]>
Commit | Line | Data |
---|---|---|
1 | //----------------------------------------------------------------------------- | |
2 | // Copyright (C) 2015 piwi | |
3 | // | |
4 | // This code is licensed to you under the terms of the GNU GPL, version 2 or, | |
5 | // at your option, any later version. See the LICENSE.txt file for the text of | |
6 | // the license. | |
7 | //----------------------------------------------------------------------------- | |
8 | // Implements a card only attack based on crypto text (encrypted nonces | |
9 | // received during a nested authentication) only. Unlike other card only | |
10 | // attacks this doesn't rely on implementation errors but only on the | |
11 | // inherent weaknesses of the crypto1 cypher. Described in | |
12 | // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened | |
13 | // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on | |
14 | // Computer and Communications Security, 2015 | |
15 | //----------------------------------------------------------------------------- | |
16 | ||
17 | #include <stdio.h> | |
18 | #include <stdlib.h> | |
19 | #include <string.h> | |
20 | #include <pthread.h> | |
21 | #include <locale.h> | |
22 | #include <math.h> | |
23 | #include "proxmark3.h" | |
24 | #include "cmdmain.h" | |
25 | #include "ui.h" | |
26 | #include "util.h" | |
27 | #include "nonce2key/crapto1.h" | |
28 | #include "parity.h" | |
29 | ||
30 | // uint32_t test_state_odd = 0; | |
31 | // uint32_t test_state_even = 0; | |
32 | ||
33 | #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull | |
34 | #define GOOD_BYTES_REQUIRED 30 | |
35 | ||
36 | ||
37 | static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K | |
38 | 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
39 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
40 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
41 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
42 | 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
43 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
44 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
45 | 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
46 | 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
47 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
48 | 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
49 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
50 | 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
51 | 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
52 | 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
53 | 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
54 | 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
55 | 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
56 | 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
57 | 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
58 | 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
59 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
60 | 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
61 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
62 | 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
63 | 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
64 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
65 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
66 | 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
67 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
68 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
69 | 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, | |
70 | 0.0290 }; | |
71 | ||
72 | ||
73 | typedef struct noncelistentry { | |
74 | uint32_t nonce_enc; | |
75 | uint8_t par_enc; | |
76 | void *next; | |
77 | } noncelistentry_t; | |
78 | ||
79 | typedef struct noncelist { | |
80 | uint16_t num; | |
81 | uint16_t Sum; | |
82 | uint16_t Sum8_guess; | |
83 | uint8_t BitFlip[2]; | |
84 | float Sum8_prob; | |
85 | bool updated; | |
86 | noncelistentry_t *first; | |
87 | float score1, score2; | |
88 | } noncelist_t; | |
89 | ||
90 | ||
91 | static uint32_t cuid; | |
92 | static noncelist_t nonces[256]; | |
93 | static uint8_t best_first_bytes[256]; | |
94 | static uint16_t first_byte_Sum = 0; | |
95 | static uint16_t first_byte_num = 0; | |
96 | static uint16_t num_good_first_bytes = 0; | |
97 | static uint64_t maximum_states = 0; | |
98 | static uint64_t known_target_key; | |
99 | static bool write_stats = false; | |
100 | static FILE *fstats = NULL; | |
101 | ||
102 | ||
103 | typedef enum { | |
104 | EVEN_STATE = 0, | |
105 | ODD_STATE = 1 | |
106 | } odd_even_t; | |
107 | ||
108 | #define STATELIST_INDEX_WIDTH 16 | |
109 | #define STATELIST_INDEX_SIZE (1<<STATELIST_INDEX_WIDTH) | |
110 | ||
111 | typedef struct { | |
112 | uint32_t *states[2]; | |
113 | uint32_t len[2]; | |
114 | uint32_t *index[2][STATELIST_INDEX_SIZE]; | |
115 | } partial_indexed_statelist_t; | |
116 | ||
117 | typedef struct { | |
118 | uint32_t *states[2]; | |
119 | uint32_t len[2]; | |
120 | void* next; | |
121 | } statelist_t; | |
122 | ||
123 | ||
124 | static partial_indexed_statelist_t partial_statelist[17]; | |
125 | static partial_indexed_statelist_t statelist_bitflip; | |
126 | ||
127 | static statelist_t *candidates = NULL; | |
128 | ||
129 | ||
130 | static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) | |
131 | { | |
132 | uint8_t first_byte = nonce_enc >> 24; | |
133 | noncelistentry_t *p1 = nonces[first_byte].first; | |
134 | noncelistentry_t *p2 = NULL; | |
135 | ||
136 | if (p1 == NULL) { // first nonce with this 1st byte | |
137 | first_byte_num++; | |
138 | first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); | |
139 | // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n", | |
140 | // nonce_enc, | |
141 | // par_enc, | |
142 | // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01, | |
143 | // parity((nonce_enc & 0xff000000) | (par_enc & 0x08)); | |
144 | } | |
145 | ||
146 | while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { | |
147 | p2 = p1; | |
148 | p1 = p1->next; | |
149 | } | |
150 | ||
151 | if (p1 == NULL) { // need to add at the end of the list | |
152 | if (p2 == NULL) { // list is empty yet. Add first entry. | |
153 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
154 | } else { // add new entry at end of existing list. | |
155 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
156 | } | |
157 | } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. | |
158 | if (p2 == NULL) { // need to insert at start of list | |
159 | p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); | |
160 | } else { | |
161 | p2 = p2->next = malloc(sizeof(noncelistentry_t)); | |
162 | } | |
163 | } else { // we have seen this 2nd byte before. Nothing to add or insert. | |
164 | return (0); | |
165 | } | |
166 | ||
167 | // add or insert new data | |
168 | p2->next = p1; | |
169 | p2->nonce_enc = nonce_enc; | |
170 | p2->par_enc = par_enc; | |
171 | ||
172 | nonces[first_byte].num++; | |
173 | nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); | |
174 | nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte | |
175 | ||
176 | return (1); // new nonce added | |
177 | } | |
178 | ||
179 | ||
180 | static void init_nonce_memory(void) | |
181 | { | |
182 | for (uint16_t i = 0; i < 256; i++) { | |
183 | nonces[i].num = 0; | |
184 | nonces[i].Sum = 0; | |
185 | nonces[i].Sum8_guess = 0; | |
186 | nonces[i].Sum8_prob = 0.0; | |
187 | nonces[i].updated = true; | |
188 | nonces[i].first = NULL; | |
189 | } | |
190 | first_byte_num = 0; | |
191 | first_byte_Sum = 0; | |
192 | num_good_first_bytes = 0; | |
193 | } | |
194 | ||
195 | ||
196 | static void free_nonce_list(noncelistentry_t *p) | |
197 | { | |
198 | if (p == NULL) { | |
199 | return; | |
200 | } else { | |
201 | free_nonce_list(p->next); | |
202 | free(p); | |
203 | } | |
204 | } | |
205 | ||
206 | ||
207 | static void free_nonces_memory(void) | |
208 | { | |
209 | for (uint16_t i = 0; i < 256; i++) { | |
210 | free_nonce_list(nonces[i].first); | |
211 | } | |
212 | } | |
213 | ||
214 | ||
215 | static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) | |
216 | { | |
217 | uint16_t sum = 0; | |
218 | for (uint16_t j = 0; j < 16; j++) { | |
219 | uint32_t st = state; | |
220 | uint16_t part_sum = 0; | |
221 | if (odd_even == ODD_STATE) { | |
222 | for (uint16_t i = 0; i < 5; i++) { | |
223 | part_sum ^= filter(st); | |
224 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
225 | } | |
226 | part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits | |
227 | } else { | |
228 | for (uint16_t i = 0; i < 4; i++) { | |
229 | st = (st << 1) | ((j >> (3-i)) & 0x01) ; | |
230 | part_sum ^= filter(st); | |
231 | } | |
232 | } | |
233 | sum += part_sum; | |
234 | } | |
235 | return sum; | |
236 | } | |
237 | ||
238 | ||
239 | // static uint16_t SumProperty(struct Crypto1State *s) | |
240 | // { | |
241 | // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); | |
242 | // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); | |
243 | // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); | |
244 | // } | |
245 | ||
246 | ||
247 | static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) | |
248 | { | |
249 | // for efficient computation we are using the recursive definition | |
250 | // (K-k+1) * (n-k+1) | |
251 | // P(X=k) = P(X=k-1) * -------------------- | |
252 | // k * (N-K-n+k) | |
253 | // and | |
254 | // (N-K)*(N-K-1)*...*(N-K-n+1) | |
255 | // P(X=0) = ----------------------------- | |
256 | // N*(N-1)*...*(N-n+1) | |
257 | ||
258 | if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below | |
259 | if (k == 0) { | |
260 | // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) | |
261 | double log_result = 0.0; | |
262 | for (int16_t i = N-K; i >= N-K-n+1; i--) { | |
263 | log_result += log(i); | |
264 | } | |
265 | for (int16_t i = N; i >= N-n+1; i--) { | |
266 | log_result -= log(i); | |
267 | } | |
268 | return exp(log_result); | |
269 | } else { | |
270 | if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception | |
271 | double log_result = 0.0; | |
272 | for (int16_t i = k+1; i <= n; i++) { | |
273 | log_result += log(i); | |
274 | } | |
275 | for (int16_t i = K+1; i <= N; i++) { | |
276 | log_result -= log(i); | |
277 | } | |
278 | return exp(log_result); | |
279 | } else { // recursion | |
280 | return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); | |
281 | } | |
282 | } | |
283 | } | |
284 | ||
285 | ||
286 | static float sum_probability(uint16_t K, uint16_t n, uint16_t k) | |
287 | { | |
288 | const uint16_t N = 256; | |
289 | ||
290 | if (k > K || p_K[K] == 0.0) return 0.0; | |
291 | ||
292 | double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); | |
293 | double p_S_is_K = p_K[K]; | |
294 | double p_T_is_k = 0; | |
295 | for (uint16_t i = 0; i <= 256; i++) { | |
296 | if (p_K[i] != 0.0) { | |
297 | p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); | |
298 | } | |
299 | } | |
300 | return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); | |
301 | } | |
302 | ||
303 | ||
304 | ||
305 | ||
306 | static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) | |
307 | { | |
308 | static const uint_fast8_t common_bits_LUT[256] = { | |
309 | 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
310 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
311 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
312 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
313 | 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
314 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
315 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
316 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
317 | 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
318 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
319 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
320 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
321 | 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
322 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
323 | 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, | |
324 | 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 | |
325 | }; | |
326 | ||
327 | return common_bits_LUT[bytes_diff]; | |
328 | } | |
329 | ||
330 | ||
331 | static void Tests() | |
332 | { | |
333 | // printf("Tests: Partial Statelist sizes\n"); | |
334 | // for (uint16_t i = 0; i <= 16; i+=2) { | |
335 | // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); | |
336 | // } | |
337 | // for (uint16_t i = 0; i <= 16; i+=2) { | |
338 | // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); | |
339 | // } | |
340 | ||
341 | // #define NUM_STATISTICS 100000 | |
342 | // uint32_t statistics_odd[17]; | |
343 | // uint64_t statistics[257]; | |
344 | // uint32_t statistics_even[17]; | |
345 | // struct Crypto1State cs; | |
346 | // time_t time1 = clock(); | |
347 | ||
348 | // for (uint16_t i = 0; i < 257; i++) { | |
349 | // statistics[i] = 0; | |
350 | // } | |
351 | // for (uint16_t i = 0; i < 17; i++) { | |
352 | // statistics_odd[i] = 0; | |
353 | // statistics_even[i] = 0; | |
354 | // } | |
355 | ||
356 | // for (uint64_t i = 0; i < NUM_STATISTICS; i++) { | |
357 | // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
358 | // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); | |
359 | // uint16_t sum_property = SumProperty(&cs); | |
360 | // statistics[sum_property] += 1; | |
361 | // sum_property = PartialSumProperty(cs.even, EVEN_STATE); | |
362 | // statistics_even[sum_property]++; | |
363 | // sum_property = PartialSumProperty(cs.odd, ODD_STATE); | |
364 | // statistics_odd[sum_property]++; | |
365 | // if (i%(NUM_STATISTICS/100) == 0) printf("."); | |
366 | // } | |
367 | ||
368 | // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC); | |
369 | // for (uint16_t i = 0; i < 257; i++) { | |
370 | // if (statistics[i] != 0) { | |
371 | // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); | |
372 | // } | |
373 | // } | |
374 | // for (uint16_t i = 0; i <= 16; i++) { | |
375 | // if (statistics_odd[i] != 0) { | |
376 | // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); | |
377 | // } | |
378 | // } | |
379 | // for (uint16_t i = 0; i <= 16; i++) { | |
380 | // if (statistics_odd[i] != 0) { | |
381 | // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); | |
382 | // } | |
383 | // } | |
384 | ||
385 | // printf("Tests: Sum Probabilities based on Partial Sums\n"); | |
386 | // for (uint16_t i = 0; i < 257; i++) { | |
387 | // statistics[i] = 0; | |
388 | // } | |
389 | // uint64_t num_states = 0; | |
390 | // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { | |
391 | // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { | |
392 | // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; | |
393 | // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
394 | // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); | |
395 | // } | |
396 | // } | |
397 | // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48)); | |
398 | // for (uint16_t i = 0; i < 257; i++) { | |
399 | // if (statistics[i] != 0) { | |
400 | // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); | |
401 | // } | |
402 | // } | |
403 | ||
404 | // printf("\nTests: Hypergeometric Probability for selected parameters\n"); | |
405 | // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206)); | |
406 | // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205)); | |
407 | // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1)); | |
408 | // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0)); | |
409 | // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1)); | |
410 | // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0)); | |
411 | ||
412 | // struct Crypto1State *pcs; | |
413 | // pcs = crypto1_create(0xffffffffffff); | |
414 | // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
415 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
416 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
417 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
418 | // best_first_bytes[0], | |
419 | // SumProperty(pcs), | |
420 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
421 | // //test_state_odd = pcs->odd & 0x00ffffff; | |
422 | // //test_state_even = pcs->even & 0x00ffffff; | |
423 | // crypto1_destroy(pcs); | |
424 | // pcs = crypto1_create(0xa0a1a2a3a4a5); | |
425 | // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
426 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
427 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
428 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
429 | // best_first_bytes[0], | |
430 | // SumProperty(pcs), | |
431 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
432 | // //test_state_odd = pcs->odd & 0x00ffffff; | |
433 | // //test_state_even = pcs->even & 0x00ffffff; | |
434 | // crypto1_destroy(pcs); | |
435 | // pcs = crypto1_create(0xa6b9aa97b955); | |
436 | // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
437 | // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
438 | // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
439 | // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", | |
440 | // best_first_bytes[0], | |
441 | // SumProperty(pcs), | |
442 | // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); | |
443 | //test_state_odd = pcs->odd & 0x00ffffff; | |
444 | //test_state_even = pcs->even & 0x00ffffff; | |
445 | // crypto1_destroy(pcs); | |
446 | ||
447 | ||
448 | ||
449 | // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); | |
450 | ||
451 | printf("\nTests: Actual BitFlipProperties odd/even:\n"); | |
452 | for (uint16_t i = 0; i < 256; i++) { | |
453 | printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); | |
454 | if (i % 8 == 7) { | |
455 | printf("\n"); | |
456 | } | |
457 | } | |
458 | ||
459 | printf("\nTests: Sorted First Bytes:\n"); | |
460 | for (uint16_t i = 0; i < 256; i++) { | |
461 | uint8_t best_byte = best_first_bytes[i]; | |
462 | printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", | |
463 | //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", | |
464 | i, best_byte, | |
465 | nonces[best_byte].num, | |
466 | nonces[best_byte].Sum, | |
467 | nonces[best_byte].Sum8_guess, | |
468 | nonces[best_byte].Sum8_prob * 100, | |
469 | nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' | |
470 | //nonces[best_byte].score1, | |
471 | //nonces[best_byte].score2 | |
472 | ); | |
473 | } | |
474 | ||
475 | // printf("\nTests: parity performance\n"); | |
476 | // time_t time1p = clock(); | |
477 | // uint32_t par_sum = 0; | |
478 | // for (uint32_t i = 0; i < 100000000; i++) { | |
479 | // par_sum += parity(i); | |
480 | // } | |
481 | // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); | |
482 | ||
483 | // time1p = clock(); | |
484 | // par_sum = 0; | |
485 | // for (uint32_t i = 0; i < 100000000; i++) { | |
486 | // par_sum += evenparity32(i); | |
487 | // } | |
488 | // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); | |
489 | ||
490 | ||
491 | } | |
492 | ||
493 | ||
494 | static void sort_best_first_bytes(void) | |
495 | { | |
496 | // sort based on probability for correct guess | |
497 | for (uint16_t i = 0; i < 256; i++ ) { | |
498 | uint16_t j = 0; | |
499 | float prob1 = nonces[i].Sum8_prob; | |
500 | float prob2 = nonces[best_first_bytes[0]].Sum8_prob; | |
501 | while (prob1 < prob2 && j < i) { | |
502 | prob2 = nonces[best_first_bytes[++j]].Sum8_prob; | |
503 | } | |
504 | if (j < i) { | |
505 | for (uint16_t k = i; k > j; k--) { | |
506 | best_first_bytes[k] = best_first_bytes[k-1]; | |
507 | } | |
508 | } | |
509 | best_first_bytes[j] = i; | |
510 | } | |
511 | ||
512 | // determine how many are above the CONFIDENCE_THRESHOLD | |
513 | uint16_t num_good_nonces = 0; | |
514 | for (uint16_t i = 0; i < 256; i++) { | |
515 | if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { | |
516 | ++num_good_nonces; | |
517 | } | |
518 | } | |
519 | ||
520 | uint16_t best_first_byte = 0; | |
521 | ||
522 | // select the best possible first byte based on number of common bits with all {b'} | |
523 | // uint16_t max_common_bits = 0; | |
524 | // for (uint16_t i = 0; i < num_good_nonces; i++) { | |
525 | // uint16_t sum_common_bits = 0; | |
526 | // for (uint16_t j = 0; j < num_good_nonces; j++) { | |
527 | // if (i != j) { | |
528 | // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]); | |
529 | // } | |
530 | // } | |
531 | // if (sum_common_bits > max_common_bits) { | |
532 | // max_common_bits = sum_common_bits; | |
533 | // best_first_byte = i; | |
534 | // } | |
535 | // } | |
536 | ||
537 | // select best possible first byte {b} based on least likely sum/bitflip property | |
538 | float min_p_K = 1.0; | |
539 | for (uint16_t i = 0; i < num_good_nonces; i++ ) { | |
540 | uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess; | |
541 | float bitflip_prob = 1.0; | |
542 | if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { | |
543 | bitflip_prob = 0.09375; | |
544 | } | |
545 | nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob; | |
546 | if (p_K[sum8] * bitflip_prob <= min_p_K) { | |
547 | min_p_K = p_K[sum8] * bitflip_prob; | |
548 | } | |
549 | } | |
550 | ||
551 | ||
552 | // use number of commmon bits as a tie breaker | |
553 | uint16_t max_common_bits = 0; | |
554 | for (uint16_t i = 0; i < num_good_nonces; i++) { | |
555 | float bitflip_prob = 1.0; | |
556 | if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) { | |
557 | bitflip_prob = 0.09375; | |
558 | } | |
559 | if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) { | |
560 | uint16_t sum_common_bits = 0; | |
561 | for (uint16_t j = 0; j < num_good_nonces; j++) { | |
562 | sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]); | |
563 | } | |
564 | nonces[best_first_bytes[i]].score2 = sum_common_bits; | |
565 | if (sum_common_bits > max_common_bits) { | |
566 | max_common_bits = sum_common_bits; | |
567 | best_first_byte = i; | |
568 | } | |
569 | } | |
570 | } | |
571 | ||
572 | // swap best possible first byte to the pole position | |
573 | uint16_t temp = best_first_bytes[0]; | |
574 | best_first_bytes[0] = best_first_bytes[best_first_byte]; | |
575 | best_first_bytes[best_first_byte] = temp; | |
576 | ||
577 | } | |
578 | ||
579 | ||
580 | static uint16_t estimate_second_byte_sum(void) | |
581 | { | |
582 | ||
583 | for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { | |
584 | float Sum8_prob = 0.0; | |
585 | uint16_t Sum8 = 0; | |
586 | if (nonces[first_byte].updated) { | |
587 | for (uint16_t sum = 0; sum <= 256; sum++) { | |
588 | float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum); | |
589 | if (prob > Sum8_prob) { | |
590 | Sum8_prob = prob; | |
591 | Sum8 = sum; | |
592 | } | |
593 | } | |
594 | nonces[first_byte].Sum8_guess = Sum8; | |
595 | nonces[first_byte].Sum8_prob = Sum8_prob; | |
596 | nonces[first_byte].updated = false; | |
597 | } | |
598 | } | |
599 | ||
600 | sort_best_first_bytes(); | |
601 | ||
602 | uint16_t num_good_nonces = 0; | |
603 | for (uint16_t i = 0; i < 256; i++) { | |
604 | if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { | |
605 | ++num_good_nonces; | |
606 | } | |
607 | } | |
608 | ||
609 | return num_good_nonces; | |
610 | } | |
611 | ||
612 | ||
613 | static int read_nonce_file(void) | |
614 | { | |
615 | FILE *fnonces = NULL; | |
616 | uint8_t trgBlockNo; | |
617 | uint8_t trgKeyType; | |
618 | uint8_t read_buf[9]; | |
619 | uint32_t nt_enc1, nt_enc2; | |
620 | uint8_t par_enc; | |
621 | int total_num_nonces = 0; | |
622 | ||
623 | if ((fnonces = fopen("nonces.bin","rb")) == NULL) { | |
624 | PrintAndLog("Could not open file nonces.bin"); | |
625 | return 1; | |
626 | } | |
627 | ||
628 | PrintAndLog("Reading nonces from file nonces.bin..."); | |
629 | size_t bytes_read = fread(read_buf, 1, 6, fnonces); | |
630 | if ( bytes_read == 0) { | |
631 | PrintAndLog("File reading error."); | |
632 | fclose(fnonces); | |
633 | return 1; | |
634 | } | |
635 | cuid = bytes_to_num(read_buf, 4); | |
636 | trgBlockNo = bytes_to_num(read_buf+4, 1); | |
637 | trgKeyType = bytes_to_num(read_buf+5, 1); | |
638 | ||
639 | while (fread(read_buf, 1, 9, fnonces) == 9) { | |
640 | nt_enc1 = bytes_to_num(read_buf, 4); | |
641 | nt_enc2 = bytes_to_num(read_buf+4, 4); | |
642 | par_enc = bytes_to_num(read_buf+8, 1); | |
643 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); | |
644 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); | |
645 | add_nonce(nt_enc1, par_enc >> 4); | |
646 | add_nonce(nt_enc2, par_enc & 0x0f); | |
647 | total_num_nonces += 2; | |
648 | } | |
649 | fclose(fnonces); | |
650 | PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B'); | |
651 | ||
652 | return 0; | |
653 | } | |
654 | ||
655 | ||
656 | static void Check_for_FilterFlipProperties(void) | |
657 | { | |
658 | printf("Checking for Filter Flip Properties...\n"); | |
659 | ||
660 | uint16_t num_bitflips = 0; | |
661 | ||
662 | for (uint16_t i = 0; i < 256; i++) { | |
663 | nonces[i].BitFlip[ODD_STATE] = false; | |
664 | nonces[i].BitFlip[EVEN_STATE] = false; | |
665 | } | |
666 | ||
667 | for (uint16_t i = 0; i < 256; i++) { | |
668 | uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte | |
669 | uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped | |
670 | uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped | |
671 | ||
672 | if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits | |
673 | nonces[i].BitFlip[ODD_STATE] = true; | |
674 | num_bitflips++; | |
675 | } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits | |
676 | nonces[i].BitFlip[EVEN_STATE] = true; | |
677 | num_bitflips++; | |
678 | } | |
679 | } | |
680 | ||
681 | if (write_stats) { | |
682 | fprintf(fstats, "%d;", num_bitflips); | |
683 | } | |
684 | } | |
685 | ||
686 | ||
687 | static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) | |
688 | { | |
689 | struct Crypto1State sim_cs = {0, 0}; | |
690 | // sim_cs.odd = sim_cs.even = 0; | |
691 | ||
692 | // init cryptostate with key: | |
693 | for(int8_t i = 47; i > 0; i -= 2) { | |
694 | sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); | |
695 | sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); | |
696 | } | |
697 | ||
698 | *par_enc = 0; | |
699 | uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); | |
700 | for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { | |
701 | uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; | |
702 | uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte | |
703 | *nt_enc = (*nt_enc << 8) | nt_byte_enc; | |
704 | uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit | |
705 | uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it | |
706 | *par_enc = (*par_enc << 1) | nt_byte_par_enc; | |
707 | } | |
708 | ||
709 | } | |
710 | ||
711 | ||
712 | static void simulate_acquire_nonces() | |
713 | { | |
714 | clock_t time1 = clock(); | |
715 | bool filter_flip_checked = false; | |
716 | uint32_t total_num_nonces = 0; | |
717 | uint32_t next_fivehundred = 500; | |
718 | uint32_t total_added_nonces = 0; | |
719 | ||
720 | cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); | |
721 | known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); | |
722 | ||
723 | printf("Simulating nonce acquisition for target key %012"llx", cuid %08x ...\n", known_target_key, cuid); | |
724 | fprintf(fstats, "%012"llx";%08x;", known_target_key, cuid); | |
725 | ||
726 | do { | |
727 | uint32_t nt_enc = 0; | |
728 | uint8_t par_enc = 0; | |
729 | ||
730 | simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); | |
731 | //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc); | |
732 | total_added_nonces += add_nonce(nt_enc, par_enc); | |
733 | total_num_nonces++; | |
734 | ||
735 | if (first_byte_num == 256 ) { | |
736 | // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); | |
737 | if (!filter_flip_checked) { | |
738 | Check_for_FilterFlipProperties(); | |
739 | filter_flip_checked = true; | |
740 | } | |
741 | num_good_first_bytes = estimate_second_byte_sum(); | |
742 | if (total_num_nonces > next_fivehundred) { | |
743 | next_fivehundred = (total_num_nonces/500+1) * 500; | |
744 | printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", | |
745 | total_num_nonces, | |
746 | total_added_nonces, | |
747 | CONFIDENCE_THRESHOLD * 100.0, | |
748 | num_good_first_bytes); | |
749 | } | |
750 | } | |
751 | ||
752 | } while (num_good_first_bytes < GOOD_BYTES_REQUIRED); | |
753 | ||
754 | time1 = clock() - time1; | |
755 | if ( time1 > 0 ) { | |
756 | PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", | |
757 | total_num_nonces, | |
758 | ((float)time1)/CLOCKS_PER_SEC, | |
759 | total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1); | |
760 | } | |
761 | fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD); | |
762 | ||
763 | } | |
764 | ||
765 | ||
766 | static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) | |
767 | { | |
768 | clock_t time1 = clock(); | |
769 | bool initialize = true; | |
770 | bool field_off = false; | |
771 | bool finished = false; | |
772 | bool filter_flip_checked = false; | |
773 | uint32_t flags = 0; | |
774 | uint8_t write_buf[9]; | |
775 | uint32_t total_num_nonces = 0; | |
776 | uint32_t next_fivehundred = 500; | |
777 | uint32_t total_added_nonces = 0; | |
778 | FILE *fnonces = NULL; | |
779 | UsbCommand resp; | |
780 | ||
781 | printf("Acquiring nonces...\n"); | |
782 | ||
783 | clearCommandBuffer(); | |
784 | ||
785 | do { | |
786 | flags = 0; | |
787 | flags |= initialize ? 0x0001 : 0; | |
788 | flags |= slow ? 0x0002 : 0; | |
789 | flags |= field_off ? 0x0004 : 0; | |
790 | UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; | |
791 | memcpy(c.d.asBytes, key, 6); | |
792 | ||
793 | SendCommand(&c); | |
794 | ||
795 | if (field_off) finished = true; | |
796 | ||
797 | if (initialize) { | |
798 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) return 1; | |
799 | if (resp.arg[0]) return resp.arg[0]; // error during nested_hard | |
800 | ||
801 | cuid = resp.arg[1]; | |
802 | // PrintAndLog("Acquiring nonces for CUID 0x%08x", cuid); | |
803 | if (nonce_file_write && fnonces == NULL) { | |
804 | if ((fnonces = fopen("nonces.bin","wb")) == NULL) { | |
805 | PrintAndLog("Could not create file nonces.bin"); | |
806 | return 3; | |
807 | } | |
808 | PrintAndLog("Writing acquired nonces to binary file nonces.bin"); | |
809 | num_to_bytes(cuid, 4, write_buf); | |
810 | fwrite(write_buf, 1, 4, fnonces); | |
811 | fwrite(&trgBlockNo, 1, 1, fnonces); | |
812 | fwrite(&trgKeyType, 1, 1, fnonces); | |
813 | } | |
814 | } | |
815 | ||
816 | if (!initialize) { | |
817 | uint32_t nt_enc1, nt_enc2; | |
818 | uint8_t par_enc; | |
819 | uint16_t num_acquired_nonces = resp.arg[2]; | |
820 | uint8_t *bufp = resp.d.asBytes; | |
821 | for (uint16_t i = 0; i < num_acquired_nonces; i+=2) { | |
822 | nt_enc1 = bytes_to_num(bufp, 4); | |
823 | nt_enc2 = bytes_to_num(bufp+4, 4); | |
824 | par_enc = bytes_to_num(bufp+8, 1); | |
825 | ||
826 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); | |
827 | total_added_nonces += add_nonce(nt_enc1, par_enc >> 4); | |
828 | //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); | |
829 | total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); | |
830 | ||
831 | ||
832 | if (nonce_file_write) { | |
833 | fwrite(bufp, 1, 9, fnonces); | |
834 | } | |
835 | ||
836 | bufp += 9; | |
837 | } | |
838 | ||
839 | total_num_nonces += num_acquired_nonces; | |
840 | } | |
841 | ||
842 | if (first_byte_num == 256 ) { | |
843 | // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); | |
844 | if (!filter_flip_checked) { | |
845 | Check_for_FilterFlipProperties(); | |
846 | filter_flip_checked = true; | |
847 | } | |
848 | num_good_first_bytes = estimate_second_byte_sum(); | |
849 | if (total_num_nonces > next_fivehundred) { | |
850 | next_fivehundred = (total_num_nonces/500+1) * 500; | |
851 | printf("Acquired %5d nonces (%5d with distinct bytes 0 and 1). Number of bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", | |
852 | total_num_nonces, | |
853 | total_added_nonces, | |
854 | CONFIDENCE_THRESHOLD * 100.0, | |
855 | num_good_first_bytes); | |
856 | } | |
857 | if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) { | |
858 | field_off = true; // switch off field with next SendCommand and then finish | |
859 | } | |
860 | } | |
861 | ||
862 | if (!initialize) { | |
863 | if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { | |
864 | fclose(fnonces); | |
865 | return 1; | |
866 | } | |
867 | if (resp.arg[0]) { | |
868 | fclose(fnonces); | |
869 | return resp.arg[0]; // error during nested_hard | |
870 | } | |
871 | } | |
872 | ||
873 | initialize = false; | |
874 | ||
875 | } while (!finished); | |
876 | ||
877 | ||
878 | if (nonce_file_write) { | |
879 | fclose(fnonces); | |
880 | } | |
881 | ||
882 | time1 = clock() - time1; | |
883 | if ( time1 > 0 ) { | |
884 | PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", | |
885 | total_num_nonces, | |
886 | ((float)time1)/CLOCKS_PER_SEC, | |
887 | total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1 | |
888 | ); | |
889 | } | |
890 | return 0; | |
891 | } | |
892 | ||
893 | ||
894 | static int init_partial_statelists(void) | |
895 | { | |
896 | const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; | |
897 | const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; | |
898 | ||
899 | printf("Allocating memory for partial statelists...\n"); | |
900 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
901 | for (uint16_t i = 0; i <= 16; i+=2) { | |
902 | partial_statelist[i].len[odd_even] = 0; | |
903 | uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i]; | |
904 | partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states); | |
905 | if (partial_statelist[i].states[odd_even] == NULL) { | |
906 | PrintAndLog("Cannot allocate enough memory. Aborting"); | |
907 | return 4; | |
908 | } | |
909 | for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) { | |
910 | partial_statelist[i].index[odd_even][j] = NULL; | |
911 | } | |
912 | } | |
913 | } | |
914 | ||
915 | printf("Generating partial statelists...\n"); | |
916 | for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { | |
917 | uint32_t index = -1; | |
918 | uint32_t num_of_states = 1<<20; | |
919 | for (uint32_t state = 0; state < num_of_states; state++) { | |
920 | uint16_t sum_property = PartialSumProperty(state, odd_even); | |
921 | uint32_t *p = partial_statelist[sum_property].states[odd_even]; | |
922 | p += partial_statelist[sum_property].len[odd_even]; | |
923 | *p = state; | |
924 | partial_statelist[sum_property].len[odd_even]++; | |
925 | uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); | |
926 | if ((state & index_mask) != index) { | |
927 | index = state & index_mask; | |
928 | } | |
929 | if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { | |
930 | partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p; | |
931 | } | |
932 | } | |
933 | // add End Of List markers | |
934 | for (uint16_t i = 0; i <= 16; i += 2) { | |
935 | uint32_t *p = partial_statelist[i].states[odd_even]; | |
936 | p += partial_statelist[i].len[odd_even]; | |
937 | *p = 0xffffffff; | |
938 | } | |
939 | } | |
940 | ||
941 | return 0; | |
942 | } | |
943 | ||
944 | ||
945 | static void init_BitFlip_statelist(void) | |
946 | { | |
947 | printf("Generating bitflip statelist...\n"); | |
948 | uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20); | |
949 | uint32_t index = -1; | |
950 | uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); | |
951 | for (uint32_t state = 0; state < (1 << 20); state++) { | |
952 | if (filter(state) != filter(state^1)) { | |
953 | if ((state & index_mask) != index) { | |
954 | index = state & index_mask; | |
955 | } | |
956 | if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { | |
957 | statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p; | |
958 | } | |
959 | *p++ = state; | |
960 | } | |
961 | } | |
962 | // set len and add End Of List marker | |
963 | statelist_bitflip.len[0] = p - statelist_bitflip.states[0]; | |
964 | *p = 0xffffffff; | |
965 | statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); | |
966 | } | |
967 | ||
968 | ||
969 | static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) | |
970 | { | |
971 | uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index | |
972 | ||
973 | if (p == NULL) return NULL; | |
974 | while (*p < (state & mask)) p++; | |
975 | if (*p == 0xffffffff) return NULL; // reached end of list, no match | |
976 | if ((*p & mask) == (state & mask)) return p; // found a match. | |
977 | return NULL; // no match | |
978 | } | |
979 | ||
980 | ||
981 | static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
982 | { | |
983 | uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); | |
984 | uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit | |
985 | uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function | |
986 | uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; | |
987 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 | |
988 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits | |
989 | return !all_diff; | |
990 | } | |
991 | ||
992 | ||
993 | static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) | |
994 | { | |
995 | uint_fast8_t j_bit_mask = 0x01 << bit; | |
996 | uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit | |
997 | uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; | |
998 | uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 | |
999 | uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits | |
1000 | return all_diff; | |
1001 | } | |
1002 | ||
1003 | ||
1004 | static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) | |
1005 | { | |
1006 | if (odd_even) { | |
1007 | // odd bits | |
1008 | switch (num_common_bits) { | |
1009 | case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; | |
1010 | case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; | |
1011 | case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; | |
1012 | case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; | |
1013 | case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; | |
1014 | case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; | |
1015 | case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; | |
1016 | case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; | |
1017 | } | |
1018 | } else { | |
1019 | // even bits | |
1020 | switch (num_common_bits) { | |
1021 | case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; | |
1022 | case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; | |
1023 | case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; | |
1024 | case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; | |
1025 | case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; | |
1026 | case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; | |
1027 | case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; | |
1028 | } | |
1029 | } | |
1030 | ||
1031 | return true; // valid state | |
1032 | } | |
1033 | ||
1034 | ||
1035 | static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) | |
1036 | { | |
1037 | for (uint16_t i = 1; i < num_good_first_bytes; i++) { | |
1038 | uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess; | |
1039 | uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i]; | |
1040 | uint_fast8_t j = common_bits(bytes_diff); | |
1041 | uint32_t mask = 0xfffffff0; | |
1042 | if (odd_even == ODD_STATE) { | |
1043 | mask >>= j/2; | |
1044 | } else { | |
1045 | mask >>= (j+1)/2; | |
1046 | } | |
1047 | mask &= 0x000fffff; | |
1048 | //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); | |
1049 | bool found_match = false; | |
1050 | for (uint16_t r = 0; r <= 16 && !found_match; r += 2) { | |
1051 | for (uint16_t s = 0; s <= 16 && !found_match; s += 2) { | |
1052 | if (r*(16-s) + (16-r)*s == sum_a8) { | |
1053 | //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s); | |
1054 | uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s; | |
1055 | uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even); | |
1056 | if (p != NULL) { | |
1057 | while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) { | |
1058 | if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { | |
1059 | found_match = true; | |
1060 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1061 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1062 | // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
1063 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
1064 | // } | |
1065 | break; | |
1066 | } else { | |
1067 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1068 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1069 | // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
1070 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
1071 | // } | |
1072 | } | |
1073 | p++; | |
1074 | } | |
1075 | } else { | |
1076 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1077 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1078 | // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
1079 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
1080 | // } | |
1081 | } | |
1082 | } | |
1083 | } | |
1084 | } | |
1085 | ||
1086 | if (!found_match) { | |
1087 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1088 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1089 | // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); | |
1090 | // } | |
1091 | return false; | |
1092 | } | |
1093 | } | |
1094 | ||
1095 | return true; | |
1096 | } | |
1097 | ||
1098 | ||
1099 | static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) | |
1100 | { | |
1101 | for (uint16_t i = 0; i < 256; i++) { | |
1102 | if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) { | |
1103 | uint_fast8_t bytes_diff = best_first_bytes[0] ^ i; | |
1104 | uint_fast8_t j = common_bits(bytes_diff); | |
1105 | uint32_t mask = 0xfffffff0; | |
1106 | if (odd_even == ODD_STATE) { | |
1107 | mask >>= j/2; | |
1108 | } else { | |
1109 | mask >>= (j+1)/2; | |
1110 | } | |
1111 | mask &= 0x000fffff; | |
1112 | //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); | |
1113 | bool found_match = false; | |
1114 | uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0); | |
1115 | if (p != NULL) { | |
1116 | while ((state & mask) == (*p & mask) && (*p != 0xffffffff)) { | |
1117 | if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { | |
1118 | found_match = true; | |
1119 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1120 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1121 | // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
1122 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
1123 | // } | |
1124 | break; | |
1125 | } else { | |
1126 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1127 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1128 | // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
1129 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
1130 | // } | |
1131 | } | |
1132 | p++; | |
1133 | } | |
1134 | } else { | |
1135 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1136 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1137 | // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", | |
1138 | // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); | |
1139 | // } | |
1140 | } | |
1141 | if (!found_match) { | |
1142 | // if ((odd_even == ODD_STATE && state == test_state_odd) | |
1143 | // || (odd_even == EVEN_STATE && state == test_state_even)) { | |
1144 | // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); | |
1145 | // } | |
1146 | return false; | |
1147 | } | |
1148 | } | |
1149 | ||
1150 | } | |
1151 | ||
1152 | return true; | |
1153 | } | |
1154 | ||
1155 | ||
1156 | static struct sl_cache_entry { | |
1157 | uint32_t *sl; | |
1158 | uint32_t len; | |
1159 | } sl_cache[17][17][2]; | |
1160 | ||
1161 | ||
1162 | static void init_statelist_cache(void) | |
1163 | { | |
1164 | for (uint16_t i = 0; i < 17; i+=2) { | |
1165 | for (uint16_t j = 0; j < 17; j+=2) { | |
1166 | for (uint16_t k = 0; k < 2; k++) { | |
1167 | sl_cache[i][j][k].sl = NULL; | |
1168 | sl_cache[i][j][k].len = 0; | |
1169 | } | |
1170 | } | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | ||
1175 | static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) | |
1176 | { | |
1177 | uint32_t worstcase_size = 1<<20; | |
1178 | ||
1179 | // check cache for existing results | |
1180 | if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) { | |
1181 | candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl; | |
1182 | candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len; | |
1183 | return 0; | |
1184 | } | |
1185 | ||
1186 | candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); | |
1187 | if (candidates->states[odd_even] == NULL) { | |
1188 | PrintAndLog("Out of memory error.\n"); | |
1189 | return 4; | |
1190 | } | |
1191 | uint32_t *add_p = candidates->states[odd_even]; | |
1192 | for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != 0xffffffff; p1++) { | |
1193 | uint32_t search_mask = 0x000ffff0; | |
1194 | uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even); | |
1195 | if (p2 != NULL) { | |
1196 | while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != 0xffffffff) { | |
1197 | if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0)) | |
1198 | || !nonces[best_first_bytes[0]].BitFlip[odd_even]) { | |
1199 | if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) { | |
1200 | if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) { | |
1201 | *add_p++ = (*p1 << 4) | *p2; | |
1202 | } | |
1203 | } | |
1204 | } | |
1205 | p2++; | |
1206 | } | |
1207 | } | |
1208 | } | |
1209 | ||
1210 | // set end of list marker and len | |
1211 | *add_p = 0xffffffff; | |
1212 | candidates->len[odd_even] = add_p - candidates->states[odd_even]; | |
1213 | ||
1214 | candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); | |
1215 | ||
1216 | sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even]; | |
1217 | sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even]; | |
1218 | ||
1219 | return 0; | |
1220 | } | |
1221 | ||
1222 | ||
1223 | static statelist_t *add_more_candidates(statelist_t *current_candidates) | |
1224 | { | |
1225 | statelist_t *new_candidates = NULL; | |
1226 | if (current_candidates == NULL) { | |
1227 | if (candidates == NULL) { | |
1228 | candidates = (statelist_t *)malloc(sizeof(statelist_t)); | |
1229 | } | |
1230 | new_candidates = candidates; | |
1231 | } else { | |
1232 | new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); | |
1233 | } | |
1234 | new_candidates->next = NULL; | |
1235 | new_candidates->len[ODD_STATE] = 0; | |
1236 | new_candidates->len[EVEN_STATE] = 0; | |
1237 | new_candidates->states[ODD_STATE] = NULL; | |
1238 | new_candidates->states[EVEN_STATE] = NULL; | |
1239 | return new_candidates; | |
1240 | } | |
1241 | ||
1242 | ||
1243 | static void TestIfKeyExists(uint64_t key) | |
1244 | { | |
1245 | struct Crypto1State *pcs; | |
1246 | pcs = crypto1_create(key); | |
1247 | crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); | |
1248 | ||
1249 | uint32_t state_odd = pcs->odd & 0x00ffffff; | |
1250 | uint32_t state_even = pcs->even & 0x00ffffff; | |
1251 | //printf("Tests: searching for key %llx after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even); | |
1252 | ||
1253 | uint64_t count = 0; | |
1254 | for (statelist_t *p = candidates; p != NULL; p = p->next) { | |
1255 | bool found_odd = false; | |
1256 | bool found_even = false; | |
1257 | uint32_t *p_odd = p->states[ODD_STATE]; | |
1258 | uint32_t *p_even = p->states[EVEN_STATE]; | |
1259 | while (*p_odd != 0xffffffff) { | |
1260 | if ((*p_odd & 0x00ffffff) == state_odd) { | |
1261 | found_odd = true; | |
1262 | break; | |
1263 | } | |
1264 | p_odd++; | |
1265 | } | |
1266 | while (*p_even != 0xffffffff) { | |
1267 | if ((*p_even & 0x00ffffff) == state_even) { | |
1268 | found_even = true; | |
1269 | } | |
1270 | p_even++; | |
1271 | } | |
1272 | count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]); | |
1273 | if (found_odd && found_even) { | |
1274 | PrintAndLog("Key Found after testing %lld (2^%1.1f) out of %lld (2^%1.1f) keys. A brute force would have taken approx %lld minutes.", | |
1275 | count, log(count)/log(2), | |
1276 | maximum_states, log(maximum_states)/log(2), | |
1277 | (count>>23)/60); | |
1278 | if (write_stats) { | |
1279 | fprintf(fstats, "1\n"); | |
1280 | } | |
1281 | crypto1_destroy(pcs); | |
1282 | return; | |
1283 | } | |
1284 | } | |
1285 | ||
1286 | printf("Key NOT found!\n"); | |
1287 | if (write_stats) { | |
1288 | fprintf(fstats, "0\n"); | |
1289 | } | |
1290 | crypto1_destroy(pcs); | |
1291 | } | |
1292 | ||
1293 | ||
1294 | static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) | |
1295 | { | |
1296 | printf("Generating crypto1 state candidates... \n"); | |
1297 | ||
1298 | statelist_t *current_candidates = NULL; | |
1299 | // estimate maximum candidate states | |
1300 | maximum_states = 0; | |
1301 | for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { | |
1302 | for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { | |
1303 | if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { | |
1304 | maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8); | |
1305 | } | |
1306 | } | |
1307 | } | |
1308 | printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); | |
1309 | ||
1310 | init_statelist_cache(); | |
1311 | ||
1312 | for (uint16_t p = 0; p <= 16; p += 2) { | |
1313 | for (uint16_t q = 0; q <= 16; q += 2) { | |
1314 | if (p*(16-q) + (16-p)*q == sum_a0) { | |
1315 | printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", | |
1316 | p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); | |
1317 | for (uint16_t r = 0; r <= 16; r += 2) { | |
1318 | for (uint16_t s = 0; s <= 16; s += 2) { | |
1319 | if (r*(16-s) + (16-r)*s == sum_a8) { | |
1320 | current_candidates = add_more_candidates(current_candidates); | |
1321 | // check for the smallest partial statelist. Try this first - it might give 0 candidates | |
1322 | // and eliminate the need to calculate the other part | |
1323 | if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) | |
1324 | < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) { | |
1325 | add_matching_states(current_candidates, p, r, ODD_STATE); | |
1326 | if(current_candidates->len[ODD_STATE]) { | |
1327 | add_matching_states(current_candidates, q, s, EVEN_STATE); | |
1328 | } else { | |
1329 | current_candidates->len[EVEN_STATE] = 0; | |
1330 | uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t)); | |
1331 | *p = 0xffffffff; | |
1332 | } | |
1333 | } else { | |
1334 | add_matching_states(current_candidates, q, s, EVEN_STATE); | |
1335 | if(current_candidates->len[EVEN_STATE]) { | |
1336 | add_matching_states(current_candidates, p, r, ODD_STATE); | |
1337 | } else { | |
1338 | current_candidates->len[ODD_STATE] = 0; | |
1339 | uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t)); | |
1340 | *p = 0xffffffff; | |
1341 | } | |
1342 | } | |
1343 | printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); | |
1344 | printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); | |
1345 | } | |
1346 | } | |
1347 | } | |
1348 | } | |
1349 | } | |
1350 | } | |
1351 | ||
1352 | ||
1353 | maximum_states = 0; | |
1354 | for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { | |
1355 | maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; | |
1356 | } | |
1357 | printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0)); | |
1358 | if (write_stats) { | |
1359 | if (maximum_states != 0) { | |
1360 | fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0)); | |
1361 | } else { | |
1362 | fprintf(fstats, "%1.1f;", 0.0); | |
1363 | } | |
1364 | } | |
1365 | } | |
1366 | ||
1367 | ||
1368 | static void free_candidates_memory(statelist_t *sl) | |
1369 | { | |
1370 | if (sl == NULL) { | |
1371 | return; | |
1372 | } else { | |
1373 | free_candidates_memory(sl->next); | |
1374 | free(sl); | |
1375 | } | |
1376 | } | |
1377 | ||
1378 | ||
1379 | static void free_statelist_cache(void) | |
1380 | { | |
1381 | for (uint16_t i = 0; i < 17; i+=2) { | |
1382 | for (uint16_t j = 0; j < 17; j+=2) { | |
1383 | for (uint16_t k = 0; k < 2; k++) { | |
1384 | free(sl_cache[i][j][k].sl); | |
1385 | } | |
1386 | } | |
1387 | } | |
1388 | } | |
1389 | ||
1390 | ||
1391 | static void brute_force(void) | |
1392 | { | |
1393 | if (known_target_key != -1) { | |
1394 | PrintAndLog("Looking for known target key in remaining key space..."); | |
1395 | TestIfKeyExists(known_target_key); | |
1396 | } else { | |
1397 | PrintAndLog("Brute Force phase is not implemented."); | |
1398 | } | |
1399 | ||
1400 | } | |
1401 | ||
1402 | ||
1403 | int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) | |
1404 | { | |
1405 | // initialize Random number generator | |
1406 | time_t t; | |
1407 | srand((unsigned) time(&t)); | |
1408 | ||
1409 | if (trgkey != NULL) { | |
1410 | known_target_key = bytes_to_num(trgkey, 6); | |
1411 | } else { | |
1412 | known_target_key = -1; | |
1413 | } | |
1414 | ||
1415 | init_partial_statelists(); | |
1416 | init_BitFlip_statelist(); | |
1417 | write_stats = false; | |
1418 | ||
1419 | if (tests) { | |
1420 | // set the correct locale for the stats printing | |
1421 | setlocale(LC_ALL, ""); | |
1422 | write_stats = true; | |
1423 | if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { | |
1424 | PrintAndLog("Could not create/open file hardnested_stats.txt"); | |
1425 | return 3; | |
1426 | } | |
1427 | for (uint32_t i = 0; i < tests; i++) { | |
1428 | init_nonce_memory(); | |
1429 | simulate_acquire_nonces(); | |
1430 | Tests(); | |
1431 | printf("Sum(a0) = %d\n", first_byte_Sum); | |
1432 | fprintf(fstats, "%d;", first_byte_Sum); | |
1433 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); | |
1434 | brute_force(); | |
1435 | free_nonces_memory(); | |
1436 | free_statelist_cache(); | |
1437 | free_candidates_memory(candidates); | |
1438 | candidates = NULL; | |
1439 | } | |
1440 | fclose(fstats); | |
1441 | } else { | |
1442 | init_nonce_memory(); | |
1443 | if (nonce_file_read) { // use pre-acquired data from file nonces.bin | |
1444 | if (read_nonce_file() != 0) { | |
1445 | return 3; | |
1446 | } | |
1447 | Check_for_FilterFlipProperties(); | |
1448 | num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); | |
1449 | } else { // acquire nonces. | |
1450 | uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); | |
1451 | if (is_OK != 0) { | |
1452 | return is_OK; | |
1453 | } | |
1454 | } | |
1455 | ||
1456 | Tests(); | |
1457 | ||
1458 | PrintAndLog(""); | |
1459 | PrintAndLog("Sum(a0) = %d", first_byte_Sum); | |
1460 | // PrintAndLog("Best 10 first bytes: %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x, %02x", | |
1461 | // best_first_bytes[0], | |
1462 | // best_first_bytes[1], | |
1463 | // best_first_bytes[2], | |
1464 | // best_first_bytes[3], | |
1465 | // best_first_bytes[4], | |
1466 | // best_first_bytes[5], | |
1467 | // best_first_bytes[6], | |
1468 | // best_first_bytes[7], | |
1469 | // best_first_bytes[8], | |
1470 | // best_first_bytes[9] ); | |
1471 | PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); | |
1472 | ||
1473 | clock_t time1 = clock(); | |
1474 | generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); | |
1475 | time1 = clock() - time1; | |
1476 | if ( time1 > 0 ) | |
1477 | PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC); | |
1478 | ||
1479 | brute_force(); | |
1480 | free_nonces_memory(); | |
1481 | free_statelist_cache(); | |
1482 | free_candidates_memory(candidates); | |
1483 | candidates = NULL; | |
1484 | } | |
1485 | return 0; | |
1486 | } | |
1487 | ||
1488 |