]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
3 | // at your option, any later version. See the LICENSE.txt file for the text of | |
4 | // the license. | |
5 | //----------------------------------------------------------------------------- | |
6 | // Miscellaneous routines for low frequency tag operations. | |
7 | // Tags supported here so far are Texas Instruments (TI), HID | |
8 | // Also routines for raw mode reading/simulating of LF waveform | |
9 | //----------------------------------------------------------------------------- | |
10 | ||
11 | #include "proxmark3.h" | |
12 | #include "apps.h" | |
13 | #include "util.h" | |
14 | #include "hitag2.h" | |
15 | #include "crc16.h" | |
16 | #include "string.h" | |
17 | #include "lfdemod.h" | |
18 | #include "lfsampling.h" | |
19 | #include "protocols.h" | |
20 | #include "usb_cdc.h" // for usb_poll_validate_length | |
21 | ||
22 | #ifndef SHORT_COIL | |
23 | # define SHORT_COIL() LOW(GPIO_SSC_DOUT) | |
24 | #endif | |
25 | #ifndef OPEN_COIL | |
26 | # define OPEN_COIL() HIGH(GPIO_SSC_DOUT) | |
27 | #endif | |
28 | ||
29 | /** | |
30 | * Function to do a modulation and then get samples. | |
31 | * @param delay_off | |
32 | * @param periods 0xFFFF0000 is period_0, 0x0000FFFF is period_1 | |
33 | * @param useHighFreg | |
34 | * @param command | |
35 | */ | |
36 | void ModThenAcquireRawAdcSamples125k(uint32_t delay_off, uint32_t periods, uint32_t useHighFreq, uint8_t *command) | |
37 | { | |
38 | /* Make sure the tag is reset */ | |
39 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
40 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
41 | SpinDelay(200); | |
42 | ||
43 | uint16_t period_0 = periods >> 16; | |
44 | uint16_t period_1 = periods & 0xFFFF; | |
45 | ||
46 | // 95 == 125 KHz 88 == 134.8 KHz | |
47 | int divisor_used = (useHighFreq) ? 88 : 95; | |
48 | sample_config sc = { 0,0,1, divisor_used, 0}; | |
49 | setSamplingConfig(&sc); | |
50 | ||
51 | //clear read buffer | |
52 | BigBuf_Clear_keep_EM(); | |
53 | ||
54 | LFSetupFPGAForADC(sc.divisor, 1); | |
55 | ||
56 | // And a little more time for the tag to fully power up | |
57 | SpinDelay(50); | |
58 | ||
59 | // now modulate the reader field | |
60 | while(*command != '\0' && *command != ' ') { | |
61 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
62 | LED_D_OFF(); | |
63 | WaitUS(delay_off); | |
64 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
65 | ||
66 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
67 | LED_D_ON(); | |
68 | if(*(command++) == '0') | |
69 | WaitUS(period_0); | |
70 | else | |
71 | WaitUS(period_1); | |
72 | } | |
73 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
74 | LED_D_OFF(); | |
75 | WaitUS(delay_off); | |
76 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc.divisor); | |
77 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
78 | ||
79 | // now do the read | |
80 | DoAcquisition_config(false); | |
81 | ||
82 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
83 | } | |
84 | ||
85 | /* blank r/w tag data stream | |
86 | ...0000000000000000 01111111 | |
87 | 1010101010101010101010101010101010101010101010101010101010101010 | |
88 | 0011010010100001 | |
89 | 01111111 | |
90 | 101010101010101[0]000... | |
91 | ||
92 | [5555fe852c5555555555555555fe0000] | |
93 | */ | |
94 | void ReadTItag(void) | |
95 | { | |
96 | StartTicks(); | |
97 | // some hardcoded initial params | |
98 | // when we read a TI tag we sample the zerocross line at 2Mhz | |
99 | // TI tags modulate a 1 as 16 cycles of 123.2Khz | |
100 | // TI tags modulate a 0 as 16 cycles of 134.2Khz | |
101 | #define FSAMPLE 2000000 | |
102 | #define FREQLO 123200 | |
103 | #define FREQHI 134200 | |
104 | ||
105 | signed char *dest = (signed char *)BigBuf_get_addr(); | |
106 | uint16_t n = BigBuf_max_traceLen(); | |
107 | // 128 bit shift register [shift3:shift2:shift1:shift0] | |
108 | uint32_t shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0; | |
109 | ||
110 | int i, cycles=0, samples=0; | |
111 | // how many sample points fit in 16 cycles of each frequency | |
112 | uint32_t sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI; | |
113 | // when to tell if we're close enough to one freq or another | |
114 | uint32_t threshold = (sampleslo - sampleshi + 1)>>1; | |
115 | ||
116 | // TI tags charge at 134.2Khz | |
117 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
118 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
119 | ||
120 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
121 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
122 | // whether we're modulating the antenna (high) | |
123 | // or listening to the antenna (low) | |
124 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
125 | ||
126 | // get TI tag data into the buffer | |
127 | AcquireTiType(); | |
128 | ||
129 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
130 | ||
131 | for (i=0; i<n-1; i++) { | |
132 | // count cycles by looking for lo to hi zero crossings | |
133 | if ( (dest[i]<0) && (dest[i+1]>0) ) { | |
134 | cycles++; | |
135 | // after 16 cycles, measure the frequency | |
136 | if (cycles>15) { | |
137 | cycles=0; | |
138 | samples=i-samples; // number of samples in these 16 cycles | |
139 | ||
140 | // TI bits are coming to us lsb first so shift them | |
141 | // right through our 128 bit right shift register | |
142 | shift0 = (shift0>>1) | (shift1 << 31); | |
143 | shift1 = (shift1>>1) | (shift2 << 31); | |
144 | shift2 = (shift2>>1) | (shift3 << 31); | |
145 | shift3 >>= 1; | |
146 | ||
147 | // check if the cycles fall close to the number | |
148 | // expected for either the low or high frequency | |
149 | if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) { | |
150 | // low frequency represents a 1 | |
151 | shift3 |= (1<<31); | |
152 | } else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) { | |
153 | // high frequency represents a 0 | |
154 | } else { | |
155 | // probably detected a gay waveform or noise | |
156 | // use this as gaydar or discard shift register and start again | |
157 | shift3 = shift2 = shift1 = shift0 = 0; | |
158 | } | |
159 | samples = i; | |
160 | ||
161 | // for each bit we receive, test if we've detected a valid tag | |
162 | ||
163 | // if we see 17 zeroes followed by 6 ones, we might have a tag | |
164 | // remember the bits are backwards | |
165 | if ( ((shift0 & 0x7fffff) == 0x7e0000) ) { | |
166 | // if start and end bytes match, we have a tag so break out of the loop | |
167 | if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) { | |
168 | cycles = 0xF0B; //use this as a flag (ugly but whatever) | |
169 | break; | |
170 | } | |
171 | } | |
172 | } | |
173 | } | |
174 | } | |
175 | ||
176 | // if flag is set we have a tag | |
177 | if (cycles!=0xF0B) { | |
178 | DbpString("Info: No valid tag detected."); | |
179 | } else { | |
180 | // put 64 bit data into shift1 and shift0 | |
181 | shift0 = (shift0>>24) | (shift1 << 8); | |
182 | shift1 = (shift1>>24) | (shift2 << 8); | |
183 | ||
184 | // align 16 bit crc into lower half of shift2 | |
185 | shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff; | |
186 | ||
187 | // if r/w tag, check ident match | |
188 | if (shift3 & (1<<15) ) { | |
189 | DbpString("Info: TI tag is rewriteable"); | |
190 | // only 15 bits compare, last bit of ident is not valid | |
191 | if (((shift3 >> 16) ^ shift0) & 0x7fff ) { | |
192 | DbpString("Error: Ident mismatch!"); | |
193 | } else { | |
194 | DbpString("Info: TI tag ident is valid"); | |
195 | } | |
196 | } else { | |
197 | DbpString("Info: TI tag is readonly"); | |
198 | } | |
199 | ||
200 | // WARNING the order of the bytes in which we calc crc below needs checking | |
201 | // i'm 99% sure the crc algorithm is correct, but it may need to eat the | |
202 | // bytes in reverse or something | |
203 | // calculate CRC | |
204 | uint32_t crc=0; | |
205 | ||
206 | crc = update_crc16(crc, (shift0)&0xff); | |
207 | crc = update_crc16(crc, (shift0>>8)&0xff); | |
208 | crc = update_crc16(crc, (shift0>>16)&0xff); | |
209 | crc = update_crc16(crc, (shift0>>24)&0xff); | |
210 | crc = update_crc16(crc, (shift1)&0xff); | |
211 | crc = update_crc16(crc, (shift1>>8)&0xff); | |
212 | crc = update_crc16(crc, (shift1>>16)&0xff); | |
213 | crc = update_crc16(crc, (shift1>>24)&0xff); | |
214 | ||
215 | Dbprintf("Info: Tag data: %x%08x, crc=%x", (unsigned int)shift1, (unsigned int)shift0, (unsigned int)shift2 & 0xFFFF); | |
216 | if (crc != (shift2&0xffff)) { | |
217 | Dbprintf("Error: CRC mismatch, expected %x", (unsigned int)crc); | |
218 | } else { | |
219 | DbpString("Info: CRC is good"); | |
220 | } | |
221 | } | |
222 | StopTicks(); | |
223 | } | |
224 | ||
225 | void WriteTIbyte(uint8_t b) | |
226 | { | |
227 | int i = 0; | |
228 | ||
229 | // modulate 8 bits out to the antenna | |
230 | for (i=0; i<8; i++) | |
231 | { | |
232 | if ( b & ( 1 << i ) ) { | |
233 | // stop modulating antenna 1ms | |
234 | LOW(GPIO_SSC_DOUT); | |
235 | WaitUS(1000); | |
236 | // modulate antenna 1ms | |
237 | HIGH(GPIO_SSC_DOUT); | |
238 | WaitUS(1000); | |
239 | } else { | |
240 | // stop modulating antenna 1ms | |
241 | LOW(GPIO_SSC_DOUT); | |
242 | WaitUS(300); | |
243 | // modulate antenna 1m | |
244 | HIGH(GPIO_SSC_DOUT); | |
245 | WaitUS(1700); | |
246 | } | |
247 | } | |
248 | } | |
249 | ||
250 | void AcquireTiType(void) | |
251 | { | |
252 | int i, j, n; | |
253 | // tag transmission is <20ms, sampling at 2M gives us 40K samples max | |
254 | // each sample is 1 bit stuffed into a uint32_t so we need 1250 uint32_t | |
255 | #define TIBUFLEN 1250 | |
256 | ||
257 | // clear buffer | |
258 | uint32_t *buf = (uint32_t *)BigBuf_get_addr(); | |
259 | ||
260 | //clear buffer now so it does not interfere with timing later | |
261 | BigBuf_Clear_ext(false); | |
262 | ||
263 | // Set up the synchronous serial port | |
264 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DIN; | |
265 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN; | |
266 | ||
267 | // steal this pin from the SSP and use it to control the modulation | |
268 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
269 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
270 | ||
271 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; | |
272 | AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; | |
273 | ||
274 | // Sample at 2 Mbit/s, so TI tags are 16.2 vs. 14.9 clocks long | |
275 | // 48/2 = 24 MHz clock must be divided by 12 | |
276 | AT91C_BASE_SSC->SSC_CMR = 12; | |
277 | ||
278 | AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(0); | |
279 | AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(32) | AT91C_SSC_MSBF; | |
280 | AT91C_BASE_SSC->SSC_TCMR = 0; | |
281 | AT91C_BASE_SSC->SSC_TFMR = 0; | |
282 | // iceman, FpgaSetupSsc() ?? the code above? can it be replaced? | |
283 | LED_D_ON(); | |
284 | ||
285 | // modulate antenna | |
286 | HIGH(GPIO_SSC_DOUT); | |
287 | ||
288 | // Charge TI tag for 50ms. | |
289 | WaitMS(50); | |
290 | ||
291 | // stop modulating antenna and listen | |
292 | LOW(GPIO_SSC_DOUT); | |
293 | ||
294 | LED_D_OFF(); | |
295 | ||
296 | i = 0; | |
297 | for(;;) { | |
298 | if(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { | |
299 | buf[i] = AT91C_BASE_SSC->SSC_RHR; // store 32 bit values in buffer | |
300 | i++; if(i >= TIBUFLEN) break; | |
301 | } | |
302 | WDT_HIT(); | |
303 | } | |
304 | ||
305 | // return stolen pin to SSP | |
306 | AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; | |
307 | AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_DIN | GPIO_SSC_DOUT; | |
308 | ||
309 | char *dest = (char *)BigBuf_get_addr(); | |
310 | n = TIBUFLEN * 32; | |
311 | ||
312 | // unpack buffer | |
313 | for (i = TIBUFLEN-1; i >= 0; i--) { | |
314 | for (j = 0; j < 32; j++) { | |
315 | if(buf[i] & (1 << j)) { | |
316 | dest[--n] = 1; | |
317 | } else { | |
318 | dest[--n] = -1; | |
319 | } | |
320 | } | |
321 | } | |
322 | } | |
323 | ||
324 | // arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc | |
325 | // if crc provided, it will be written with the data verbatim (even if bogus) | |
326 | // if not provided a valid crc will be computed from the data and written. | |
327 | void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc) | |
328 | { | |
329 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
330 | if(crc == 0) { | |
331 | crc = update_crc16(crc, (idlo)&0xff); | |
332 | crc = update_crc16(crc, (idlo>>8)&0xff); | |
333 | crc = update_crc16(crc, (idlo>>16)&0xff); | |
334 | crc = update_crc16(crc, (idlo>>24)&0xff); | |
335 | crc = update_crc16(crc, (idhi)&0xff); | |
336 | crc = update_crc16(crc, (idhi>>8)&0xff); | |
337 | crc = update_crc16(crc, (idhi>>16)&0xff); | |
338 | crc = update_crc16(crc, (idhi>>24)&0xff); | |
339 | } | |
340 | Dbprintf("Writing to tag: %x%08x, crc=%x", (unsigned int) idhi, (unsigned int) idlo, crc); | |
341 | ||
342 | // TI tags charge at 134.2Khz | |
343 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
344 | // Place FPGA in passthrough mode, in this mode the CROSS_LO line | |
345 | // connects to SSP_DIN and the SSP_DOUT logic level controls | |
346 | // whether we're modulating the antenna (high) | |
347 | // or listening to the antenna (low) | |
348 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
349 | StartTicks(); | |
350 | ||
351 | LED_A_ON(); | |
352 | ||
353 | // steal this pin from the SSP and use it to control the modulation | |
354 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; | |
355 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
356 | ||
357 | // writing algorithm: | |
358 | // a high bit consists of a field off for 1ms and field on for 1ms | |
359 | // a low bit consists of a field off for 0.3ms and field on for 1.7ms | |
360 | // initiate a charge time of 50ms (field on) then immediately start writing bits | |
361 | // start by writing 0xBB (keyword) and 0xEB (password) | |
362 | // then write 80 bits of data (or 64 bit data + 16 bit crc if you prefer) | |
363 | // finally end with 0x0300 (write frame) | |
364 | // all data is sent lsb first | |
365 | // finish with 50ms programming time | |
366 | ||
367 | // modulate antenna | |
368 | HIGH(GPIO_SSC_DOUT); | |
369 | WaitMS(50); // charge time | |
370 | ||
371 | WriteTIbyte(0xbb); // keyword | |
372 | WriteTIbyte(0xeb); // password | |
373 | WriteTIbyte( (idlo )&0xff ); | |
374 | WriteTIbyte( (idlo>>8 )&0xff ); | |
375 | WriteTIbyte( (idlo>>16)&0xff ); | |
376 | WriteTIbyte( (idlo>>24)&0xff ); | |
377 | WriteTIbyte( (idhi )&0xff ); | |
378 | WriteTIbyte( (idhi>>8 )&0xff ); | |
379 | WriteTIbyte( (idhi>>16)&0xff ); | |
380 | WriteTIbyte( (idhi>>24)&0xff ); // data hi to lo | |
381 | WriteTIbyte( (crc )&0xff ); // crc lo | |
382 | WriteTIbyte( (crc>>8 )&0xff ); // crc hi | |
383 | WriteTIbyte(0x00); // write frame lo | |
384 | WriteTIbyte(0x03); // write frame hi | |
385 | HIGH(GPIO_SSC_DOUT); | |
386 | WaitMS(50); // programming time | |
387 | ||
388 | LED_A_OFF(); | |
389 | ||
390 | // get TI tag data into the buffer | |
391 | AcquireTiType(); | |
392 | ||
393 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
394 | DbpString("Now use `lf ti read` to check"); | |
395 | StopTicks(); | |
396 | } | |
397 | ||
398 | void SimulateTagLowFrequency(int period, int gap, int ledcontrol) | |
399 | { | |
400 | int i = 0; | |
401 | uint8_t *buf = BigBuf_get_addr(); | |
402 | ||
403 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); | |
404 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT); | |
405 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD); | |
406 | //FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE ); | |
407 | ||
408 | // set frequency, get values from 'lf config' command | |
409 | sample_config *sc = getSamplingConfig(); | |
410 | ||
411 | if ( (sc->divisor == 1) || (sc->divisor < 0) || (sc->divisor > 255) ) | |
412 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz | |
413 | else if (sc->divisor == 0) | |
414 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz | |
415 | else | |
416 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, sc->divisor); | |
417 | ||
418 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
419 | ||
420 | AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT | GPIO_SSC_CLK; | |
421 | AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; | |
422 | AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK; | |
423 | ||
424 | // power on antenna | |
425 | OPEN_COIL(); | |
426 | // charge time | |
427 | WaitMS(50); | |
428 | ||
429 | for(;;) { | |
430 | WDT_HIT(); | |
431 | ||
432 | if (ledcontrol) LED_D_ON(); | |
433 | ||
434 | // wait until SSC_CLK goes HIGH | |
435 | // used as a simple detection of a reader field? | |
436 | while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)) { | |
437 | WDT_HIT(); | |
438 | if ( usb_poll_validate_length() || BUTTON_PRESS() ) | |
439 | goto OUT; | |
440 | } | |
441 | ||
442 | if(buf[i]) | |
443 | OPEN_COIL(); | |
444 | else | |
445 | SHORT_COIL(); | |
446 | ||
447 | //wait until SSC_CLK goes LOW | |
448 | while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) { | |
449 | WDT_HIT(); | |
450 | if ( usb_poll_validate_length() || BUTTON_PRESS() ) | |
451 | goto OUT; | |
452 | } | |
453 | ||
454 | i++; | |
455 | if(i == period) { | |
456 | i = 0; | |
457 | if (gap) { | |
458 | WDT_HIT(); | |
459 | SHORT_COIL(); | |
460 | SpinDelayUs(gap); | |
461 | } | |
462 | } | |
463 | ||
464 | if (ledcontrol) LED_D_OFF(); | |
465 | } | |
466 | OUT: | |
467 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
468 | LED_D_OFF(); | |
469 | DbpString("Simulation stopped"); | |
470 | return; | |
471 | } | |
472 | ||
473 | #define DEBUG_FRAME_CONTENTS 1 | |
474 | void SimulateTagLowFrequencyBidir(int divisor, int t0) | |
475 | { | |
476 | } | |
477 | ||
478 | // compose fc/8 fc/10 waveform (FSK2) | |
479 | static void fc(int c, int *n) | |
480 | { | |
481 | uint8_t *dest = BigBuf_get_addr(); | |
482 | int idx; | |
483 | ||
484 | // for when we want an fc8 pattern every 4 logical bits | |
485 | if(c==0) { | |
486 | dest[((*n)++)]=1; | |
487 | dest[((*n)++)]=1; | |
488 | dest[((*n)++)]=1; | |
489 | dest[((*n)++)]=1; | |
490 | dest[((*n)++)]=0; | |
491 | dest[((*n)++)]=0; | |
492 | dest[((*n)++)]=0; | |
493 | dest[((*n)++)]=0; | |
494 | } | |
495 | ||
496 | // an fc/8 encoded bit is a bit pattern of 11110000 x6 = 48 samples | |
497 | if(c==8) { | |
498 | for (idx=0; idx<6; idx++) { | |
499 | dest[((*n)++)]=1; | |
500 | dest[((*n)++)]=1; | |
501 | dest[((*n)++)]=1; | |
502 | dest[((*n)++)]=1; | |
503 | dest[((*n)++)]=0; | |
504 | dest[((*n)++)]=0; | |
505 | dest[((*n)++)]=0; | |
506 | dest[((*n)++)]=0; | |
507 | } | |
508 | } | |
509 | ||
510 | // an fc/10 encoded bit is a bit pattern of 1111100000 x5 = 50 samples | |
511 | if(c==10) { | |
512 | for (idx=0; idx<5; idx++) { | |
513 | dest[((*n)++)]=1; | |
514 | dest[((*n)++)]=1; | |
515 | dest[((*n)++)]=1; | |
516 | dest[((*n)++)]=1; | |
517 | dest[((*n)++)]=1; | |
518 | dest[((*n)++)]=0; | |
519 | dest[((*n)++)]=0; | |
520 | dest[((*n)++)]=0; | |
521 | dest[((*n)++)]=0; | |
522 | dest[((*n)++)]=0; | |
523 | } | |
524 | } | |
525 | } | |
526 | // compose fc/X fc/Y waveform (FSKx) | |
527 | static void fcAll(uint8_t fc, int *n, uint8_t clock, uint16_t *modCnt) | |
528 | { | |
529 | uint8_t *dest = BigBuf_get_addr(); | |
530 | uint8_t halfFC = fc/2; | |
531 | uint8_t wavesPerClock = clock/fc; | |
532 | uint8_t mod = clock % fc; //modifier | |
533 | uint8_t modAdj = fc/mod; //how often to apply modifier | |
534 | bool modAdjOk = !(fc % mod); //if (fc % mod==0) modAdjOk=TRUE; | |
535 | // loop through clock - step field clock | |
536 | for (uint8_t idx=0; idx < wavesPerClock; idx++){ | |
537 | // put 1/2 FC length 1's and 1/2 0's per field clock wave (to create the wave) | |
538 | memset(dest+(*n), 0, fc-halfFC); //in case of odd number use extra here | |
539 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
540 | *n += fc; | |
541 | } | |
542 | if (mod>0) (*modCnt)++; | |
543 | if ((mod>0) && modAdjOk){ //fsk2 | |
544 | if ((*modCnt % modAdj) == 0){ //if 4th 8 length wave in a rf/50 add extra 8 length wave | |
545 | memset(dest+(*n), 0, fc-halfFC); | |
546 | memset(dest+(*n)+(fc-halfFC), 1, halfFC); | |
547 | *n += fc; | |
548 | } | |
549 | } | |
550 | if (mod>0 && !modAdjOk){ //fsk1 | |
551 | memset(dest+(*n), 0, mod-(mod/2)); | |
552 | memset(dest+(*n)+(mod-(mod/2)), 1, mod/2); | |
553 | *n += mod; | |
554 | } | |
555 | } | |
556 | ||
557 | // prepare a waveform pattern in the buffer based on the ID given then | |
558 | // simulate a HID tag until the button is pressed | |
559 | void CmdHIDsimTAG(int hi, int lo, int ledcontrol) | |
560 | { | |
561 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
562 | set_tracing(FALSE); | |
563 | ||
564 | int n = 0, i = 0; | |
565 | /* | |
566 | HID tag bitstream format | |
567 | The tag contains a 44bit unique code. This is sent out MSB first in sets of 4 bits | |
568 | A 1 bit is represented as 6 fc8 and 5 fc10 patterns | |
569 | A 0 bit is represented as 5 fc10 and 6 fc8 patterns | |
570 | A fc8 is inserted before every 4 bits | |
571 | A special start of frame pattern is used consisting a0b0 where a and b are neither 0 | |
572 | nor 1 bits, they are special patterns (a = set of 12 fc8 and b = set of 10 fc10) | |
573 | */ | |
574 | ||
575 | if (hi > 0xFFF) { | |
576 | DbpString("Tags can only have 44 bits. - USE lf simfsk for larger tags"); | |
577 | return; | |
578 | } | |
579 | fc(0,&n); | |
580 | // special start of frame marker containing invalid bit sequences | |
581 | fc(8, &n); fc(8, &n); // invalid | |
582 | fc(8, &n); fc(10, &n); // logical 0 | |
583 | fc(10, &n); fc(10, &n); // invalid | |
584 | fc(8, &n); fc(10, &n); // logical 0 | |
585 | ||
586 | WDT_HIT(); | |
587 | // manchester encode bits 43 to 32 | |
588 | for (i=11; i>=0; i--) { | |
589 | if ((i%4)==3) fc(0,&n); | |
590 | if ((hi>>i)&1) { | |
591 | fc(10, &n); fc(8, &n); // low-high transition | |
592 | } else { | |
593 | fc(8, &n); fc(10, &n); // high-low transition | |
594 | } | |
595 | } | |
596 | ||
597 | WDT_HIT(); | |
598 | // manchester encode bits 31 to 0 | |
599 | for (i=31; i>=0; i--) { | |
600 | if ((i%4)==3) fc(0,&n); | |
601 | if ((lo>>i)&1) { | |
602 | fc(10, &n); fc(8, &n); // low-high transition | |
603 | } else { | |
604 | fc(8, &n); fc(10, &n); // high-low transition | |
605 | } | |
606 | } | |
607 | WDT_HIT(); | |
608 | ||
609 | if (ledcontrol) LED_A_ON(); | |
610 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
611 | if (ledcontrol) LED_A_OFF(); | |
612 | } | |
613 | ||
614 | // prepare a waveform pattern in the buffer based on the ID given then | |
615 | // simulate a FSK tag until the button is pressed | |
616 | // arg1 contains fcHigh and fcLow, arg2 contains invert and clock | |
617 | void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
618 | { | |
619 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
620 | ||
621 | // free eventually allocated BigBuf memory | |
622 | BigBuf_free(); BigBuf_Clear_ext(false); | |
623 | clear_trace(); | |
624 | set_tracing(FALSE); | |
625 | ||
626 | int ledcontrol = 1, n = 0, i = 0; | |
627 | uint8_t fcHigh = arg1 >> 8; | |
628 | uint8_t fcLow = arg1 & 0xFF; | |
629 | uint16_t modCnt = 0; | |
630 | uint8_t clk = arg2 & 0xFF; | |
631 | uint8_t invert = (arg2 >> 8) & 1; | |
632 | ||
633 | for (i=0; i<size; i++){ | |
634 | ||
635 | if (BitStream[i] == invert) | |
636 | fcAll(fcLow, &n, clk, &modCnt); | |
637 | else | |
638 | fcAll(fcHigh, &n, clk, &modCnt); | |
639 | } | |
640 | WDT_HIT(); | |
641 | ||
642 | Dbprintf("Simulating with fcHigh: %d, fcLow: %d, clk: %d, invert: %d, n: %d", fcHigh, fcLow, clk, invert, n); | |
643 | ||
644 | if (ledcontrol) LED_A_ON(); | |
645 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
646 | if (ledcontrol) LED_A_OFF(); | |
647 | } | |
648 | ||
649 | // compose ask waveform for one bit(ASK) | |
650 | static void askSimBit(uint8_t c, int *n, uint8_t clock, uint8_t manchester) | |
651 | { | |
652 | uint8_t *dest = BigBuf_get_addr(); | |
653 | uint8_t halfClk = clock/2; | |
654 | // c = current bit 1 or 0 | |
655 | if (manchester==1){ | |
656 | memset(dest+(*n), c, halfClk); | |
657 | memset(dest+(*n) + halfClk, c^1, halfClk); | |
658 | } else { | |
659 | memset(dest+(*n), c, clock); | |
660 | } | |
661 | *n += clock; | |
662 | } | |
663 | ||
664 | static void biphaseSimBit(uint8_t c, int *n, uint8_t clock, uint8_t *phase) | |
665 | { | |
666 | uint8_t *dest = BigBuf_get_addr(); | |
667 | uint8_t halfClk = clock/2; | |
668 | if (c){ | |
669 | memset(dest+(*n), c ^ 1 ^ *phase, halfClk); | |
670 | memset(dest+(*n) + halfClk, c ^ *phase, halfClk); | |
671 | } else { | |
672 | memset(dest+(*n), c ^ *phase, clock); | |
673 | *phase ^= 1; | |
674 | } | |
675 | *n += clock; | |
676 | } | |
677 | ||
678 | static void stAskSimBit(int *n, uint8_t clock) { | |
679 | uint8_t *dest = BigBuf_get_addr(); | |
680 | uint8_t halfClk = clock/2; | |
681 | //ST = .5 high .5 low 1.5 high .5 low 1 high | |
682 | memset(dest+(*n), 1, halfClk); | |
683 | memset(dest+(*n) + halfClk, 0, halfClk); | |
684 | memset(dest+(*n) + clock, 1, clock + halfClk); | |
685 | memset(dest+(*n) + clock*2 + halfClk, 0, halfClk); | |
686 | memset(dest+(*n) + clock*3, 1, clock); | |
687 | *n += clock*4; | |
688 | } | |
689 | ||
690 | // args clock, ask/man or askraw, invert, transmission separator | |
691 | void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
692 | { | |
693 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
694 | set_tracing(FALSE); | |
695 | ||
696 | int ledcontrol = 1, n = 0, i = 0; | |
697 | uint8_t clk = (arg1 >> 8) & 0xFF; | |
698 | uint8_t encoding = arg1 & 0xFF; | |
699 | uint8_t separator = arg2 & 1; | |
700 | uint8_t invert = (arg2 >> 8) & 1; | |
701 | ||
702 | if (encoding == 2){ //biphase | |
703 | uint8_t phase = 0; | |
704 | for (i=0; i<size; i++){ | |
705 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
706 | } | |
707 | if (phase == 1) { //run a second set inverted to keep phase in check | |
708 | for (i=0; i<size; i++){ | |
709 | biphaseSimBit(BitStream[i]^invert, &n, clk, &phase); | |
710 | } | |
711 | } | |
712 | } else { // ask/manchester || ask/raw | |
713 | for (i=0; i<size; i++){ | |
714 | askSimBit(BitStream[i]^invert, &n, clk, encoding); | |
715 | } | |
716 | if (encoding==0 && BitStream[0]==BitStream[size-1]){ //run a second set inverted (for ask/raw || biphase phase) | |
717 | for (i=0; i<size; i++){ | |
718 | askSimBit(BitStream[i]^invert^1, &n, clk, encoding); | |
719 | } | |
720 | } | |
721 | } | |
722 | if (separator==1 && encoding == 1) | |
723 | stAskSimBit(&n, clk); | |
724 | else if (separator==1) | |
725 | Dbprintf("sorry but separator option not yet available"); | |
726 | ||
727 | WDT_HIT(); | |
728 | ||
729 | Dbprintf("Simulating with clk: %d, invert: %d, encoding: %d, separator: %d, n: %d",clk, invert, encoding, separator, n); | |
730 | ||
731 | if (ledcontrol) LED_A_ON(); | |
732 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
733 | if (ledcontrol) LED_A_OFF(); | |
734 | } | |
735 | ||
736 | //carrier can be 2,4 or 8 | |
737 | static void pskSimBit(uint8_t waveLen, int *n, uint8_t clk, uint8_t *curPhase, bool phaseChg) | |
738 | { | |
739 | uint8_t *dest = BigBuf_get_addr(); | |
740 | uint8_t halfWave = waveLen/2; | |
741 | //uint8_t idx; | |
742 | int i = 0; | |
743 | if (phaseChg){ | |
744 | // write phase change | |
745 | memset(dest+(*n), *curPhase^1, halfWave); | |
746 | memset(dest+(*n) + halfWave, *curPhase, halfWave); | |
747 | *n += waveLen; | |
748 | *curPhase ^= 1; | |
749 | i += waveLen; | |
750 | } | |
751 | //write each normal clock wave for the clock duration | |
752 | for (; i < clk; i+=waveLen){ | |
753 | memset(dest+(*n), *curPhase, halfWave); | |
754 | memset(dest+(*n) + halfWave, *curPhase^1, halfWave); | |
755 | *n += waveLen; | |
756 | } | |
757 | } | |
758 | ||
759 | // args clock, carrier, invert, | |
760 | void CmdPSKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream) | |
761 | { | |
762 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
763 | set_tracing(FALSE); | |
764 | ||
765 | int ledcontrol = 1, n = 0, i = 0; | |
766 | uint8_t clk = arg1 >> 8; | |
767 | uint8_t carrier = arg1 & 0xFF; | |
768 | uint8_t invert = arg2 & 0xFF; | |
769 | uint8_t curPhase = 0; | |
770 | for (i=0; i<size; i++){ | |
771 | if (BitStream[i] == curPhase){ | |
772 | pskSimBit(carrier, &n, clk, &curPhase, FALSE); | |
773 | } else { | |
774 | pskSimBit(carrier, &n, clk, &curPhase, TRUE); | |
775 | } | |
776 | } | |
777 | ||
778 | WDT_HIT(); | |
779 | ||
780 | Dbprintf("Simulating with Carrier: %d, clk: %d, invert: %d, n: %d",carrier, clk, invert, n); | |
781 | ||
782 | if (ledcontrol) LED_A_ON(); | |
783 | SimulateTagLowFrequency(n, 0, ledcontrol); | |
784 | if (ledcontrol) LED_A_OFF(); | |
785 | } | |
786 | ||
787 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
788 | void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
789 | { | |
790 | uint8_t *dest = BigBuf_get_addr(); | |
791 | size_t size = 0; | |
792 | uint32_t hi2=0, hi=0, lo=0; | |
793 | int idx=0; | |
794 | // Configure to go in 125Khz listen mode | |
795 | LFSetupFPGAForADC(95, true); | |
796 | ||
797 | //clear read buffer | |
798 | BigBuf_Clear_keep_EM(); | |
799 | ||
800 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
801 | ||
802 | WDT_HIT(); | |
803 | if (ledcontrol) LED_A_ON(); | |
804 | ||
805 | DoAcquisition_default(0, true); | |
806 | // FSK demodulator | |
807 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
808 | idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo); | |
809 | ||
810 | if (idx>0 && lo>0 && (size==96 || size==192)){ | |
811 | // go over previously decoded manchester data and decode into usable tag ID | |
812 | if (hi2 != 0){ //extra large HID tags 88/192 bits | |
813 | Dbprintf("TAG ID: %x%08x%08x (%d)", | |
814 | (unsigned int) hi2, | |
815 | (unsigned int) hi, | |
816 | (unsigned int) lo, | |
817 | (unsigned int) (lo>>1) & 0xFFFF | |
818 | ); | |
819 | } else { //standard HID tags 44/96 bits | |
820 | uint8_t bitlen = 0; | |
821 | uint32_t fc = 0; | |
822 | uint32_t cardnum = 0; | |
823 | ||
824 | if (((hi>>5)&1) == 1){//if bit 38 is set then < 37 bit format is used | |
825 | uint32_t lo2=0; | |
826 | lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit | |
827 | uint8_t idx3 = 1; | |
828 | while(lo2 > 1){ //find last bit set to 1 (format len bit) | |
829 | lo2=lo2 >> 1; | |
830 | idx3++; | |
831 | } | |
832 | bitlen = idx3+19; | |
833 | fc =0; | |
834 | cardnum=0; | |
835 | if(bitlen == 26){ | |
836 | cardnum = (lo>>1)&0xFFFF; | |
837 | fc = (lo>>17)&0xFF; | |
838 | } | |
839 | if(bitlen == 37){ | |
840 | cardnum = (lo>>1)&0x7FFFF; | |
841 | fc = ((hi&0xF)<<12)|(lo>>20); | |
842 | } | |
843 | if(bitlen == 34){ | |
844 | cardnum = (lo>>1)&0xFFFF; | |
845 | fc= ((hi&1)<<15)|(lo>>17); | |
846 | } | |
847 | if(bitlen == 35){ | |
848 | cardnum = (lo>>1)&0xFFFFF; | |
849 | fc = ((hi&1)<<11)|(lo>>21); | |
850 | } | |
851 | } | |
852 | else { //if bit 38 is not set then 37 bit format is used | |
853 | bitlen= 37; | |
854 | fc =0; | |
855 | cardnum=0; | |
856 | if(bitlen==37){ | |
857 | cardnum = (lo>>1)&0x7FFFF; | |
858 | fc = ((hi&0xF)<<12)|(lo>>20); | |
859 | } | |
860 | } | |
861 | Dbprintf("TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", | |
862 | (unsigned int) hi, | |
863 | (unsigned int) lo, | |
864 | (unsigned int) (lo>>1) & 0xFFFF, | |
865 | (unsigned int) bitlen, | |
866 | (unsigned int) fc, | |
867 | (unsigned int) cardnum); | |
868 | } | |
869 | if (findone){ | |
870 | if (ledcontrol) LED_A_OFF(); | |
871 | *high = hi; | |
872 | *low = lo; | |
873 | break; | |
874 | } | |
875 | // reset | |
876 | } | |
877 | hi2 = hi = lo = idx = 0; | |
878 | WDT_HIT(); | |
879 | } | |
880 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
881 | DbpString("Stopped"); | |
882 | if (ledcontrol) LED_A_OFF(); | |
883 | } | |
884 | ||
885 | // loop to get raw HID waveform then FSK demodulate the TAG ID from it | |
886 | void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
887 | { | |
888 | uint8_t *dest = BigBuf_get_addr(); | |
889 | size_t size; | |
890 | int idx=0; | |
891 | //clear read buffer | |
892 | BigBuf_Clear_keep_EM(); | |
893 | // Configure to go in 125Khz listen mode | |
894 | LFSetupFPGAForADC(95, true); | |
895 | ||
896 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
897 | ||
898 | WDT_HIT(); | |
899 | if (ledcontrol) LED_A_ON(); | |
900 | ||
901 | DoAcquisition_default(-1,true); | |
902 | // FSK demodulator | |
903 | size = 50*128*2; //big enough to catch 2 sequences of largest format | |
904 | idx = AWIDdemodFSK(dest, &size); | |
905 | ||
906 | if (idx<=0 || size!=96) continue; | |
907 | // Index map | |
908 | // 0 10 20 30 40 50 60 | |
909 | // | | | | | | | | |
910 | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 | |
911 | // ----------------------------------------------------------------------------- | |
912 | // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 | |
913 | // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 | |
914 | // |---26 bit---| |-----117----||-------------142-------------| | |
915 | // b = format bit len, o = odd parity of last 3 bits | |
916 | // f = facility code, c = card number | |
917 | // w = wiegand parity | |
918 | // (26 bit format shown) | |
919 | ||
920 | //get raw ID before removing parities | |
921 | uint32_t rawLo = bytebits_to_byte(dest+idx+64,32); | |
922 | uint32_t rawHi = bytebits_to_byte(dest+idx+32,32); | |
923 | uint32_t rawHi2 = bytebits_to_byte(dest+idx,32); | |
924 | ||
925 | size = removeParity(dest, idx+8, 4, 1, 88); | |
926 | if (size != 66) continue; | |
927 | ||
928 | // Index map | |
929 | // 0 10 20 30 40 50 60 | |
930 | // | | | | | | | | |
931 | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 | |
932 | // ----------------------------------------------------------------------------- | |
933 | // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 | |
934 | // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | |
935 | // |26 bit| |-117--| |-----142------| | |
936 | // | |
937 | // 00110010 0 0000011111010000000000000001000100101000100001111 0 00000000 | |
938 | // bbbbbbbb w ffffffffffffffffccccccccccccccccccccccccccccccccc w xxxxxxxx | |
939 | // |50 bit| |----4000------||-----------2248975-------------| | |
940 | // | |
941 | // b = format bit len, o = odd parity of last 3 bits | |
942 | // f = facility code, c = card number | |
943 | // w = wiegand parity | |
944 | ||
945 | uint32_t fc = 0; | |
946 | uint32_t cardnum = 0; | |
947 | uint32_t code1 = 0; | |
948 | uint32_t code2 = 0; | |
949 | uint8_t fmtLen = bytebits_to_byte(dest,8); | |
950 | switch(fmtLen) { | |
951 | case 26: | |
952 | fc = bytebits_to_byte(dest + 9, 8); | |
953 | cardnum = bytebits_to_byte(dest + 17, 16); | |
954 | code1 = bytebits_to_byte(dest + 8,fmtLen); | |
955 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); | |
956 | break; | |
957 | case 50: | |
958 | fc = bytebits_to_byte(dest + 9, 16); | |
959 | cardnum = bytebits_to_byte(dest + 25, 32); | |
960 | code1 = bytebits_to_byte(dest + 8, (fmtLen-32) ); | |
961 | code2 = bytebits_to_byte(dest + 8 + (fmtLen-32), 32); | |
962 | Dbprintf("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
963 | break; | |
964 | default: | |
965 | if (fmtLen > 32 ) { | |
966 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
967 | code1 = bytebits_to_byte(dest+8,fmtLen-32); | |
968 | code2 = bytebits_to_byte(dest+8+(fmtLen-32),32); | |
969 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); | |
970 | } else { | |
971 | cardnum = bytebits_to_byte(dest+8+(fmtLen-17), 16); | |
972 | code1 = bytebits_to_byte(dest+8,fmtLen); | |
973 | Dbprintf("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); | |
974 | } | |
975 | break; | |
976 | } | |
977 | if (findone) | |
978 | break; | |
979 | ||
980 | idx = 0; | |
981 | WDT_HIT(); | |
982 | } | |
983 | ||
984 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
985 | DbpString("Stopped"); | |
986 | if (ledcontrol) LED_A_OFF(); | |
987 | } | |
988 | ||
989 | void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol) | |
990 | { | |
991 | uint8_t *dest = BigBuf_get_addr(); | |
992 | ||
993 | size_t size=0, idx=0; | |
994 | int clk=0, invert=0, errCnt=0, maxErr=20; | |
995 | uint32_t hi=0; | |
996 | uint64_t lo=0; | |
997 | //clear read buffer | |
998 | BigBuf_Clear_keep_EM(); | |
999 | // Configure to go in 125Khz listen mode | |
1000 | LFSetupFPGAForADC(95, true); | |
1001 | ||
1002 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
1003 | ||
1004 | WDT_HIT(); | |
1005 | if (ledcontrol) LED_A_ON(); | |
1006 | ||
1007 | DoAcquisition_default(-1,true); | |
1008 | size = BigBuf_max_traceLen(); | |
1009 | //askdemod and manchester decode | |
1010 | if (size > 16385) size = 16385; //big enough to catch 2 sequences of largest format | |
1011 | errCnt = askdemod(dest, &size, &clk, &invert, maxErr, 0, 1); | |
1012 | WDT_HIT(); | |
1013 | ||
1014 | if (errCnt<0) continue; | |
1015 | ||
1016 | errCnt = Em410xDecode(dest, &size, &idx, &hi, &lo); | |
1017 | if (errCnt){ | |
1018 | if (size>64){ | |
1019 | Dbprintf("EM XL TAG ID: %06x%08x%08x - (%05d_%03d_%08d)", | |
1020 | hi, | |
1021 | (uint32_t)(lo>>32), | |
1022 | (uint32_t)lo, | |
1023 | (uint32_t)(lo&0xFFFF), | |
1024 | (uint32_t)((lo>>16LL) & 0xFF), | |
1025 | (uint32_t)(lo & 0xFFFFFF)); | |
1026 | } else { | |
1027 | Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)", | |
1028 | (uint32_t)(lo>>32), | |
1029 | (uint32_t)lo, | |
1030 | (uint32_t)(lo&0xFFFF), | |
1031 | (uint32_t)((lo>>16LL) & 0xFF), | |
1032 | (uint32_t)(lo & 0xFFFFFF)); | |
1033 | } | |
1034 | ||
1035 | if (findone){ | |
1036 | if (ledcontrol) LED_A_OFF(); | |
1037 | *high=lo>>32; | |
1038 | *low=lo & 0xFFFFFFFF; | |
1039 | break; | |
1040 | } | |
1041 | } | |
1042 | WDT_HIT(); | |
1043 | hi = lo = size = idx = 0; | |
1044 | clk = invert = errCnt = 0; | |
1045 | } | |
1046 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1047 | DbpString("Stopped"); | |
1048 | if (ledcontrol) LED_A_OFF(); | |
1049 | } | |
1050 | ||
1051 | void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol) | |
1052 | { | |
1053 | uint8_t *dest = BigBuf_get_addr(); | |
1054 | int idx=0; | |
1055 | uint32_t code=0, code2=0; | |
1056 | uint8_t version=0; | |
1057 | uint8_t facilitycode=0; | |
1058 | uint16_t number=0; | |
1059 | uint8_t crc = 0; | |
1060 | uint16_t calccrc = 0; | |
1061 | ||
1062 | //clear read buffer | |
1063 | BigBuf_Clear_keep_EM(); | |
1064 | ||
1065 | // Configure to go in 125Khz listen mode | |
1066 | LFSetupFPGAForADC(95, true); | |
1067 | ||
1068 | while(!BUTTON_PRESS() && !usb_poll_validate_length()) { | |
1069 | WDT_HIT(); | |
1070 | if (ledcontrol) LED_A_ON(); | |
1071 | DoAcquisition_default(-1,true); | |
1072 | //fskdemod and get start index | |
1073 | WDT_HIT(); | |
1074 | idx = IOdemodFSK(dest, BigBuf_max_traceLen()); | |
1075 | if (idx<0) continue; | |
1076 | //valid tag found | |
1077 | ||
1078 | //Index map | |
1079 | //0 10 20 30 40 50 60 | |
1080 | //| | | | | | | | |
1081 | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 | |
1082 | //----------------------------------------------------------------------------- | |
1083 | //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 checksum 11 | |
1084 | // | |
1085 | //Checksum: | |
1086 | //00000000 0 11110000 1 11100000 1 00000001 1 00000011 1 10110110 1 01110101 11 | |
1087 | //preamble F0 E0 01 03 B6 75 | |
1088 | // How to calc checksum, | |
1089 | // http://www.proxmark.org/forum/viewtopic.php?id=364&p=6 | |
1090 | // F0 + E0 + 01 + 03 + B6 = 28A | |
1091 | // 28A & FF = 8A | |
1092 | // FF - 8A = 75 | |
1093 | // Checksum: 0x75 | |
1094 | //XSF(version)facility:codeone+codetwo | |
1095 | //Handle the data | |
1096 | // if(findone){ //only print binary if we are doing one | |
1097 | // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx], dest[idx+1], dest[idx+2],dest[idx+3],dest[idx+4],dest[idx+5],dest[idx+6],dest[idx+7],dest[idx+8]); | |
1098 | // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+9], dest[idx+10],dest[idx+11],dest[idx+12],dest[idx+13],dest[idx+14],dest[idx+15],dest[idx+16],dest[idx+17]); | |
1099 | // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+18],dest[idx+19],dest[idx+20],dest[idx+21],dest[idx+22],dest[idx+23],dest[idx+24],dest[idx+25],dest[idx+26]); | |
1100 | // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+27],dest[idx+28],dest[idx+29],dest[idx+30],dest[idx+31],dest[idx+32],dest[idx+33],dest[idx+34],dest[idx+35]); | |
1101 | // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+36],dest[idx+37],dest[idx+38],dest[idx+39],dest[idx+40],dest[idx+41],dest[idx+42],dest[idx+43],dest[idx+44]); | |
1102 | // Dbprintf("%d%d%d%d%d%d%d%d %d",dest[idx+45],dest[idx+46],dest[idx+47],dest[idx+48],dest[idx+49],dest[idx+50],dest[idx+51],dest[idx+52],dest[idx+53]); | |
1103 | // Dbprintf("%d%d%d%d%d%d%d%d %d%d",dest[idx+54],dest[idx+55],dest[idx+56],dest[idx+57],dest[idx+58],dest[idx+59],dest[idx+60],dest[idx+61],dest[idx+62],dest[idx+63]); | |
1104 | // } | |
1105 | code = bytebits_to_byte(dest+idx,32); | |
1106 | code2 = bytebits_to_byte(dest+idx+32,32); | |
1107 | version = bytebits_to_byte(dest+idx+27,8); //14,4 | |
1108 | facilitycode = bytebits_to_byte(dest+idx+18,8); | |
1109 | number = (bytebits_to_byte(dest+idx+36,8)<<8)|(bytebits_to_byte(dest+idx+45,8)); //36,9 | |
1110 | ||
1111 | crc = bytebits_to_byte(dest+idx+54,8); | |
1112 | for (uint8_t i=1; i<6; ++i) | |
1113 | calccrc += bytebits_to_byte(dest+idx+9*i,8); | |
1114 | calccrc &= 0xff; | |
1115 | calccrc = 0xff - calccrc; | |
1116 | ||
1117 | char *crcStr = (crc == calccrc) ? "ok":"!crc"; | |
1118 | ||
1119 | Dbprintf("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr); | |
1120 | // if we're only looking for one tag | |
1121 | if (findone){ | |
1122 | if (ledcontrol) LED_A_OFF(); | |
1123 | *high=code; | |
1124 | *low=code2; | |
1125 | break; | |
1126 | } | |
1127 | code=code2=0; | |
1128 | version=facilitycode=0; | |
1129 | number=0; | |
1130 | idx=0; | |
1131 | ||
1132 | WDT_HIT(); | |
1133 | } | |
1134 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1135 | DbpString("Stopped"); | |
1136 | if (ledcontrol) LED_A_OFF(); | |
1137 | } | |
1138 | ||
1139 | /*------------------------------ | |
1140 | * T5555/T5557/T5567/T5577 routines | |
1141 | *------------------------------ | |
1142 | * NOTE: T55x7/T5555 configuration register definitions moved to protocols.h | |
1143 | * | |
1144 | * Relevant communication times in microsecond | |
1145 | * To compensate antenna falling times shorten the write times | |
1146 | * and enlarge the gap ones. | |
1147 | * Q5 tags seems to have issues when these values changes. | |
1148 | */ | |
1149 | ||
1150 | #define START_GAP 50*8 // was 250 // SPEC: 1*8 to 50*8 - typ 15*8 (15fc) | |
1151 | #define WRITE_GAP 20*8 // was 160 // SPEC: 1*8 to 20*8 - typ 10*8 (10fc) | |
1152 | #define WRITE_0 18*8 // was 144 // SPEC: 16*8 to 32*8 - typ 24*8 (24fc) | |
1153 | #define WRITE_1 54*8 // was 400 // SPEC: 48*8 to 64*8 - typ 56*8 (56fc) 432 for T55x7; 448 for E5550 | |
1154 | #define READ_GAP 15*8 | |
1155 | ||
1156 | // VALUES TAKEN FROM EM4x function: SendForward | |
1157 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1158 | // WRITE_GAP = 128; (16*8) | |
1159 | // WRITE_1 = 256 32*8; (32*8) | |
1160 | ||
1161 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1162 | // WRITE_0 = 23*8 , 9*8 | |
1163 | ||
1164 | // Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK) | |
1165 | // TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz | |
1166 | // Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier) | |
1167 | // T0 = TIMER_CLOCK1 / 125000 = 192 | |
1168 | // 1 Cycle = 8 microseconds(us) == 1 field clock | |
1169 | ||
1170 | // new timer: | |
1171 | // = 1us = 1.5ticks | |
1172 | // 1fc = 8us = 12ticks | |
1173 | void TurnReadLFOn(uint32_t delay) { | |
1174 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1175 | ||
1176 | // measure antenna strength. | |
1177 | //int adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10); | |
1178 | ||
1179 | // Give it a bit of time for the resonant antenna to settle. | |
1180 | WaitUS(delay); | |
1181 | } | |
1182 | ||
1183 | // Write one bit to card | |
1184 | void T55xxWriteBit(int bit) { | |
1185 | if (!bit) | |
1186 | TurnReadLFOn(WRITE_0); | |
1187 | else | |
1188 | TurnReadLFOn(WRITE_1); | |
1189 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1190 | WaitUS(WRITE_GAP); | |
1191 | } | |
1192 | ||
1193 | // Send T5577 reset command then read stream (see if we can identify the start of the stream) | |
1194 | void T55xxResetRead(void) { | |
1195 | LED_A_ON(); | |
1196 | //clear buffer now so it does not interfere with timing later | |
1197 | BigBuf_Clear_keep_EM(); | |
1198 | ||
1199 | // Set up FPGA, 125kHz | |
1200 | LFSetupFPGAForADC(95, true); | |
1201 | ||
1202 | // Trigger T55x7 in mode. | |
1203 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1204 | WaitUS(START_GAP); | |
1205 | ||
1206 | // reset tag - op code 00 | |
1207 | T55xxWriteBit(0); | |
1208 | T55xxWriteBit(0); | |
1209 | ||
1210 | // Turn field on to read the response | |
1211 | TurnReadLFOn(READ_GAP); | |
1212 | ||
1213 | // Acquisition | |
1214 | doT55x7Acquisition(BigBuf_max_traceLen()); | |
1215 | ||
1216 | // Turn the field off | |
1217 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1218 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1219 | LED_A_OFF(); | |
1220 | } | |
1221 | ||
1222 | // Write one card block in page 0, no lock | |
1223 | void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { | |
1224 | LED_A_ON(); | |
1225 | bool PwdMode = arg & 0x1; | |
1226 | uint8_t Page = (arg & 0x2)>>1; | |
1227 | uint32_t i = 0; | |
1228 | ||
1229 | // Set up FPGA, 125kHz | |
1230 | LFSetupFPGAForADC(95, true); | |
1231 | ||
1232 | // Trigger T55x7 in mode. | |
1233 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1234 | WaitUS(START_GAP); | |
1235 | ||
1236 | // Opcode 10 | |
1237 | T55xxWriteBit(1); | |
1238 | T55xxWriteBit(Page); //Page 0 | |
1239 | if (PwdMode){ | |
1240 | // Send Pwd | |
1241 | for (i = 0x80000000; i != 0; i >>= 1) | |
1242 | T55xxWriteBit(Pwd & i); | |
1243 | } | |
1244 | // Send Lock bit | |
1245 | T55xxWriteBit(0); | |
1246 | ||
1247 | // Send Data | |
1248 | for (i = 0x80000000; i != 0; i >>= 1) | |
1249 | T55xxWriteBit(Data & i); | |
1250 | ||
1251 | // Send Block number | |
1252 | for (i = 0x04; i != 0; i >>= 1) | |
1253 | T55xxWriteBit(Block & i); | |
1254 | ||
1255 | // Perform write (nominal is 5.6 ms for T55x7 and 18ms for E5550, | |
1256 | // so wait a little more) | |
1257 | TurnReadLFOn(20 * 1000); | |
1258 | ||
1259 | //could attempt to do a read to confirm write took | |
1260 | // as the tag should repeat back the new block | |
1261 | // until it is reset, but to confirm it we would | |
1262 | // need to know the current block 0 config mode | |
1263 | ||
1264 | // turn field off | |
1265 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1266 | LED_A_OFF(); | |
1267 | } | |
1268 | ||
1269 | // Write one card block in page 0, no lock | |
1270 | void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg) { | |
1271 | T55xxWriteBlockExt(Data, Block, Pwd, arg); | |
1272 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1273 | } | |
1274 | ||
1275 | // Read one card block in page [page] | |
1276 | void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd) { | |
1277 | LED_A_ON(); | |
1278 | bool PwdMode = arg0 & 0x1; | |
1279 | uint8_t Page = (arg0 & 0x2) >> 1; | |
1280 | uint32_t i = 0; | |
1281 | bool RegReadMode = (Block == 0xFF); | |
1282 | ||
1283 | //clear buffer now so it does not interfere with timing later | |
1284 | BigBuf_Clear_keep_EM(); | |
1285 | ||
1286 | //make sure block is at max 7 | |
1287 | Block &= 0x7; | |
1288 | ||
1289 | // Set up FPGA, 125kHz to power up the tag | |
1290 | LFSetupFPGAForADC(95, true); | |
1291 | //SpinDelay(3); | |
1292 | ||
1293 | // Trigger T55x7 Direct Access Mode with start gap | |
1294 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1295 | WaitUS(START_GAP); | |
1296 | ||
1297 | // Opcode 1[page] | |
1298 | T55xxWriteBit(1); | |
1299 | T55xxWriteBit(Page); //Page 0 | |
1300 | ||
1301 | if (PwdMode){ | |
1302 | // Send Pwd | |
1303 | for (i = 0x80000000; i != 0; i >>= 1) | |
1304 | T55xxWriteBit(Pwd & i); | |
1305 | } | |
1306 | // Send a zero bit separation | |
1307 | T55xxWriteBit(0); | |
1308 | ||
1309 | // Send Block number (if direct access mode) | |
1310 | if (!RegReadMode) | |
1311 | for (i = 0x04; i != 0; i >>= 1) | |
1312 | T55xxWriteBit(Block & i); | |
1313 | ||
1314 | // Turn field on to read the response | |
1315 | TurnReadLFOn(READ_GAP); | |
1316 | ||
1317 | // Acquisition | |
1318 | doT55x7Acquisition(7679); | |
1319 | ||
1320 | // Turn the field off | |
1321 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1322 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1323 | LED_A_OFF(); | |
1324 | } | |
1325 | ||
1326 | void T55xxWakeUp(uint32_t Pwd){ | |
1327 | LED_B_ON(); | |
1328 | uint32_t i = 0; | |
1329 | ||
1330 | // Set up FPGA, 125kHz | |
1331 | LFSetupFPGAForADC(95, true); | |
1332 | ||
1333 | // Trigger T55x7 Direct Access Mode | |
1334 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1335 | WaitUS(START_GAP); | |
1336 | ||
1337 | // Opcode 10 | |
1338 | T55xxWriteBit(1); | |
1339 | T55xxWriteBit(0); //Page 0 | |
1340 | ||
1341 | // Send Pwd | |
1342 | for (i = 0x80000000; i != 0; i >>= 1) | |
1343 | T55xxWriteBit(Pwd & i); | |
1344 | ||
1345 | // Turn and leave field on to let the begin repeating transmission | |
1346 | TurnReadLFOn(20*1000); | |
1347 | } | |
1348 | ||
1349 | /*-------------- Cloning routines -----------*/ | |
1350 | void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) { | |
1351 | // write last block first and config block last (if included) | |
1352 | for (uint8_t i = numblocks+startblock; i > startblock; i--) | |
1353 | T55xxWriteBlockExt(blockdata[i-1], i-1, 0, 0); | |
1354 | } | |
1355 | ||
1356 | // Copy HID id to card and setup block 0 config | |
1357 | void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) { | |
1358 | uint32_t data[] = {0,0,0,0,0,0,0}; | |
1359 | uint8_t last_block = 0; | |
1360 | ||
1361 | if (longFMT){ | |
1362 | // Ensure no more than 84 bits supplied | |
1363 | if (hi2 > 0xFFFFF) { | |
1364 | DbpString("Tags can only have 84 bits."); | |
1365 | return; | |
1366 | } | |
1367 | // Build the 6 data blocks for supplied 84bit ID | |
1368 | last_block = 6; | |
1369 | // load preamble (1D) & long format identifier (9E manchester encoded) | |
1370 | data[1] = 0x1D96A900 | (manchesterEncode2Bytes((hi2 >> 16) & 0xF) & 0xFF); | |
1371 | // load raw id from hi2, hi, lo to data blocks (manchester encoded) | |
1372 | data[2] = manchesterEncode2Bytes(hi2 & 0xFFFF); | |
1373 | data[3] = manchesterEncode2Bytes(hi >> 16); | |
1374 | data[4] = manchesterEncode2Bytes(hi & 0xFFFF); | |
1375 | data[5] = manchesterEncode2Bytes(lo >> 16); | |
1376 | data[6] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1377 | } else { | |
1378 | // Ensure no more than 44 bits supplied | |
1379 | if (hi > 0xFFF) { | |
1380 | DbpString("Tags can only have 44 bits."); | |
1381 | return; | |
1382 | } | |
1383 | // Build the 3 data blocks for supplied 44bit ID | |
1384 | last_block = 3; | |
1385 | // load preamble | |
1386 | data[1] = 0x1D000000 | (manchesterEncode2Bytes(hi) & 0xFFFFFF); | |
1387 | data[2] = manchesterEncode2Bytes(lo >> 16); | |
1388 | data[3] = manchesterEncode2Bytes(lo & 0xFFFF); | |
1389 | } | |
1390 | // load chip config block | |
1391 | data[0] = T55x7_BITRATE_RF_50 | T55x7_MODULATION_FSK2a | last_block << T55x7_MAXBLOCK_SHIFT; | |
1392 | ||
1393 | //TODO add selection of chip for Q5 or T55x7 | |
1394 | // data[0] = (((50-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | last_block << T5555_MAXBLOCK_SHIFT; | |
1395 | ||
1396 | LED_D_ON(); | |
1397 | WriteT55xx(data, 0, last_block+1); | |
1398 | LED_D_OFF(); | |
1399 | } | |
1400 | ||
1401 | void CopyIOtoT55x7(uint32_t hi, uint32_t lo) { | |
1402 | uint32_t data[] = {T55x7_BITRATE_RF_64 | T55x7_MODULATION_FSK2a | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
1403 | //TODO add selection of chip for Q5 or T55x7 | |
1404 | //t5555 (Q5) BITRATE = (RF-2)/2 (iceman) | |
1405 | // data[0] = ( ((64-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 2 << T5555_MAXBLOCK_SHIFT; | |
1406 | ||
1407 | LED_D_ON(); | |
1408 | // Program the data blocks for supplied ID | |
1409 | // and the block 0 config | |
1410 | WriteT55xx(data, 0, 3); | |
1411 | LED_D_OFF(); | |
1412 | } | |
1413 | ||
1414 | // Clone Indala 64-bit tag by UID to T55x7 | |
1415 | void CopyIndala64toT55x7(uint32_t hi, uint32_t lo) { | |
1416 | //Program the 2 data blocks for supplied 64bit UID | |
1417 | // and the Config for Indala 64 format (RF/32;PSK1 with RF/2;Maxblock=2) | |
1418 | uint32_t data[] = { T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (2 << T55x7_MAXBLOCK_SHIFT), hi, lo}; | |
1419 | //TODO add selection of chip for Q5 or T55x7 | |
1420 | // data[0] = (((32-2)>>1)<<T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 2 << T5555_MAXBLOCK_SHIFT; | |
1421 | ||
1422 | WriteT55xx(data, 0, 3); | |
1423 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=2;Inverse data) | |
1424 | // T5567WriteBlock(0x603E1042,0); | |
1425 | } | |
1426 | // Clone Indala 224-bit tag by UID to T55x7 | |
1427 | void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7) { | |
1428 | //Program the 7 data blocks for supplied 224bit UID | |
1429 | uint32_t data[] = {0, uid1, uid2, uid3, uid4, uid5, uid6, uid7}; | |
1430 | // and the block 0 for Indala224 format | |
1431 | //Config for Indala (RF/32;PSK1 with RF/2;Maxblock=7) | |
1432 | data[0] = T55x7_BITRATE_RF_32 | T55x7_MODULATION_PSK1 | (7 << T55x7_MAXBLOCK_SHIFT); | |
1433 | //TODO add selection of chip for Q5 or T55x7 | |
1434 | // data[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_PSK1 | 7 << T5555_MAXBLOCK_SHIFT; | |
1435 | WriteT55xx(data, 0, 8); | |
1436 | //Alternative config for Indala (Extended mode;RF/32;PSK1 with RF/2;Maxblock=7;Inverse data) | |
1437 | // T5567WriteBlock(0x603E10E2,0); | |
1438 | } | |
1439 | // clone viking tag to T55xx | |
1440 | void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) { | |
1441 | uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2}; | |
1442 | //t5555 (Q5) BITRATE = (RF-2)/2 (iceman) | |
1443 | if (Q5) data[0] = (((32-2)>>1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT; | |
1444 | // Program the data blocks for supplied ID and the block 0 config | |
1445 | WriteT55xx(data, 0, 3); | |
1446 | LED_D_OFF(); | |
1447 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1448 | } | |
1449 | ||
1450 | // Define 9bit header for EM410x tags | |
1451 | #define EM410X_HEADER 0x1FF | |
1452 | #define EM410X_ID_LENGTH 40 | |
1453 | ||
1454 | void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo) { | |
1455 | int i, id_bit; | |
1456 | uint64_t id = EM410X_HEADER; | |
1457 | uint64_t rev_id = 0; // reversed ID | |
1458 | int c_parity[4]; // column parity | |
1459 | int r_parity = 0; // row parity | |
1460 | uint32_t clock = 0; | |
1461 | ||
1462 | // Reverse ID bits given as parameter (for simpler operations) | |
1463 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1464 | if (i < 32) { | |
1465 | rev_id = (rev_id << 1) | (id_lo & 1); | |
1466 | id_lo >>= 1; | |
1467 | } else { | |
1468 | rev_id = (rev_id << 1) | (id_hi & 1); | |
1469 | id_hi >>= 1; | |
1470 | } | |
1471 | } | |
1472 | ||
1473 | for (i = 0; i < EM410X_ID_LENGTH; ++i) { | |
1474 | id_bit = rev_id & 1; | |
1475 | ||
1476 | if (i % 4 == 0) { | |
1477 | // Don't write row parity bit at start of parsing | |
1478 | if (i) | |
1479 | id = (id << 1) | r_parity; | |
1480 | // Start counting parity for new row | |
1481 | r_parity = id_bit; | |
1482 | } else { | |
1483 | // Count row parity | |
1484 | r_parity ^= id_bit; | |
1485 | } | |
1486 | ||
1487 | // First elements in column? | |
1488 | if (i < 4) | |
1489 | // Fill out first elements | |
1490 | c_parity[i] = id_bit; | |
1491 | else | |
1492 | // Count column parity | |
1493 | c_parity[i % 4] ^= id_bit; | |
1494 | ||
1495 | // Insert ID bit | |
1496 | id = (id << 1) | id_bit; | |
1497 | rev_id >>= 1; | |
1498 | } | |
1499 | ||
1500 | // Insert parity bit of last row | |
1501 | id = (id << 1) | r_parity; | |
1502 | ||
1503 | // Fill out column parity at the end of tag | |
1504 | for (i = 0; i < 4; ++i) | |
1505 | id = (id << 1) | c_parity[i]; | |
1506 | ||
1507 | // Add stop bit | |
1508 | id <<= 1; | |
1509 | ||
1510 | Dbprintf("Started writing %s tag ...", card ? "T55x7":"T5555"); | |
1511 | LED_D_ON(); | |
1512 | ||
1513 | // Write EM410x ID | |
1514 | uint32_t data[] = {0, (uint32_t)(id>>32), (uint32_t)(id & 0xFFFFFFFF)}; | |
1515 | ||
1516 | clock = (card & 0xFF00) >> 8; | |
1517 | clock = (clock == 0) ? 64 : clock; | |
1518 | Dbprintf("Clock rate: %d", clock); | |
1519 | if (card & 0xFF) { //t55x7 | |
1520 | clock = GetT55xxClockBit(clock); | |
1521 | if (clock == 0) { | |
1522 | Dbprintf("Invalid clock rate: %d", clock); | |
1523 | return; | |
1524 | } | |
1525 | data[0] = clock | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT); | |
1526 | } else { //t5555 (Q5) | |
1527 | // t5555 (Q5) BITRATE = (RF-2)/2 (iceman) | |
1528 | data[0] = ( ((clock-2) >> 1) << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | (2 << T5555_MAXBLOCK_SHIFT); | |
1529 | } | |
1530 | ||
1531 | WriteT55xx(data, 0, 3); | |
1532 | ||
1533 | LED_D_OFF(); | |
1534 | Dbprintf("Tag %s written with 0x%08x%08x\n", | |
1535 | card ? "T55x7":"T5555", | |
1536 | (uint32_t)(id >> 32), | |
1537 | (uint32_t)id); | |
1538 | } | |
1539 | ||
1540 | //----------------------------------- | |
1541 | // EM4469 / EM4305 routines | |
1542 | //----------------------------------- | |
1543 | // Below given command set. | |
1544 | // Commands are including the even parity, binary mirrored | |
1545 | #define FWD_CMD_LOGIN 0xC | |
1546 | #define FWD_CMD_WRITE 0xA | |
1547 | #define FWD_CMD_READ 0x9 | |
1548 | #define FWD_CMD_DISABLE 0x5 | |
1549 | ||
1550 | uint8_t forwardLink_data[64]; //array of forwarded bits | |
1551 | uint8_t * forward_ptr; //ptr for forward message preparation | |
1552 | uint8_t fwd_bit_sz; //forwardlink bit counter | |
1553 | uint8_t * fwd_write_ptr; //forwardlink bit pointer | |
1554 | ||
1555 | //==================================================================== | |
1556 | // prepares command bits | |
1557 | // see EM4469 spec | |
1558 | //==================================================================== | |
1559 | //-------------------------------------------------------------------- | |
1560 | // VALUES TAKEN FROM EM4x function: SendForward | |
1561 | // START_GAP = 440; (55*8) cycles at 125Khz (8us = 1cycle) | |
1562 | // WRITE_GAP = 128; (16*8) | |
1563 | // WRITE_1 = 256 32*8; (32*8) | |
1564 | ||
1565 | // These timings work for 4469/4269/4305 (with the 55*8 above) | |
1566 | // WRITE_0 = 23*8 , 9*8 | |
1567 | ||
1568 | uint8_t Prepare_Cmd( uint8_t cmd ) { | |
1569 | ||
1570 | *forward_ptr++ = 0; //start bit | |
1571 | *forward_ptr++ = 0; //second pause for 4050 code | |
1572 | ||
1573 | *forward_ptr++ = cmd; | |
1574 | cmd >>= 1; | |
1575 | *forward_ptr++ = cmd; | |
1576 | cmd >>= 1; | |
1577 | *forward_ptr++ = cmd; | |
1578 | cmd >>= 1; | |
1579 | *forward_ptr++ = cmd; | |
1580 | ||
1581 | return 6; //return number of emited bits | |
1582 | } | |
1583 | ||
1584 | //==================================================================== | |
1585 | // prepares address bits | |
1586 | // see EM4469 spec | |
1587 | //==================================================================== | |
1588 | uint8_t Prepare_Addr( uint8_t addr ) { | |
1589 | ||
1590 | register uint8_t line_parity; | |
1591 | ||
1592 | uint8_t i; | |
1593 | line_parity = 0; | |
1594 | for( i=0; i<6; i++ ) { | |
1595 | *forward_ptr++ = addr; | |
1596 | line_parity ^= addr; | |
1597 | addr >>= 1; | |
1598 | } | |
1599 | ||
1600 | *forward_ptr++ = (line_parity & 1); | |
1601 | ||
1602 | return 7; //return number of emited bits | |
1603 | } | |
1604 | ||
1605 | //==================================================================== | |
1606 | // prepares data bits intreleaved with parity bits | |
1607 | // see EM4469 spec | |
1608 | //==================================================================== | |
1609 | uint8_t Prepare_Data( uint16_t data_low, uint16_t data_hi) { | |
1610 | ||
1611 | register uint8_t line_parity; | |
1612 | register uint8_t column_parity; | |
1613 | register uint8_t i, j; | |
1614 | register uint16_t data; | |
1615 | ||
1616 | data = data_low; | |
1617 | column_parity = 0; | |
1618 | ||
1619 | for(i=0; i<4; i++) { | |
1620 | line_parity = 0; | |
1621 | for(j=0; j<8; j++) { | |
1622 | line_parity ^= data; | |
1623 | column_parity ^= (data & 1) << j; | |
1624 | *forward_ptr++ = data; | |
1625 | data >>= 1; | |
1626 | } | |
1627 | *forward_ptr++ = line_parity; | |
1628 | if(i == 1) | |
1629 | data = data_hi; | |
1630 | } | |
1631 | ||
1632 | for(j=0; j<8; j++) { | |
1633 | *forward_ptr++ = column_parity; | |
1634 | column_parity >>= 1; | |
1635 | } | |
1636 | *forward_ptr = 0; | |
1637 | ||
1638 | return 45; //return number of emited bits | |
1639 | } | |
1640 | ||
1641 | //==================================================================== | |
1642 | // Forward Link send function | |
1643 | // Requires: forwarLink_data filled with valid bits (1 bit per byte) | |
1644 | // fwd_bit_count set with number of bits to be sent | |
1645 | //==================================================================== | |
1646 | void SendForward(uint8_t fwd_bit_count) { | |
1647 | ||
1648 | // iceman, 21.3us increments for the USclock verification. | |
1649 | // 55FC * 8us == 440us / 21.3 === 20.65 steps. could be too short. Go for 56FC instead | |
1650 | // 32FC * 8us == 256us / 21.3 == 12.018 steps. ok | |
1651 | // 16FC * 8us == 128us / 21.3 == 6.009 steps. ok | |
1652 | ||
1653 | #ifndef EM_START_GAP | |
1654 | #define EM_START_GAP 60*8 | |
1655 | #endif | |
1656 | #ifndef EM_ONE_GAP | |
1657 | #define EM_ONE_GAP 32*8 | |
1658 | #endif | |
1659 | #ifndef EM_ZERO_GAP | |
1660 | # define EM_ZERO_GAP 16*8 | |
1661 | #endif | |
1662 | ||
1663 | fwd_write_ptr = forwardLink_data; | |
1664 | fwd_bit_sz = fwd_bit_count; | |
1665 | ||
1666 | // Set up FPGA, 125kHz | |
1667 | LFSetupFPGAForADC(95, true); | |
1668 | ||
1669 | // force 1st mod pulse (start gap must be longer for 4305) | |
1670 | fwd_bit_sz--; //prepare next bit modulation | |
1671 | fwd_write_ptr++; | |
1672 | ||
1673 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1674 | WaitUS(EM_START_GAP); | |
1675 | TurnReadLFOn(16); | |
1676 | ||
1677 | // now start writting with bitbanging the antenna. | |
1678 | while(fwd_bit_sz-- > 0) { //prepare next bit modulation | |
1679 | if(((*fwd_write_ptr++) & 1) == 1) | |
1680 | WaitUS(EM_ONE_GAP); | |
1681 | else { | |
1682 | //These timings work for 4469/4269/4305 | |
1683 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1684 | WaitUS(20); | |
1685 | TurnReadLFOn(12); | |
1686 | } | |
1687 | } | |
1688 | } | |
1689 | ||
1690 | void EM4xLogin(uint32_t pwd) { | |
1691 | uint8_t len; | |
1692 | forward_ptr = forwardLink_data; | |
1693 | len = Prepare_Cmd( FWD_CMD_LOGIN ); | |
1694 | len += Prepare_Data( pwd & 0xFFFF, pwd >> 16 ); | |
1695 | SendForward(len); | |
1696 | WaitMS(20); // no wait for login command. | |
1697 | // should receive | |
1698 | // 0000 1010 ok. | |
1699 | // 0000 0001 fail | |
1700 | } | |
1701 | ||
1702 | void EM4xReadWord(uint8_t addr, uint32_t pwd, uint8_t usepwd) { | |
1703 | ||
1704 | LED_A_ON(); | |
1705 | uint8_t len; | |
1706 | ||
1707 | //clear buffer now so it does not interfere with timing later | |
1708 | BigBuf_Clear_ext(false); | |
1709 | ||
1710 | /* should we read answer from Logincommand? | |
1711 | * | |
1712 | * should receive | |
1713 | * 0000 1010 ok. | |
1714 | * 0000 0001 fail | |
1715 | **/ | |
1716 | if (usepwd) EM4xLogin(pwd); | |
1717 | ||
1718 | forward_ptr = forwardLink_data; | |
1719 | len = Prepare_Cmd( FWD_CMD_READ ); | |
1720 | len += Prepare_Addr( addr ); | |
1721 | ||
1722 | SendForward(len); | |
1723 | ||
1724 | WaitUS(400); | |
1725 | // Now do the acquisition | |
1726 | DoPartialAcquisition(20, true, 6000); | |
1727 | ||
1728 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1729 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1730 | LED_A_OFF(); | |
1731 | } | |
1732 | ||
1733 | void EM4xWriteWord(uint32_t flag, uint32_t data, uint32_t pwd) { | |
1734 | ||
1735 | LED_A_ON(); | |
1736 | ||
1737 | bool usePwd = (flag & 0xF); | |
1738 | uint8_t addr = (flag >> 8) & 0xFF; | |
1739 | uint8_t len; | |
1740 | ||
1741 | //clear buffer now so it does not interfere with timing later | |
1742 | BigBuf_Clear_ext(false); | |
1743 | ||
1744 | /* should we read answer from Logincommand? | |
1745 | * | |
1746 | * should receive | |
1747 | * 0000 1010 ok. | |
1748 | * 0000 0001 fail | |
1749 | **/ | |
1750 | if (usePwd) EM4xLogin(pwd); | |
1751 | ||
1752 | forward_ptr = forwardLink_data; | |
1753 | len = Prepare_Cmd( FWD_CMD_WRITE ); | |
1754 | len += Prepare_Addr( addr ); | |
1755 | len += Prepare_Data( data & 0xFFFF, data >> 16 ); | |
1756 | ||
1757 | SendForward(len); | |
1758 | ||
1759 | //Wait 20ms for write to complete? | |
1760 | WaitMS(6); | |
1761 | ||
1762 | //Capture response if one exists | |
1763 | DoPartialAcquisition(20, true, 6000); | |
1764 | ||
1765 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); | |
1766 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1767 | LED_A_OFF(); | |
1768 | } | |
1769 | ||
1770 | /* | |
1771 | Reading a COTAG. | |
1772 | ||
1773 | COTAG needs the reader to send a startsequence and the card has an extreme slow datarate. | |
1774 | because of this, we can "sample" the data signal but we interpreate it to Manchester direct. | |
1775 | ||
1776 | READER START SEQUENCE: | |
1777 | burst 800 us, gap 2.2 msecs | |
1778 | burst 3.6 msecs gap 2.2 msecs | |
1779 | burst 800 us gap 2.2 msecs | |
1780 | pulse 3.6 msecs | |
1781 | ||
1782 | This triggers a COTAG tag to response | |
1783 | */ | |
1784 | void Cotag(uint32_t arg0) { | |
1785 | #ifndef OFF | |
1786 | # define OFF { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); WaitUS(2035); } | |
1787 | #endif | |
1788 | #ifndef ON | |
1789 | # define ON(x) { FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); WaitUS((x)); } | |
1790 | #endif | |
1791 | uint8_t rawsignal = arg0 & 0xF; | |
1792 | ||
1793 | LED_A_ON(); | |
1794 | ||
1795 | // Switching to LF image on FPGA. This might empty BigBuff | |
1796 | FpgaDownloadAndGo(FPGA_BITSTREAM_LF); | |
1797 | ||
1798 | //clear buffer now so it does not interfere with timing later | |
1799 | BigBuf_Clear_ext(false); | |
1800 | ||
1801 | // Set up FPGA, 132kHz to power up the tag | |
1802 | FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 89); | |
1803 | FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD); | |
1804 | ||
1805 | // Connect the A/D to the peak-detected low-frequency path. | |
1806 | SetAdcMuxFor(GPIO_MUXSEL_LOPKD); | |
1807 | ||
1808 | // Now set up the SSC to get the ADC samples that are now streaming at us. | |
1809 | FpgaSetupSsc(); | |
1810 | ||
1811 | // start clock - 1.5ticks is 1us | |
1812 | StartTicks(); | |
1813 | ||
1814 | //send COTAG start pulse | |
1815 | ON(740) OFF | |
1816 | ON(3330) OFF | |
1817 | ON(740) OFF | |
1818 | ON(1000) | |
1819 | ||
1820 | switch(rawsignal) { | |
1821 | case 0: doCotagAcquisition(50000); break; | |
1822 | case 1: doCotagAcquisitionManchester(); break; | |
1823 | case 2: DoAcquisition_config(TRUE); break; | |
1824 | } | |
1825 | ||
1826 | // Turn the field off | |
1827 | FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off | |
1828 | cmd_send(CMD_ACK,0,0,0,0,0); | |
1829 | LED_A_OFF(); | |
1830 | } | |
1831 | ||
1832 | /* | |
1833 | * EM4305 support | |
1834 | */ |