]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Merlok - June 2011, 2012 | |
3 | // Gerhard de Koning Gans - May 2008 | |
4 | // Hagen Fritsch - June 2010 | |
5 | // | |
6 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
7 | // at your option, any later version. See the LICENSE.txt file for the text of | |
8 | // the license. | |
9 | //----------------------------------------------------------------------------- | |
10 | // Routines to support ISO 14443 type A. | |
11 | //----------------------------------------------------------------------------- | |
12 | ||
13 | #include "proxmark3.h" | |
14 | #include "apps.h" | |
15 | #include "util.h" | |
16 | #include "string.h" | |
17 | ||
18 | #include "iso14443crc.h" | |
19 | #include "iso14443a.h" | |
20 | #include "crapto1.h" | |
21 | #include "mifareutil.h" | |
22 | ||
23 | static uint32_t iso14a_timeout; | |
24 | uint8_t *trace = (uint8_t *) BigBuf; | |
25 | int traceLen = 0; | |
26 | int rsamples = 0; | |
27 | int tracing = TRUE; | |
28 | uint8_t trigger = 0; | |
29 | ||
30 | // CARD TO READER - manchester | |
31 | // Sequence D: 11110000 modulation with subcarrier during first half | |
32 | // Sequence E: 00001111 modulation with subcarrier during second half | |
33 | // Sequence F: 00000000 no modulation with subcarrier | |
34 | // READER TO CARD - miller | |
35 | // Sequence X: 00001100 drop after half a period | |
36 | // Sequence Y: 00000000 no drop | |
37 | // Sequence Z: 11000000 drop at start | |
38 | #define SEC_D 0xf0 | |
39 | #define SEC_E 0x0f | |
40 | #define SEC_F 0x00 | |
41 | #define SEC_X 0x0c | |
42 | #define SEC_Y 0x00 | |
43 | #define SEC_Z 0xc0 | |
44 | ||
45 | const uint8_t OddByteParity[256] = { | |
46 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
47 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
48 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
49 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
50 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
51 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
52 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
53 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
54 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
55 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
56 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
57 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
58 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, | |
59 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
60 | 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, | |
61 | 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 | |
62 | }; | |
63 | ||
64 | ||
65 | void iso14a_set_trigger(int enable) { | |
66 | trigger = enable; | |
67 | } | |
68 | ||
69 | void iso14a_clear_tracelen(void) { | |
70 | traceLen = 0; | |
71 | } | |
72 | void iso14a_set_tracing(int enable) { | |
73 | tracing = enable; | |
74 | } | |
75 | ||
76 | //----------------------------------------------------------------------------- | |
77 | // Generate the parity value for a byte sequence | |
78 | // | |
79 | //----------------------------------------------------------------------------- | |
80 | byte_t oddparity (const byte_t bt) | |
81 | { | |
82 | return OddByteParity[bt]; | |
83 | } | |
84 | ||
85 | uint32_t GetParity(const uint8_t * pbtCmd, int iLen) | |
86 | { | |
87 | int i; | |
88 | uint32_t dwPar = 0; | |
89 | ||
90 | // Generate the encrypted data | |
91 | for (i = 0; i < iLen; i++) { | |
92 | // Save the encrypted parity bit | |
93 | dwPar |= ((OddByteParity[pbtCmd[i]]) << i); | |
94 | } | |
95 | return dwPar; | |
96 | } | |
97 | ||
98 | void AppendCrc14443a(uint8_t* data, int len) | |
99 | { | |
100 | ComputeCrc14443(CRC_14443_A,data,len,data+len,data+len+1); | |
101 | } | |
102 | ||
103 | // The function LogTrace() is also used by the iClass implementation in iClass.c | |
104 | int RAMFUNC LogTrace(const uint8_t * btBytes, int iLen, int iSamples, uint32_t dwParity, int bReader) | |
105 | { | |
106 | // Return when trace is full | |
107 | if (traceLen >= TRACE_SIZE) return FALSE; | |
108 | ||
109 | // Trace the random, i'm curious | |
110 | rsamples += iSamples; | |
111 | trace[traceLen++] = ((rsamples >> 0) & 0xff); | |
112 | trace[traceLen++] = ((rsamples >> 8) & 0xff); | |
113 | trace[traceLen++] = ((rsamples >> 16) & 0xff); | |
114 | trace[traceLen++] = ((rsamples >> 24) & 0xff); | |
115 | if (!bReader) { | |
116 | trace[traceLen - 1] |= 0x80; | |
117 | } | |
118 | trace[traceLen++] = ((dwParity >> 0) & 0xff); | |
119 | trace[traceLen++] = ((dwParity >> 8) & 0xff); | |
120 | trace[traceLen++] = ((dwParity >> 16) & 0xff); | |
121 | trace[traceLen++] = ((dwParity >> 24) & 0xff); | |
122 | trace[traceLen++] = iLen; | |
123 | memcpy(trace + traceLen, btBytes, iLen); | |
124 | traceLen += iLen; | |
125 | return TRUE; | |
126 | } | |
127 | ||
128 | //----------------------------------------------------------------------------- | |
129 | // The software UART that receives commands from the reader, and its state | |
130 | // variables. | |
131 | //----------------------------------------------------------------------------- | |
132 | static tUart Uart; | |
133 | ||
134 | static RAMFUNC int MillerDecoding(int bit) | |
135 | { | |
136 | //int error = 0; | |
137 | int bitright; | |
138 | ||
139 | if(!Uart.bitBuffer) { | |
140 | Uart.bitBuffer = bit ^ 0xFF0; | |
141 | return FALSE; | |
142 | } | |
143 | else { | |
144 | Uart.bitBuffer <<= 4; | |
145 | Uart.bitBuffer ^= bit; | |
146 | } | |
147 | ||
148 | int EOC = FALSE; | |
149 | ||
150 | if(Uart.state != STATE_UNSYNCD) { | |
151 | Uart.posCnt++; | |
152 | ||
153 | if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { | |
154 | bit = 0x00; | |
155 | } | |
156 | else { | |
157 | bit = 0x01; | |
158 | } | |
159 | if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { | |
160 | bitright = 0x00; | |
161 | } | |
162 | else { | |
163 | bitright = 0x01; | |
164 | } | |
165 | if(bit != bitright) { bit = bitright; } | |
166 | ||
167 | if(Uart.posCnt == 1) { | |
168 | // measurement first half bitperiod | |
169 | if(!bit) { | |
170 | Uart.drop = DROP_FIRST_HALF; | |
171 | } | |
172 | } | |
173 | else { | |
174 | // measurement second half bitperiod | |
175 | if(!bit & (Uart.drop == DROP_NONE)) { | |
176 | Uart.drop = DROP_SECOND_HALF; | |
177 | } | |
178 | else if(!bit) { | |
179 | // measured a drop in first and second half | |
180 | // which should not be possible | |
181 | Uart.state = STATE_ERROR_WAIT; | |
182 | //error = 0x01; | |
183 | } | |
184 | ||
185 | Uart.posCnt = 0; | |
186 | ||
187 | switch(Uart.state) { | |
188 | case STATE_START_OF_COMMUNICATION: | |
189 | Uart.shiftReg = 0; | |
190 | if(Uart.drop == DROP_SECOND_HALF) { | |
191 | // error, should not happen in SOC | |
192 | Uart.state = STATE_ERROR_WAIT; | |
193 | //error = 0x02; | |
194 | } | |
195 | else { | |
196 | // correct SOC | |
197 | Uart.state = STATE_MILLER_Z; | |
198 | } | |
199 | break; | |
200 | ||
201 | case STATE_MILLER_Z: | |
202 | Uart.bitCnt++; | |
203 | Uart.shiftReg >>= 1; | |
204 | if(Uart.drop == DROP_NONE) { | |
205 | // logic '0' followed by sequence Y | |
206 | // end of communication | |
207 | Uart.state = STATE_UNSYNCD; | |
208 | EOC = TRUE; | |
209 | } | |
210 | // if(Uart.drop == DROP_FIRST_HALF) { | |
211 | // Uart.state = STATE_MILLER_Z; stay the same | |
212 | // we see a logic '0' } | |
213 | if(Uart.drop == DROP_SECOND_HALF) { | |
214 | // we see a logic '1' | |
215 | Uart.shiftReg |= 0x100; | |
216 | Uart.state = STATE_MILLER_X; | |
217 | } | |
218 | break; | |
219 | ||
220 | case STATE_MILLER_X: | |
221 | Uart.shiftReg >>= 1; | |
222 | if(Uart.drop == DROP_NONE) { | |
223 | // sequence Y, we see a '0' | |
224 | Uart.state = STATE_MILLER_Y; | |
225 | Uart.bitCnt++; | |
226 | } | |
227 | if(Uart.drop == DROP_FIRST_HALF) { | |
228 | // Would be STATE_MILLER_Z | |
229 | // but Z does not follow X, so error | |
230 | Uart.state = STATE_ERROR_WAIT; | |
231 | //error = 0x03; | |
232 | } | |
233 | if(Uart.drop == DROP_SECOND_HALF) { | |
234 | // We see a '1' and stay in state X | |
235 | Uart.shiftReg |= 0x100; | |
236 | Uart.bitCnt++; | |
237 | } | |
238 | break; | |
239 | ||
240 | case STATE_MILLER_Y: | |
241 | Uart.bitCnt++; | |
242 | Uart.shiftReg >>= 1; | |
243 | if(Uart.drop == DROP_NONE) { | |
244 | // logic '0' followed by sequence Y | |
245 | // end of communication | |
246 | Uart.state = STATE_UNSYNCD; | |
247 | EOC = TRUE; | |
248 | } | |
249 | if(Uart.drop == DROP_FIRST_HALF) { | |
250 | // we see a '0' | |
251 | Uart.state = STATE_MILLER_Z; | |
252 | } | |
253 | if(Uart.drop == DROP_SECOND_HALF) { | |
254 | // We see a '1' and go to state X | |
255 | Uart.shiftReg |= 0x100; | |
256 | Uart.state = STATE_MILLER_X; | |
257 | } | |
258 | break; | |
259 | ||
260 | case STATE_ERROR_WAIT: | |
261 | // That went wrong. Now wait for at least two bit periods | |
262 | // and try to sync again | |
263 | if(Uart.drop == DROP_NONE) { | |
264 | Uart.highCnt = 6; | |
265 | Uart.state = STATE_UNSYNCD; | |
266 | } | |
267 | break; | |
268 | ||
269 | default: | |
270 | Uart.state = STATE_UNSYNCD; | |
271 | Uart.highCnt = 0; | |
272 | break; | |
273 | } | |
274 | ||
275 | Uart.drop = DROP_NONE; | |
276 | ||
277 | // should have received at least one whole byte... | |
278 | if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { | |
279 | return TRUE; | |
280 | } | |
281 | ||
282 | if(Uart.bitCnt == 9) { | |
283 | Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); | |
284 | Uart.byteCnt++; | |
285 | ||
286 | Uart.parityBits <<= 1; | |
287 | Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); | |
288 | ||
289 | if(EOC) { | |
290 | // when End of Communication received and | |
291 | // all data bits processed.. | |
292 | return TRUE; | |
293 | } | |
294 | Uart.bitCnt = 0; | |
295 | } | |
296 | ||
297 | /*if(error) { | |
298 | Uart.output[Uart.byteCnt] = 0xAA; | |
299 | Uart.byteCnt++; | |
300 | Uart.output[Uart.byteCnt] = error & 0xFF; | |
301 | Uart.byteCnt++; | |
302 | Uart.output[Uart.byteCnt] = 0xAA; | |
303 | Uart.byteCnt++; | |
304 | Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; | |
305 | Uart.byteCnt++; | |
306 | Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; | |
307 | Uart.byteCnt++; | |
308 | Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; | |
309 | Uart.byteCnt++; | |
310 | Uart.output[Uart.byteCnt] = 0xAA; | |
311 | Uart.byteCnt++; | |
312 | return TRUE; | |
313 | }*/ | |
314 | } | |
315 | ||
316 | } | |
317 | else { | |
318 | bit = Uart.bitBuffer & 0xf0; | |
319 | bit >>= 4; | |
320 | bit ^= 0x0F; | |
321 | if(bit) { | |
322 | // should have been high or at least (4 * 128) / fc | |
323 | // according to ISO this should be at least (9 * 128 + 20) / fc | |
324 | if(Uart.highCnt == 8) { | |
325 | // we went low, so this could be start of communication | |
326 | // it turns out to be safer to choose a less significant | |
327 | // syncbit... so we check whether the neighbour also represents the drop | |
328 | Uart.posCnt = 1; // apparently we are busy with our first half bit period | |
329 | Uart.syncBit = bit & 8; | |
330 | Uart.samples = 3; | |
331 | if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } | |
332 | else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } | |
333 | if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } | |
334 | else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } | |
335 | if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; | |
336 | if(Uart.syncBit && (Uart.bitBuffer & 8)) { | |
337 | Uart.syncBit = 8; | |
338 | ||
339 | // the first half bit period is expected in next sample | |
340 | Uart.posCnt = 0; | |
341 | Uart.samples = 3; | |
342 | } | |
343 | } | |
344 | else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } | |
345 | ||
346 | Uart.syncBit <<= 4; | |
347 | Uart.state = STATE_START_OF_COMMUNICATION; | |
348 | Uart.drop = DROP_FIRST_HALF; | |
349 | Uart.bitCnt = 0; | |
350 | Uart.byteCnt = 0; | |
351 | Uart.parityBits = 0; | |
352 | //error = 0; | |
353 | } | |
354 | else { | |
355 | Uart.highCnt = 0; | |
356 | } | |
357 | } | |
358 | else { | |
359 | if(Uart.highCnt < 8) { | |
360 | Uart.highCnt++; | |
361 | } | |
362 | } | |
363 | } | |
364 | ||
365 | return FALSE; | |
366 | } | |
367 | ||
368 | //============================================================================= | |
369 | // ISO 14443 Type A - Manchester | |
370 | //============================================================================= | |
371 | static tDemod Demod; | |
372 | ||
373 | static RAMFUNC int ManchesterDecoding(int v) | |
374 | { | |
375 | int bit; | |
376 | int modulation; | |
377 | //int error = 0; | |
378 | ||
379 | if(!Demod.buff) { | |
380 | Demod.buff = 1; | |
381 | Demod.buffer = v; | |
382 | return FALSE; | |
383 | } | |
384 | else { | |
385 | bit = Demod.buffer; | |
386 | Demod.buffer = v; | |
387 | } | |
388 | ||
389 | if(Demod.state==DEMOD_UNSYNCD) { | |
390 | Demod.output[Demod.len] = 0xfa; | |
391 | Demod.syncBit = 0; | |
392 | //Demod.samples = 0; | |
393 | Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part | |
394 | ||
395 | if(bit & 0x08) { | |
396 | Demod.syncBit = 0x08; | |
397 | } | |
398 | ||
399 | if(bit & 0x04) { | |
400 | if(Demod.syncBit) { | |
401 | bit <<= 4; | |
402 | } | |
403 | Demod.syncBit = 0x04; | |
404 | } | |
405 | ||
406 | if(bit & 0x02) { | |
407 | if(Demod.syncBit) { | |
408 | bit <<= 2; | |
409 | } | |
410 | Demod.syncBit = 0x02; | |
411 | } | |
412 | ||
413 | if(bit & 0x01 && Demod.syncBit) { | |
414 | Demod.syncBit = 0x01; | |
415 | } | |
416 | ||
417 | if(Demod.syncBit) { | |
418 | Demod.len = 0; | |
419 | Demod.state = DEMOD_START_OF_COMMUNICATION; | |
420 | Demod.sub = SUB_FIRST_HALF; | |
421 | Demod.bitCount = 0; | |
422 | Demod.shiftReg = 0; | |
423 | Demod.parityBits = 0; | |
424 | Demod.samples = 0; | |
425 | if(Demod.posCount) { | |
426 | if(trigger) LED_A_OFF(); | |
427 | switch(Demod.syncBit) { | |
428 | case 0x08: Demod.samples = 3; break; | |
429 | case 0x04: Demod.samples = 2; break; | |
430 | case 0x02: Demod.samples = 1; break; | |
431 | case 0x01: Demod.samples = 0; break; | |
432 | } | |
433 | } | |
434 | //error = 0; | |
435 | } | |
436 | } | |
437 | else { | |
438 | //modulation = bit & Demod.syncBit; | |
439 | modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; | |
440 | ||
441 | Demod.samples += 4; | |
442 | ||
443 | if(Demod.posCount==0) { | |
444 | Demod.posCount = 1; | |
445 | if(modulation) { | |
446 | Demod.sub = SUB_FIRST_HALF; | |
447 | } | |
448 | else { | |
449 | Demod.sub = SUB_NONE; | |
450 | } | |
451 | } | |
452 | else { | |
453 | Demod.posCount = 0; | |
454 | if(modulation && (Demod.sub == SUB_FIRST_HALF)) { | |
455 | if(Demod.state!=DEMOD_ERROR_WAIT) { | |
456 | Demod.state = DEMOD_ERROR_WAIT; | |
457 | Demod.output[Demod.len] = 0xaa; | |
458 | //error = 0x01; | |
459 | } | |
460 | } | |
461 | else if(modulation) { | |
462 | Demod.sub = SUB_SECOND_HALF; | |
463 | } | |
464 | ||
465 | switch(Demod.state) { | |
466 | case DEMOD_START_OF_COMMUNICATION: | |
467 | if(Demod.sub == SUB_FIRST_HALF) { | |
468 | Demod.state = DEMOD_MANCHESTER_D; | |
469 | } | |
470 | else { | |
471 | Demod.output[Demod.len] = 0xab; | |
472 | Demod.state = DEMOD_ERROR_WAIT; | |
473 | //error = 0x02; | |
474 | } | |
475 | break; | |
476 | ||
477 | case DEMOD_MANCHESTER_D: | |
478 | case DEMOD_MANCHESTER_E: | |
479 | if(Demod.sub == SUB_FIRST_HALF) { | |
480 | Demod.bitCount++; | |
481 | Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; | |
482 | Demod.state = DEMOD_MANCHESTER_D; | |
483 | } | |
484 | else if(Demod.sub == SUB_SECOND_HALF) { | |
485 | Demod.bitCount++; | |
486 | Demod.shiftReg >>= 1; | |
487 | Demod.state = DEMOD_MANCHESTER_E; | |
488 | } | |
489 | else { | |
490 | Demod.state = DEMOD_MANCHESTER_F; | |
491 | } | |
492 | break; | |
493 | ||
494 | case DEMOD_MANCHESTER_F: | |
495 | // Tag response does not need to be a complete byte! | |
496 | if(Demod.len > 0 || Demod.bitCount > 0) { | |
497 | if(Demod.bitCount > 0) { | |
498 | Demod.shiftReg >>= (9 - Demod.bitCount); | |
499 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
500 | Demod.len++; | |
501 | // No parity bit, so just shift a 0 | |
502 | Demod.parityBits <<= 1; | |
503 | } | |
504 | ||
505 | Demod.state = DEMOD_UNSYNCD; | |
506 | return TRUE; | |
507 | } | |
508 | else { | |
509 | Demod.output[Demod.len] = 0xad; | |
510 | Demod.state = DEMOD_ERROR_WAIT; | |
511 | //error = 0x03; | |
512 | } | |
513 | break; | |
514 | ||
515 | case DEMOD_ERROR_WAIT: | |
516 | Demod.state = DEMOD_UNSYNCD; | |
517 | break; | |
518 | ||
519 | default: | |
520 | Demod.output[Demod.len] = 0xdd; | |
521 | Demod.state = DEMOD_UNSYNCD; | |
522 | break; | |
523 | } | |
524 | ||
525 | if(Demod.bitCount>=9) { | |
526 | Demod.output[Demod.len] = Demod.shiftReg & 0xff; | |
527 | Demod.len++; | |
528 | ||
529 | Demod.parityBits <<= 1; | |
530 | Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); | |
531 | ||
532 | Demod.bitCount = 0; | |
533 | Demod.shiftReg = 0; | |
534 | } | |
535 | ||
536 | /*if(error) { | |
537 | Demod.output[Demod.len] = 0xBB; | |
538 | Demod.len++; | |
539 | Demod.output[Demod.len] = error & 0xFF; | |
540 | Demod.len++; | |
541 | Demod.output[Demod.len] = 0xBB; | |
542 | Demod.len++; | |
543 | Demod.output[Demod.len] = bit & 0xFF; | |
544 | Demod.len++; | |
545 | Demod.output[Demod.len] = Demod.buffer & 0xFF; | |
546 | Demod.len++; | |
547 | Demod.output[Demod.len] = Demod.syncBit & 0xFF; | |
548 | Demod.len++; | |
549 | Demod.output[Demod.len] = 0xBB; | |
550 | Demod.len++; | |
551 | return TRUE; | |
552 | }*/ | |
553 | ||
554 | } | |
555 | ||
556 | } // end (state != UNSYNCED) | |
557 | ||
558 | return FALSE; | |
559 | } | |
560 | ||
561 | //============================================================================= | |
562 | // Finally, a `sniffer' for ISO 14443 Type A | |
563 | // Both sides of communication! | |
564 | //============================================================================= | |
565 | ||
566 | //----------------------------------------------------------------------------- | |
567 | // Record the sequence of commands sent by the reader to the tag, with | |
568 | // triggering so that we start recording at the point that the tag is moved | |
569 | // near the reader. | |
570 | //----------------------------------------------------------------------------- | |
571 | void RAMFUNC SnoopIso14443a(uint8_t param) { | |
572 | // param: | |
573 | // bit 0 - trigger from first card answer | |
574 | // bit 1 - trigger from first reader 7-bit request | |
575 | ||
576 | LEDsoff(); | |
577 | // init trace buffer | |
578 | traceLen = 0; | |
579 | memset(trace, 0x44, TRACE_SIZE); | |
580 | ||
581 | // We won't start recording the frames that we acquire until we trigger; | |
582 | // a good trigger condition to get started is probably when we see a | |
583 | // response from the tag. | |
584 | // triggered == FALSE -- to wait first for card | |
585 | int triggered = !(param & 0x03); | |
586 | ||
587 | // The command (reader -> tag) that we're receiving. | |
588 | // The length of a received command will in most cases be no more than 18 bytes. | |
589 | // So 32 should be enough! | |
590 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
591 | // The response (tag -> reader) that we're receiving. | |
592 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
593 | ||
594 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
595 | // into trace, along with its length and other annotations. | |
596 | //uint8_t *trace = (uint8_t *)BigBuf; | |
597 | ||
598 | // The DMA buffer, used to stream samples from the FPGA | |
599 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
600 | int8_t *data = dmaBuf; | |
601 | int maxDataLen = 0; | |
602 | int dataLen = 0; | |
603 | ||
604 | // Set up the demodulator for tag -> reader responses. | |
605 | Demod.output = receivedResponse; | |
606 | Demod.len = 0; | |
607 | Demod.state = DEMOD_UNSYNCD; | |
608 | ||
609 | // Set up the demodulator for the reader -> tag commands | |
610 | memset(&Uart, 0, sizeof(Uart)); | |
611 | Uart.output = receivedCmd; | |
612 | Uart.byteCntMax = 32; // was 100 (greg)////////////////// | |
613 | Uart.state = STATE_UNSYNCD; | |
614 | ||
615 | // Setup for the DMA. | |
616 | FpgaSetupSsc(); | |
617 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
618 | ||
619 | // And put the FPGA in the appropriate mode | |
620 | // Signal field is off with the appropriate LED | |
621 | LED_D_OFF(); | |
622 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
623 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
624 | ||
625 | // Count of samples received so far, so that we can include timing | |
626 | // information in the trace buffer. | |
627 | rsamples = 0; | |
628 | // And now we loop, receiving samples. | |
629 | while(true) { | |
630 | if(BUTTON_PRESS()) { | |
631 | DbpString("cancelled by button"); | |
632 | goto done; | |
633 | } | |
634 | ||
635 | LED_A_ON(); | |
636 | WDT_HIT(); | |
637 | ||
638 | int register readBufDataP = data - dmaBuf; | |
639 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
640 | if (readBufDataP <= dmaBufDataP){ | |
641 | dataLen = dmaBufDataP - readBufDataP; | |
642 | } else { | |
643 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; | |
644 | } | |
645 | // test for length of buffer | |
646 | if(dataLen > maxDataLen) { | |
647 | maxDataLen = dataLen; | |
648 | if(dataLen > 400) { | |
649 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); | |
650 | goto done; | |
651 | } | |
652 | } | |
653 | if(dataLen < 1) continue; | |
654 | ||
655 | // primary buffer was stopped( <-- we lost data! | |
656 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
657 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
658 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
659 | } | |
660 | // secondary buffer sets as primary, secondary buffer was stopped | |
661 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
662 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
663 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
664 | } | |
665 | ||
666 | LED_A_OFF(); | |
667 | ||
668 | rsamples += 4; | |
669 | if(MillerDecoding((data[0] & 0xF0) >> 4)) { | |
670 | LED_C_ON(); | |
671 | ||
672 | // check - if there is a short 7bit request from reader | |
673 | if ((!triggered) && (param & 0x02) && (Uart.byteCnt == 1) && (Uart.bitCnt = 9)) triggered = TRUE; | |
674 | ||
675 | if(triggered) { | |
676 | if (!LogTrace(receivedCmd, Uart.byteCnt, 0 - Uart.samples, Uart.parityBits, TRUE)) break; | |
677 | } | |
678 | /* And ready to receive another command. */ | |
679 | Uart.state = STATE_UNSYNCD; | |
680 | /* And also reset the demod code, which might have been */ | |
681 | /* false-triggered by the commands from the reader. */ | |
682 | Demod.state = DEMOD_UNSYNCD; | |
683 | LED_B_OFF(); | |
684 | } | |
685 | ||
686 | if(ManchesterDecoding(data[0] & 0x0F)) { | |
687 | LED_B_ON(); | |
688 | ||
689 | if (!LogTrace(receivedResponse, Demod.len, 0 - Demod.samples, Demod.parityBits, FALSE)) break; | |
690 | ||
691 | if ((!triggered) && (param & 0x01)) triggered = TRUE; | |
692 | ||
693 | // And ready to receive another response. | |
694 | memset(&Demod, 0, sizeof(Demod)); | |
695 | Demod.output = receivedResponse; | |
696 | Demod.state = DEMOD_UNSYNCD; | |
697 | LED_C_OFF(); | |
698 | } | |
699 | ||
700 | data++; | |
701 | if(data > dmaBuf + DMA_BUFFER_SIZE) { | |
702 | data = dmaBuf; | |
703 | } | |
704 | } // main cycle | |
705 | ||
706 | DbpString("COMMAND FINISHED"); | |
707 | ||
708 | done: | |
709 | AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; | |
710 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt); | |
711 | Dbprintf("Uart.byteCntMax=%x, traceLen=%x, Uart.output[0]=%08x", Uart.byteCntMax, traceLen, (int)Uart.output[0]); | |
712 | LEDsoff(); | |
713 | } | |
714 | ||
715 | //----------------------------------------------------------------------------- | |
716 | // Prepare tag messages | |
717 | //----------------------------------------------------------------------------- | |
718 | static void CodeIso14443aAsTagPar(const uint8_t *cmd, int len, uint32_t dwParity) | |
719 | { | |
720 | int i; | |
721 | ||
722 | ToSendReset(); | |
723 | ||
724 | // Correction bit, might be removed when not needed | |
725 | ToSendStuffBit(0); | |
726 | ToSendStuffBit(0); | |
727 | ToSendStuffBit(0); | |
728 | ToSendStuffBit(0); | |
729 | ToSendStuffBit(1); // 1 | |
730 | ToSendStuffBit(0); | |
731 | ToSendStuffBit(0); | |
732 | ToSendStuffBit(0); | |
733 | ||
734 | // Send startbit | |
735 | ToSend[++ToSendMax] = SEC_D; | |
736 | ||
737 | for(i = 0; i < len; i++) { | |
738 | int j; | |
739 | uint8_t b = cmd[i]; | |
740 | ||
741 | // Data bits | |
742 | for(j = 0; j < 8; j++) { | |
743 | if(b & 1) { | |
744 | ToSend[++ToSendMax] = SEC_D; | |
745 | } else { | |
746 | ToSend[++ToSendMax] = SEC_E; | |
747 | } | |
748 | b >>= 1; | |
749 | } | |
750 | ||
751 | // Get the parity bit | |
752 | if ((dwParity >> i) & 0x01) { | |
753 | ToSend[++ToSendMax] = SEC_D; | |
754 | } else { | |
755 | ToSend[++ToSendMax] = SEC_E; | |
756 | } | |
757 | } | |
758 | ||
759 | // Send stopbit | |
760 | ToSend[++ToSendMax] = SEC_F; | |
761 | ||
762 | // Convert from last byte pos to length | |
763 | ToSendMax++; | |
764 | } | |
765 | ||
766 | static void CodeIso14443aAsTag(const uint8_t *cmd, int len){ | |
767 | CodeIso14443aAsTagPar(cmd, len, GetParity(cmd, len)); | |
768 | } | |
769 | ||
770 | //----------------------------------------------------------------------------- | |
771 | // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 | |
772 | //----------------------------------------------------------------------------- | |
773 | static void CodeStrangeAnswerAsTag() | |
774 | { | |
775 | int i; | |
776 | ||
777 | ToSendReset(); | |
778 | ||
779 | // Correction bit, might be removed when not needed | |
780 | ToSendStuffBit(0); | |
781 | ToSendStuffBit(0); | |
782 | ToSendStuffBit(0); | |
783 | ToSendStuffBit(0); | |
784 | ToSendStuffBit(1); // 1 | |
785 | ToSendStuffBit(0); | |
786 | ToSendStuffBit(0); | |
787 | ToSendStuffBit(0); | |
788 | ||
789 | // Send startbit | |
790 | ToSend[++ToSendMax] = SEC_D; | |
791 | ||
792 | // 0 | |
793 | ToSend[++ToSendMax] = SEC_E; | |
794 | ||
795 | // 0 | |
796 | ToSend[++ToSendMax] = SEC_E; | |
797 | ||
798 | // 1 | |
799 | ToSend[++ToSendMax] = SEC_D; | |
800 | ||
801 | // Send stopbit | |
802 | ToSend[++ToSendMax] = SEC_F; | |
803 | ||
804 | // Flush the buffer in FPGA!! | |
805 | for(i = 0; i < 5; i++) { | |
806 | ToSend[++ToSendMax] = SEC_F; | |
807 | } | |
808 | ||
809 | // Convert from last byte pos to length | |
810 | ToSendMax++; | |
811 | } | |
812 | ||
813 | static void Code4bitAnswerAsTag(uint8_t cmd) | |
814 | { | |
815 | int i; | |
816 | ||
817 | ToSendReset(); | |
818 | ||
819 | // Correction bit, might be removed when not needed | |
820 | ToSendStuffBit(0); | |
821 | ToSendStuffBit(0); | |
822 | ToSendStuffBit(0); | |
823 | ToSendStuffBit(0); | |
824 | ToSendStuffBit(1); // 1 | |
825 | ToSendStuffBit(0); | |
826 | ToSendStuffBit(0); | |
827 | ToSendStuffBit(0); | |
828 | ||
829 | // Send startbit | |
830 | ToSend[++ToSendMax] = SEC_D; | |
831 | ||
832 | uint8_t b = cmd; | |
833 | for(i = 0; i < 4; i++) { | |
834 | if(b & 1) { | |
835 | ToSend[++ToSendMax] = SEC_D; | |
836 | } else { | |
837 | ToSend[++ToSendMax] = SEC_E; | |
838 | } | |
839 | b >>= 1; | |
840 | } | |
841 | ||
842 | // Send stopbit | |
843 | ToSend[++ToSendMax] = SEC_F; | |
844 | ||
845 | // Flush the buffer in FPGA!! | |
846 | for(i = 0; i < 5; i++) { | |
847 | ToSend[++ToSendMax] = SEC_F; | |
848 | } | |
849 | ||
850 | // Convert from last byte pos to length | |
851 | ToSendMax++; | |
852 | } | |
853 | ||
854 | //----------------------------------------------------------------------------- | |
855 | // Wait for commands from reader | |
856 | // Stop when button is pressed | |
857 | // Or return TRUE when command is captured | |
858 | //----------------------------------------------------------------------------- | |
859 | static int GetIso14443aCommandFromReader(uint8_t *received, int *len, int maxLen) | |
860 | { | |
861 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
862 | // only, since we are receiving, not transmitting). | |
863 | // Signal field is off with the appropriate LED | |
864 | LED_D_OFF(); | |
865 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
866 | ||
867 | // Now run a `software UART' on the stream of incoming samples. | |
868 | Uart.output = received; | |
869 | Uart.byteCntMax = maxLen; | |
870 | Uart.state = STATE_UNSYNCD; | |
871 | ||
872 | for(;;) { | |
873 | WDT_HIT(); | |
874 | ||
875 | if(BUTTON_PRESS()) return FALSE; | |
876 | ||
877 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
878 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
879 | } | |
880 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
881 | uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
882 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
883 | *len = Uart.byteCnt; | |
884 | return TRUE; | |
885 | } | |
886 | if(MillerDecoding(b & 0x0f)) { | |
887 | *len = Uart.byteCnt; | |
888 | return TRUE; | |
889 | } | |
890 | } | |
891 | } | |
892 | } | |
893 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded); | |
894 | ||
895 | //----------------------------------------------------------------------------- | |
896 | // Main loop of simulated tag: receive commands from reader, decide what | |
897 | // response to send, and send it. | |
898 | //----------------------------------------------------------------------------- | |
899 | void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd) | |
900 | { | |
901 | // Enable and clear the trace | |
902 | tracing = TRUE; | |
903 | traceLen = 0; | |
904 | memset(trace, 0x44, TRACE_SIZE); | |
905 | ||
906 | // This function contains the tag emulation | |
907 | uint8_t sak; | |
908 | ||
909 | // The first response contains the ATQA (note: bytes are transmitted in reverse order). | |
910 | uint8_t response1[2]; | |
911 | ||
912 | switch (tagType) { | |
913 | case 1: { // MIFARE Classic | |
914 | // Says: I am Mifare 1k - original line | |
915 | response1[0] = 0x04; | |
916 | response1[1] = 0x00; | |
917 | sak = 0x08; | |
918 | } break; | |
919 | case 2: { // MIFARE Ultralight | |
920 | // Says: I am a stupid memory tag, no crypto | |
921 | response1[0] = 0x04; | |
922 | response1[1] = 0x00; | |
923 | sak = 0x00; | |
924 | } break; | |
925 | case 3: { // MIFARE DESFire | |
926 | // Says: I am a DESFire tag, ph33r me | |
927 | response1[0] = 0x04; | |
928 | response1[1] = 0x03; | |
929 | sak = 0x20; | |
930 | } break; | |
931 | case 4: { // ISO/IEC 14443-4 | |
932 | // Says: I am a javacard (JCOP) | |
933 | response1[0] = 0x04; | |
934 | response1[1] = 0x00; | |
935 | sak = 0x28; | |
936 | } break; | |
937 | default: { | |
938 | Dbprintf("Error: unkown tagtype (%d)",tagType); | |
939 | return; | |
940 | } break; | |
941 | } | |
942 | ||
943 | // The second response contains the (mandatory) first 24 bits of the UID | |
944 | uint8_t response2[5]; | |
945 | ||
946 | // Check if the uid uses the (optional) part | |
947 | uint8_t response2a[5]; | |
948 | if (uid_2nd) { | |
949 | response2[0] = 0x88; | |
950 | num_to_bytes(uid_1st,3,response2+1); | |
951 | num_to_bytes(uid_2nd,4,response2a); | |
952 | response2a[4] = response2a[0] ^ response2a[1] ^ response2a[2] ^ response2a[3]; | |
953 | ||
954 | // Configure the ATQA and SAK accordingly | |
955 | response1[0] |= 0x40; | |
956 | sak |= 0x04; | |
957 | } else { | |
958 | num_to_bytes(uid_1st,4,response2); | |
959 | // Configure the ATQA and SAK accordingly | |
960 | response1[0] &= 0xBF; | |
961 | sak &= 0xFB; | |
962 | } | |
963 | ||
964 | // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. | |
965 | response2[4] = response2[0] ^ response2[1] ^ response2[2] ^ response2[3]; | |
966 | ||
967 | // Prepare the mandatory SAK (for 4 and 7 byte UID) | |
968 | uint8_t response3[3]; | |
969 | response3[0] = sak; | |
970 | ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); | |
971 | ||
972 | // Prepare the optional second SAK (for 7 byte UID), drop the cascade bit | |
973 | uint8_t response3a[3]; | |
974 | response3a[0] = sak & 0xFB; | |
975 | ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); | |
976 | ||
977 | uint8_t response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce | |
978 | uint8_t response6[] = { 0x03, 0x3B, 0x00, 0x00, 0x00 }; // dummy ATS (pseudo-ATR), answer to RATS | |
979 | ComputeCrc14443(CRC_14443_A, response6, 3, &response6[3], &response6[4]); | |
980 | ||
981 | uint8_t *resp; | |
982 | int respLen; | |
983 | ||
984 | // Longest possible response will be 16 bytes + 2 CRC = 18 bytes | |
985 | // This will need | |
986 | // 144 data bits (18 * 8) | |
987 | // 18 parity bits | |
988 | // 2 Start and stop | |
989 | // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) | |
990 | // 1 just for the case | |
991 | // ----------- + | |
992 | // 166 | |
993 | // | |
994 | // 166 bytes, since every bit that needs to be send costs us a byte | |
995 | // | |
996 | ||
997 | // Respond with card type | |
998 | uint8_t *resp1 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET); | |
999 | int resp1Len; | |
1000 | ||
1001 | // Anticollision cascade1 - respond with uid | |
1002 | uint8_t *resp2 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + 166); | |
1003 | int resp2Len; | |
1004 | ||
1005 | // Anticollision cascade2 - respond with 2nd half of uid if asked | |
1006 | // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 | |
1007 | uint8_t *resp2a = (((uint8_t *)BigBuf) + 1140); | |
1008 | int resp2aLen; | |
1009 | ||
1010 | // Acknowledge select - cascade 1 | |
1011 | uint8_t *resp3 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*2)); | |
1012 | int resp3Len; | |
1013 | ||
1014 | // Acknowledge select - cascade 2 | |
1015 | uint8_t *resp3a = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*3)); | |
1016 | int resp3aLen; | |
1017 | ||
1018 | // Response to a read request - not implemented atm | |
1019 | uint8_t *resp4 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*4)); | |
1020 | int resp4Len; | |
1021 | ||
1022 | // Authenticate response - nonce | |
1023 | uint8_t *resp5 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*5)); | |
1024 | int resp5Len; | |
1025 | ||
1026 | // Authenticate response - nonce | |
1027 | uint8_t *resp6 = (((uint8_t *)BigBuf) + FREE_BUFFER_OFFSET + (166*6)); | |
1028 | int resp6Len; | |
1029 | ||
1030 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
1031 | int len; | |
1032 | ||
1033 | // To control where we are in the protocol | |
1034 | int order = 0; | |
1035 | int lastorder; | |
1036 | ||
1037 | // Just to allow some checks | |
1038 | int happened = 0; | |
1039 | int happened2 = 0; | |
1040 | ||
1041 | int cmdsRecvd = 0; | |
1042 | uint8_t* respdata = NULL; | |
1043 | int respsize = 0; | |
1044 | uint8_t nack = 0x04; | |
1045 | ||
1046 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1047 | ||
1048 | // Prepare the responses of the anticollision phase | |
1049 | // there will be not enough time to do this at the moment the reader sends it REQA | |
1050 | ||
1051 | // Answer to request | |
1052 | CodeIso14443aAsTag(response1, sizeof(response1)); | |
1053 | memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; | |
1054 | ||
1055 | // Send our UID (cascade 1) | |
1056 | CodeIso14443aAsTag(response2, sizeof(response2)); | |
1057 | memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; | |
1058 | ||
1059 | // Answer to select (cascade1) | |
1060 | CodeIso14443aAsTag(response3, sizeof(response3)); | |
1061 | memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; | |
1062 | ||
1063 | // Send the cascade 2 2nd part of the uid | |
1064 | CodeIso14443aAsTag(response2a, sizeof(response2a)); | |
1065 | memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; | |
1066 | ||
1067 | // Answer to select (cascade 2) | |
1068 | CodeIso14443aAsTag(response3a, sizeof(response3a)); | |
1069 | memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; | |
1070 | ||
1071 | // Strange answer is an example of rare message size (3 bits) | |
1072 | CodeStrangeAnswerAsTag(); | |
1073 | memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; | |
1074 | ||
1075 | // Authentication answer (random nonce) | |
1076 | CodeIso14443aAsTag(response5, sizeof(response5)); | |
1077 | memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; | |
1078 | ||
1079 | // dummy ATS (pseudo-ATR), answer to RATS | |
1080 | CodeIso14443aAsTag(response6, sizeof(response6)); | |
1081 | memcpy(resp6, ToSend, ToSendMax); resp6Len = ToSendMax; | |
1082 | ||
1083 | // We need to listen to the high-frequency, peak-detected path. | |
1084 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1085 | FpgaSetupSsc(); | |
1086 | ||
1087 | cmdsRecvd = 0; | |
1088 | ||
1089 | LED_A_ON(); | |
1090 | for(;;) { | |
1091 | ||
1092 | if(!GetIso14443aCommandFromReader(receivedCmd, &len, RECV_CMD_SIZE)) { | |
1093 | DbpString("button press"); | |
1094 | break; | |
1095 | } | |
1096 | // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated | |
1097 | // Okay, look at the command now. | |
1098 | lastorder = order; | |
1099 | if(receivedCmd[0] == 0x26) { // Received a REQUEST | |
1100 | resp = resp1; respLen = resp1Len; order = 1; | |
1101 | respdata = response1; | |
1102 | respsize = sizeof(response1); | |
1103 | } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP | |
1104 | resp = resp1; respLen = resp1Len; order = 6; | |
1105 | respdata = response1; | |
1106 | respsize = sizeof(response1); | |
1107 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // Received request for UID (cascade 1) | |
1108 | resp = resp2; respLen = resp2Len; order = 2; | |
1109 | respdata = response2; | |
1110 | respsize = sizeof(response2); | |
1111 | } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x95) { // Received request for UID (cascade 2) | |
1112 | resp = resp2a; respLen = resp2aLen; order = 20; | |
1113 | respdata = response2a; | |
1114 | respsize = sizeof(response2a); | |
1115 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x93) { // Received a SELECT (cascade 1) | |
1116 | resp = resp3; respLen = resp3Len; order = 3; | |
1117 | respdata = response3; | |
1118 | respsize = sizeof(response3); | |
1119 | } else if(receivedCmd[1] == 0x70 && receivedCmd[0] == 0x95) { // Received a SELECT (cascade 2) | |
1120 | resp = resp3a; respLen = resp3aLen; order = 30; | |
1121 | respdata = response3a; | |
1122 | respsize = sizeof(response3a); | |
1123 | } else if(receivedCmd[0] == 0x30) { // Received a (plain) READ | |
1124 | resp = resp4; respLen = resp4Len; order = 4; // Do nothing | |
1125 | Dbprintf("Read request from reader: %x %x",receivedCmd[0],receivedCmd[1]); | |
1126 | respdata = &nack; | |
1127 | respsize = sizeof(nack); // 4-bit answer | |
1128 | } else if(receivedCmd[0] == 0x50) { // Received a HALT | |
1129 | DbpString("Reader requested we HALT!:"); | |
1130 | // Do not respond | |
1131 | resp = resp1; respLen = 0; order = 0; | |
1132 | respdata = NULL; | |
1133 | respsize = 0; | |
1134 | } else if(receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61) { // Received an authentication request | |
1135 | resp = resp5; respLen = resp5Len; order = 7; | |
1136 | respdata = response5; | |
1137 | respsize = sizeof(response5); | |
1138 | } else if(receivedCmd[0] == 0xE0) { // Received a RATS request | |
1139 | resp = resp6; respLen = resp6Len; order = 70; | |
1140 | respdata = response6; | |
1141 | respsize = sizeof(response6); | |
1142 | } else { | |
1143 | // Never seen this command before | |
1144 | Dbprintf("Received (len=%d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", | |
1145 | len, | |
1146 | receivedCmd[0], receivedCmd[1], receivedCmd[2], | |
1147 | receivedCmd[3], receivedCmd[4], receivedCmd[5], | |
1148 | receivedCmd[6], receivedCmd[7], receivedCmd[8]); | |
1149 | // Do not respond | |
1150 | resp = resp1; respLen = 0; order = 0; | |
1151 | respdata = NULL; | |
1152 | respsize = 0; | |
1153 | } | |
1154 | ||
1155 | // Count number of wakeups received after a halt | |
1156 | if(order == 6 && lastorder == 5) { happened++; } | |
1157 | ||
1158 | // Count number of other messages after a halt | |
1159 | if(order != 6 && lastorder == 5) { happened2++; } | |
1160 | ||
1161 | // Look at last parity bit to determine timing of answer | |
1162 | if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { | |
1163 | // 1236, so correction bit needed | |
1164 | //i = 0; | |
1165 | } | |
1166 | ||
1167 | if(cmdsRecvd > 999) { | |
1168 | DbpString("1000 commands later..."); | |
1169 | break; | |
1170 | } else { | |
1171 | cmdsRecvd++; | |
1172 | } | |
1173 | ||
1174 | if(respLen > 0) { | |
1175 | EmSendCmd14443aRaw(resp, respLen, receivedCmd[0] == 0x52); | |
1176 | } | |
1177 | ||
1178 | if (tracing) { | |
1179 | LogTrace(receivedCmd,len, 0, Uart.parityBits, TRUE); | |
1180 | if (respdata != NULL) { | |
1181 | LogTrace(respdata,respsize, 0, SwapBits(GetParity(respdata,respsize),respsize), FALSE); | |
1182 | } | |
1183 | if(traceLen > TRACE_SIZE) { | |
1184 | DbpString("Trace full"); | |
1185 | break; | |
1186 | } | |
1187 | } | |
1188 | ||
1189 | memset(receivedCmd, 0x44, RECV_CMD_SIZE); | |
1190 | } | |
1191 | ||
1192 | Dbprintf("%x %x %x", happened, happened2, cmdsRecvd); | |
1193 | LED_A_OFF(); | |
1194 | } | |
1195 | ||
1196 | //----------------------------------------------------------------------------- | |
1197 | // Transmit the command (to the tag) that was placed in ToSend[]. | |
1198 | //----------------------------------------------------------------------------- | |
1199 | static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait) | |
1200 | { | |
1201 | int c; | |
1202 | ||
1203 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1204 | ||
1205 | if (wait) | |
1206 | if(*wait < 10) | |
1207 | *wait = 10; | |
1208 | ||
1209 | for(c = 0; c < *wait;) { | |
1210 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1211 | AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! | |
1212 | c++; | |
1213 | } | |
1214 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1215 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1216 | (void)r; | |
1217 | } | |
1218 | WDT_HIT(); | |
1219 | } | |
1220 | ||
1221 | c = 0; | |
1222 | for(;;) { | |
1223 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1224 | AT91C_BASE_SSC->SSC_THR = cmd[c]; | |
1225 | c++; | |
1226 | if(c >= len) { | |
1227 | break; | |
1228 | } | |
1229 | } | |
1230 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1231 | volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; | |
1232 | (void)r; | |
1233 | } | |
1234 | WDT_HIT(); | |
1235 | } | |
1236 | if (samples) *samples = (c + *wait) << 3; | |
1237 | } | |
1238 | ||
1239 | //----------------------------------------------------------------------------- | |
1240 | // Code a 7-bit command without parity bit | |
1241 | // This is especially for 0x26 and 0x52 (REQA and WUPA) | |
1242 | //----------------------------------------------------------------------------- | |
1243 | void ShortFrameFromReader(const uint8_t bt) | |
1244 | { | |
1245 | int j; | |
1246 | int last; | |
1247 | uint8_t b; | |
1248 | ||
1249 | ToSendReset(); | |
1250 | ||
1251 | // Start of Communication (Seq. Z) | |
1252 | ToSend[++ToSendMax] = SEC_Z; | |
1253 | last = 0; | |
1254 | ||
1255 | b = bt; | |
1256 | for(j = 0; j < 7; j++) { | |
1257 | if(b & 1) { | |
1258 | // Sequence X | |
1259 | ToSend[++ToSendMax] = SEC_X; | |
1260 | last = 1; | |
1261 | } else { | |
1262 | if(last == 0) { | |
1263 | // Sequence Z | |
1264 | ToSend[++ToSendMax] = SEC_Z; | |
1265 | } | |
1266 | else { | |
1267 | // Sequence Y | |
1268 | ToSend[++ToSendMax] = SEC_Y; | |
1269 | last = 0; | |
1270 | } | |
1271 | } | |
1272 | b >>= 1; | |
1273 | } | |
1274 | ||
1275 | // End of Communication | |
1276 | if(last == 0) { | |
1277 | // Sequence Z | |
1278 | ToSend[++ToSendMax] = SEC_Z; | |
1279 | } | |
1280 | else { | |
1281 | // Sequence Y | |
1282 | ToSend[++ToSendMax] = SEC_Y; | |
1283 | last = 0; | |
1284 | } | |
1285 | // Sequence Y | |
1286 | ToSend[++ToSendMax] = SEC_Y; | |
1287 | ||
1288 | // Just to be sure! | |
1289 | ToSend[++ToSendMax] = SEC_Y; | |
1290 | ToSend[++ToSendMax] = SEC_Y; | |
1291 | ToSend[++ToSendMax] = SEC_Y; | |
1292 | ||
1293 | // Convert from last character reference to length | |
1294 | ToSendMax++; | |
1295 | } | |
1296 | ||
1297 | //----------------------------------------------------------------------------- | |
1298 | // Prepare reader command to send to FPGA | |
1299 | // | |
1300 | //----------------------------------------------------------------------------- | |
1301 | void CodeIso14443aAsReaderPar(const uint8_t * cmd, int len, uint32_t dwParity) | |
1302 | { | |
1303 | int i, j; | |
1304 | int last; | |
1305 | uint8_t b; | |
1306 | ||
1307 | ToSendReset(); | |
1308 | ||
1309 | // Start of Communication (Seq. Z) | |
1310 | ToSend[++ToSendMax] = SEC_Z; | |
1311 | last = 0; | |
1312 | ||
1313 | // Generate send structure for the data bits | |
1314 | for (i = 0; i < len; i++) { | |
1315 | // Get the current byte to send | |
1316 | b = cmd[i]; | |
1317 | ||
1318 | for (j = 0; j < 8; j++) { | |
1319 | if (b & 1) { | |
1320 | // Sequence X | |
1321 | ToSend[++ToSendMax] = SEC_X; | |
1322 | last = 1; | |
1323 | } else { | |
1324 | if (last == 0) { | |
1325 | // Sequence Z | |
1326 | ToSend[++ToSendMax] = SEC_Z; | |
1327 | } else { | |
1328 | // Sequence Y | |
1329 | ToSend[++ToSendMax] = SEC_Y; | |
1330 | last = 0; | |
1331 | } | |
1332 | } | |
1333 | b >>= 1; | |
1334 | } | |
1335 | ||
1336 | // Get the parity bit | |
1337 | if ((dwParity >> i) & 0x01) { | |
1338 | // Sequence X | |
1339 | ToSend[++ToSendMax] = SEC_X; | |
1340 | last = 1; | |
1341 | } else { | |
1342 | if (last == 0) { | |
1343 | // Sequence Z | |
1344 | ToSend[++ToSendMax] = SEC_Z; | |
1345 | } else { | |
1346 | // Sequence Y | |
1347 | ToSend[++ToSendMax] = SEC_Y; | |
1348 | last = 0; | |
1349 | } | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | // End of Communication | |
1354 | if (last == 0) { | |
1355 | // Sequence Z | |
1356 | ToSend[++ToSendMax] = SEC_Z; | |
1357 | } else { | |
1358 | // Sequence Y | |
1359 | ToSend[++ToSendMax] = SEC_Y; | |
1360 | last = 0; | |
1361 | } | |
1362 | // Sequence Y | |
1363 | ToSend[++ToSendMax] = SEC_Y; | |
1364 | ||
1365 | // Just to be sure! | |
1366 | ToSend[++ToSendMax] = SEC_Y; | |
1367 | ToSend[++ToSendMax] = SEC_Y; | |
1368 | ToSend[++ToSendMax] = SEC_Y; | |
1369 | ||
1370 | // Convert from last character reference to length | |
1371 | ToSendMax++; | |
1372 | } | |
1373 | ||
1374 | //----------------------------------------------------------------------------- | |
1375 | // Wait for commands from reader | |
1376 | // Stop when button is pressed (return 1) or field was gone (return 2) | |
1377 | // Or return 0 when command is captured | |
1378 | //----------------------------------------------------------------------------- | |
1379 | static int EmGetCmd(uint8_t *received, int *len, int maxLen) | |
1380 | { | |
1381 | *len = 0; | |
1382 | ||
1383 | uint32_t timer = 0, vtime = 0; | |
1384 | int analogCnt = 0; | |
1385 | int analogAVG = 0; | |
1386 | ||
1387 | // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen | |
1388 | // only, since we are receiving, not transmitting). | |
1389 | // Signal field is off with the appropriate LED | |
1390 | LED_D_OFF(); | |
1391 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1392 | ||
1393 | // Set ADC to read field strength | |
1394 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_SWRST; | |
1395 | AT91C_BASE_ADC->ADC_MR = | |
1396 | ADC_MODE_PRESCALE(32) | | |
1397 | ADC_MODE_STARTUP_TIME(16) | | |
1398 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
1399 | AT91C_BASE_ADC->ADC_CHER = ADC_CHANNEL(ADC_CHAN_HF); | |
1400 | // start ADC | |
1401 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1402 | ||
1403 | // Now run a 'software UART' on the stream of incoming samples. | |
1404 | Uart.output = received; | |
1405 | Uart.byteCntMax = maxLen; | |
1406 | Uart.state = STATE_UNSYNCD; | |
1407 | ||
1408 | for(;;) { | |
1409 | WDT_HIT(); | |
1410 | ||
1411 | if (BUTTON_PRESS()) return 1; | |
1412 | ||
1413 | // test if the field exists | |
1414 | if (AT91C_BASE_ADC->ADC_SR & ADC_END_OF_CONVERSION(ADC_CHAN_HF)) { | |
1415 | analogCnt++; | |
1416 | analogAVG += AT91C_BASE_ADC->ADC_CDR[ADC_CHAN_HF]; | |
1417 | AT91C_BASE_ADC->ADC_CR = AT91C_ADC_START; | |
1418 | if (analogCnt >= 32) { | |
1419 | if ((33000 * (analogAVG / analogCnt) >> 10) < MF_MINFIELDV) { | |
1420 | vtime = GetTickCount(); | |
1421 | if (!timer) timer = vtime; | |
1422 | // 50ms no field --> card to idle state | |
1423 | if (vtime - timer > 50) return 2; | |
1424 | } else | |
1425 | if (timer) timer = 0; | |
1426 | analogCnt = 0; | |
1427 | analogAVG = 0; | |
1428 | } | |
1429 | } | |
1430 | // transmit none | |
1431 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1432 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1433 | } | |
1434 | // receive and test the miller decoding | |
1435 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1436 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1437 | if(MillerDecoding((b & 0xf0) >> 4)) { | |
1438 | *len = Uart.byteCnt; | |
1439 | if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); | |
1440 | return 0; | |
1441 | } | |
1442 | if(MillerDecoding(b & 0x0f)) { | |
1443 | *len = Uart.byteCnt; | |
1444 | if (tracing) LogTrace(received, *len, GetDeltaCountUS(), Uart.parityBits, TRUE); | |
1445 | return 0; | |
1446 | } | |
1447 | } | |
1448 | } | |
1449 | } | |
1450 | ||
1451 | static int EmSendCmd14443aRaw(uint8_t *resp, int respLen, int correctionNeeded) | |
1452 | { | |
1453 | int i, u = 0; | |
1454 | uint8_t b = 0; | |
1455 | ||
1456 | // Modulate Manchester | |
1457 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); | |
1458 | AT91C_BASE_SSC->SSC_THR = 0x00; | |
1459 | FpgaSetupSsc(); | |
1460 | ||
1461 | // include correction bit | |
1462 | i = 1; | |
1463 | if((Uart.parityBits & 0x01) || correctionNeeded) { | |
1464 | // 1236, so correction bit needed | |
1465 | i = 0; | |
1466 | } | |
1467 | ||
1468 | // send cycle | |
1469 | for(;;) { | |
1470 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1471 | volatile uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1472 | (void)b; | |
1473 | } | |
1474 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1475 | if(i > respLen) { | |
1476 | b = 0xff; // was 0x00 | |
1477 | u++; | |
1478 | } else { | |
1479 | b = resp[i]; | |
1480 | i++; | |
1481 | } | |
1482 | AT91C_BASE_SSC->SSC_THR = b; | |
1483 | ||
1484 | if(u > 4) break; | |
1485 | } | |
1486 | if(BUTTON_PRESS()) { | |
1487 | break; | |
1488 | } | |
1489 | } | |
1490 | ||
1491 | return 0; | |
1492 | } | |
1493 | ||
1494 | int EmSend4bitEx(uint8_t resp, int correctionNeeded){ | |
1495 | Code4bitAnswerAsTag(resp); | |
1496 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1497 | if (tracing) LogTrace(&resp, 1, GetDeltaCountUS(), GetParity(&resp, 1), FALSE); | |
1498 | return res; | |
1499 | } | |
1500 | ||
1501 | int EmSend4bit(uint8_t resp){ | |
1502 | return EmSend4bitEx(resp, 0); | |
1503 | } | |
1504 | ||
1505 | int EmSendCmdExPar(uint8_t *resp, int respLen, int correctionNeeded, uint32_t par){ | |
1506 | CodeIso14443aAsTagPar(resp, respLen, par); | |
1507 | int res = EmSendCmd14443aRaw(ToSend, ToSendMax, correctionNeeded); | |
1508 | if (tracing) LogTrace(resp, respLen, GetDeltaCountUS(), par, FALSE); | |
1509 | return res; | |
1510 | } | |
1511 | ||
1512 | int EmSendCmdEx(uint8_t *resp, int respLen, int correctionNeeded){ | |
1513 | return EmSendCmdExPar(resp, respLen, correctionNeeded, GetParity(resp, respLen)); | |
1514 | } | |
1515 | ||
1516 | int EmSendCmd(uint8_t *resp, int respLen){ | |
1517 | return EmSendCmdExPar(resp, respLen, 0, GetParity(resp, respLen)); | |
1518 | } | |
1519 | ||
1520 | int EmSendCmdPar(uint8_t *resp, int respLen, uint32_t par){ | |
1521 | return EmSendCmdExPar(resp, respLen, 0, par); | |
1522 | } | |
1523 | ||
1524 | //----------------------------------------------------------------------------- | |
1525 | // Wait a certain time for tag response | |
1526 | // If a response is captured return TRUE | |
1527 | // If it takes to long return FALSE | |
1528 | //----------------------------------------------------------------------------- | |
1529 | static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) //uint8_t *buffer | |
1530 | { | |
1531 | // buffer needs to be 512 bytes | |
1532 | int c; | |
1533 | ||
1534 | // Set FPGA mode to "reader listen mode", no modulation (listen | |
1535 | // only, since we are receiving, not transmitting). | |
1536 | // Signal field is on with the appropriate LED | |
1537 | LED_D_ON(); | |
1538 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); | |
1539 | ||
1540 | // Now get the answer from the card | |
1541 | Demod.output = receivedResponse; | |
1542 | Demod.len = 0; | |
1543 | Demod.state = DEMOD_UNSYNCD; | |
1544 | ||
1545 | uint8_t b; | |
1546 | if (elapsed) *elapsed = 0; | |
1547 | ||
1548 | c = 0; | |
1549 | for(;;) { | |
1550 | WDT_HIT(); | |
1551 | ||
1552 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { | |
1553 | AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! | |
1554 | if (elapsed) (*elapsed)++; | |
1555 | } | |
1556 | if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { | |
1557 | if(c < iso14a_timeout) { c++; } else { return FALSE; } | |
1558 | b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; | |
1559 | if(ManchesterDecoding((b>>4) & 0xf)) { | |
1560 | *samples = ((c - 1) << 3) + 4; | |
1561 | return TRUE; | |
1562 | } | |
1563 | if(ManchesterDecoding(b & 0x0f)) { | |
1564 | *samples = c << 3; | |
1565 | return TRUE; | |
1566 | } | |
1567 | } | |
1568 | } | |
1569 | } | |
1570 | ||
1571 | void ReaderTransmitShort(const uint8_t* bt) | |
1572 | { | |
1573 | int wait = 0; | |
1574 | int samples = 0; | |
1575 | ||
1576 | ShortFrameFromReader(*bt); | |
1577 | ||
1578 | // Select the card | |
1579 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1580 | ||
1581 | // Store reader command in buffer | |
1582 | if (tracing) LogTrace(bt,1,0,GetParity(bt,1),TRUE); | |
1583 | } | |
1584 | ||
1585 | void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par) | |
1586 | { | |
1587 | int wait = 0; | |
1588 | int samples = 0; | |
1589 | ||
1590 | // This is tied to other size changes | |
1591 | // uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024; | |
1592 | CodeIso14443aAsReaderPar(frame,len,par); | |
1593 | ||
1594 | // Select the card | |
1595 | TransmitFor14443a(ToSend, ToSendMax, &samples, &wait); | |
1596 | if(trigger) | |
1597 | LED_A_ON(); | |
1598 | ||
1599 | // Store reader command in buffer | |
1600 | if (tracing) LogTrace(frame,len,0,par,TRUE); | |
1601 | } | |
1602 | ||
1603 | ||
1604 | void ReaderTransmit(uint8_t* frame, int len) | |
1605 | { | |
1606 | // Generate parity and redirect | |
1607 | ReaderTransmitPar(frame,len,GetParity(frame,len)); | |
1608 | } | |
1609 | ||
1610 | int ReaderReceive(uint8_t* receivedAnswer) | |
1611 | { | |
1612 | int samples = 0; | |
1613 | if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; | |
1614 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1615 | if(samples == 0) return FALSE; | |
1616 | return Demod.len; | |
1617 | } | |
1618 | ||
1619 | int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr) | |
1620 | { | |
1621 | int samples = 0; | |
1622 | if (!GetIso14443aAnswerFromTag(receivedAnswer,160,&samples,0)) return FALSE; | |
1623 | if (tracing) LogTrace(receivedAnswer,Demod.len,samples,Demod.parityBits,FALSE); | |
1624 | *parptr = Demod.parityBits; | |
1625 | if(samples == 0) return FALSE; | |
1626 | return Demod.len; | |
1627 | } | |
1628 | ||
1629 | /* performs iso14443a anticolision procedure | |
1630 | * fills the uid pointer unless NULL | |
1631 | * fills resp_data unless NULL */ | |
1632 | int iso14443a_select_card(uint8_t * uid_ptr, iso14a_card_select_t * resp_data, uint32_t * cuid_ptr) { | |
1633 | uint8_t wupa[] = { 0x52 }; // 0x26 - REQA 0x52 - WAKE-UP | |
1634 | uint8_t sel_all[] = { 0x93,0x20 }; | |
1635 | uint8_t sel_uid[] = { 0x93,0x70,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1636 | uint8_t rats[] = { 0xE0,0x80,0x00,0x00 }; // FSD=256, FSDI=8, CID=0 | |
1637 | ||
1638 | uint8_t* resp = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1639 | ||
1640 | uint8_t sak = 0x04; // cascade uid | |
1641 | int cascade_level = 0; | |
1642 | ||
1643 | int len; | |
1644 | ||
1645 | // clear uid | |
1646 | memset(uid_ptr, 0, 8); | |
1647 | ||
1648 | // Broadcast for a card, WUPA (0x52) will force response from all cards in the field | |
1649 | ReaderTransmitShort(wupa); | |
1650 | // Receive the ATQA | |
1651 | if(!ReaderReceive(resp)) return 0; | |
1652 | ||
1653 | if(resp_data) | |
1654 | memcpy(resp_data->atqa, resp, 2); | |
1655 | ||
1656 | // OK we will select at least at cascade 1, lets see if first byte of UID was 0x88 in | |
1657 | // which case we need to make a cascade 2 request and select - this is a long UID | |
1658 | // While the UID is not complete, the 3nd bit (from the right) is set in the SAK. | |
1659 | for(; sak & 0x04; cascade_level++) | |
1660 | { | |
1661 | // SELECT_* (L1: 0x93, L2: 0x95, L3: 0x97) | |
1662 | sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2; | |
1663 | ||
1664 | // SELECT_ALL | |
1665 | ReaderTransmit(sel_all,sizeof(sel_all)); | |
1666 | if (!ReaderReceive(resp)) return 0; | |
1667 | if(uid_ptr) memcpy(uid_ptr + cascade_level*4, resp, 4); | |
1668 | ||
1669 | // calculate crypto UID | |
1670 | if(cuid_ptr) *cuid_ptr = bytes_to_num(resp, 4); | |
1671 | ||
1672 | // Construct SELECT UID command | |
1673 | memcpy(sel_uid+2,resp,5); | |
1674 | AppendCrc14443a(sel_uid,7); | |
1675 | ReaderTransmit(sel_uid,sizeof(sel_uid)); | |
1676 | ||
1677 | // Receive the SAK | |
1678 | if (!ReaderReceive(resp)) return 0; | |
1679 | sak = resp[0]; | |
1680 | } | |
1681 | if(resp_data) { | |
1682 | resp_data->sak = sak; | |
1683 | resp_data->ats_len = 0; | |
1684 | } | |
1685 | //-- this byte not UID, it CT. http://www.nxp.com/documents/application_note/AN10927.pdf page 3 | |
1686 | if (uid_ptr[0] == 0x88) { | |
1687 | memcpy(uid_ptr, uid_ptr + 1, 7); | |
1688 | uid_ptr[7] = 0; | |
1689 | } | |
1690 | ||
1691 | if( (sak & 0x20) == 0) | |
1692 | return 2; // non iso14443a compliant tag | |
1693 | ||
1694 | // Request for answer to select | |
1695 | if(resp_data) { // JCOP cards - if reader sent RATS then there is no MIFARE session at all!!! | |
1696 | AppendCrc14443a(rats, 2); | |
1697 | ReaderTransmit(rats, sizeof(rats)); | |
1698 | ||
1699 | if (!(len = ReaderReceive(resp))) return 0; | |
1700 | ||
1701 | memcpy(resp_data->ats, resp, sizeof(resp_data->ats)); | |
1702 | resp_data->ats_len = len; | |
1703 | } | |
1704 | ||
1705 | return 1; | |
1706 | } | |
1707 | ||
1708 | void iso14443a_setup() { | |
1709 | // Setup SSC | |
1710 | FpgaSetupSsc(); | |
1711 | // Start from off (no field generated) | |
1712 | // Signal field is off with the appropriate LED | |
1713 | LED_D_OFF(); | |
1714 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1715 | SpinDelay(200); | |
1716 | ||
1717 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1718 | ||
1719 | // Now give it time to spin up. | |
1720 | // Signal field is on with the appropriate LED | |
1721 | LED_D_ON(); | |
1722 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1723 | SpinDelay(200); | |
1724 | ||
1725 | iso14a_timeout = 2048; //default | |
1726 | } | |
1727 | ||
1728 | int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) { | |
1729 | uint8_t real_cmd[cmd_len+4]; | |
1730 | real_cmd[0] = 0x0a; //I-Block | |
1731 | real_cmd[1] = 0x00; //CID: 0 //FIXME: allow multiple selected cards | |
1732 | memcpy(real_cmd+2, cmd, cmd_len); | |
1733 | AppendCrc14443a(real_cmd,cmd_len+2); | |
1734 | ||
1735 | ReaderTransmit(real_cmd, cmd_len+4); | |
1736 | size_t len = ReaderReceive(data); | |
1737 | if(!len) | |
1738 | return -1; //DATA LINK ERROR | |
1739 | ||
1740 | return len; | |
1741 | } | |
1742 | ||
1743 | ||
1744 | //----------------------------------------------------------------------------- | |
1745 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1746 | // | |
1747 | //----------------------------------------------------------------------------- | |
1748 | void ReaderIso14443a(UsbCommand * c, UsbCommand * ack) | |
1749 | { | |
1750 | iso14a_command_t param = c->arg[0]; | |
1751 | uint8_t * cmd = c->d.asBytes; | |
1752 | size_t len = c->arg[1]; | |
1753 | ||
1754 | if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(1); | |
1755 | ||
1756 | if(param & ISO14A_CONNECT) { | |
1757 | iso14443a_setup(); | |
1758 | ack->arg[0] = iso14443a_select_card(ack->d.asBytes, (iso14a_card_select_t *) (ack->d.asBytes+12), NULL); | |
1759 | UsbSendPacket((void *)ack, sizeof(UsbCommand)); | |
1760 | } | |
1761 | ||
1762 | if(param & ISO14A_SET_TIMEOUT) { | |
1763 | iso14a_timeout = c->arg[2]; | |
1764 | } | |
1765 | ||
1766 | if(param & ISO14A_SET_TIMEOUT) { | |
1767 | iso14a_timeout = c->arg[2]; | |
1768 | } | |
1769 | ||
1770 | if(param & ISO14A_APDU) { | |
1771 | ack->arg[0] = iso14_apdu(cmd, len, ack->d.asBytes); | |
1772 | UsbSendPacket((void *)ack, sizeof(UsbCommand)); | |
1773 | } | |
1774 | ||
1775 | if(param & ISO14A_RAW) { | |
1776 | if(param & ISO14A_APPEND_CRC) { | |
1777 | AppendCrc14443a(cmd,len); | |
1778 | len += 2; | |
1779 | } | |
1780 | ReaderTransmit(cmd,len); | |
1781 | ack->arg[0] = ReaderReceive(ack->d.asBytes); | |
1782 | UsbSendPacket((void *)ack, sizeof(UsbCommand)); | |
1783 | } | |
1784 | ||
1785 | if(param & ISO14A_REQUEST_TRIGGER) iso14a_set_trigger(0); | |
1786 | ||
1787 | if(param & ISO14A_NO_DISCONNECT) | |
1788 | return; | |
1789 | ||
1790 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1791 | LEDsoff(); | |
1792 | } | |
1793 | //----------------------------------------------------------------------------- | |
1794 | // Read an ISO 14443a tag. Send out commands and store answers. | |
1795 | // | |
1796 | //----------------------------------------------------------------------------- | |
1797 | void ReaderMifare(uint32_t parameter) | |
1798 | { | |
1799 | // Mifare AUTH | |
1800 | uint8_t mf_auth[] = { 0x60,0x00,0xf5,0x7b }; | |
1801 | uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; | |
1802 | ||
1803 | uint8_t* receivedAnswer = (((uint8_t *)BigBuf) + 3560); // was 3560 - tied to other size changes | |
1804 | traceLen = 0; | |
1805 | tracing = false; | |
1806 | ||
1807 | iso14443a_setup(); | |
1808 | ||
1809 | LED_A_ON(); | |
1810 | LED_B_OFF(); | |
1811 | LED_C_OFF(); | |
1812 | ||
1813 | byte_t nt_diff = 0; | |
1814 | LED_A_OFF(); | |
1815 | byte_t par = 0; | |
1816 | //byte_t par_mask = 0xff; | |
1817 | byte_t par_low = 0; | |
1818 | int led_on = TRUE; | |
1819 | uint8_t uid[8]; | |
1820 | uint32_t cuid; | |
1821 | ||
1822 | tracing = FALSE; | |
1823 | byte_t nt[4] = {0,0,0,0}; | |
1824 | byte_t nt_attacked[4], nt_noattack[4]; | |
1825 | byte_t par_list[8] = {0,0,0,0,0,0,0,0}; | |
1826 | byte_t ks_list[8] = {0,0,0,0,0,0,0,0}; | |
1827 | num_to_bytes(parameter, 4, nt_noattack); | |
1828 | int isOK = 0, isNULL = 0; | |
1829 | ||
1830 | while(TRUE) | |
1831 | { | |
1832 | LED_C_ON(); | |
1833 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1834 | SpinDelay(200); | |
1835 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); | |
1836 | LED_C_OFF(); | |
1837 | ||
1838 | // Test if the action was cancelled | |
1839 | if(BUTTON_PRESS()) { | |
1840 | break; | |
1841 | } | |
1842 | ||
1843 | if(!iso14443a_select_card(uid, NULL, &cuid)) continue; | |
1844 | ||
1845 | // Transmit MIFARE_CLASSIC_AUTH | |
1846 | ReaderTransmit(mf_auth, sizeof(mf_auth)); | |
1847 | ||
1848 | // Receive the (16 bit) "random" nonce | |
1849 | if (!ReaderReceive(receivedAnswer)) continue; | |
1850 | memcpy(nt, receivedAnswer, 4); | |
1851 | ||
1852 | // Transmit reader nonce and reader answer | |
1853 | ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar),par); | |
1854 | ||
1855 | // Receive 4 bit answer | |
1856 | if (ReaderReceive(receivedAnswer)) | |
1857 | { | |
1858 | if ( (parameter != 0) && (memcmp(nt, nt_noattack, 4) == 0) ) continue; | |
1859 | ||
1860 | isNULL = !(nt_attacked[0] == 0) && (nt_attacked[1] == 0) && (nt_attacked[2] == 0) && (nt_attacked[3] == 0); | |
1861 | if ( (isNULL != 0 ) && (memcmp(nt, nt_attacked, 4) != 0) ) continue; | |
1862 | ||
1863 | if (nt_diff == 0) | |
1864 | { | |
1865 | LED_A_ON(); | |
1866 | memcpy(nt_attacked, nt, 4); | |
1867 | //par_mask = 0xf8; | |
1868 | par_low = par & 0x07; | |
1869 | } | |
1870 | ||
1871 | led_on = !led_on; | |
1872 | if(led_on) LED_B_ON(); else LED_B_OFF(); | |
1873 | par_list[nt_diff] = par; | |
1874 | ks_list[nt_diff] = receivedAnswer[0] ^ 0x05; | |
1875 | ||
1876 | // Test if the information is complete | |
1877 | if (nt_diff == 0x07) { | |
1878 | isOK = 1; | |
1879 | break; | |
1880 | } | |
1881 | ||
1882 | nt_diff = (nt_diff + 1) & 0x07; | |
1883 | mf_nr_ar[3] = nt_diff << 5; | |
1884 | par = par_low; | |
1885 | } else { | |
1886 | if (nt_diff == 0) | |
1887 | { | |
1888 | par++; | |
1889 | } else { | |
1890 | par = (((par >> 3) + 1) << 3) | par_low; | |
1891 | } | |
1892 | } | |
1893 | } | |
1894 | ||
1895 | LogTrace(nt, 4, 0, GetParity(nt, 4), TRUE); | |
1896 | LogTrace(par_list, 8, 0, GetParity(par_list, 8), TRUE); | |
1897 | LogTrace(ks_list, 8, 0, GetParity(ks_list, 8), TRUE); | |
1898 | ||
1899 | UsbCommand ack = {CMD_ACK, {isOK, 0, 0}}; | |
1900 | memcpy(ack.d.asBytes + 0, uid, 4); | |
1901 | memcpy(ack.d.asBytes + 4, nt, 4); | |
1902 | memcpy(ack.d.asBytes + 8, par_list, 8); | |
1903 | memcpy(ack.d.asBytes + 16, ks_list, 8); | |
1904 | ||
1905 | LED_B_ON(); | |
1906 | UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand)); | |
1907 | LED_B_OFF(); | |
1908 | ||
1909 | // Thats it... | |
1910 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1911 | LEDsoff(); | |
1912 | tracing = TRUE; | |
1913 | ||
1914 | if (MF_DBGLEVEL >= 1) DbpString("COMMAND mifare FINISHED"); | |
1915 | } | |
1916 | ||
1917 | ||
1918 | //----------------------------------------------------------------------------- | |
1919 | // MIFARE 1K simulate. | |
1920 | // | |
1921 | //----------------------------------------------------------------------------- | |
1922 | void Mifare1ksim(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) | |
1923 | { | |
1924 | int cardSTATE = MFEMUL_NOFIELD; | |
1925 | int _7BUID = 0; | |
1926 | int vHf = 0; // in mV | |
1927 | //int nextCycleTimeout = 0; | |
1928 | int res; | |
1929 | // uint32_t timer = 0; | |
1930 | uint32_t selTimer = 0; | |
1931 | uint32_t authTimer = 0; | |
1932 | uint32_t par = 0; | |
1933 | int len = 0; | |
1934 | uint8_t cardWRBL = 0; | |
1935 | uint8_t cardAUTHSC = 0; | |
1936 | uint8_t cardAUTHKEY = 0xff; // no authentication | |
1937 | //uint32_t cardRn = 0; | |
1938 | uint32_t cardRr = 0; | |
1939 | uint32_t cuid = 0; | |
1940 | //uint32_t rn_enc = 0; | |
1941 | uint32_t ans = 0; | |
1942 | uint32_t cardINTREG = 0; | |
1943 | uint8_t cardINTBLOCK = 0; | |
1944 | struct Crypto1State mpcs = {0, 0}; | |
1945 | struct Crypto1State *pcs; | |
1946 | pcs = &mpcs; | |
1947 | ||
1948 | uint8_t* receivedCmd = eml_get_bigbufptr_recbuf(); | |
1949 | uint8_t *response = eml_get_bigbufptr_sendbuf(); | |
1950 | ||
1951 | static uint8_t rATQA[] = {0x04, 0x00}; // Mifare classic 1k 4BUID | |
1952 | ||
1953 | static uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; | |
1954 | static uint8_t rUIDBCC2[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; // !!! | |
1955 | ||
1956 | static uint8_t rSAK[] = {0x08, 0xb6, 0xdd}; | |
1957 | static uint8_t rSAK1[] = {0x04, 0xda, 0x17}; | |
1958 | ||
1959 | static uint8_t rAUTH_NT[] = {0x01, 0x02, 0x03, 0x04}; | |
1960 | // static uint8_t rAUTH_NT[] = {0x1a, 0xac, 0xff, 0x4f}; | |
1961 | static uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; | |
1962 | ||
1963 | // clear trace | |
1964 | traceLen = 0; | |
1965 | tracing = true; | |
1966 | ||
1967 | // Authenticate response - nonce | |
1968 | uint32_t nonce = bytes_to_num(rAUTH_NT, 4); | |
1969 | ||
1970 | // get UID from emul memory | |
1971 | emlGetMemBt(receivedCmd, 7, 1); | |
1972 | _7BUID = !(receivedCmd[0] == 0x00); | |
1973 | if (!_7BUID) { // ---------- 4BUID | |
1974 | rATQA[0] = 0x04; | |
1975 | ||
1976 | emlGetMemBt(rUIDBCC1, 0, 4); | |
1977 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
1978 | } else { // ---------- 7BUID | |
1979 | rATQA[0] = 0x44; | |
1980 | ||
1981 | rUIDBCC1[0] = 0x88; | |
1982 | emlGetMemBt(&rUIDBCC1[1], 0, 3); | |
1983 | rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; | |
1984 | emlGetMemBt(rUIDBCC2, 3, 4); | |
1985 | rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; | |
1986 | } | |
1987 | ||
1988 | // -------------------------------------- test area | |
1989 | ||
1990 | // -------------------------------------- END test area | |
1991 | // start mkseconds counter | |
1992 | StartCountUS(); | |
1993 | ||
1994 | // We need to listen to the high-frequency, peak-detected path. | |
1995 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
1996 | FpgaSetupSsc(); | |
1997 | ||
1998 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); | |
1999 | SpinDelay(200); | |
2000 | ||
2001 | if (MF_DBGLEVEL >= 1) Dbprintf("Started. 7buid=%d", _7BUID); | |
2002 | // calibrate mkseconds counter | |
2003 | GetDeltaCountUS(); | |
2004 | while (true) { | |
2005 | WDT_HIT(); | |
2006 | ||
2007 | if(BUTTON_PRESS()) { | |
2008 | break; | |
2009 | } | |
2010 | ||
2011 | // find reader field | |
2012 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
2013 | // can measure voltages up to 33000 mV | |
2014 | if (cardSTATE == MFEMUL_NOFIELD) { | |
2015 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
2016 | if (vHf > MF_MINFIELDV) { | |
2017 | cardSTATE_TO_IDLE(); | |
2018 | LED_A_ON(); | |
2019 | } | |
2020 | } | |
2021 | ||
2022 | if (cardSTATE != MFEMUL_NOFIELD) { | |
2023 | res = EmGetCmd(receivedCmd, &len, RECV_CMD_SIZE); // (+ nextCycleTimeout) | |
2024 | if (res == 2) { | |
2025 | cardSTATE = MFEMUL_NOFIELD; | |
2026 | LEDsoff(); | |
2027 | continue; | |
2028 | } | |
2029 | if(res) break; | |
2030 | } | |
2031 | ||
2032 | //nextCycleTimeout = 0; | |
2033 | ||
2034 | // if (len) Dbprintf("len:%d cmd: %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3]); | |
2035 | ||
2036 | if (len != 4 && cardSTATE != MFEMUL_NOFIELD) { // len != 4 <---- speed up the code 4 authentication | |
2037 | // REQ or WUP request in ANY state and WUP in HALTED state | |
2038 | if (len == 1 && ((receivedCmd[0] == 0x26 && cardSTATE != MFEMUL_HALTED) || receivedCmd[0] == 0x52)) { | |
2039 | selTimer = GetTickCount(); | |
2040 | EmSendCmdEx(rATQA, sizeof(rATQA), (receivedCmd[0] == 0x52)); | |
2041 | cardSTATE = MFEMUL_SELECT1; | |
2042 | ||
2043 | // init crypto block | |
2044 | LED_B_OFF(); | |
2045 | LED_C_OFF(); | |
2046 | crypto1_destroy(pcs); | |
2047 | cardAUTHKEY = 0xff; | |
2048 | } | |
2049 | } | |
2050 | ||
2051 | switch (cardSTATE) { | |
2052 | case MFEMUL_NOFIELD:{ | |
2053 | break; | |
2054 | } | |
2055 | case MFEMUL_HALTED:{ | |
2056 | break; | |
2057 | } | |
2058 | case MFEMUL_IDLE:{ | |
2059 | break; | |
2060 | } | |
2061 | case MFEMUL_SELECT1:{ | |
2062 | // select all | |
2063 | if (len == 2 && (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x20)) { | |
2064 | EmSendCmd(rUIDBCC1, sizeof(rUIDBCC1)); | |
2065 | break; | |
2066 | } | |
2067 | ||
2068 | // select card | |
2069 | if (len == 9 && | |
2070 | (receivedCmd[0] == 0x93 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC1, 4) == 0)) { | |
2071 | if (!_7BUID) | |
2072 | EmSendCmd(rSAK, sizeof(rSAK)); | |
2073 | else | |
2074 | EmSendCmd(rSAK1, sizeof(rSAK1)); | |
2075 | ||
2076 | cuid = bytes_to_num(rUIDBCC1, 4); | |
2077 | if (!_7BUID) { | |
2078 | cardSTATE = MFEMUL_WORK; | |
2079 | LED_B_ON(); | |
2080 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol1 time: %d", GetTickCount() - selTimer); | |
2081 | break; | |
2082 | } else { | |
2083 | cardSTATE = MFEMUL_SELECT2; | |
2084 | break; | |
2085 | } | |
2086 | } | |
2087 | ||
2088 | break; | |
2089 | } | |
2090 | case MFEMUL_SELECT2:{ | |
2091 | if (!len) break; | |
2092 | ||
2093 | if (len == 2 && (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x20)) { | |
2094 | EmSendCmd(rUIDBCC2, sizeof(rUIDBCC2)); | |
2095 | break; | |
2096 | } | |
2097 | ||
2098 | // select 2 card | |
2099 | if (len == 9 && | |
2100 | (receivedCmd[0] == 0x95 && receivedCmd[1] == 0x70 && memcmp(&receivedCmd[2], rUIDBCC2, 4) == 0)) { | |
2101 | EmSendCmd(rSAK, sizeof(rSAK)); | |
2102 | ||
2103 | cuid = bytes_to_num(rUIDBCC2, 4); | |
2104 | cardSTATE = MFEMUL_WORK; | |
2105 | LED_B_ON(); | |
2106 | if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol2 time: %d", GetTickCount() - selTimer); | |
2107 | break; | |
2108 | } | |
2109 | ||
2110 | // i guess there is a command). go into the work state. | |
2111 | if (len != 4) break; | |
2112 | cardSTATE = MFEMUL_WORK; | |
2113 | goto lbWORK; | |
2114 | } | |
2115 | case MFEMUL_AUTH1:{ | |
2116 | if (len == 8) { | |
2117 | // --- crypto | |
2118 | //rn_enc = bytes_to_num(receivedCmd, 4); | |
2119 | //cardRn = rn_enc ^ crypto1_word(pcs, rn_enc , 1); | |
2120 | cardRr = bytes_to_num(&receivedCmd[4], 4) ^ crypto1_word(pcs, 0, 0); | |
2121 | // test if auth OK | |
2122 | if (cardRr != prng_successor(nonce, 64)){ | |
2123 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH FAILED. cardRr=%08x, succ=%08x", cardRr, prng_successor(nonce, 64)); | |
2124 | cardSTATE_TO_IDLE(); | |
2125 | break; | |
2126 | } | |
2127 | ans = prng_successor(nonce, 96) ^ crypto1_word(pcs, 0, 0); | |
2128 | num_to_bytes(ans, 4, rAUTH_AT); | |
2129 | // --- crypto | |
2130 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2131 | cardSTATE = MFEMUL_AUTH2; | |
2132 | } else { | |
2133 | cardSTATE_TO_IDLE(); | |
2134 | } | |
2135 | if (cardSTATE != MFEMUL_AUTH2) break; | |
2136 | } | |
2137 | case MFEMUL_AUTH2:{ | |
2138 | LED_C_ON(); | |
2139 | cardSTATE = MFEMUL_WORK; | |
2140 | if (MF_DBGLEVEL >= 4) Dbprintf("AUTH COMPLETED. sec=%d, key=%d time=%d", cardAUTHSC, cardAUTHKEY, GetTickCount() - authTimer); | |
2141 | break; | |
2142 | } | |
2143 | case MFEMUL_WORK:{ | |
2144 | lbWORK: if (len == 0) break; | |
2145 | ||
2146 | if (cardAUTHKEY == 0xff) { | |
2147 | // first authentication | |
2148 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { | |
2149 | authTimer = GetTickCount(); | |
2150 | ||
2151 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2152 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2153 | ||
2154 | // --- crypto | |
2155 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
2156 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
2157 | num_to_bytes(nonce, 4, rAUTH_AT); | |
2158 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2159 | // --- crypto | |
2160 | ||
2161 | // last working revision | |
2162 | // EmSendCmd14443aRaw(resp1, resp1Len, 0); | |
2163 | // LogTrace(NULL, 0, GetDeltaCountUS(), 0, true); | |
2164 | ||
2165 | cardSTATE = MFEMUL_AUTH1; | |
2166 | //nextCycleTimeout = 10; | |
2167 | break; | |
2168 | } | |
2169 | } else { | |
2170 | // decrypt seqence | |
2171 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2172 | ||
2173 | // nested authentication | |
2174 | if (len == 4 && (receivedCmd[0] == 0x60 || receivedCmd[0] == 0x61)) { | |
2175 | authTimer = GetTickCount(); | |
2176 | ||
2177 | cardAUTHSC = receivedCmd[1] / 4; // received block num | |
2178 | cardAUTHKEY = receivedCmd[0] - 0x60; | |
2179 | ||
2180 | // --- crypto | |
2181 | crypto1_create(pcs, emlGetKey(cardAUTHSC, cardAUTHKEY)); | |
2182 | ans = nonce ^ crypto1_word(pcs, cuid ^ nonce, 0); | |
2183 | num_to_bytes(ans, 4, rAUTH_AT); | |
2184 | EmSendCmd(rAUTH_AT, sizeof(rAUTH_AT)); | |
2185 | // --- crypto | |
2186 | ||
2187 | cardSTATE = MFEMUL_AUTH1; | |
2188 | //nextCycleTimeout = 10; | |
2189 | break; | |
2190 | } | |
2191 | } | |
2192 | ||
2193 | // rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued | |
2194 | // BUT... ACK --> NACK | |
2195 | if (len == 1 && receivedCmd[0] == CARD_ACK) { | |
2196 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2197 | break; | |
2198 | } | |
2199 | ||
2200 | // rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK) | |
2201 | if (len == 1 && receivedCmd[0] == CARD_NACK_NA) { | |
2202 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2203 | break; | |
2204 | } | |
2205 | ||
2206 | // read block | |
2207 | if (len == 4 && receivedCmd[0] == 0x30) { | |
2208 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2209 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2210 | break; | |
2211 | } | |
2212 | emlGetMem(response, receivedCmd[1], 1); | |
2213 | AppendCrc14443a(response, 16); | |
2214 | mf_crypto1_encrypt(pcs, response, 18, &par); | |
2215 | EmSendCmdPar(response, 18, par); | |
2216 | break; | |
2217 | } | |
2218 | ||
2219 | // write block | |
2220 | if (len == 4 && receivedCmd[0] == 0xA0) { | |
2221 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2222 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2223 | break; | |
2224 | } | |
2225 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2226 | //nextCycleTimeout = 50; | |
2227 | cardSTATE = MFEMUL_WRITEBL2; | |
2228 | cardWRBL = receivedCmd[1]; | |
2229 | break; | |
2230 | } | |
2231 | ||
2232 | // works with cardINTREG | |
2233 | ||
2234 | // increment, decrement, restore | |
2235 | if (len == 4 && (receivedCmd[0] == 0xC0 || receivedCmd[0] == 0xC1 || receivedCmd[0] == 0xC2)) { | |
2236 | if (receivedCmd[1] >= 16 * 4 || | |
2237 | receivedCmd[1] / 4 != cardAUTHSC || | |
2238 | emlCheckValBl(receivedCmd[1])) { | |
2239 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2240 | break; | |
2241 | } | |
2242 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2243 | if (receivedCmd[0] == 0xC1) | |
2244 | cardSTATE = MFEMUL_INTREG_INC; | |
2245 | if (receivedCmd[0] == 0xC0) | |
2246 | cardSTATE = MFEMUL_INTREG_DEC; | |
2247 | if (receivedCmd[0] == 0xC2) | |
2248 | cardSTATE = MFEMUL_INTREG_REST; | |
2249 | cardWRBL = receivedCmd[1]; | |
2250 | ||
2251 | break; | |
2252 | } | |
2253 | ||
2254 | ||
2255 | // transfer | |
2256 | if (len == 4 && receivedCmd[0] == 0xB0) { | |
2257 | if (receivedCmd[1] >= 16 * 4 || receivedCmd[1] / 4 != cardAUTHSC) { | |
2258 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2259 | break; | |
2260 | } | |
2261 | ||
2262 | if (emlSetValBl(cardINTREG, cardINTBLOCK, receivedCmd[1])) | |
2263 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2264 | else | |
2265 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2266 | ||
2267 | break; | |
2268 | } | |
2269 | ||
2270 | // halt | |
2271 | if (len == 4 && (receivedCmd[0] == 0x50 && receivedCmd[1] == 0x00)) { | |
2272 | LED_B_OFF(); | |
2273 | LED_C_OFF(); | |
2274 | cardSTATE = MFEMUL_HALTED; | |
2275 | if (MF_DBGLEVEL >= 4) Dbprintf("--> HALTED. Selected time: %d ms", GetTickCount() - selTimer); | |
2276 | break; | |
2277 | } | |
2278 | ||
2279 | // command not allowed | |
2280 | if (len == 4) { | |
2281 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2282 | break; | |
2283 | } | |
2284 | ||
2285 | // case break | |
2286 | break; | |
2287 | } | |
2288 | case MFEMUL_WRITEBL2:{ | |
2289 | if (len == 18){ | |
2290 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2291 | emlSetMem(receivedCmd, cardWRBL, 1); | |
2292 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_ACK)); | |
2293 | cardSTATE = MFEMUL_WORK; | |
2294 | break; | |
2295 | } else { | |
2296 | cardSTATE_TO_IDLE(); | |
2297 | break; | |
2298 | } | |
2299 | break; | |
2300 | } | |
2301 | ||
2302 | case MFEMUL_INTREG_INC:{ | |
2303 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2304 | memcpy(&ans, receivedCmd, 4); | |
2305 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2306 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2307 | cardSTATE_TO_IDLE(); | |
2308 | break; | |
2309 | } | |
2310 | cardINTREG = cardINTREG + ans; | |
2311 | cardSTATE = MFEMUL_WORK; | |
2312 | break; | |
2313 | } | |
2314 | case MFEMUL_INTREG_DEC:{ | |
2315 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2316 | memcpy(&ans, receivedCmd, 4); | |
2317 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2318 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2319 | cardSTATE_TO_IDLE(); | |
2320 | break; | |
2321 | } | |
2322 | cardINTREG = cardINTREG - ans; | |
2323 | cardSTATE = MFEMUL_WORK; | |
2324 | break; | |
2325 | } | |
2326 | case MFEMUL_INTREG_REST:{ | |
2327 | mf_crypto1_decrypt(pcs, receivedCmd, len); | |
2328 | memcpy(&ans, receivedCmd, 4); | |
2329 | if (emlGetValBl(&cardINTREG, &cardINTBLOCK, cardWRBL)) { | |
2330 | EmSend4bit(mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA)); | |
2331 | cardSTATE_TO_IDLE(); | |
2332 | break; | |
2333 | } | |
2334 | cardSTATE = MFEMUL_WORK; | |
2335 | break; | |
2336 | } | |
2337 | } | |
2338 | } | |
2339 | ||
2340 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
2341 | LEDsoff(); | |
2342 | ||
2343 | // add trace trailer | |
2344 | memset(rAUTH_NT, 0x44, 4); | |
2345 | LogTrace(rAUTH_NT, 4, 0, 0, TRUE); | |
2346 | ||
2347 | if (MF_DBGLEVEL >= 1) Dbprintf("Emulator stopped. Tracing: %d trace length: %d ", tracing, traceLen); | |
2348 | } | |
2349 | ||
2350 | //----------------------------------------------------------------------------- | |
2351 | // MIFARE sniffer. | |
2352 | // | |
2353 | //----------------------------------------------------------------------------- | |
2354 | void RAMFUNC SniffMifare(uint8_t param) { | |
2355 | // param: | |
2356 | // bit 0 - trigger from first card answer | |
2357 | // bit 1 - trigger from first reader 7-bit request | |
2358 | ||
2359 | // C(red) A(yellow) B(green) | |
2360 | LEDsoff(); | |
2361 | // init trace buffer | |
2362 | traceLen = 0; | |
2363 | memset(trace, 0x44, TRACE_SIZE); | |
2364 | ||
2365 | // The command (reader -> tag) that we're receiving. | |
2366 | // The length of a received command will in most cases be no more than 18 bytes. | |
2367 | // So 32 should be enough! | |
2368 | uint8_t *receivedCmd = (((uint8_t *)BigBuf) + RECV_CMD_OFFSET); | |
2369 | // The response (tag -> reader) that we're receiving. | |
2370 | uint8_t *receivedResponse = (((uint8_t *)BigBuf) + RECV_RES_OFFSET); | |
2371 | ||
2372 | // As we receive stuff, we copy it from receivedCmd or receivedResponse | |
2373 | // into trace, along with its length and other annotations. | |
2374 | //uint8_t *trace = (uint8_t *)BigBuf; | |
2375 | ||
2376 | // The DMA buffer, used to stream samples from the FPGA | |
2377 | int8_t *dmaBuf = ((int8_t *)BigBuf) + DMA_BUFFER_OFFSET; | |
2378 | int8_t *data = dmaBuf; | |
2379 | int maxDataLen = 0; | |
2380 | int dataLen = 0; | |
2381 | ||
2382 | // Set up the demodulator for tag -> reader responses. | |
2383 | Demod.output = receivedResponse; | |
2384 | Demod.len = 0; | |
2385 | Demod.state = DEMOD_UNSYNCD; | |
2386 | ||
2387 | // Set up the demodulator for the reader -> tag commands | |
2388 | memset(&Uart, 0, sizeof(Uart)); | |
2389 | Uart.output = receivedCmd; | |
2390 | Uart.byteCntMax = 32; // was 100 (greg)////////////////// | |
2391 | Uart.state = STATE_UNSYNCD; | |
2392 | ||
2393 | // Setup for the DMA. | |
2394 | FpgaSetupSsc(); | |
2395 | FpgaSetupSscDma((uint8_t *)dmaBuf, DMA_BUFFER_SIZE); | |
2396 | ||
2397 | // And put the FPGA in the appropriate mode | |
2398 | // Signal field is off with the appropriate LED | |
2399 | LED_D_OFF(); | |
2400 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); | |
2401 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
2402 | ||
2403 | // init sniffer | |
2404 | MfSniffInit(); | |
2405 | int sniffCounter = 0; | |
2406 | ||
2407 | // And now we loop, receiving samples. | |
2408 | while(true) { | |
2409 | if(BUTTON_PRESS()) { | |
2410 | DbpString("cancelled by button"); | |
2411 | goto done; | |
2412 | } | |
2413 | ||
2414 | LED_A_ON(); | |
2415 | WDT_HIT(); | |
2416 | ||
2417 | if (++sniffCounter > 65) { | |
2418 | if (MfSniffSend(2000)) { | |
2419 | FpgaEnableSscDma(); | |
2420 | } | |
2421 | sniffCounter = 0; | |
2422 | } | |
2423 | ||
2424 | int register readBufDataP = data - dmaBuf; | |
2425 | int register dmaBufDataP = DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; | |
2426 | if (readBufDataP <= dmaBufDataP){ | |
2427 | dataLen = dmaBufDataP - readBufDataP; | |
2428 | } else { | |
2429 | dataLen = DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP + 1; | |
2430 | } | |
2431 | // test for length of buffer | |
2432 | if(dataLen > maxDataLen) { | |
2433 | maxDataLen = dataLen; | |
2434 | if(dataLen > 400) { | |
2435 | Dbprintf("blew circular buffer! dataLen=0x%x", dataLen); | |
2436 | goto done; | |
2437 | } | |
2438 | } | |
2439 | if(dataLen < 1) continue; | |
2440 | ||
2441 | // primary buffer was stopped( <-- we lost data! | |
2442 | if (!AT91C_BASE_PDC_SSC->PDC_RCR) { | |
2443 | AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; | |
2444 | AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; | |
2445 | Dbprintf("RxEmpty ERROR!!! data length:%d", dataLen); // temporary | |
2446 | } | |
2447 | // secondary buffer sets as primary, secondary buffer was stopped | |
2448 | if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { | |
2449 | AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; | |
2450 | AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; | |
2451 | } | |
2452 | ||
2453 | LED_A_OFF(); | |
2454 | ||
2455 | if(MillerDecoding((data[0] & 0xF0) >> 4)) { | |
2456 | LED_C_INV(); | |
2457 | // check - if there is a short 7bit request from reader | |
2458 | if (MfSniffLogic(receivedCmd, Uart.byteCnt, Uart.parityBits, Uart.bitCnt, TRUE)) break; | |
2459 | ||
2460 | /* And ready to receive another command. */ | |
2461 | Uart.state = STATE_UNSYNCD; | |
2462 | ||
2463 | /* And also reset the demod code */ | |
2464 | Demod.state = DEMOD_UNSYNCD; | |
2465 | } | |
2466 | ||
2467 | if(ManchesterDecoding(data[0] & 0x0F)) { | |
2468 | LED_C_INV(); | |
2469 | ||
2470 | if (MfSniffLogic(receivedResponse, Demod.len, Demod.parityBits, Demod.bitCount, FALSE)) break; | |
2471 | ||
2472 | // And ready to receive another response. | |
2473 | memset(&Demod, 0, sizeof(Demod)); | |
2474 | Demod.output = receivedResponse; | |
2475 | Demod.state = DEMOD_UNSYNCD; | |
2476 | ||
2477 | /* And also reset the uart code */ | |
2478 | Uart.state = STATE_UNSYNCD; | |
2479 | } | |
2480 | ||
2481 | data++; | |
2482 | if(data > dmaBuf + DMA_BUFFER_SIZE) { | |
2483 | data = dmaBuf; | |
2484 | } | |
2485 | } // main cycle | |
2486 | ||
2487 | DbpString("COMMAND FINISHED"); | |
2488 | ||
2489 | done: | |
2490 | FpgaDisableSscDma(); | |
2491 | MfSniffEnd(); | |
2492 | ||
2493 | Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x Uart.byteCntMax=%x", maxDataLen, Uart.state, Uart.byteCnt, Uart.byteCntMax); | |
2494 | LEDsoff(); | |
2495 | } |