]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // The main application code. This is the first thing called after start.c | |
3 | // executes. | |
4 | // Jonathan Westhues, Mar 2006 | |
5 | // Edits by Gerhard de Koning Gans, Sep 2007 (##) | |
6 | //----------------------------------------------------------------------------- | |
7 | ||
8 | ||
9 | #include <proxmark3.h> | |
10 | #include <stdlib.h> | |
11 | #include "apps.h" | |
12 | #ifdef WITH_LCD | |
13 | #include "fonts.h" | |
14 | #include "LCD.h" | |
15 | #endif | |
16 | ||
17 | // The large multi-purpose buffer, typically used to hold A/D samples, | |
18 | // maybe pre-processed in some way. | |
19 | DWORD BigBuf[16000]; | |
20 | int usbattached = 0; | |
21 | ||
22 | //============================================================================= | |
23 | // A buffer where we can queue things up to be sent through the FPGA, for | |
24 | // any purpose (fake tag, as reader, whatever). We go MSB first, since that | |
25 | // is the order in which they go out on the wire. | |
26 | //============================================================================= | |
27 | ||
28 | BYTE ToSend[256]; | |
29 | int ToSendMax; | |
30 | static int ToSendBit; | |
31 | ||
32 | ||
33 | void BufferClear(void) | |
34 | { | |
35 | memset(BigBuf,0,sizeof(BigBuf)); | |
36 | DbpString("Buffer cleared"); | |
37 | } | |
38 | ||
39 | void ToSendReset(void) | |
40 | { | |
41 | ToSendMax = -1; | |
42 | ToSendBit = 8; | |
43 | } | |
44 | ||
45 | void ToSendStuffBit(int b) | |
46 | { | |
47 | if(ToSendBit >= 8) { | |
48 | ToSendMax++; | |
49 | ToSend[ToSendMax] = 0; | |
50 | ToSendBit = 0; | |
51 | } | |
52 | ||
53 | if(b) { | |
54 | ToSend[ToSendMax] |= (1 << (7 - ToSendBit)); | |
55 | } | |
56 | ||
57 | ToSendBit++; | |
58 | ||
59 | if(ToSendBit >= sizeof(ToSend)) { | |
60 | ToSendBit = 0; | |
61 | DbpString("ToSendStuffBit overflowed!"); | |
62 | } | |
63 | } | |
64 | ||
65 | //============================================================================= | |
66 | // Debug print functions, to go out over USB, to the usual PC-side client. | |
67 | //============================================================================= | |
68 | ||
69 | void DbpString(char *str) | |
70 | { | |
71 | /* this holds up stuff unless we're connected to usb */ | |
72 | // if (!usbattached) | |
73 | // return; | |
74 | ||
75 | UsbCommand c; | |
76 | c.cmd = CMD_DEBUG_PRINT_STRING; | |
77 | c.ext1 = strlen(str); | |
78 | memcpy(c.d.asBytes, str, c.ext1); | |
79 | ||
80 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
81 | // TODO fix USB so stupid things like this aren't req'd | |
82 | SpinDelay(50); | |
83 | } | |
84 | ||
85 | void DbpIntegers(int x1, int x2, int x3) | |
86 | { | |
87 | /* this holds up stuff unless we're connected to usb */ | |
88 | // if (!usbattached) | |
89 | // return; | |
90 | ||
91 | UsbCommand c; | |
92 | c.cmd = CMD_DEBUG_PRINT_INTEGERS; | |
93 | c.ext1 = x1; | |
94 | c.ext2 = x2; | |
95 | c.ext3 = x3; | |
96 | ||
97 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
98 | // XXX | |
99 | SpinDelay(50); | |
100 | } | |
101 | ||
102 | void AcquireRawAdcSamples125k(BOOL at134khz) | |
103 | { | |
104 | if(at134khz) { | |
105 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
106 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
107 | } else { | |
108 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
109 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
110 | } | |
111 | ||
112 | // Connect the A/D to the peak-detected low-frequency path. | |
113 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
114 | ||
115 | // Give it a bit of time for the resonant antenna to settle. | |
116 | SpinDelay(50); | |
117 | ||
118 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
119 | FpgaSetupSsc(); | |
120 | ||
121 | // Now call the acquisition routine | |
122 | DoAcquisition125k(at134khz); | |
123 | } | |
124 | ||
125 | // split into two routines so we can avoid timing issues after sending commands // | |
126 | void DoAcquisition125k(BOOL at134khz) | |
127 | { | |
128 | BYTE *dest = (BYTE *)BigBuf; | |
129 | int n = sizeof(BigBuf); | |
130 | int i; | |
131 | ||
132 | memset(dest,0,n); | |
133 | i = 0; | |
134 | for(;;) { | |
135 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
136 | SSC_TRANSMIT_HOLDING = 0x43; | |
137 | LED_D_ON(); | |
138 | } | |
139 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
140 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
141 | i++; | |
142 | LED_D_OFF(); | |
143 | if(i >= n) { | |
144 | break; | |
145 | } | |
146 | } | |
147 | } | |
148 | DbpIntegers(dest[0], dest[1], at134khz); | |
149 | } | |
150 | ||
151 | void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYTE *command) | |
152 | { | |
153 | BOOL at134khz; | |
154 | ||
155 | // see if 'h' was specified | |
156 | if(command[strlen((char *) command) - 1] == 'h') | |
157 | at134khz= TRUE; | |
158 | else | |
159 | at134khz= FALSE; | |
160 | ||
161 | if(at134khz) { | |
162 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
163 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
164 | } else { | |
165 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
166 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
167 | } | |
168 | ||
169 | // Give it a bit of time for the resonant antenna to settle. | |
170 | SpinDelay(50); | |
171 | ||
172 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
173 | FpgaSetupSsc(); | |
174 | ||
175 | // now modulate the reader field | |
176 | while(*command != '\0' && *command != ' ') | |
177 | { | |
178 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
179 | LED_D_OFF(); | |
180 | SpinDelayUs(delay_off); | |
181 | if(at134khz) { | |
182 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
183 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
184 | } else { | |
185 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
186 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
187 | } | |
188 | LED_D_ON(); | |
189 | if(*(command++) == '0') | |
190 | SpinDelayUs(period_0); | |
191 | else | |
192 | SpinDelayUs(period_1); | |
193 | } | |
194 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
195 | LED_D_OFF(); | |
196 | SpinDelayUs(delay_off); | |
197 | if(at134khz) { | |
198 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
199 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_134_KHZ); | |
200 | } else { | |
201 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
202 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
203 | } | |
204 | ||
205 | // now do the read | |
206 | DoAcquisition125k(at134khz); | |
207 | } | |
208 | ||
209 | //----------------------------------------------------------------------------- | |
210 | // Read an ADC channel and block till it completes, then return the result | |
211 | // in ADC units (0 to 1023). Also a routine to average 32 samples and | |
212 | // return that. | |
213 | //----------------------------------------------------------------------------- | |
214 | static int ReadAdc(int ch) | |
215 | { | |
216 | DWORD d; | |
217 | ||
218 | ADC_CONTROL = ADC_CONTROL_RESET; | |
219 | ADC_MODE = ADC_MODE_PRESCALE(32) | ADC_MODE_STARTUP_TIME(16) | | |
220 | ADC_MODE_SAMPLE_HOLD_TIME(8); | |
221 | ADC_CHANNEL_ENABLE = ADC_CHANNEL(ch); | |
222 | ||
223 | ADC_CONTROL = ADC_CONTROL_START; | |
224 | while(!(ADC_STATUS & ADC_END_OF_CONVERSION(ch))) | |
225 | ; | |
226 | d = ADC_CHANNEL_DATA(ch); | |
227 | ||
228 | return d; | |
229 | } | |
230 | ||
231 | static int AvgAdc(int ch) | |
232 | { | |
233 | int i; | |
234 | int a = 0; | |
235 | ||
236 | for(i = 0; i < 32; i++) { | |
237 | a += ReadAdc(ch); | |
238 | } | |
239 | ||
240 | return (a + 15) >> 5; | |
241 | } | |
242 | ||
243 | void MeasureAntennaTuning(void) | |
244 | { | |
245 | BYTE *dest = (BYTE *)BigBuf; | |
246 | int i, ptr = 0, adcval = 0, peak = 0, peakv = 0, peakf = 0;; | |
247 | int vLf125 = 0, vLf134 = 0, vHf = 0; // in mV | |
248 | ||
249 | UsbCommand c; | |
250 | ||
251 | DbpString("Measuring antenna characteristics, please wait."); | |
252 | memset(BigBuf,0,sizeof(BigBuf)); | |
253 | ||
254 | /* | |
255 | * Sweeps the useful LF range of the proxmark from | |
256 | * 46.8kHz (divisor=255) to 600kHz (divisor=19) and | |
257 | * read the voltage in the antenna, the result left | |
258 | * in the buffer is a graph which should clearly show | |
259 | * the resonating frequency of your LF antenna | |
260 | * ( hopefully around 95 if it is tuned to 125kHz!) | |
261 | */ | |
262 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER); | |
263 | for (i=255; i>19; i--) { | |
264 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i); | |
265 | SpinDelay(20); | |
266 | // Vref = 3.3V, and a 10000:240 voltage divider on the input | |
267 | // can measure voltages up to 137500 mV | |
268 | adcval = ((137500 * AvgAdc(ADC_CHAN_LF)) >> 10); | |
269 | if (i==95) vLf125 = adcval; // voltage at 125Khz | |
270 | if (i==89) vLf134 = adcval; // voltage at 134Khz | |
271 | ||
272 | dest[i] = adcval>>8; // scale int to fit in byte for graphing purposes | |
273 | if(dest[i] > peak) { | |
274 | peakv = adcval; | |
275 | peak = dest[i]; | |
276 | peakf = i; | |
277 | ptr = i; | |
278 | } | |
279 | } | |
280 | ||
281 | // Let the FPGA drive the high-frequency antenna around 13.56 MHz. | |
282 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); | |
283 | SpinDelay(20); | |
284 | // Vref = 3300mV, and an 10:1 voltage divider on the input | |
285 | // can measure voltages up to 33000 mV | |
286 | vHf = (33000 * AvgAdc(ADC_CHAN_HF)) >> 10; | |
287 | ||
288 | c.cmd = CMD_MEASURED_ANTENNA_TUNING; | |
289 | c.ext1 = (vLf125 << 0) | (vLf134 << 16); | |
290 | c.ext2 = vHf; | |
291 | c.ext3 = peakf | (peakv << 16); | |
292 | UsbSendPacket((BYTE *)&c, sizeof(c)); | |
293 | } | |
294 | ||
295 | void SimulateTagLowFrequency(int period, int ledcontrol) | |
296 | { | |
297 | int i; | |
298 | BYTE *tab = (BYTE *)BigBuf; | |
299 | ||
300 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_SIMULATOR); | |
301 | ||
302 | PIO_ENABLE = (1 << GPIO_SSC_DOUT) | (1 << GPIO_SSC_CLK); | |
303 | ||
304 | PIO_OUTPUT_ENABLE = (1 << GPIO_SSC_DOUT); | |
305 | PIO_OUTPUT_DISABLE = (1 << GPIO_SSC_CLK); | |
306 | ||
307 | #define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
308 | #define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
309 | ||
310 | i = 0; | |
311 | for(;;) { | |
312 | while(!(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK))) { | |
313 | if(BUTTON_PRESS()) { | |
314 | DbpString("Stopped"); | |
315 | return; | |
316 | } | |
317 | WDT_HIT(); | |
318 | } | |
319 | ||
320 | if (ledcontrol) | |
321 | LED_D_ON(); | |
322 | ||
323 | if(tab[i]) | |
324 | OPEN_COIL(); | |
325 | else | |
326 | SHORT_COIL(); | |
327 | ||
328 | if (ledcontrol) | |
329 | LED_D_OFF(); | |
330 | ||
331 | while(PIO_PIN_DATA_STATUS & (1<<GPIO_SSC_CLK)) { | |
332 | if(BUTTON_PRESS()) { | |
333 | DbpString("Stopped"); | |
334 | return; | |
335 | } | |
336 | WDT_HIT(); | |
337 | } | |
338 | ||
339 | i++; | |
340 | if(i == period) i = 0; | |
341 | } | |
342 | } | |
343 | ||
344 | // compose fc/8 fc/10 waveform | |
345 | static void fc(int c, int *n) { | |
346 | BYTE *dest = (BYTE *)BigBuf; | |
347 | int idx; | |
348 | ||
349 | // for when we want an fc8 pattern every 4 logical bits | |
350 | if(c==0) { | |
351 | dest[((*n)++)]=1; | |
352 | dest[((*n)++)]=1; | |
353 | dest[((*n)++)]=0; | |
354 | dest[((*n)++)]=0; | |
355 | dest[((*n)++)]=0; | |
356 | dest[((*n)++)]=0; | |
357 | dest[((*n)++)]=0; | |
358 | dest[((*n)++)]=0; | |
359 | } | |
360 | // an fc/8 encoded bit is a bit pattern of 11000000 x6 = 48 samples | |
361 | if(c==8) { | |
362 | for (idx=0; idx<6; idx++) { | |
363 | dest[((*n)++)]=1; | |
364 | dest[((*n)++)]=1; | |
365 | dest[((*n)++)]=0; | |
366 | dest[((*n)++)]=0; | |
367 | dest[((*n)++)]=0; | |
368 | dest[((*n)++)]=0; | |
369 | dest[((*n)++)]=0; | |
370 | dest[((*n)++)]=0; | |
371 | } | |
372 | } | |
373 | ||
374 | // an fc/10 encoded bit is a bit pattern of 1110000000 x5 = 50 samples | |
375 | if(c==10) { | |
376 | for (idx=0; idx<5; idx++) { | |
377 | dest[((*n)++)]=1; | |
378 | dest[((*n)++)]=1; | |
379 | dest[((*n)++)]=1; | |
380 | dest[((*n)++)]=0; | |
381 | dest[((*n)++)]=0; | |
382 | dest[((*n)++)]=0; | |
383 | dest[((*n)++)]=0; | |
384 | dest[((*n)++)]=0; | |
385 | dest[((*n)++)]=0; | |
386 | dest[((*n)++)]=0; | |
387 | } | |
388 | } | |
389 | } | |
390 | ||
391 | // prepare a waveform pattern in the buffer based on the ID given then | |
392 | // simulate a HID tag until the button is pressed | |
393 | static void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
394 | { | |
395 | int n=0, i=0; | |
396 | /* | |
397 | HID tag bitstream format | |
398 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
399 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
400 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
401 | A fc8 is inserted before every 4 bits | |
402 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
403 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
404 | */ | |
405 | ||
406 | if (hi>0xFFF) { | |
407 | DbpString("Tags can only have 44 bits."); | |
408 | return; | |
409 | } | |
410 | fc(0,&n); | |
411 | // special start of frame marker containing invalid bit sequences | |
412 | fc(8, &n); fc(8, &n); // invalid | |
413 | fc(8, &n); fc(10, &n); // logical 0 | |
414 | fc(10, &n); fc(10, &n); // invalid | |
415 | fc(8, &n); fc(10, &n); // logical 0 | |
416 | ||
417 | WDT_HIT(); | |
418 | // manchester encode bits 43 to 32 | |
419 | for (i=11; i>=0; i--) { | |
420 | if ((i%4)==3) fc(0,&n); | |
421 | if ((hi>>i)&1) { | |
422 | fc(10, &n); fc(8, &n); // low-high transition | |
423 | } else { | |
424 | fc(8, &n); fc(10, &n); // high-low transition | |
425 | } | |
426 | } | |
427 | ||
428 | WDT_HIT(); | |
429 | // manchester encode bits 31 to 0 | |
430 | for (i=31; i>=0; i--) { | |
431 | if ((i%4)==3) fc(0,&n); | |
432 | if ((lo>>i)&1) { | |
433 | fc(10, &n); fc(8, &n); // low-high transition | |
434 | } else { | |
435 | fc(8, &n); fc(10, &n); // high-low transition | |
436 | } | |
437 | } | |
438 | ||
439 | if (ledcontrol) | |
440 | LED_A_ON(); | |
441 | SimulateTagLowFrequency(n, ledcontrol); | |
442 | ||
443 | if (ledcontrol) | |
444 | LED_A_OFF(); | |
445 | } | |
446 | ||
447 | // loop to capture raw HID waveform then FSK demodulate the TAG ID from it | |
448 | static void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
449 | { | |
450 | BYTE *dest = (BYTE *)BigBuf; | |
451 | int m=0, n=0, i=0, idx=0, found=0, lastval=0; | |
452 | DWORD hi=0, lo=0; | |
453 | ||
454 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
455 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | FPGA_LF_READER_USE_125_KHZ); | |
456 | ||
457 | // Connect the A/D to the peak-detected low-frequency path. | |
458 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
459 | ||
460 | // Give it a bit of time for the resonant antenna to settle. | |
461 | SpinDelay(50); | |
462 | ||
463 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
464 | FpgaSetupSsc(); | |
465 | ||
466 | for(;;) { | |
467 | WDT_HIT(); | |
468 | if (ledcontrol) | |
469 | LED_A_ON(); | |
470 | if(BUTTON_PRESS()) { | |
471 | DbpString("Stopped"); | |
472 | if (ledcontrol) | |
473 | LED_A_OFF(); | |
474 | return; | |
475 | } | |
476 | ||
477 | i = 0; | |
478 | m = sizeof(BigBuf); | |
479 | memset(dest,128,m); | |
480 | for(;;) { | |
481 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
482 | SSC_TRANSMIT_HOLDING = 0x43; | |
483 | if (ledcontrol) | |
484 | LED_D_ON(); | |
485 | } | |
486 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
487 | dest[i] = (BYTE)SSC_RECEIVE_HOLDING; | |
488 | // we don't care about actual value, only if it's more or less than a | |
489 | // threshold essentially we capture zero crossings for later analysis | |
490 | if(dest[i] < 127) dest[i] = 0; else dest[i] = 1; | |
491 | i++; | |
492 | if (ledcontrol) | |
493 | LED_D_OFF(); | |
494 | if(i >= m) { | |
495 | break; | |
496 | } | |
497 | } | |
498 | } | |
499 | ||
500 | // FSK demodulator | |
501 | ||
502 | // sync to first lo-hi transition | |
503 | for( idx=1; idx<m; idx++) { | |
504 | if (dest[idx-1]<dest[idx]) | |
505 | lastval=idx; | |
506 | break; | |
507 | } | |
508 | WDT_HIT(); | |
509 | ||
510 | // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) | |
511 | // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere | |
512 | // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 | |
513 | for( i=0; idx<m; idx++) { | |
514 | if (dest[idx-1]<dest[idx]) { | |
515 | dest[i]=idx-lastval; | |
516 | if (dest[i] <= 8) { | |
517 | dest[i]=1; | |
518 | } else { | |
519 | dest[i]=0; | |
520 | } | |
521 | ||
522 | lastval=idx; | |
523 | i++; | |
524 | } | |
525 | } | |
526 | m=i; | |
527 | WDT_HIT(); | |
528 | ||
529 | // we now have a set of cycle counts, loop over previous results and aggregate data into bit patterns | |
530 | lastval=dest[0]; | |
531 | idx=0; | |
532 | i=0; | |
533 | n=0; | |
534 | for( idx=0; idx<m; idx++) { | |
535 | if (dest[idx]==lastval) { | |
536 | n++; | |
537 | } else { | |
538 | // a bit time is five fc/10 or six fc/8 cycles so figure out how many bits a pattern width represents, | |
539 | // an extra fc/8 pattern preceeds every 4 bits (about 200 cycles) just to complicate things but it gets | |
540 | // swallowed up by rounding | |
541 | // expected results are 1 or 2 bits, any more and it's an invalid manchester encoding | |
542 | // special start of frame markers use invalid manchester states (no transitions) by using sequences | |
543 | // like 111000 | |
544 | if (dest[idx-1]) { | |
545 | n=(n+1)/6; // fc/8 in sets of 6 | |
546 | } else { | |
547 | n=(n+1)/5; // fc/10 in sets of 5 | |
548 | } | |
549 | switch (n) { // stuff appropriate bits in buffer | |
550 | case 0: | |
551 | case 1: // one bit | |
552 | dest[i++]=dest[idx-1]; | |
553 | break; | |
554 | case 2: // two bits | |
555 | dest[i++]=dest[idx-1]; | |
556 | dest[i++]=dest[idx-1]; | |
557 | break; | |
558 | case 3: // 3 bit start of frame markers | |
559 | dest[i++]=dest[idx-1]; | |
560 | dest[i++]=dest[idx-1]; | |
561 | dest[i++]=dest[idx-1]; | |
562 | break; | |
563 | // When a logic 0 is immediately followed by the start of the next transmisson | |
564 | // (special pattern) a pattern of 4 bit duration lengths is created. | |
565 | case 4: | |
566 | dest[i++]=dest[idx-1]; | |
567 | dest[i++]=dest[idx-1]; | |
568 | dest[i++]=dest[idx-1]; | |
569 | dest[i++]=dest[idx-1]; | |
570 | break; | |
571 | default: // this shouldn't happen, don't stuff any bits | |
572 | break; | |
573 | } | |
574 | n=0; | |
575 | lastval=dest[idx]; | |
576 | } | |
577 | } | |
578 | m=i; | |
579 | WDT_HIT(); | |
580 | ||
581 | // final loop, go over previously decoded manchester data and decode into usable tag ID | |
582 | // 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0 | |
583 | for( idx=0; idx<m-6; idx++) { | |
584 | // search for a start of frame marker | |
585 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
586 | { | |
587 | found=1; | |
588 | idx+=6; | |
589 | if (found && (hi|lo)) { | |
590 | DbpString("TAG ID"); | |
591 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
592 | /* if we're only looking for one tag */ | |
593 | if (findone) | |
594 | { | |
595 | *high = hi; | |
596 | *low = lo; | |
597 | return; | |
598 | } | |
599 | hi=0; | |
600 | lo=0; | |
601 | found=0; | |
602 | } | |
603 | } | |
604 | if (found) { | |
605 | if (dest[idx] && (!dest[idx+1]) ) { | |
606 | hi=(hi<<1)|(lo>>31); | |
607 | lo=(lo<<1)|0; | |
608 | } else if ( (!dest[idx]) && dest[idx+1]) { | |
609 | hi=(hi<<1)|(lo>>31); | |
610 | lo=(lo<<1)|1; | |
611 | } else { | |
612 | found=0; | |
613 | hi=0; | |
614 | lo=0; | |
615 | } | |
616 | idx++; | |
617 | } | |
618 | if ( dest[idx] && dest[idx+1] && dest[idx+2] && (!dest[idx+3]) && (!dest[idx+4]) && (!dest[idx+5]) ) | |
619 | { | |
620 | found=1; | |
621 | idx+=6; | |
622 | if (found && (hi|lo)) { | |
623 | DbpString("TAG ID"); | |
624 | DbpIntegers(hi, lo, (lo>>1)&0xffff); | |
625 | /* if we're only looking for one tag */ | |
626 | if (findone) | |
627 | { | |
628 | *high = hi; | |
629 | *low = lo; | |
630 | return; | |
631 | } | |
632 | hi=0; | |
633 | lo=0; | |
634 | found=0; | |
635 | } | |
636 | } | |
637 | } | |
638 | WDT_HIT(); | |
639 | } | |
640 | } | |
641 | ||
642 | void SimulateTagHfListen(void) | |
643 | { | |
644 | BYTE *dest = (BYTE *)BigBuf; | |
645 | int n = sizeof(BigBuf); | |
646 | BYTE v = 0; | |
647 | int i; | |
648 | int p = 0; | |
649 | ||
650 | // We're using this mode just so that I can test it out; the simulated | |
651 | // tag mode would work just as well and be simpler. | |
652 | FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP); | |
653 | ||
654 | // We need to listen to the high-frequency, peak-detected path. | |
655 | SetAdcMuxFor(GPIO_MUXSEL_HIPKD); | |
656 | ||
657 | FpgaSetupSsc(); | |
658 | ||
659 | i = 0; | |
660 | for(;;) { | |
661 | if(SSC_STATUS & (SSC_STATUS_TX_READY)) { | |
662 | SSC_TRANSMIT_HOLDING = 0xff; | |
663 | } | |
664 | if(SSC_STATUS & (SSC_STATUS_RX_READY)) { | |
665 | BYTE r = (BYTE)SSC_RECEIVE_HOLDING; | |
666 | ||
667 | v <<= 1; | |
668 | if(r & 1) { | |
669 | v |= 1; | |
670 | } | |
671 | p++; | |
672 | ||
673 | if(p >= 8) { | |
674 | dest[i] = v; | |
675 | v = 0; | |
676 | p = 0; | |
677 | i++; | |
678 | ||
679 | if(i >= n) { | |
680 | break; | |
681 | } | |
682 | } | |
683 | } | |
684 | } | |
685 | DbpString("simulate tag (now type bitsamples)"); | |
686 | } | |
687 | ||
688 | void UsbPacketReceived(BYTE *packet, int len) | |
689 | { | |
690 | UsbCommand *c = (UsbCommand *)packet; | |
691 | ||
692 | switch(c->cmd) { | |
693 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
694 | AcquireRawAdcSamples125k(c->ext1); | |
695 | break; | |
696 | ||
697 | case CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K: | |
698 | ModThenAcquireRawAdcSamples125k(c->ext1,c->ext2,c->ext3,c->d.asBytes); | |
699 | break; | |
700 | ||
701 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693: | |
702 | AcquireRawAdcSamplesIso15693(); | |
703 | break; | |
704 | ||
705 | case CMD_BUFF_CLEAR: | |
706 | BufferClear(); | |
707 | break; | |
708 | ||
709 | case CMD_READER_ISO_15693: | |
710 | ReaderIso15693(c->ext1); | |
711 | break; | |
712 | ||
713 | case CMD_SIMTAG_ISO_15693: | |
714 | SimTagIso15693(c->ext1); | |
715 | break; | |
716 | ||
717 | case CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443: | |
718 | AcquireRawAdcSamplesIso14443(c->ext1); | |
719 | break; | |
720 | ||
721 | case CMD_READ_SRI512_TAG: | |
722 | ReadSRI512Iso14443(c->ext1); | |
723 | break; | |
724 | ||
725 | case CMD_READER_ISO_14443a: | |
726 | ReaderIso14443a(c->ext1); | |
727 | break; | |
728 | ||
729 | case CMD_SNOOP_ISO_14443: | |
730 | SnoopIso14443(); | |
731 | break; | |
732 | ||
733 | case CMD_SNOOP_ISO_14443a: | |
734 | SnoopIso14443a(); | |
735 | break; | |
736 | ||
737 | case CMD_SIMULATE_TAG_HF_LISTEN: | |
738 | SimulateTagHfListen(); | |
739 | break; | |
740 | ||
741 | case CMD_SIMULATE_TAG_ISO_14443: | |
742 | SimulateIso14443Tag(); | |
743 | break; | |
744 | ||
745 | case CMD_SIMULATE_TAG_ISO_14443a: | |
746 | SimulateIso14443aTag(c->ext1, c->ext2); // ## Simulate iso14443a tag - pass tag type & UID | |
747 | break; | |
748 | ||
749 | case CMD_MEASURE_ANTENNA_TUNING: | |
750 | MeasureAntennaTuning(); | |
751 | break; | |
752 | ||
753 | case CMD_LISTEN_READER_FIELD: | |
754 | ListenReaderField(c->ext1); | |
755 | break; | |
756 | ||
757 | case CMD_HID_DEMOD_FSK: | |
758 | CmdHIDdemodFSK(0, 0, 0, 1); // Demodulate HID tag | |
759 | break; | |
760 | ||
761 | case CMD_HID_SIM_TAG: | |
762 | CmdHIDsimTAG(c->ext1, c->ext2, 1); // Simulate HID tag by ID | |
763 | break; | |
764 | ||
765 | case CMD_FPGA_MAJOR_MODE_OFF: // ## FPGA Control | |
766 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
767 | SpinDelay(200); | |
768 | LED_D_OFF(); // LED D indicates field ON or OFF | |
769 | break; | |
770 | ||
771 | case CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K: | |
772 | case CMD_DOWNLOAD_RAW_BITS_TI_TYPE: { | |
773 | UsbCommand n; | |
774 | if(c->cmd == CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K) { | |
775 | n.cmd = CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K; | |
776 | } else { | |
777 | n.cmd = CMD_DOWNLOADED_RAW_BITS_TI_TYPE; | |
778 | } | |
779 | n.ext1 = c->ext1; | |
780 | memcpy(n.d.asDwords, BigBuf+c->ext1, 12*sizeof(DWORD)); | |
781 | UsbSendPacket((BYTE *)&n, sizeof(n)); | |
782 | break; | |
783 | } | |
784 | case CMD_DOWNLOADED_SIM_SAMPLES_125K: { | |
785 | BYTE *b = (BYTE *)BigBuf; | |
786 | memcpy(b+c->ext1, c->d.asBytes, 48); | |
787 | break; | |
788 | } | |
789 | case CMD_SIMULATE_TAG_125K: | |
790 | LED_A_ON(); | |
791 | SimulateTagLowFrequency(c->ext1, 1); | |
792 | LED_A_OFF(); | |
793 | break; | |
794 | #ifdef WITH_LCD | |
795 | case CMD_LCD_RESET: | |
796 | LCDReset(); | |
797 | break; | |
798 | #endif | |
799 | case CMD_READ_MEM: | |
800 | ReadMem(c->ext1); | |
801 | break; | |
802 | case CMD_SET_LF_DIVISOR: | |
803 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, c->ext1); | |
804 | break; | |
805 | #ifdef WITH_LCD | |
806 | case CMD_LCD: | |
807 | LCDSend(c->ext1); | |
808 | break; | |
809 | #endif | |
810 | case CMD_SETUP_WRITE: | |
811 | case CMD_FINISH_WRITE: | |
812 | case CMD_HARDWARE_RESET: | |
813 | USB_D_PLUS_PULLUP_OFF(); | |
814 | SpinDelay(1000); | |
815 | SpinDelay(1000); | |
816 | RSTC_CONTROL = RST_CONTROL_KEY | RST_CONTROL_PROCESSOR_RESET; | |
817 | for(;;) { | |
818 | // We're going to reset, and the bootrom will take control. | |
819 | } | |
820 | break; | |
821 | ||
822 | ||
823 | default: | |
824 | DbpString("unknown command"); | |
825 | break; | |
826 | } | |
827 | } | |
828 | ||
829 | void ReadMem(int addr) | |
830 | { | |
831 | const DWORD *data = ((DWORD *)addr); | |
832 | int i; | |
833 | ||
834 | DbpString("Reading memory at address"); | |
835 | DbpIntegers(0, 0, addr); | |
836 | for (i = 0; i < 8; i+= 2) | |
837 | DbpIntegers(0, data[i], data[i+1]); | |
838 | } | |
839 | ||
840 | void AppMain(void) | |
841 | { | |
842 | memset(BigBuf,0,sizeof(BigBuf)); | |
843 | SpinDelay(100); | |
844 | ||
845 | LED_D_OFF(); | |
846 | LED_C_OFF(); | |
847 | LED_B_OFF(); | |
848 | LED_A_OFF(); | |
849 | ||
850 | UsbStart(); | |
851 | ||
852 | // The FPGA gets its clock from us from PCK0 output, so set that up. | |
853 | PIO_PERIPHERAL_B_SEL = (1 << GPIO_PCK0); | |
854 | PIO_DISABLE = (1 << GPIO_PCK0); | |
855 | PMC_SYS_CLK_ENABLE = PMC_SYS_CLK_PROGRAMMABLE_CLK_0; | |
856 | // PCK0 is PLL clock / 4 = 96Mhz / 4 = 24Mhz | |
857 | PMC_PROGRAMMABLE_CLK_0 = PMC_CLK_SELECTION_PLL_CLOCK | | |
858 | PMC_CLK_PRESCALE_DIV_4; | |
859 | PIO_OUTPUT_ENABLE = (1 << GPIO_PCK0); | |
860 | ||
861 | // Reset SPI | |
862 | SPI_CONTROL = SPI_CONTROL_RESET; | |
863 | // Reset SSC | |
864 | SSC_CONTROL = SSC_CONTROL_RESET; | |
865 | ||
866 | // Load the FPGA image, which we have stored in our flash. | |
867 | FpgaDownloadAndGo(); | |
868 | ||
869 | #ifdef WITH_LCD | |
870 | ||
871 | LCDInit(); | |
872 | ||
873 | // test text on different colored backgrounds | |
874 | LCDString(" The quick brown fox ", &FONT6x8,1,1+8*0,WHITE ,BLACK ); | |
875 | LCDString(" jumped over the ", &FONT6x8,1,1+8*1,BLACK ,WHITE ); | |
876 | LCDString(" lazy dog. ", &FONT6x8,1,1+8*2,YELLOW ,RED ); | |
877 | LCDString(" AaBbCcDdEeFfGgHhIiJj ", &FONT6x8,1,1+8*3,RED ,GREEN ); | |
878 | LCDString(" KkLlMmNnOoPpQqRrSsTt ", &FONT6x8,1,1+8*4,MAGENTA,BLUE ); | |
879 | LCDString("UuVvWwXxYyZz0123456789", &FONT6x8,1,1+8*5,BLUE ,YELLOW); | |
880 | LCDString("`-=[]_;',./~!@#$%^&*()", &FONT6x8,1,1+8*6,BLACK ,CYAN ); | |
881 | LCDString(" _+{}|:\\\"<>? ",&FONT6x8,1,1+8*7,BLUE ,MAGENTA); | |
882 | ||
883 | // color bands | |
884 | LCDFill(0, 1+8* 8, 132, 8, BLACK); | |
885 | LCDFill(0, 1+8* 9, 132, 8, WHITE); | |
886 | LCDFill(0, 1+8*10, 132, 8, RED); | |
887 | LCDFill(0, 1+8*11, 132, 8, GREEN); | |
888 | LCDFill(0, 1+8*12, 132, 8, BLUE); | |
889 | LCDFill(0, 1+8*13, 132, 8, YELLOW); | |
890 | LCDFill(0, 1+8*14, 132, 8, CYAN); | |
891 | LCDFill(0, 1+8*15, 132, 8, MAGENTA); | |
892 | ||
893 | #endif | |
894 | ||
895 | for(;;) { | |
896 | usbattached = UsbPoll(FALSE); | |
897 | WDT_HIT(); | |
898 | ||
899 | if (BUTTON_HELD(1000) > 0) | |
900 | SamyRun(); | |
901 | } | |
902 | } | |
903 | ||
904 | ||
905 | // samy's sniff and repeat routine | |
906 | void SamyRun() | |
907 | { | |
908 | DbpString("Stand-alone mode! No PC necessary."); | |
909 | ||
910 | // 3 possible options? no just 2 for now | |
911 | #define OPTS 2 | |
912 | ||
913 | int high[OPTS], low[OPTS]; | |
914 | ||
915 | // Oooh pretty -- notify user we're in elite samy mode now | |
916 | LED(LED_RED, 200); | |
917 | LED(LED_ORANGE, 200); | |
918 | LED(LED_GREEN, 200); | |
919 | LED(LED_ORANGE, 200); | |
920 | LED(LED_RED, 200); | |
921 | LED(LED_ORANGE, 200); | |
922 | LED(LED_GREEN, 200); | |
923 | LED(LED_ORANGE, 200); | |
924 | LED(LED_RED, 200); | |
925 | ||
926 | int selected = 0; | |
927 | int playing = 0; | |
928 | ||
929 | // Turn on selected LED | |
930 | LED(selected + 1, 0); | |
931 | ||
932 | for (;;) | |
933 | { | |
934 | usbattached = UsbPoll(FALSE); | |
935 | WDT_HIT(); | |
936 | ||
937 | // Was our button held down or pressed? | |
938 | int button_pressed = BUTTON_HELD(1000); | |
939 | SpinDelay(300); | |
940 | ||
941 | // Button was held for a second, begin recording | |
942 | if (button_pressed > 0) | |
943 | { | |
944 | LEDsoff(); | |
945 | LED(selected + 1, 0); | |
946 | LED(LED_RED2, 0); | |
947 | ||
948 | // record | |
949 | DbpString("Starting recording"); | |
950 | ||
951 | // wait for button to be released | |
952 | while(BUTTON_PRESS()) | |
953 | WDT_HIT(); | |
954 | ||
955 | /* need this delay to prevent catching some weird data */ | |
956 | SpinDelay(500); | |
957 | ||
958 | CmdHIDdemodFSK(1, &high[selected], &low[selected], 0); | |
959 | DbpString("Recorded"); | |
960 | DbpIntegers(selected, high[selected], low[selected]); | |
961 | ||
962 | LEDsoff(); | |
963 | LED(selected + 1, 0); | |
964 | // Finished recording | |
965 | ||
966 | // If we were previously playing, set playing off | |
967 | // so next button push begins playing what we recorded | |
968 | playing = 0; | |
969 | } | |
970 | ||
971 | // Change where to record (or begin playing) | |
972 | else if (button_pressed) | |
973 | { | |
974 | // Next option if we were previously playing | |
975 | if (playing) | |
976 | selected = (selected + 1) % OPTS; | |
977 | playing = !playing; | |
978 | ||
979 | LEDsoff(); | |
980 | LED(selected + 1, 0); | |
981 | ||
982 | // Begin transmitting | |
983 | if (playing) | |
984 | { | |
985 | LED(LED_GREEN, 0); | |
986 | DbpString("Playing"); | |
987 | // wait for button to be released | |
988 | while(BUTTON_PRESS()) | |
989 | WDT_HIT(); | |
990 | DbpIntegers(selected, high[selected], low[selected]); | |
991 | CmdHIDsimTAG(high[selected], low[selected], 0); | |
992 | DbpString("Done playing"); | |
993 | if (BUTTON_HELD(1000) > 0) | |
994 | { | |
995 | DbpString("Exiting"); | |
996 | LEDsoff(); | |
997 | return; | |
998 | } | |
999 | ||
1000 | /* We pressed a button so ignore it here with a delay */ | |
1001 | SpinDelay(300); | |
1002 | ||
1003 | // when done, we're done playing, move to next option | |
1004 | selected = (selected + 1) % OPTS; | |
1005 | playing = !playing; | |
1006 | LEDsoff(); | |
1007 | LED(selected + 1, 0); | |
1008 | } | |
1009 | else | |
1010 | while(BUTTON_PRESS()) | |
1011 | WDT_HIT(); | |
1012 | } | |
1013 | } | |
1014 | } | |
1015 | ||
1016 | ||
1017 | // listen for external reader | |
1018 | void ListenReaderField(int limit) | |
1019 | { | |
1020 | int lf_av, lf_av_new, lf_baseline= 0, lf_count= 0; | |
1021 | int hf_av, hf_av_new, hf_baseline= 0, hf_count= 0; | |
1022 | ||
1023 | #define LF_ONLY 1 | |
1024 | #define HF_ONLY 2 | |
1025 | ||
1026 | LED_A_OFF(); | |
1027 | LED_B_OFF(); | |
1028 | LED_C_OFF(); | |
1029 | LED_D_OFF(); | |
1030 | ||
1031 | lf_av= ReadAdc(ADC_CHAN_LF); | |
1032 | ||
1033 | if(limit != HF_ONLY) | |
1034 | { | |
1035 | DbpString("LF 125/134 Baseline:"); | |
1036 | DbpIntegers(lf_av,0,0); | |
1037 | lf_baseline= lf_av; | |
1038 | } | |
1039 | ||
1040 | hf_av= ReadAdc(ADC_CHAN_HF); | |
1041 | ||
1042 | ||
1043 | if (limit != LF_ONLY) | |
1044 | { | |
1045 | DbpString("HF 13.56 Baseline:"); | |
1046 | DbpIntegers(hf_av,0,0); | |
1047 | hf_baseline= hf_av; | |
1048 | } | |
1049 | ||
1050 | for(;;) | |
1051 | { | |
1052 | if(BUTTON_PRESS()) | |
1053 | { | |
1054 | DbpString("Stopped"); | |
1055 | LED_B_OFF(); | |
1056 | LED_D_OFF(); | |
1057 | return; | |
1058 | } | |
1059 | WDT_HIT(); | |
1060 | ||
1061 | ||
1062 | if (limit != HF_ONLY) | |
1063 | { | |
1064 | if (abs(lf_av - lf_baseline) > 10) | |
1065 | LED_D_ON(); | |
1066 | else | |
1067 | LED_D_OFF(); | |
1068 | ++lf_count; | |
1069 | lf_av_new= ReadAdc(ADC_CHAN_LF); | |
1070 | // see if there's a significant change | |
1071 | if(abs(lf_av - lf_av_new) > 10) | |
1072 | { | |
1073 | DbpString("LF 125/134 Field Change:"); | |
1074 | DbpIntegers(lf_av,lf_av_new,lf_count); | |
1075 | lf_av= lf_av_new; | |
1076 | lf_count= 0; | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | if (limit != LF_ONLY) | |
1081 | { | |
1082 | if (abs(hf_av - hf_baseline) > 10) | |
1083 | LED_B_ON(); | |
1084 | else | |
1085 | LED_B_OFF(); | |
1086 | ++hf_count; | |
1087 | hf_av_new= ReadAdc(ADC_CHAN_HF); | |
1088 | // see if there's a significant change | |
1089 | if(abs(hf_av - hf_av_new) > 10) | |
1090 | { | |
1091 | DbpString("HF 13.56 Field Change:"); | |
1092 | DbpIntegers(hf_av,hf_av_new,hf_count); | |
1093 | hf_av= hf_av_new; | |
1094 | hf_count= 0; | |
1095 | } | |
1096 | } | |
1097 | } | |
1098 | } |