]>
Commit | Line | Data |
---|---|---|
1 | /***************************************************************************** | |
2 | * This file is part of iClassCipher. It is a reconstructon of the cipher engine | |
3 | * used in iClass, and RFID techology. | |
4 | * | |
5 | * The implementation is based on the work performed by | |
6 | * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and | |
7 | * Milosch Meriac in the paper "Dismantling IClass". | |
8 | * | |
9 | * Copyright (C) 2014 Martin Holst Swende | |
10 | * | |
11 | * This is free software: you can redistribute it and/or modify | |
12 | * it under the terms of the GNU General Public License version 2 as published | |
13 | * by the Free Software Foundation. | |
14 | * | |
15 | * This file is distributed in the hope that it will be useful, | |
16 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | * GNU General Public License for more details. | |
19 | * | |
20 | * You should have received a copy of the GNU General Public License | |
21 | * along with IClassCipher. If not, see <http://www.gnu.org/licenses/>. | |
22 | ****************************************************************************/ | |
23 | ||
24 | #include <stdio.h> | |
25 | #include <stdlib.h> | |
26 | #include <string.h> | |
27 | #include <stdbool.h> | |
28 | #include <stdint.h> | |
29 | #include "loclass/cipher.h" | |
30 | #include "loclass/cipherutils.h" | |
31 | #include "loclass/ikeys.h" | |
32 | ||
33 | uint8_t keytable[] = { 0,0,0,0,0,0,0,0}; | |
34 | ||
35 | /** | |
36 | * Definition 2. The feedback function for the top register T : F 16/2 → F 2 | |
37 | * is defined as | |
38 | * T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 . | |
39 | **/ | |
40 | bool T(State state) | |
41 | { | |
42 | bool x0 = state.t & 0x8000; | |
43 | bool x1 = state.t & 0x4000; | |
44 | bool x5 = state.t & 0x0400; | |
45 | bool x7 = state.t & 0x0100; | |
46 | bool x10 = state.t & 0x0020; | |
47 | bool x11 = state.t & 0x0010; | |
48 | bool x14 = state.t & 0x0002; | |
49 | bool x15 = state.t & 0x0001; | |
50 | return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15; | |
51 | } | |
52 | /** | |
53 | * Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as | |
54 | * B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 . | |
55 | **/ | |
56 | bool B(State state) | |
57 | { | |
58 | bool x1 = state.b & 0x40; | |
59 | bool x2 = state.b & 0x20; | |
60 | bool x3 = state.b & 0x10; | |
61 | bool x7 = state.b & 0x01; | |
62 | ||
63 | return x1 ^ x2 ^ x3 ^ x7; | |
64 | ||
65 | } | |
66 | ||
67 | ||
68 | /** | |
69 | * Definition 3 (Selection function). The selection function select : F 2 × F 2 × | |
70 | * F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where | |
71 | * z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 ) | |
72 | * z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y | |
73 | * z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x | |
74 | **/ | |
75 | uint8_t _select(bool x, bool y, uint8_t r) | |
76 | { | |
77 | bool r0 = r >> 7 & 0x1; | |
78 | bool r1 = r >> 6 & 0x1; | |
79 | bool r2 = r >> 5 & 0x1; | |
80 | bool r3 = r >> 4 & 0x1; | |
81 | bool r4 = r >> 3 & 0x1; | |
82 | bool r5 = r >> 2 & 0x1; | |
83 | bool r6 = r >> 1 & 0x1; | |
84 | bool r7 = r & 0x1; | |
85 | ||
86 | bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); | |
87 | bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; | |
88 | bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; | |
89 | ||
90 | // The three bitz z0.. z1 are packed into a uint8_t: | |
91 | // 00000ZZZ | |
92 | //Return value is a uint8_t | |
93 | uint8_t retval = 0; | |
94 | retval |= (z0 << 2) & 4; | |
95 | retval |= (z1 << 1) & 2; | |
96 | retval |= z2 & 1; | |
97 | ||
98 | // Return value 0 <= retval <= 7 | |
99 | return retval; | |
100 | } | |
101 | ||
102 | /** | |
103 | * Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8 | |
104 | * be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ = | |
105 | * l ′ , r ′ , t ′ , b ′ is defined as | |
106 | * t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r | |
107 | * b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l | |
108 | * | |
109 | * @param s - state | |
110 | * @param k - array containing 8 bytes | |
111 | **/ | |
112 | State successor(uint8_t* k, State s, bool y) | |
113 | { | |
114 | bool r0 = s.r >> 7 & 0x1; | |
115 | bool r4 = s.r >> 3 & 0x1; | |
116 | bool r7 = s.r & 0x1; | |
117 | ||
118 | State successor = {0,0,0,0}; | |
119 | ||
120 | successor.t = s.t >> 1; | |
121 | successor.t |= (T(s) ^ r0 ^ r4) << 15; | |
122 | ||
123 | successor.b = s.b >> 1; | |
124 | successor.b |= (B(s) ^ r7) << 7; | |
125 | ||
126 | bool Tt = T(s); | |
127 | ||
128 | successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF; | |
129 | successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF; | |
130 | ||
131 | return successor; | |
132 | } | |
133 | /** | |
134 | * We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and | |
135 | * an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc | |
136 | * to multiple bit input x ∈ F n 2 which we define as | |
137 | * @param k - array containing 8 bytes | |
138 | **/ | |
139 | State suc(uint8_t* k,State s, BitstreamIn *bitstream) | |
140 | { | |
141 | if(bitsLeft(bitstream) == 0) | |
142 | { | |
143 | return s; | |
144 | } | |
145 | bool lastbit = tailBit(bitstream); | |
146 | return successor(k,suc(k,s,bitstream), lastbit); | |
147 | } | |
148 | ||
149 | /** | |
150 | * Definition 5 (Output). Define the function output which takes an internal | |
151 | * state s =< l, r, t, b > and returns the bit r 5 . We also define the function output | |
152 | * on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as | |
153 | * output(k, s, ǫ) = ǫ | |
154 | * output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n ) | |
155 | * where s ′ = suc(k, s, x 0 ). | |
156 | **/ | |
157 | void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out) | |
158 | { | |
159 | if(bitsLeft(in) == 0) | |
160 | { | |
161 | return; | |
162 | } | |
163 | //printf("bitsleft %d" , bitsLeft(in)); | |
164 | //printf(" %0d", s.r >> 2 & 1); | |
165 | pushBit(out,(s.r >> 2) & 1); | |
166 | //Remove first bit | |
167 | uint8_t x0 = headBit(in); | |
168 | State ss = successor(k,s,x0); | |
169 | output(k,ss,in, out); | |
170 | } | |
171 | ||
172 | /** | |
173 | * Definition 6 (Initial state). Define the function init which takes as input a | |
174 | * key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b > | |
175 | **/ | |
176 | ||
177 | State init(uint8_t* k) | |
178 | { | |
179 | State s = { | |
180 | ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l | |
181 | ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r | |
182 | 0x4c, // b | |
183 | 0xE012 // t | |
184 | }; | |
185 | return s; | |
186 | } | |
187 | void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out) | |
188 | { | |
189 | uint8_t zeroes_32[] = {0,0,0,0}; | |
190 | BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0}; | |
191 | State initState = suc(k,init(k),&input); | |
192 | output(k,initState,&input_32_zeroes,&out); | |
193 | ||
194 | } | |
195 | ||
196 | ||
197 | void printarr(char * name, uint8_t* arr, int len) | |
198 | { | |
199 | int i ; | |
200 | printf("uint8_t %s[] = {", name); | |
201 | for(i =0 ; i< len ; i++) | |
202 | { | |
203 | printf("0x%02x,",*(arr+i)); | |
204 | } | |
205 | printf("};\n"); | |
206 | } | |
207 | ||
208 | int testMAC() | |
209 | { | |
210 | ||
211 | //From the "dismantling.IClass" paper: | |
212 | uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0}; | |
213 | // But actually, that must be reversed, it's "on-the-wire" data | |
214 | reverse_arraybytes(cc_nr,sizeof(cc_nr)); | |
215 | ||
216 | //From the paper | |
217 | uint8_t div_key[] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9}; | |
218 | uint8_t correct_MAC[] = {0x1d,0x49,0xC9,0xDA}; | |
219 | ||
220 | BitstreamIn bitstream = {cc_nr,sizeof(cc_nr) * 8,0}; | |
221 | uint8_t dest []= {0,0,0,0,0,0,0,0}; | |
222 | BitstreamOut out = { dest, sizeof(dest)*8, 0 }; | |
223 | MAC(div_key,bitstream, out); | |
224 | //The output MAC must also be reversed | |
225 | reverse_arraybytes(dest, sizeof(dest)); | |
226 | ||
227 | if(false && memcmp(dest, correct_MAC,4) == 0) | |
228 | { | |
229 | printf("MAC calculation OK!\n"); | |
230 | ||
231 | }else | |
232 | { | |
233 | printf("MAC calculation failed\n"); | |
234 | printarr("Calculated_MAC", dest, 4); | |
235 | printarr("Correct_MAC ", correct_MAC, 4); | |
236 | return 1; | |
237 | } | |
238 | return 0; | |
239 | } | |
240 | ||
241 | int calc_iclass_mac(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t *mac) | |
242 | { | |
243 | uint8_t *cc_nr; | |
244 | uint8_t div_key[8]; | |
245 | cc_nr=(uint8_t*)malloc(length+1); | |
246 | memcpy(cc_nr,cc_nr_p,length); | |
247 | memcpy(div_key,div_key_p,8); | |
248 | ||
249 | reverse_arraybytes(cc_nr,length); | |
250 | BitstreamIn bitstream = {cc_nr,length * 8,0}; | |
251 | uint8_t dest []= {0,0,0,0,0,0,0,0}; | |
252 | BitstreamOut out = { dest, sizeof(dest)*8, 0 }; | |
253 | MAC(div_key,bitstream, out); | |
254 | //The output MAC must also be reversed | |
255 | reverse_arraybytes(dest, sizeof(dest)); | |
256 | ||
257 | printf("Calculated_MAC\t%02x%02x%02x%02x\n", dest[0],dest[1],dest[2],dest[3]); | |
258 | memcpy(mac,dest,4); | |
259 | free(cc_nr); | |
260 | return 1; | |
261 | } |