]>
Commit | Line | Data |
---|---|---|
1 | #ifndef _CRYPTO1_BS_H | |
2 | #define _CRYPTO1_BS_H | |
3 | #include <stdbool.h> | |
4 | #include <stdint.h> | |
5 | #include <stdio.h> | |
6 | #include <string.h> | |
7 | #include <stdlib.h> | |
8 | #include <unistd.h> | |
9 | ||
10 | // bitslice type | |
11 | // while AVX supports 256 bit vector floating point operations, we need integer operations for boolean logic | |
12 | // same for AVX2 and 512 bit vectors | |
13 | // using larger vectors works but seems to generate more register pressure | |
14 | #if defined(__AVX2__) | |
15 | #define MAX_BITSLICES 256 | |
16 | #elif defined(__AVX__) | |
17 | #define MAX_BITSLICES 128 | |
18 | #elif defined(__SSE2__) | |
19 | #define MAX_BITSLICES 128 | |
20 | #else | |
21 | #define MAX_BITSLICES 64 | |
22 | #endif | |
23 | ||
24 | #define VECTOR_SIZE (MAX_BITSLICES/8) | |
25 | typedef unsigned int __attribute__((aligned(VECTOR_SIZE))) __attribute__((vector_size(VECTOR_SIZE))) bitslice_value_t; | |
26 | typedef union { | |
27 | bitslice_value_t value; | |
28 | uint64_t bytes64[MAX_BITSLICES/64]; | |
29 | uint8_t bytes[MAX_BITSLICES/8]; | |
30 | } bitslice_t; | |
31 | ||
32 | // filter function (f20) | |
33 | // sourced from ``Wirelessly Pickpocketing a Mifare Classic Card'' by Flavio Garcia, Peter van Rossum, Roel Verdult and Ronny Wichers Schreur | |
34 | #define f20a(a,b,c,d) (((a|b)^(a&d))^(c&((a^b)|d))) | |
35 | #define f20b(a,b,c,d) (((a&b)|c)^((a^b)&(c|d))) | |
36 | #define f20c(a,b,c,d,e) ((a|((b|e)&(d^e)))^((a^(b&d))&((c^d)|(b&e)))) | |
37 | ||
38 | #define crypto1_bs_f20(s) \ | |
39 | f20c(f20a((s[47- 9].value), (s[47-11].value), (s[47-13].value), (s[47-15].value)), \ | |
40 | f20b((s[47-17].value), (s[47-19].value), (s[47-21].value), (s[47-23].value)), \ | |
41 | f20b((s[47-25].value), (s[47-27].value), (s[47-29].value), (s[47-31].value)), \ | |
42 | f20a((s[47-33].value), (s[47-35].value), (s[47-37].value), (s[47-39].value)), \ | |
43 | f20b((s[47-41].value), (s[47-43].value), (s[47-45].value), (s[47-47].value))) | |
44 | ||
45 | // bit indexing | |
46 | #define get_bit(n, word) ((word >> (n)) & 1) | |
47 | #define get_vector_bit(slice, value) get_bit(slice&0x3f, value.bytes64[slice>>6]) | |
48 | ||
49 | // constant ones/zeroes | |
50 | bitslice_t bs_ones; | |
51 | bitslice_t bs_zeroes; | |
52 | ||
53 | // size of crypto-1 state | |
54 | #define STATE_SIZE 48 | |
55 | // size of nonce to be decrypted | |
56 | #define KEYSTREAM_SIZE 32 | |
57 | // size of first uid^nonce byte to be rolled back to the initial key | |
58 | #define ROLLBACK_SIZE 8 | |
59 | // number of nonces required to test to cover entire 48-bit state | |
60 | // I would have said it's 12... but bla goes with 100, so I do too | |
61 | #define NONCE_TESTS 100 | |
62 | ||
63 | // state pointer management | |
64 | extern __thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE]; | |
65 | extern __thread bitslice_t * restrict state_p; | |
66 | ||
67 | // rewind to the point a0, at which KEYSTREAM_SIZE more bits can be generated | |
68 | #define crypto1_bs_rewind_a0() (state_p = &states[KEYSTREAM_SIZE]) | |
69 | ||
70 | // bitsliced bytewise parity | |
71 | #define bitsliced_byte_parity(n) (n[0].value ^ n[1].value ^ n[2].value ^ n[3].value ^ n[4].value ^ n[5].value ^ n[6].value ^ n[7].value) | |
72 | ||
73 | // 48-bit crypto-1 states are normally represented using 64-bit values | |
74 | typedef union { | |
75 | uint64_t value; | |
76 | uint8_t bytes[8]; | |
77 | } state_t; | |
78 | ||
79 | // endianness conversion | |
80 | #define rev32(word) (((word & 0xff) << 24) | (((word >> 8) & 0xff) << 16) | (((word >> 16) & 0xff) << 8) | (((word >> 24) & 0xff))) | |
81 | #define rev64(x) (rev32(x)<<32|(rev32((x>>32)))) | |
82 | #define rev_state_t rev64 | |
83 | ||
84 | // crypto-1 functions | |
85 | const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted); | |
86 | const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted); | |
87 | ||
88 | // initialization functions | |
89 | void crypto1_bs_init(); | |
90 | ||
91 | // conversion functions | |
92 | void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len); | |
93 | void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]); | |
94 | ||
95 | // debug print | |
96 | void crypto1_bs_print_states(bitslice_t *bitsliced_states); | |
97 | ||
98 | #endif // _CRYPTO1_BS_H | |
99 |