop[2];\r
58 \r
59 start[0] = estart;\r
60 stop[0] = estop;\r
61 start[1] = ostart;\r
62 stop[1] = ostop;\r
63 \r
64 // init buckets to be empty\r
65 for (uint32_t i = 0; i < 2; i++) {\r
66 for (uint32_t j = 0x00; j <= 0xff; j++) {\r
67 bucket[i][j].bp = bucket[i][j].head;\r
68 }\r
69 }\r
70 \r
71 // sort the lists into the buckets based on the MSB (contribution bits)\r
72 for (uint32_t i = 0; i < 2; i++) { \r
73 for (p1 = start[i]; p1 <= stop[i]; p1++) {\r
74 uint32_t bucket_index = (*p1 & 0xff000000) >> 24;\r
75 *(bucket[i][bucket_index].bp++) = *p1;\r
76 }\r
77 }\r
78\r
79 \r
80 // write back intersecting buckets as sorted list.\r
81 // fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.\r
82 uint32_t nonempty_bucket;\r
83 for (uint32_t i = 0; i < 2; i++) {\r
84 p1 = start[i];\r
85 nonempty_bucket = 0;\r
86 for (uint32_t j = 0x00; j <= 0xff; j++) {\r
87 if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only\r
88 bucket_info->bucket_info[i][nonempty_bucket].head = p1;\r
89 for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);\r
90 bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;\r
91 nonempty_bucket++;\r
92 }\r
93 }\r
94 bucket_info->numbuckets = nonempty_bucket;\r
95 }\r
96}\r
97\r
98/** binsearch\r
99 * Binary search for the first occurence of *stop's MSB in sorted [start,stop]\r
100 */\r
101static inline uint32_t*\r
102binsearch(uint32_t *start, uint32_t *stop)\r
103{\r
104 uint32_t mid, val = *stop & 0xff000000;\r
105 while(start != stop)\r
106 if(start[mid = (stop - start) >> 1] > val)\r
107 stop = &start[mid];\r
108 else\r
109 start += mid + 1;\r
110\r
111 return start;\r
112}\r
113\r
114/** update_contribution\r
115 * helper, calculates the partial linear feedback contributions and puts in MSB\r
116 */\r
117static inline void\r
118update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)\r
119{\r
120 uint32_t p = *item >> 25;\r
121\r
122 p = p << 1 | parity(*item & mask1);\r
123 p = p << 1 | parity(*item & mask2);\r
124 *item = p << 24 | (*item & 0xffffff);\r
125}\r
126\r
127/** extend_table\r
128 * using a bit of the keystream extend the table of possible lfsr states\r
129 */\r
130static inline void\r
131extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)\r
132{\r
133 in <<= 24;\r
134\r
135 for(uint32_t *p = tbl; p <= *end; p++) {\r
136 *p <<= 1;\r
137 if(filter(*p) != filter(*p | 1)) { // replace\r
138 *p |= filter(*p) ^ bit;\r
139 update_contribution(p, m1, m2);\r
140 *p ^= in;\r
141 } else if(filter(*p) == bit) { // insert\r
142 *++*end = p[1];\r
143 p[1] = p[0] | 1;\r
144 update_contribution(p, m1, m2);\r
145 *p++ ^= in;\r
146 update_contribution(p, m1, m2);\r
147 *p ^= in;\r
148 } else { // drop\r
149 *p-- = *(*end)--;\r
150 } \r
151 }\r
152 \r
153}\r
154\r
155\r
156/** extend_table_simple\r
157 * using a bit of the keystream extend the table of possible lfsr states\r
158 */\r
159static inline void\r
160extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)\r
161{\r
162 for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) \r
163 if(filter(*tbl) ^ filter(*tbl | 1)) { // replace\r
164 *tbl |= filter(*tbl) ^ bit;\r
165 } else if(filter(*tbl) == bit) { // insert\r
166 *++*end = *++tbl;\r
167 *tbl = tbl[-1] | 1;\r
168 } else // drop\r
169 *tbl-- = *(*end)--;\r
170}\r
171\r
172\r
173/** recover\r
174 * recursively narrow down the search space, 4 bits of keystream at a time\r
175 */\r
176static struct Crypto1State*\r
177recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,\r
178 uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,\r
179 struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)\r
180{\r
181 uint32_t *o, *e;\r
182 bucket_info_t bucket_info;\r
183\r
184 if(rem == -1) {\r
185 for(e = e_head; e <= e_tail; ++e) {\r
186 *e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);\r
187 for(o = o_head; o <= o_tail; ++o, ++sl) {\r
188 sl->even = *o;\r
189 sl->odd = *e ^ parity(*o & LF_POLY_ODD);\r
190 }\r
191 }\r
192 sl->odd = sl->even = 0;\r
193 return sl;\r
194 }\r
195\r
196 for(uint32_t i = 0; i < 4 && rem--; i++) {\r
197 extend_table(o_head, &o_tail, (oks >>= 1) & 1,\r
198 LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);\r
199 if(o_head > o_tail)\r
200 return sl;\r
201\r
202 extend_table(e_head, &e_tail, (eks >>= 1) & 1,\r
203 LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, (in >>= 2) & 3);\r
204 if(e_head > e_tail)\r
205 return sl;\r
206 }\r
207\r
208 bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);\r
209 \r
210 for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {\r
211 sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,\r
212 bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,\r
213 rem, sl, in, bucket);\r
214 }\r
215 \r
216 return sl;\r
217}\r
218/** lfsr_recovery\r
219 * recover the state of the lfsr given 32 bits of the keystream\r
220 * additionally you can use the in parameter to specify the value\r
221 * that was fed into the lfsr at the time the keystream was generated\r
222 */\r
223struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)\r
224{\r
225 struct Crypto1State *statelist;\r
226 uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;\r
227 uint32_t *even_head = 0, *even_tail = 0, eks = 0;\r
228 int i;\r
229\r
230 // split the keystream into an odd and even part\r
231 for(i = 31; i >= 0; i -= 2)\r
232 oks = oks << 1 | BEBIT(ks2, i);\r
233 for(i = 30; i >= 0; i -= 2)\r
234 eks = eks << 1 | BEBIT(ks2, i);\r
235\r
236 odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);\r
237 even_head = even_tail = malloc(sizeof(uint32_t) << 21);\r
238 statelist = malloc(sizeof(struct Crypto1State) << 18);\r
239 if(!odd_tail-- || !even_tail-- || !statelist) {\r
240 goto out;\r
241 }\r
242 statelist->odd = statelist->even = 0;\r
243\r
244 // allocate memory for out of place bucket_sort\r
245 bucket_array_t bucket;\r
246 for (uint32_t i = 0; i < 2; i++)\r
247 for (uint32_t j = 0; j <= 0xff; j++) {\r
248 bucket[i][j].head = malloc(sizeof(uint32_t)<<14);\r
249 if (!bucket[i][j].head) {\r
250 goto out;\r
251 }\r
252 }\r
253\r
254 \r
255 // initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream\r
256 for(i = 1 << 20; i >= 0; --i) {\r
257 if(filter(i) == (oks & 1))\r
258 *++odd_tail = i;\r
259 if(filter(i) == (eks & 1))\r
260 *++even_tail = i;\r
261 }\r
262\r
263 // extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):\r
264 for(i = 0; i < 4; i++) {\r
265 extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);\r
266 extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);\r
267 }\r
268\r
269 // the statelists now contain all states which could have generated the last 10 Bits of the keystream.\r
270 // 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"\r
271 // parameter into account.\r
272\r
273 in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping\r
274\r
275 recover(odd_head, odd_tail, oks,\r
276 even_head, even_tail, eks, 11, statelist, in << 1, bucket);\r
277\r
278\r
279out:\r
280 free(odd_head);\r
281 free(even_head);\r
282 for (uint32_t i = 0; i < 2; i++)\r
283 for (uint32_t j = 0; j <= 0xff; j++)\r
284 free(bucket[i][j].head);\r
285 \r
286 return statelist;\r
287}\r
288\r
289static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,\r
290 0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,\r
291 0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};\r
292static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,\r
293 0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,\r
294 0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,\r
295 0x7EC7EE90, 0x7F63F748, 0x79117020};\r
296static const uint32_t T1[] = {\r
297 0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,\r
298 0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,\r
299 0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,\r
300 0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};\r
301static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,\r
302 0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,\r
303 0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,\r
304 0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,\r
305 0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,\r
306 0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};\r
307static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};\r
308static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};\r
309/** Reverse 64 bits of keystream into possible cipher states\r
310 * Variation mentioned in the paper. Somewhat optimized version\r
311 */\r
312struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)\r
313{\r
314 struct Crypto1State *statelist, *sl;\r
315 uint8_t oks[32], eks[32], hi[32];\r
316 uint32_t low = 0, win = 0;\r
317 uint32_t *tail, table[1 << 16];\r
318 int i, j;\r
319\r
320 sl = statelist = malloc(sizeof(struct Crypto1State) << 4);\r
321 if(!sl)\r
322 return 0;\r
323 sl->odd = sl->even = 0;\r
324\r
325 for(i = 30; i >= 0; i -= 2) {\r
326 oks[i >> 1] = BIT(ks2, i ^ 24);\r
327 oks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r
328 }\r
329 for(i = 31; i >= 0; i -= 2) {\r
330 eks[i >> 1] = BIT(ks2, i ^ 24);\r
331 eks[16 + (i >> 1)] = BIT(ks3, i ^ 24);\r
332 }\r
333\r
334 for(i = 0xfffff; i >= 0; --i) {\r
335 if (filter(i) != oks[0])\r
336 continue;\r
337\r
338 *(tail = table) = i;\r
339 for(j = 1; tail >= table && j < 29; ++j)\r
340 extend_table_simple(table, &tail, oks[j]);\r
341\r
342 if(tail < table)\r
343 continue;\r
344\r
345 for(j = 0; j < 19; ++j)\r
346 low = low << 1 | parity(i & S1[j]);\r
347 for(j = 0; j < 32; ++j)\r
348 hi[j] = parity(i & T1[j]);\r
349\r
350 for(; tail >= table; --tail) {\r
351 for(j = 0; j < 3; ++j) {\r
352 *tail = *tail << 1;\r
353 *tail |= parity((i & C1[j]) ^ (*tail & C2[j]));\r
354 if(filter(*tail) != oks[29 + j])\r
355 goto continue2;\r
356 }\r
357\r
358 for(j = 0; j < 19; ++j)\r
359 win = win << 1 | parity(*tail & S2[j]);\r
360\r
361 win ^= low;\r
362 for(j = 0; j < 32; ++j) {\r
363 win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);\r
364 if(filter(win) != eks[j])\r
365 goto continue2;\r
366 }\r
367\r
368 *tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);\r
369 sl->odd = *tail ^ parity(LF_POLY_ODD & win);\r
370 sl->even = win;\r
371 ++sl;\r
372 sl->odd = sl->even = 0;\r
373 continue2:;\r
374 }\r
375 }\r
376 return statelist;\r
377}\r
378\r
379/** lfsr_rollback_bit\r
380 * Rollback the shift register in order to get previous states\r
381 */\r
382void lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)\r
383{\r
384 int out;\r
385\r
386 s->odd &= 0xffffff;\r
387 s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);\r
388\r
389 out = s->even & 1;\r
390 out ^= LF_POLY_EVEN & (s->even >>= 1);\r
391 out ^= LF_POLY_ODD & s->odd;\r
392 out ^= !!in;\r
393 out ^= filter(s->odd) & !!fb;\r
394\r
395 s->even |= parity(out) << 23;\r
396}\r
397/** lfsr_rollback_byte\r
398 * Rollback the shift register in order to get previous states\r
399 */\r
400void lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)\r
401{\r
402 int i;\r
403 for (i = 7; i >= 0; --i)\r
404 lfsr_rollback_bit(s, BEBIT(in, i), fb);\r
405}\r
406/** lfsr_rollback_word\r
407 * Rollback the shift register in order to get previous states\r
408 */\r
409void lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)\r
410{\r
411 int i;\r
412 for (i = 31; i >= 0; --i)\r
413 lfsr_rollback_bit(s, BEBIT(in, i), fb);\r
414}\r
415\r
416/** nonce_distance\r
417 * x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y\r
418 */\r
419static uint16_t *dist = 0;\r
420int nonce_distance(uint32_t from, uint32_t to)\r
421{\r
422 uint16_t x, i;\r
423 if(!dist) {\r
424 dist = malloc(2 << 16);\r
425 if(!dist)\r
426 return -1;\r
427 for (x = i = 1; i; ++i) {\r
428 dist[(x & 0xff) << 8 | x >> 8] = i;\r
429 x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;\r
430 }\r
431 }\r
432 return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;\r
433}\r
434\r
435\r
436static uint32_t fastfwd[2][8] = {\r
437 { 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},\r
438 { 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};\r
439\r
440\r
441/** lfsr_prefix_ks\r
442 *\r
443 * Is an exported helper function from the common prefix attack\r
444 * Described in the "dark side" paper. It returns an -1 terminated array\r
445 * of possible partial(21 bit) secret state.\r
446 * The required keystream(ks) needs to contain the keystream that was used to\r
447 * encrypt the NACK which is observed when varying only the 4 last bits of Nr\r
448 * only correct iff [NR_3] ^ NR_3 does not depend on Nr_3\r
449 */\r
450uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)\r
451{\r
452 uint32_t *candidates = malloc(4 << 21);\r
453 uint32_t c, entry;\r
454 int size, i;\r
455\r
456 if(!candidates)\r
457 return 0;\r
458\r
459 size = (1 << 21) - 1;\r
460 for(i = 0; i <= size; ++i)\r
461 candidates[i] = i;\r
462\r
463 for(c = 0; c < 8; ++c)\r
464 for(i = 0;i <= size; ++i) {\r
465 entry = candidates[i] ^ fastfwd[isodd][c];\r
466\r
467 if(filter(entry >> 1) == BIT(ks[c], isodd))\r
468 if(filter(entry) == BIT(ks[c], isodd + 2))\r
469 continue;\r
470\r
471 candidates[i--] = candidates[size--];\r
472 }\r
473\r
474 candidates[size + 1] = -1;\r
475\r
476 return candidates;\r
477}\r
478\r
479/** brute_top\r
480 * helper function which eliminates possible secret states using parity bits\r
481 */\r
482static struct Crypto1State*\r
483brute_top(uint32_t prefix, uint32_t rresp, unsigned char parities[8][8],\r
484 uint32_t odd, uint32_t even, struct Crypto1State* sl, uint8_t no_chk)\r
485{\r
486 struct Crypto1State s;\r
487 uint32_t ks1, nr, ks2, rr, ks3, good, c;\r
488\r
489 for(c = 0; c < 8; ++c) {\r
490 s.odd = odd ^ fastfwd[1][c];\r
491 s.even = even ^ fastfwd[0][c];\r
492 \r
493 lfsr_rollback_bit(&s, 0, 0);\r
494 lfsr_rollback_bit(&s, 0, 0);\r
495 lfsr_rollback_bit(&s, 0, 0);\r
496 \r
497 lfsr_rollback_word(&s, 0, 0);\r
498 lfsr_rollback_word(&s, prefix | c << 5, 1);\r
499 \r
500 sl->odd = s.odd;\r
501 sl->even = s.even;\r
502 \r
503 if (no_chk)\r
504 break;\r
505 \r
506 ks1 = crypto1_word(&s, prefix | c << 5, 1);\r
507 ks2 = crypto1_word(&s,0,0);\r
508 ks3 = crypto1_word(&s, 0,0);\r
509 nr = ks1 ^ (prefix | c << 5);\r
510 rr = ks2 ^ rresp;\r
511\r
512 good = 1;\r
513 good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);\r
514 good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);\r
515 good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);\r
516 good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);\r
517 good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ BIT(ks3, 24);\r
518\r
519 if(!good)\r
520 return sl;\r
521 }\r
522\r
523 return ++sl;\r
524} \r
525\r
526\r
527/** lfsr_common_prefix\r
528 * Implentation of the common prefix attack.\r
529 * Requires the 28 bit constant prefix used as reader nonce (pfx)\r
530 * The reader response used (rr)\r
531 * The keystream used to encrypt the observed NACK's (ks)\r
532 * The parity bits (par)\r
533 * It returns a zero terminated list of possible cipher states after the\r
534 * tag nonce was fed in\r
535 */\r
536struct Crypto1State*\r
537lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint8_t no_par)\r
538{\r
539 struct Crypto1State *statelist, *s;\r
540 uint32_t *odd, *even, *o, *e, top;\r
541\r
542 odd = lfsr_prefix_ks(ks, 1);\r
543 even = lfsr_prefix_ks(ks, 0);\r
544\r
545 statelist = malloc((sizeof *statelist) << 21); //how large should be? \r
546 if(!statelist || !odd || !even)\r
547 return 0;\r
548\r
549 s = statelist;\r
550 for(o = odd; *o != -1; ++o)\r
551 for(e = even; *e != -1; ++e)\r
552 for(top = 0; top < 64; ++top) {\r
553 *o = (*o & 0x1fffff) | (top << 21);\r
554 *e = (*e & 0x1fffff) | (top >> 3) << 21;\r
555 s = brute_top(pfx, rr, par, *o, *e, s, no_par);\r
556 }\r
557\r
558 s->odd = s->even = -1; \r
559 //printf("state count = %d\n",s-statelist);\r
560\r
561 free(odd);\r
562 free(even);\r
563\r
564 return statelist;\r
565}\r
Impressum, Datenschutz